
Theoretical Computer Science 92 (1992) 119-144

Elsevier

119

A variation on the Boyer-Moore
algorithm

Thierry Lecroq
C.E.R.I.L, 25 Coum Blaise Pascal. 91000 Eury, France

1. Introduction

String-matching consists in finding all the occurrences of a word w in a text t.

Several algorithms have been found for solving this problem. They are presented by

Aho in a recent book [l]. Among these algorithms, the Boyer-Moore approach [S,

1 l] seems to lead to the fastest algorithms for the search phase. Even if the original

version of the Bayer-Moore algorithm has a quadratic worst case, its behavior in

practice seems to be sublinear. Furthermore, other authors [9,2] have improved this

worst-case time complexity for the search phase so that it becomes linear in the length

of the text. The best bound for the number of letter comparisons is due to Apostolico

and Giancarlo [2] and is 2n-m+ 1, where n is the length of the text and m the length

of the word. Another particularity of the Boyer-Moore algorithm is that the study of

its complexity is not obvious; see [lo, 73.

Basically, the Boyer-Moore algorithm tries to find for a given position in the text

the longest suffix of the word which ends at that position. A new approach can possess

the ability for a given position in the text to compute the length of the longest prefix of

the word which ends at that position. When we know this length, we are able to

compute a better shift than the Boyer-Moore approach. In the first version we make

a new attempt at matching, forgetting all the previous prefixes matched. This leads to

a very simple algorithm but it has a quadratic worst-case running time.

In an improved version we memorize the position where the previous longest prefix

found ends and we make a new attempt at matching only the number of characters

corresponding to the complement of this prefix. We are then able to compute a shift

without reading again backwards more than half the characters of the prefix found in

the previous attempt. This leads to a linear-time algorithm which scans the text

characters at most three times each.

0304-3975/92/$05.00 $_> 1992-Elsevier Science Publishers B.V. All rights reserved

120

The computation

is made possible by

word w.

T. Lecroq

of this longest prefix ending at a given position in the text

the use of the smallest suffix automaton of the reverse of the

This strategy leads to a Bayer-Moore automaton whose number of states is

bounded by the cube of the length of the word w.

This paper is organized as follows. Section 2 presents the new approach. Section 3

gives some recalls about the smallest suffix automaton of a word. Section 4 presents

the computation of the longest prefix of the word ending at a given position. Section 5

gives the complexity of our first version. Section 6 presents a linear-time method.

Section 7 gives the proof of the linearity of the improved method. Section 8 introduces

Boyer-Moore automaton and presents the automaton based on our strategy.

Section 9 compares the Boyer-Moore algorithm with ours on the basis of some

examples.

2. A new approach

Notation

In this paper A is a set of letters, it is called the alphabet. A* is the set of the words

over A. A word WEA* of length m is denoted by w[l]w[2]...w[m] and

1 WI= m. w[i] is the ith letter of w. E is the empty word and 1 E/ =O.

The Boyer-Moore algorithm attempts to match the word against the text starting

from the right end of the word and progressing to the left. It consists in finding the

longest suffix of the word ending at a given position in the text. When a mismatch

occurs or when the whole word has been matched successfully, the Boyer-Moore

algorithm computes a shift by which the word is moved to the right. And then a new

attempt at matching can be made. The Boyer-Moore algorithm needs two shift

functions to perform its shifts [S, 11, 121.

Our approach consists, for a given position i in the text, in being able to compute

the length of the longest suffix u of the portion of the text t ending at that position i

which is a prefix of the word w. We denote by p(i) this value for a position i in the text

(see Fig. 1).

w

p(i)
. b

U I

t u I

Fig. 1. p(i)= the length of the longest prefix of w ending at i

A variation on the Boyer-Moore algorithm 121

If t=t[l]...t[i]...t[n] and w=w[l]...w[m] with t[i]‘s,w[j]‘s~A*, then for

m<i<n

p(i)=maxfj/Ibj,<m and(for l<kbj, w[k]=t[i-j+k]))ufO).

We also need, for a given position i in the text, to compute the length of the longest

suffix of the portion of the text ending at that position i which is a proper prefix of the

word w. We denote by p’(i) this value.

For m<i<n

p’(i)=max{jJl<j<m and (for ldkdj, w[k]=t[i-j+k])}u{O}.

Then the new algorithm of string-matching can be easily written (see Fig. 2). The

procedure P computes the value of the functions p and p’ for a given position i in the

text.

