
Theoretical Computer Science 92 (I 992) 19-3 I
Elsevier

19

Average running time of the
Boyer-Moore-Horspool algorithm

Ricardo A. Baeza-Yates”

Baeza-Yates. R.A. and M. Regnier. Average running time of the Bayer-Moore-Horspool algorithm,

Theoretical Computer Science 92 (1992) 19-31.

We study Boyer-Moore-type string searching algorithms. We analyze the Horspool’s variant. The

searching time is linear. An exact expression of the linearity constant is derived and is proven to be

asymptotically r. 1;~ d x < 2/(c + I), where c is the cardinality of the alphabet. We exhibit a stationary

process and reduce the problem to a word enumeration problem. The same technique applies to

other variants of the Boyer-Moore algorithm.

1. Introduction

String searching is an important component of many problems, including text

editing, data retrieval and symbol manipulation. The string matching problem con-

sists of finding one or all occurrences of a pattern in a text, where the pattern and the

text are strings over some alphabet. A good parameter to evaluate the complexity of

string searching algorithms is the number of text-pattern comparisons of charac-

ters. The worst case is well known for most algorithms. Notably, for the Boyer-Moore

algorithm studied here, the searching time is O(n) for a pattern of length m and a text

of length ~1, rrl >m. Moreover, at least n-m + 1 characters must be inspected in the

worst case [l 11.

The average complexity is also important [14,9]. It is interesting to show (when

possible!) that the expected number of comparisons cfi is asymptotically K. n; and

*This author was partially supported by the University of Waterloo and INRIA.

**This author was supported by the ESPRIT11 Basic Research Actions Program of the EC under
contract No. 3075 (project ALCOM).

0304-3975,‘92;‘$05.00 IC 1992-Elsevier Science Publishers B.V. All rights reserved

20 R.A. Baeza- Yates, M. RPynier

compare the linearity constant K for different string searching algorithms. One

common characteristic of these algorithms is the dependence on history: the number

of comparisons made to a given character depends on the result of comparisons to its

neighbors. Hence, first attempts to derive asymptotics used Markov chains [6, 12, 2,

31. Unfortunately, this quickly leads to a combinatorial explosion as the size of the

pattern increases. Recently another algebraic approach, based on pattern enu-

meration and combinatorics on words, facilitated an analysis of the Knuth-

Morris-Pratt algorithm [lo].

In this paper we derive the analysis of the BayerMooreeHorspool or BMH

algorithm [S]. This algorithm, described below, proceeds from right to left, a (presum-

ably) efficient method for large alphabets. The method is rather in the same vein as

[lo] but the dependence on history is much tighter. The originality of our approach is

the immediate reduction to a stationary process. The study of this stationary process,

using algebraic tool and combinatorics on words, leads to the linearity constant K. It

appears to be a simple function of the cardinality c of the alphabet: K, - l/c + 0(l/c’).

The organization of the paper is as follows. Section 2 briefly presents the BMH

algorithm. In Section 3 we reduce the analysis to the study of a stationary process.

Section 4 addresses the average performance; notably, the expected number of com-

parisons C, - K,n is derived. Asymptotic bounds on K, are proven, and a conjecture is

stated. All these results agree well with experimental values. The last section is our

conclusion. In a preliminary version of this paper [4] we also studied Boyer-Moore
automata.

2. The Boyer-Moore-Horspool algorithm

The Boyer-Moore (BM) algorithm positions the pattern over the leftmost charac-

ters in the text and attempts to match it from right to left. If no mismatch occurs, then

the pattern has been found. Otherwise, the algorithm computes a shift, the amount by

which the pattern is moved to the right before a new matching attempt is undertaken.

This shift can be computed with two heuristics: the match heuristic and the occurrence

heuristic. In this paper we only consider the second one; it consists in aligning the last

mismatching character in the text with the first character of the pattern matching it.

A simplification was proposed in 1980 by Horspool [S]. In that paper it was pointed

out that any character from the text read since the last shift can be used for the

alignment. To maximize the average shift after a mismatch, the character compared

with the last character of the pattern is chosen for the alignment. This also implies that

the comparisons can be done in any order (left-to-right, right-to-left, random, etc.) [3].

Empirical results show that this simpler version is as good as the original algorithm.

The code for the BayerMoore-Horspool algorithm is extremely simple and is

presented in Fig. 1.