Example 2.1. If t = abbabbabbabbaabb and w = bbabbaa Algorithm 1 runs as follows:

w bbabbaa

t abbabbabbabbaabb

i=7, p(i)=p’(i)=6

W bbabbaa

t abbabbabbabbaabb

i=8, p(i)=p’(i)=4

W bbabbaa

t abbabbabbabbaabb

i= 11, p(i)=p’(i)=4

W bbabbaa

t abbabbabbabbaabb

i= 14, p(i)=7, p’(i)=0

W bbabbaa

t abbabbabbabbaabb

hQ&: A text t and ZI word w.
output : All the locations of the occurrences of w in t.
Method :

Begin
n := Itl; m := Iwl; i := m;
while i _< n do {

Cj, k) := P(i);
if j = m then {

output(one occurrence of w found at i-m+l);
j := k;)

i := i+m-j;)

End.

Fig. 2. Algorithm 1, the first version.

122 T. Lecroq

The underlined characters are the characters read at each attempt.

The procedure P can be easily computed by using the smallest suffix automaton of

the reverse of the word W.

3. The smallest suffix automaton

The smallest suffix automaton recognizing all the suffixes of a word w is a determin-

istic finite automaton denoted by the 5-uple

~={AS,sJ,~},

where

~ A is the alphabet,

- S is the set of states,
_ SES is the initial state,
_ FE S is the set of the final states, and

~ 6: S x A+S is the transition function.

The language accepted by ,d is: L(d)=jx~A*/3u~A* and ux=w

is linear in time and space in the length of the word w [4, S].

}. Its construction

Example 3.1. The smallest suffix automaton for w=aabbabb is:

A={a,bj, S={O,1,2,3,4,5,6,7,8,9,1O},s=O, F={O,5,9,10};

for 6 see Fig. 3.

Fig. 3. The smallest suffix automaton for w=uahbabb.

A rariation on the Bayer-Moore algorithm 123

The automaton is represented from right to left because our method scans the

portions of the text with the help of the automaton from right to left.

4. The computation of procedure P

In order to compute the value of p(i) and p’(i) we scan the text, from right to left

starting at position i, with the help of the automaton of the suffixes of the reverse of w.

Each time a final state is met we have recognized a prefix of the word w. Then
_ p(i) is equal to the length of the path taken from the initial state to the last final state

met, and
_ ifp(i)<m, then p’(i) is equal to p(i), otherwise p’(i) is equal to the length of the path

taken from the initial state to the last but one final state met.

See Algorithm 2 in Fig. 4 for the details.

Remark. As the value of p’(i) is needed only when p(i)=m; in practice, for a more

efficient implementation we will omit the last test.

In this paper we make the following assumption: all the transitions of the automa-

ton can be computed in constant time, which is a reasonable assumption for a finite

alphabet.

The while loop of Algorithm 2 runs at most m times and all the other instructions

are in time O(1); thus, the time complexity of this algorithm is obviously O(m).

5. Time complexity of Algorithm I

Theorem 5.1. Algorithm 1 has a worst-case time complexity in O(mn).

Proof. The number of times the while loop of Algorithm 1 runs depends on the

variable i. At each step this variable is affected by the value i + m -j, as when j is equal

&lUJ: A text t, a word w, an index i of the text and the
smallest suffix automaton for WR : A = (A, S, s, F, 6)

: Outout (value of p(i), value of p’(i))
Method :

Begin
m := Iwl: state := s; p := 0; j := i;
while i-j < m and G(state, t[j]) is defined do (

state := G(state, tG]); j := j-1:

if state E F then (
p’ := p; p := i-j;]}

if p = m then return(p, p’)
else return(p, p);

End.

Fig. 4. Algorithm 2, computation of P(i).

124 T. Lecroq

to m, j is affected by the value k < j d m. As a consequence, i is always incremented. The

variable i can take all the values from m to n. All the instructions of the while loop are

in 0 (1) except the procedure P which runs in time 0 (m) and all the other instructions

of Algorithm 1 are in O(1). As a consequence, the worst-case time complexity of

Algorithm 1 is O(mn) (with the assumption on the transitions of the automaton). 0

6. A linear-time method

If w is a word of length m, then we have the following definition.

Definition. An integer p such that 1 < p $ m is a period of the word w if for 16 i < m - p

w [i] = w [i + p]. A word x is a border of the word w if x is a prefix and a suffix of w:

3u,v~A* and w=xu=vx.

When we have found the longest prefix u of the word w ending at location i in the

text t, then we consider the portion u of the text composed by the 1 WI - 1 u 1 characters

on the right of u in t (see Fig. 5). In several cases, even if we have been able to read all

the characters of v without being stopped in the automaton, it is not necessary to read

backwards the characters of U. And in all cases we do not have to scan backwards

more than the right half of u.

In order to improve our first string-matching algorithm we introduce a function

T which has the following definition:

T(k,g,state)=(p,c,h,state’) for m<k<n, Odg<m, stateEF,

p=max{jll<‘< ,J,g and s(state,t[k]...t[k-j+I])~F}u(O},

c=max{jllGjdg and G(state,t[k]...t[k-j+l] is defined}u{O},

k=sh(state,t[k]...t[k-c+l]) if c>O,

0 otherwise,

state’=6(state,t[k]...t[k-c+l]) if c>O,

state otherwise.

The shift function sh is defined as follows:

sh (q, a) = { Ix I I XE A *, uvxa prefix of wR, U, VE A*, I u / minimal and

4=6(&v))

w ” I

t u V I
1 k

Fig. 5.

A variation on the Bayer-Moore algorithm 125

for qE:S and UEA and is defined where 6 is defined. Its construction can be computed

during the construction of the automaton without changing its time complexity.

Assume then that we are at position i in the text and that we have found the longest

prefix u of the word w which ends at i:

ItI= Iwl=m, lul=m-_g, Iv/ =9.
Assume further that we know the length of the smallest period of U: per(u). Then we

compute T(i + g, g, S) which corresponds to scanning the g characters of v from right

to left starting with the initial state in the automaton:

T(i +g, g, s) =(p, c, h, state)

Then several cases arise:

~ We have not been able to read all the g characters of v.

- We have found an occurrence of w.

- The shift of v in w is a multiple of per(u).
_ per(u) is large or per(U) is small.

Cusp 1: c#g; it means that all the characters of v have not been read (see Fig. 6).

Lemma 6.1. If c #g, we know the longest prefix (of length p) ofthe word w which ends at

i+g and we can make a new attempt with T(i+g +m-p, m-p, s) without missing any

occurrence of w.

Proof. c=max{jll<j,<gand6(state,t[i]... t[i-j+ 11 is defined} or0, and c#g, so

c < g < m. No prefix of w longer than c can occur ending at i + g in the text:

p=max{jlldjdg and 6(state,t[i]...t[i-j+l])EF)u{O},

where p is the length of the longest prefix of w ending at i+g in the text. 0

Example 6.2.

W bbabbaa

t cccbbabcbb . .

u bbab

W bbabbaa

t u V I
e--,

C

4-w

P

Fig. 6. Case 1, c#y.

126 T. Lecroq

9
4 .

W U

t u V I
4 l

C

Fig. 7. Case 2, c = y, h = 0.

Case 2: c = g and h = 0 (see Fig. 7).

Lemma 6.3. If c=g and h=O, we have found an occurrence of the word in the text

ending at i+g.

Proof. c=g,so6(s,t[i+g]...t[i+l])isdefinedand h=sh(s,t[i+g]...t[i+l])=O,

whichmeansthatt[i+g]...t[i+1]isaprefixofwR,sot[i+1]...t[i+g]isasuffixof

lengthgofw.Asuisaprefixoflengthm-gofw,ut[i+l]...t[i+g]isexactlyw. 17

Example 6.4.

W bbabbab

t cccbbabbab . .

U bbab

Case 3: c = g, h > 0 and h is a multiple of per(u) (see Fig. 8).

Lemma 6.5. If c = g, h > 0 and h is a multiple of per(u), we know a new longest prejix of

length m-h of w ending at i + g and we can make a new attempt with T (i + g + h, h, s)

without missing any occurrence of w.

W V

per(u) n

t, Y

W U I

t U ” I
4 b

C

Fig. 8. Case 3, c=y, h >O and !I is a multiple of per(u).

A mriation on the Bayer-Moore ulyorithm 127

Proof. u = u; u2 with Iu,I=per(u) and Iu21</uII and u2 prefix of ul. w=uu’,

a=t[i+l]... t[i+g] then w=v’t’v” with Iv”I=h. Ju’I=IuI, so Iu’I<Ivv”I since

Iv“I = h>O. So ZI’ is a prefix of u and as lu’l = (VI and k is a multiple of per(u), then

v’=u;‘u, with r’<r. So w=u~‘u~vv”. If t=xuvx’, then t=xu;u2vx’ and t=x”u;~~vx’

with u; u2 r as the longest prefix of w ending at i + g in t, and) u; u2 L:) = m - k. 0

Example 6.6.

W abcabcabcabn

t ccccccabcabcabcabcabcab

U abcabcabcab
W abcabcabcab-

Case 4: c = g, k > 0, k is not a multiple of per(u) and per(u) is large (greater than

half the length of u: per(u)> lul/Z =(m-g)/2), then we make a new call with

T(i, I u I-per (u), state) = (p’, c’, k’, state’) and then two cases arise.

Case 4.1: p’=O (see Fig. 9 and Example 6.8).