Average running time of the Boyer-Moore-Horspool algorithm 21

bmhsearchc text, n, pat. m) /* Search pat[l. .ml in textCl..nl */

char textElI pat[l;

int n, m;

i
int d[ALPHABET_SIZE], i, j. k;

for(j = 0; j < ALPHABET-SIZE; j++) dCj1 = m; /* preprocess *!

for(j = 1; j < m; j++) d[patCjll = m - j;

Report_match_at_position(k + 1);

Fig. 1. The Boyer-Moore-Horspool algorithm.

As a convenience for further analysis, we use a pattern of length m + 1 instead of m.

The occurrence heuristics table is computed by associating a shift to any character in

the alphabet. Formally,

d[x]=min{sIs =m+l or (I <s<m and pattern[m+l-s]=x)}.

Note that d[x] is m+ 1 for any character not appearing in the m first characters of

the pattern, and notably for the last one if it occurs only once. The shift is always

greater than 0. For example, the d table for the pattern abracadabra is

d[‘a’] = 3, d[‘b’] =2, d[‘c’]=6, d[‘d’] =4, d[‘r’] = 1,

and the value for any other character is 11.

Note that this can be seen as a special automaton, following Knuth, Morris and

Pratt [9] (see also [4]).

3. A stationary process

We turn now to the evaluation of average performance. Note that, for a given

pattern and a given text, the algorithm is fully deterministic. Nevertheless, for a given

pattern and a random text, a stationary stochastic process serves as a good model, as

will be developed in this section. The next section will be devoted to the average

performance when both pattern and text are random.

We first state our probabilistic assumptions regarding the distribution of characters

appearing in the text or in the pattern (in the case of a random pattern).

22 R.A. Bueza- Yates, M. R&pier

Probability assumptions. The distribution of characters occurring in the text or in the

pattern is UH$OIVI. That is, given the random variable X, whose value may be any

character from the c-alphabet A, for any character a in A:

We first introduce the key notion of head. A head is a starting point in the text of

a right-to-left comparison. It is always compared to the last character in the pattern.

Definition 3.1. A character .Y in the text is a head iff it is read immediately after a shift.

Theorem 3.2. For u given.fi.xed pattern p of length m + 1, let Yr, he the probability that

u heud. Then, J& converges to u stationary probability the kth text character be

HI: defined b)‘

1
x;=

E,[sh$] ’

where EJshft] denotes the average shift bvhen the aligned character ranges over the

c values in the alphabet.

Proof. Position k in a text is a head iff some position k-j is a head with an associated

shift j. As such events are not independent, we consider the equivalent expression:

m

(t[k]#head) = U jt[k-j]=head and shijt>ji.
j=l

Note that if in position k-j we had a shift of less than j, say i, that case is considered

now in position k-j + i (i.e. a different value of j). Thus, we obtain the following linear

recurrence

.SYk=l- i Pr(sh$>j).Xk_j,
j=l

with initial conditions H, + 1 = 1 and .Xk=O, for k<m. As Pr(shift=l)#O,

the recurrence converges to l/C;= 1 Pr{shft >j } which can be rewritten as

1 /x72: j Pr {shift =,j) (see Fig. 2). 0

Remark. The convergence of such a linear equation is exponential.

In the following proposition, we state a general expression for E,[shift] as a func-

tion of p and the distribution of characters in the text.

23

Fig. 2. Possible events such that the rlth position is not a head.

Proposition 3.3. Let p = p’x be a pattern. There exists a sequence (a,, . , a,) of charac-

ters and a unique sequence (w,, wj) qf words such that

p =I M! ,...Wl.Y

M!iE(al ,aij I*. {ai)

Let us denote / wiI by ki. Then, ji)r- u uniform character distribution in the text:

j-l

cE,[shiJi]=,j+ C (j-i)ki+(c-j)(m+ I).
i=l

!fj = c this simplifies to

r-1

CE,CStZ~~]=~+ C (~-i)ki.

i=l

Proof. In the BMH algorithm the value of the last letter of the pattern is not used to

compute the next shift; hence, we only consider the prefix p’ of length m. If the last

head is the ith character ji of p’, it is aligned with the first occurrence of yi in p’; hence,

the shift is si = 1+ kl + ... + ki_ 1. In other cases, the shift is m + 1. Each case happens

with probability l/c. Hence,

cE,[shifi]= i si+(c-j)(Fn+ 1)
i=l

I- 1

=j+ 1 (j-i)ki+(c-Q)(m+ I). q
i=l

Example. Consider the pattern abcbchahaax = abcbc.bab.aa.x. Here, k 1 =2(b), and

k2 =3(c). If the last head were a, we shift the pattern by one position, Similarly, if it

were b we shift three positions; for c, shift six positions. Then.