Case 4.2: p’ > 0 (see Fig. 10 and Example 6.9).

Lemma 6.7. Zf p’ = 0, we know the longest prejx (of length p) of the word w which ends at

i + g and we can make a new attempt with T(i + g + m - p, m-p, s) without missing any

occurrence of w. lf p’ ~0, we know the longest pre$x (of length g + p’) of the word

w which ends at i+g and we can make a new attempt with T(i+m-p’, m-g-p’, s)

without missing any occurrence of w.

Proof. It is obvious that w cannot recur between i - (u) and i-per(u) by the minimal-

ity of per(u), then it enables us to ignore this portion of the text. We just have to find

the longest prefix of w ending at i + g and starting from i-per(u). This is done by the

two calls to the function T: T(i + g, g, s) and T(i, m-per(u), state).

per(u)
4 b *

9

w U I

t u V I
4 l

C

Fig. 9. Case 4.1, c=y, h is a multiple of per(u), per(u) is large and p’=O.

128 T. Lecroq

P’
H

w-
per(u)

- 4 g b

W U I

t U V I
4 w

C

Fig. 10. Case 4.2, c=g, h is a multiple of), per(u) is large and p’>O

After that if p’=O, it means that there is no prefix of w starting in the portion of the

text t [i-m + per (u) + l] . . . t [i], so the longest prefix of the word w ending at i + g in

the text is the prefix of length p found by the first call to the function T.

If p’>O, then p’=max{jIO<jdm-per(u) and 6(state,t[i]...t[i-j+ l]+F} and

the length of the path taken from s to state is of course equal to g, so the length of the

longest prefix of the word w ending at i+ g in the text is p’ +g. q

Example 6.8.

W abbababbcac
t cxxqbbababhbca

U abbababb
W abbababbcac

Example 6.9.

W aaabaaaba
t ccaaabaaaab

U aaasbaaa
W aaabaaaba

Case 5: c =g, h >O, h is not a multiple of per(u) and per(u) is small (less than or

equal to half the length of u: per(u)< lul/2). Then we make a new call with

T(i, per(u), state) = (p’, c’, h’, state’). Then two cases arise.

Case S.1: c’ = per(u) (see Fig. 11).

Lemma 6.10. Zfc’ = per(u), we know the longest pre$x (of length m-h - h’) of the word
w which ends at i + g and we can make a new attempt with P(i + g + h + h’, h + h’, s).

A variation on the Bayer-Moore algorithm 129

per(u)
t* 4 9 ä

W ”

- ä

C’ C

Fig. 11. Case 5.1, c=g, h is not a multiple of per(u), per(u) is small and c’=per(u)

Proof. u=u; u2 with (u,I=per(u) and lu,l<lu,l and u2 a prefix of ul:

v=t[i+ I] . ..t[i+g].

t = xuvx’.

u1 =“2u3,

t=X(U~U3)IU~vX’,

w=du3u2uv ” with Iv”I=h+h’,

w = uu’,

Iu’I=IvI, lv”j30.

Then v’u3u2 a prefix of u =(u2u3)r+ and I uzu3 I = per(u). By the minimality of per(u)

the factor u3u2 of 2;’ must exactly match a factor u3uz of u, so v’=(u2u3)I’u2 with

r’ cr. v’u3u2 v is the longest prefix of w ending at i+ g and its length is equal to

m-h-h’. CI

Example 6.11.

W bbabbabbabaa

t ccbbabbabbabba

U bbabbabbab

W bbabbabbabaa

Case 5.2: c’< per(u), then this is similar to the case 4. The new attempt depends on the

value of p’.

Then to write the algorithm we just have to know how to make the new attempt in

case 2 and how to compute the length of the smallest period of u at each step.

130 T. Lecroq

Lemma 6.12. If c = g and h =O, the length of the shif is the length of the smallest period

of the word w which is denoted by per(w), so the next call will be T(i+g + per(w),

per (4, s).

The proof is obvious.

In order to compute the length of the smallest period of the longest prefix of the

word w we have already found we use the function f of Morris and Pratt defined as

follows. For O<i<m

f(i) = length of the longest border of w [l] . . . w [i] and f (0) = 0.

Figure 12 describes the whole algorithm.

Theorem 6.13. Algorithm 3jinds all the occurrences of the word w in the text t.

Proof. All the situations are described in cases l-5. Lemmas 6.1,6.3, 6.5, 6.7,6.10 and

6.12 give the proof that Algorithm 3 finds all the occurrences of w in t. 0

m: A text t and a word w.
OUIDUI : All the locations of the occurrences of w in t.

Method :
Begin

11 := It]; 111 := Iwl; pu := 0; i := m; g := In;
while i 5 n do (

CASE 1
(p, c, h, state) := T(i, g. s);
if c < g then {

CASE 2
e,se i; ;=m;pjhp,; :=(e-f(p); 1

output(one occurrence of w found at i-m);

g := per(w);

CASE 3

CASE 4

pu := m-per(w)-f(m-per(w));)
else if h is a multiple of pu then {

g := h; pu := m-h-f(m-h);)
else if pu > (m-g)/2 then {

CASE 4.1

CASE 4.2

CASE 5 else

CASE 5.1

CASE 5.2

(p’. c’, h’, state’) := T(i-g, m-g-p”, state);
if p’ = 0 then (

g := m-p; pu := p-f(p); }
else {

g := n-g-p’; pu := g+p’ f(g+p’);)}

(
(P'. c’, h’, state’) := T(l-g, pu. state);

ii c’ = pu then (
g := h+h’; pu := m-h-h-f(m-h-h’); }

else
if p’ = 0 then {

g := m-p; pu := p-f(p);)

else {

i := i+g;)
g := m-g-p’; pu := g+p’-f(g+p’); 11

End.

Fig. 12. Algorithm 3

A rariation on the Bayer-Moore algorithm 131

hg!JL: A text t, a word w, an index k, a length g and a state
state of the text, the smallest suffix automaton for WR :
A = (A, S, s, F, 6) and the shift function sh.

: Output (p, c, h, state’)
Method :

Begin
p := 0; h := 0. j := k. 3 9
while k-j < g and G(state, t[j]) is defined do {

h := h + sh(state. t[jJ);
state .= G(state, t[j]);
j := j-1;

if state E F then p := k-j; }
return(p. k-j. h, state);

End.

Fig. 13. Algorithm 4, computation of T(k, y, state)

The procedure T can be computed as shown in Fig. 13.

7. Time complexity of Algorithm 3

Assume that we have recognized the longest prefix u0 ending at a position I in the

text. Let US denote by U1, U2, ..., Ui, ... the longest prefixes recognized in the next

attempts. Then the Ui’s will be the words composed by the m- luil characters on the

right of the ui)s in the text.

We define the shifts di’s by di= IU~+~ 1.

Let us denote by ki the positions of the first character of the UPS in the text (see Fig. 14).

The ki’s describe a strictly increasing sequence: IQ</Q+~ V’i>O. We assume that the

characters of u0 have been read only once before the attempt to scan uO.

From the description of Algorithm 3 it is obvious that it is not possible to read

backwards more than the right half of Ui while scanning Zli.

t
UO “0

k. I

’ do

t “I “1 I

t UZ “2

k2

Fig. 14. Three consecutive attempts.

132 T. Lecroq

Proposition 7.1. The locations of the middles of the ui’s describe a strictly increasing

sequence.

Proof. This is obvious if the uI)s do not overlap. Let us examine the case where they all

overlap.

mi = ki + 1 ui l/2 = ki + xi/2 (position of the middle of Ui),

xi+1 =aixi+yi with O<ai< 1,

_Vi+ 1 =(I -ai)xi,

ki+l=ki+Yi+l

=ki+(l-ai)Xi,

ai< * mi<mi+l. il

Lemma 7.2. During the next attempts we read again at most twice the characters on the
right half of uO and never the characters on the left half of uO.

Proof. The fact that the left half of uO is never read again follows from Proposition 7.1.

It remains to consider the right half of uo. The proof is divided into two parts. Part

1 for the case where the smallest period of u0 is small and part 2 for the case where the

smallest period of u0 is large.

Part I: The smallest period of u,, is small: u0=x;x2 with r>l, IxlI=per(u,),

Ix2j<lx1\ and x2 prefix of x1:

xl =x2x3,

w=u()u’.

If I v. I < per (uO) (see Fig. 15) and if we are able to read v,, without being stopped in the

automaton and if we decide to read backwards the characters on the left of v0 in the

text, it means that w=v’vOv” and Iv”1 is not a multiple of per(uO); thus, Iv”l >O.

IvOI=Iu’/, then IvOu”I>Iu’I. Iv’l<(uOl and v’ and u0 are prefixes of w, then v’=x~x4

with p<r, Ix41<(x11, x4 a prefix of x1, and x4#x2. w=(x~x~)‘x~v~v”.

A uariarion on the Boy-Moore algorithm 133

4
Mu,)

b

W x2 x3 x2 x3 x2 x3 x2 U’

W
UO

U’

Fig. 15. u,,=(xZx3)‘x2 and jv,l<per(u,).