E,[sh$] =
lO+(c-3)(m+ 1)

c

24 R.A. Baeza- Yates, M. RPgnier

We are now ready to derive the expected number .of comparisons.

Theorem 3.4. Let c,(p) be the expected number of text-pattern comparisonsfor a given

pattern p and a random text t. Then

c,(P) =H

n
,” 1+:+;-$

(1

c,(P) =H

n
,” l+f

(1

m=2,

m=l

When m tends to co

~ r G(P) =H” c +
EP p&

i 1
n P c-l

1-G & [1
+o 1

(4

cm .

Proof. Let us count the number of right-to-left comparisons performed from position 1.

We compute S,(I), its average value for a given p and random text. Here, this number

depends on history, but we can get very good approximations. A first approximation

is [l]

S,(l) __=I+;+...+;=c
H,(l) C-l

This assumes no knowledge on left neighbors: comparisons are random. However, if

the last head position is attained in a backward reading, a match certainly occurs and

the left neighbor will also be read. Hence, a second approximation is

S,(l)
H,(l- shift)

C
=-

c-l

which gives the correcting term Ep[l/cShiD] - I/cm.

This sequence of approximations easily generalizes. The kth approximation will

yield a correcting term

Average runniny time of the Bayer-Moore-Horspool algorithm 25

provided that s1 + ... +sk<m. Noticing that

EP [I ,,,,...!.$&,,] =c~-%[~]kl
the result stated then follows.

Let us turn now to small patterns. For 2-patterns, i.e. when m= 1, the right-to-

left comparisons always stop at step 1 (or 2) with probability (c - 1)/c (or l/c). Hence,

S,(1)= H,” (1 + l/c). For 3-patterns, i.e. when m= 2, one has a correcting term iff

shift + 1 <m, or shift = 1, which occurs with probability l/c. Hence, the result

1+ l/c+2/c2- l/r3. Notice that this also is: c/(c- l)+E,[l/cshir’] +0(1/c’). 0

4. Average performance

4. I. Some formalism

We need to introduce some notation. From Proposition 3.3, it appears that we are

led to enumerate patterns associated with sequences (ki). We do so using generating

functions. Let W be a set of words, and (WI the size of a word WE JK Let s, be the

number of words w of length n. The generating function enumerating words of W is

S(z)= c s,z”.
?I>0

Proposition 4.1. We denote by Dj(Z,, Zj) the generating ,finction of words with
exactly j<c diflerent characters, and by F(zl,..., z,) the generating function of words
over a c-alphabet. They satisfy

and

Dj(z lr...rZj)' C Z;'
Zl zj

&I=“,...“, .x

...zr”ci’--& . . . __
l-Zj’

F(z~, ... tZc)= i Dj(Z1, ... ,Zj)
j= 1

z&l+ W(...(l+&))).

Proof. Applying classical rules 173, the generating function for words wi is

Zi(l/(1 - izi)). Concatenation translates to a product, and we have c(c- 1). . (c-j
+ 1) = cl choices for the sequence (a 1,. . , aj). Note that the generating function of all

strings of length m, F,(zl ,..., z,), is the restriction kl + ... +k,=m of F(zl ,..., zC),
where ki is the degree of Zi in F,. 0

26 R.A. Bae:a- Yates, M. R&pier

Notably, all possible patterns of length m are given by the coefficient of degree m in

F(z, . . .) z), namely, F,(1,. , 1) or cm. For example, for c = 2 (binary alphabet) we have

2ZZZl m-2

F,(z,,z,)=2zy+ -(z
z1-222

~~‘-(2z2)m~1)=2z;1+2z2Z1 1 z{(2z2)m-2-i
jb0

The total number of patterns is F,(l, l)= 2”.

4.2. Average number of he&

We now assume that both text and pattern are random. We first study the average

number of heads for patterns of length m + 1. Then we derive an asymptotic expression

when m tends to x and study its asymptotic behavior when the alphabet size c tends

to x.

Theorem 4.2. Tke probability of‘being a head, when p ranges ouer all patterns of length

m+ 1 on a c-ary alpkabet is

kl+...+ki_l<mj+ C (j-W+(c-.W+l)

Moreover,
i=l

Pk(c)= lim X(c, m)=c c + 0((1 - l/c)“/m).
m - ZZ c- 1

k, > 1
i=l,....c-1 C+ 1 (c-i)ki

i=l

Corollary 4.3. For a binary alphabet, the result is

Pk(c) = 8 In 2 - 5 - 0.5452.

Proof.