If we are able to read backwards per(ue) characters on the left of u. in the text

without being stopped in the automaton, we have read x3x2 (the per(u,,) last

characters of uO) which cannot be equal to the factor x3x4 just on the left of ug in w (by

the minimality of 1~2x3 I = per(uO) and x4 #x2). Then there exists another occurrence

of uO further on left in w.

We know that the prefix x3 x2 of x3 x2 oO must exactly match with the factor x3 x2 of

u. and, by the fact that lug 1 <per(~), we know that u. is a prefix of ~3x2. Then the

length of the shift will be exactly per(uO) and the smallest period of u1 is equal to the

smallest period of uO:

d,=per(uo) and per(u,)=per(u,).

We can have the same argument with u 1 and u1 since per(u,)=per(u,) and

Iv,I=per(u,)dper(u,).
So, if we are able to read backwards per(u,) characters on the left of u1 in the text

without being stopped in the automaton, then the length of the shift will be equal to

per(u,) and Iu21=per(u,) and per(u,)=per(u,)=per(ue).

So, if we read backwards per(u,) characters on the left of u2 in the text (which is the

maximum), then we read the characters of ur and none of uO (see Fig. 16).

perhI,)

u

ko
d, per(u,)

d, per(u,)

t
“2 V2

4-w

per(u2)

Fig. 16. per(uo)=per(ul)=per(u,l

134 T. Lecroq

Then the characters of the second half of u0 have been read at most three times.

Now we will examine the situations where we are stopped in the automaton while

scanning characters on the left of uz, u1 and uo.

If during the rescanning of the characters on the left of u2 we are stopped in the

automaton, then the length of the shift will be at least equal to (r- l)per(u,) (since

w cannot reappear before):

&=(r- l)per(u,)+d with d30,

kl=kO+perbo),

kz=kl+dj

= k. + 2per(u,),

ks=kz+dz

=ko+(r+ l)per(u,)+d,

as Ix2 I <per(u,). Then, as it is impossible to read backwards more than half the

characters of u3, we cannot read backwards the characters of u. (see Fig. 17).

per(u,)

-

t
"1 "1

k,

d, per(u,)

t
"3 "3 I

k3

Fig. 17. d,=(r- l)per(u,)+d.

A oariation on the Bayer-Moore algorithm 135

If during the rescanning of the characters on the left of u1 we are stopped in the

automaton, then the length of the shift will be at least equal to (r - l)per(u,) (since

w cannot reappear before):

dI=(r- l)per(u,)+d with d30,

k, =k,+d,,

k, =ko+per(uo),

=kO+rper(u,)+d,

=k0+rper(u0)+(x2(,

as Ix2 I < per(uO). Then, as it is impossible to read backwards more than half the

characters of u2, we cannot read backwards the characters of u0 (see Fig. 18).

per(u,)

u

t
Ul “1 I

t U2 V2 I

k2

Fig. 18. d, =(r- l)per(u”)+d

136 T. Lecroq

If during the rescanning of the characters on the left of u0 we are stopped in the

automaton, then the length of the shift will be at least equal to rper(u,) (since

w cannot reappear before):

&=rper(u,)+d with d30,

k, =kO+rper(uO)+ 1,

I~II=lx2I+I%I-~.

Then the value of the next shift is at least equal to 1:

dl >O,

k2=kl+dl

as r > 1 and I x2 1 <per (uO). Then, as it is impossible to read backwards more than half

the characters of u2, we cannot read backwards the characters of u0 (see Fig. 19).

pdu,)

t,

t
UO “0

k0

d0
4 c

t Ul "1

k,
d, ++

t U2 “2 I

k2

Fig. 19. d,,=rper(u,)+d.

A variation on the Boyer-Moore algorithm 137

If Ivol>perh),

w=(xzx3)Ix2u’ with Iu’l=)v,)>per(u,).

If we are able to read u0 without being stopped in the automaton and if we decide to

read backwards the characters on the left of u. in the text, it means that w = u’vou” and

(u” I is not a multiple of per (u.); thus, I u” I> 0.

Then assume without loss of generality that we have x3 =x5x; such that

v. = (x;’ x2 xi)” xjl x2 vb with vb a prefix of u’. w = v’ (xj, x2 xj)” xg x2 vb VI’.

If we are able to read per(uo) characters on the left of v. in the text without being

stopped in the automaton, then we know that x3x2uo is a factor of w. The factor

x3x2 of x3x2vo must exactly match a factor x3x2 of u. (by the minimality of

per(u,)=lx,x,) and by the fact that lv”l >O). Since Ivo(>per(u,), then x3x2 is a prefix

of v(J: vo=x~x2v;.

Then we have vo=(~;I~2~~)S~;I~2~~ (see Fig. 20) and vo=x3x2v~=x~x;Ix2z~~ (see

Fig. 21).

So, we would have x~x2x~=x~x;lx2. As Ixyx,x; (= Ix;x;lx,) =per(u,), it is im-

possible to have a proper cyclic shift of a portion of the length per(u,) of uo. Thus, if

W UO
U’ I

W X2 x.3 xi x2 xi x; x2 xi xi x* U’
I

W v’ "0 V" 1

W v’ x; x2 x; x; x2 “0 V"

Fig. 20. ao=x;‘x2x~.x’;v~.

w UO U’

W X2 x3 x2 x3 x2 x3 x2 U’
I

W “0
I

w X3 X2 vO I

Fig. 21. q,=x3x2u~.

138 T. Lecroq

Iu,, (>per(u,), it is impossible to read backwards per(u,) characters of u,, without

being stopped in the automaton. Then the length of the shift will be at least equal to

rper(u,):

dO=rper(u,,)+d with d>O,

kI =kO+rper(u,)+d,

l~II=l~zl+lQoI-~.

Then the value of the next shift is at least equal to 1:

d, >O,

kz=kr +d,

=l~21+l~01-dl+~per(~~),

k2+Iu21/2=kO+rper(u,)+d+d,+Ix,1/2+Iu,1/2-d1/2

+ (r/2) per& 1

=k0+(3r/2)per(u0)+Ix,I/2+Iu01/2+d+dI/2

>ko+Iuol

as r > 1 and I x2 1 <per (u,,). Then, as it is impossible to read backwards more than half

the characters of u2, we cannot read backwards the characters of uO.

Part 2: The smallest period of u0 is large: u. = xy with 1 xl = per(uo), lyl </xl and

y a prefix of x.

If I u. I <per(u,), the length of the shift is at least equal to per (uo):

dO=per(uo)+d with d>O,

kl =ko+per(uo)+ 1,

l~,l=lYl+l~oI--1.

Then the value of the next shift is at least equal to 1:

dr >O,

kz=k, +d,

=kO+per(uo)+d+dI,

lu,I=lu,I--d,+Ik

=lYl+IuoI-d,+per(uo),

A oariation on the Boyer-Moore algorithm 139

as I y I <per(uo). Then, as it is impossible to read backwards more than half the

characters of u 2, we cannot read backwards the characters of u. (see Fig. 22).

If (v. I> per(u,), w = xyu’. If we scan the characters of u. from right to left without

being stopped in the automaton, then u. is a factor of w: w=u’u~v’~.

If we decide to read backwards the characters of u. (on the left of v. in the text), it

means that Ia”/ is not a multiple of per(u,), so lv”[>O:

x=YY’*

uo = YY’Y,

w = yy’yu’,

If we are able to read per(u,) characters on the left of u. in the text without being

stopped in the automaton, then we know that y’yv, is a factor of w. The factor y’y of

y’yvo must exactly match the factor y’y of u. (by the minimality of per(u,)= ly’yj).

But this means that It”‘1 =O, which is a contradiction.

So, if Ivo) >per(u,), it is impossible to read backwards per(u,) characters of u.

without being stopped in the automaton. Then the length of the shift will be at least

equal to per(uO) as when jug j <per(u,) and we know that in this case it is impossible

to read backwards the characters of uo.

This ends the proof of Lemma 7.2. 0

pedu,)

4 b

t X Y “0 I
k0

do
4 *

Fig. 22. u,,=xy and Iu,l<lxl.

140 T. Lecroq

Theorem 7.3. Algorithm 3 reads at most three times the characters of the text.

Proof. The result follows directly from Lemma 7.2. 0

8. The Bayer-Moore automaton

The Boyer-Moore automaton was introduced in [ll]. It is a way to keep track of

the characters already matched for the last m current characters of the text. This leads

to a deterministic finite automaton (A, Q, qo, d) associated with a shift function s,

where

- A is the alphabet,

- Q is the set of states; a state qEQ is a word of length m and for 1 <if m q [i] = w [i]

or q[i] =$, where $#A,

~ qoEA is the initial state (for 1 <i<m q. [i] = $),

- d: Q x A-tQ is the transition function,
_ s:QxA+{0,...,2m}.

Actually, the states carry the information about the characters already matched.

When q[i] = $, it means that we miss the information.

During the scan if we are at position i in the text and in state q in the automaton,

then the next position in the text will be i+s [q, t [i]] - 1 and the next state will be

d(q, t [i]). This corresponds to the more simple strategy which consists in trying to

match the rightmost unknown character.

Example 8.1. w = aba and A = {a, b} (see Fig. 23).

Fig. 23. The Boyer-Moore automaton for w = aba.