As [z:l . ..z~~]X(c. m)=cj/j! n!~t(i/j)~~j” and l/E,[skift] = l/(c+_CFI: (c+i)k,), the

expression of H (c, m) follows. For large patterns, only the last term does not converge

to 0 when m goes to infinity, and Pk(c) follows.

For a binary alphabet (c=2), the expected shift is EJskijt] =(2+ k,)/2. Then,

Table 1 gives some exact values for this probability, from which it seems that

H(c, m) quickly converges.

Theorem 4.4. Let Ph(c) be lim, _ * H(c, m), where H(c, m) is the probability of being

a head, when p ranges otler all possible patterns of length in+ 1 on a c-ary alphabet. Then

2
&Ph(c)<-
c c+l

Conjecture. When C+ZO, then Ph(c)+ I/c.

Proof. For any pattern, the shift on the ith different character is greater than or equal

to i. Hence,

cE,[sh$]> 1 +2+ . . . SC=-----
c(cf1) c<m

2
,

If c>m, one gets the tighter bound: 1 + ... + m+(c -m)(m + 1). The lower bound

is a direct consequence of Jensen’s inequality [15], that can be expressed as:

E(l/s)> l/E(s). 0

Practically, the computations in Table 1 show that the lower bound is very tight.

We are currently working to exhibit the underlying process and the random variables

involved. We conjecture that some variant of the central limit theorem should apply.

Exact values for .X (c, m)

m+ I 2 3 4 5

8
9

10

15
20

25
30

0.666667 0.600000 0.571429 0.555556

0.583333 0.476 190 0.433333 0.410256

0.558333 0.421958 0.368094 0.339860

0.550000 0.395 198 0.332003 0.299440

0.547024 0.38 1249 0.310381 0.273988

0.545908 0.373737 0.296842 0.257047

0.545474 0.369597 0.288135 0.245365

0.545300 0.367275 0.282438 0.237120

0.545229 0.365954 0.278663 0.23 1206

0.545178 0.364246 0.271961 0.218487
0.545 177 0.3641 18 0.270950 0.215601
0.545 177 0.364108 0.270783 0.214899

0.545171 0.364107 0.270754 0.2 I4722

28 R.A. Baeza- Yates, M. RL’gnier

4.3. Average number qf comparisons

Theorem 4.5. Let c,,, be the expected number of text-pattern comparisons for random

texts of size n and random patterns of length m+ 1. Then,

C
?=X(c,m) I+i+s+O $

n (C (1)

or, for large patterns,

.

Corollary 4.6. For a binary alphabet, the average number of comparisons is very close to

(
261n28lnj-y nZl.2782n

1

with a difference not exceeding 0.02n.

Proof. It is desirable to derive

The rightmost character contributes l/c to E,[~/c”~‘~~] and is found with probability

l/c. Other characters contribute at most: (l/c’+ l/c3 + ... + l/cc)l/c=O(l/c3). Now

Table 2

Expected number of comparisons per character

WI+1 2 3 4 5

^
L

3
4

5

6
I

8

9
10

15

20

25
30

0.916667 0.711111 0.633929 0.595556
1.07813 0.7078 19 0.577734 0.513477
1.16927 0.671381 0.512026 0.437875
1.22044 0.643041 0.466753 0.388051
1.24812 0.62505 1 0.437543 0.355491
1.26270 0.614318 0.418757 0.333594
1.27025 0.608056 0.406556 0.318453
1.27412 0.604426 0.398543 0.307757
1.27609 0.602321 0.393227 0.300084
1.27804 0.599555 0.383782 0.283581
1.27810 0.599347 0.382357 0.279837
1.27811 0.599329 0.382122 0.278927
1.27811 0.599328 0.382081 0.278696

Acrrage running rime of’ rhe BoJler-Moore~Horspool algorithm 29

summing over all patterns yields the correction

Table 2 gives some values for the second order approximation of c,,,,/n for

different values of c and m. Note that only for c = 2 the expected number of compari-

sons increases with m.

Figure 3 shows the theoretical results compared with experimental results for c = 2

and c ==4. The experimental results are the average of 100 trials for searching 100

random patterns in a random text of 50,000 characters.

5. Concluding remarks

In this paper we have realized an extensive study of a Boyer-Moore-type string

searching algorithm. We first derived an average analysis of the Boyer-Mooree

Horspool algorithm. The expected number of text-pattern comparisons c, is linear in

the size of the text, and we derived the linearity constant K = c,,,/n when n goes to

I
0.9 -

c
“-TX+1

0.8 -

0.7 -

0.6 -

0.5 -

c=4
0.4 -

0.3 I I 1 I I I , 1 I I I I I I
2 3 4 5 6 7 8 9 IO 11 12 13 14 15

Length of the Pattern (m)

Fig. 3. Experimental versus theoretical values for cR,.,/n.