A variation on the Boyer-Moore algorithm 141

The shift function s is given as follows:

a b

$38 0 2
$$a 4 0

b 3 6

a$$ 0 2

$ba 6 6

a$a 5 5

Actually, no upper bound different from the straightforward 2” is known for the

number of states of the Boyer-Moore automaton. We only know a polynomial upper

bound for a family of words; see [3, 61.

Our strategy leads to an automaton with a number of states in O(m3) since the

states are all of the form: a known prefix (possibly empty), an unknown portion,

another known portion (possibly empty) and another unknown part. And we try to

match the unknown character just on the left of the rightmost known portion or the

rightmost character of the text if the rightmost known portion of the text is empty:

where

ie=O or (iO= 1 and iO<il <m),

jo=ii or (jo=i1+1,j06j1dm and u[j]=$ forj,<j<ji),

ko=jl or (ko=jl+l, kodk,dm and u[k]=w[k] for kodkdk,),

qo=ki or (qo=ki + 1, qOQql dm and x[q]=$ for qo<q<ql),

VqEQ q=w[l]...w[i]$...$w[j]...w[j+k]$...$.

There are obviously m3 words of this form.

9. Comparison with the Boyer-Moore algorithm on few examples

Intuitively, one can expect a better behavior of Algorithm 3 (A3) than of Boy-

er-Moore algorithm (BM). The latter tends to match small suffixes v of the word

against the text. These suffixes are likely to reappear very close in their left context in

the word, which leads to small shifts (see Fig. 24).

Algorithm 3 matches small prefixes u of the word but it enables it to perform better

shifts than those of Boyer-Moore algorithm (see Fig. 25).

142 T. Lecroq

W V

Example 9.1.

BM

A3

t

W

t

W

t

W

Example 9.2.

t .

W

t .

W

A3

t .

W

t V I
W V I

t b

shift

Fig. 24. Shift of the Boyer-Moore algorithm

t U I
W U

4 w
shift

Fig. 25. Shift of Algorithm 3

. . cbca

abbcabca

. cbca

abbcabca

. cbca

abbcabca

. c&be

abdabecabe

. cdabe

abdabecabe

. cdabe

abdabecabe

A cariation on the Bayer-Moore algorithm 143

Example 9.3.

t (de)*

t dcdcdcdcdcdcdcdc

w a&c

BM

t dcdcdcdcdcdcdcdc.

W a&c

A3

t dcdcdcdcdcdcdc.
W a&c

Example 9.4.

t (aaab)*

t aaabaaabaaabaaabaaab

w aabaa

BM and A3

t aaabaaabaaabaaabaaab . . .

w aabaa
W aabaa

10. Conclusion

We have presented a new linear string-matching algorithm using the smallest suffix

automaton. This algorithm scans each text character at most three times. Its prep-

rocessing is linear in time and space in the length of the word to be found. Intuitively,

its behavior seems to be better than that of the Boyer-Moore algorithm, which is

known to be one of the fastest string-matching algorithms in practice. The strategy

used in this algorithm leads to a Boyer-Moore automaton whose number of states is

bounded by the cube of the length of the word.

Acknowledgment

I thank Wojciech Rytter for an interesting discussion on this subject.

References

[l] A.V. Aho, Algorithms for finding patterns in strings, in J. van Leeuwen, ed., Handbook of Theoretical

Computer Science, Vol. A, Algorithms and Complexity (Elsevier, Amsterdam, 1990) 255-300.
[2] A. Apostolico and R. Giancarlo, The Boyer-Moore-Galil string searching strategies revisited, SIAM

J. Comput. 15 (1986) 98-105.

144 T. Lecroq

[3] R.S. Baeza-Yates and G.H. Gonnet, Boyer-Moore automata, Research Report, University of

Waterloo, 1989.

[4] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen and J. Seiferas, The smallest automaton

recognizing the subwords of a text, Theoret. Comput. Sci. 40 (1985) 31-55.
[S] R.S. Boyer and J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (1977) 762-772.

[6] C. Choffrut, An optimal algorithm for building the BoyerrMoore automaton, EA TCS Bull. 40 (1990)

217-225.

[7] R. Cole, Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm, to appear.

[S] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1986) 63-86.
[9] Z. Galil, On improving the worst-case running time of the BoyerMoore string-matching algorithm,

Comm. ACM 22 (1979) 505-508.

[lo] L.J. Guibas and A.M. Odlyzko, A new proof of the linearity of the Boyer-Moore string searching

algorithm, SIAM J. Comput. 9 (1980) 672-682.

[ll] D.E. Knuth, J.H. Morris Jr. and V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput.
6 (1977) 323-350.

[12] W. Rytter, A correct preprocessing algorithm for Boyer-Moore string-searching, SIAM J. Comput.
9 (1980) 509-512.