30 R.A. Baezu- Yures, M. Reynier

infinity. The case of a given pattern was addressed first. Then, averaging over all

patterns, we derived K. Finally, we pointed out a tight asymptotic result, namely,

K - l/c, where c is the cardinality of the alphabet.

The approach combines two different tools. First, probability theory is used to

establish a stationary process. This avoids combinatorial explosion which limited

other Markov-type analyses, due to the variety of searched patterns to be considered;

hence, this approach facilitates the analysis. Probabilities also provide an asymptotic

development of the linearity constant. Second, the analysis reduces to a word enumer-

ation problem and algebraic tools such as generating functions appear powerful.

These theoretical results appear to be very close to experimental results obtained by

simulation [11. Moreover, their convergence to the asymptotic results is very fast. Our

results also prove that as c increases, Bayer-Moore performs better (as expected!).

Recently, Sunday [13] suggested using the character of the text after the character

corresponding to the last position of the pattern to address the d table. The analysis

presented here is applicable, considering a pattern of length m+ 1 for the head

probability, and a pattern of length m for the expected number of comparisons.

Our analytic results easily generalize to nonuniform distributions when one con-

siders a given pattern. Averaging over all patterns is more intricate and is the object of

current research. Also, we are extending this kind of analysis to new multiple string

searching and two dimensional pattern matching algorithms [S].

References

[l] R.A. Baeza-Yates, Improved string searching, Sc$ware-Practice and Exprrirnce, 19 (3) (1989) 257-271.

[2] R.A. Baeza-Yates, Efficient text searching, Ph.D. Thesis, Dept. of Computer Science, University of

Waterloo, 1989; also as Research Report CS-89-17.

[3] R.A. Baeza-Yates, String searching algorithms revisited, in: F. Dehne, J.-R. Sack and N. Santoro, eds.,

Workshop in Algorithms and Data Srructures, Ottawa, Canada (1989) Lecture Notes in Computer

Science, Vol. 382 (Springer, Berlin, 1989) 75-96.

[4] R.A. Baeza-Yates, G. Gonnet and M. Regnier, Analysis of Boyer-Moore-type string searching

algorithms, in: Proc. fst ACM-SIAM Symposium OFI Discrrle AIgorirhmr, San Francisco (1990)
328-343.

[S] R.A. Baeza-Yates and M. Regnier, Fast algorithms for two dimensional and multiple pattern

matching, in: R. Karlsson and J. Gilbert, eds., Proc. 2nd Scundinacian Workshop in Algorithmic
Theorem, SWAT ‘90. Bergen, Norway (1990) Lecture Notes in Computer Science, Vol. 447 (Springer,

Berlin, 1990) 332-347.

[6] G. Barth, An analytical comparison of two string searching algorithms, Inform. Process. Lett. 18
(1984) 249-256.

177 P. Flajolet, Mathematical methods in the analysis of algorithms and data structures, in: Egon BGrger,

ed., Trends in Theoretical Computer Science, Chapter 6 (Computer Science Press, Rockville,
Maryland, 1988) 225-304.

[S] R.N. Horspool, Practical fast searching in strings, Sofrware-Practice and Experience, 10 (1980)

501&506.

[9] D.E. Knuth, J. Morris and V. Pratt, Fast pattern matching in strings, SIAM J. Compuf. 6 (1977)

323-350.

Aceruqe running rime of the Bo~‘“~Moore~Horspool algorithm 31

[lo] M. Regnier, Knuth-Morris-Pratt algorithm: An analysis, in: MFCS ‘89, Porabka, Poland (1989)

Lecture Notes in Computer Science, Vol. 379 (Springer, Berlin, 1989) 431-444; also as INRIA Report

966, 1989.

[I l] R. Rivest, On the worst-case behavior of string-searching algorithms, SIAM J. Comput. 6 (1977)

669-674.

[12] R. Schaback, On the expected sublinearity of the Bayer-Moore algorithm, SIAM J. Comput. 17

(1988) 548-658.

1131 D.M. Sunday, A very fast substring search algorithm, Comm. ACM, 33 (8) (1990) 132-142.

[14] A.C. Yao, The complexity of pattern matching for a random string, SIAM d. Comput. 8 (1979)

368-387.

1151 W. Feller, An Infroduction to Prohahilitg Theory and if.7 Applicarions, Vol. I (Wiley, New York, 1968).

