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Abstract
Baeza-Yates, R.A. and M. Régnier. Average running time of the Boyer—Moore~-Horspool algorithm,
Theoretical Computer Science 92 (1992) 19-31.

We study Boyer—Moore-type string searching algorithms. We analyze the Horspool’s variant. The
searching time is linear. An exact expression of the linearity constant is derived and is proven to be
asymptotically o, /e <2< 2/(c+ 1), where ¢ is the cardinality of the alphabet. We exhibit a stationary
process and reduce the problem to a word enumeration problem. The same technique applies to
other variants of the Boyer—-Moore algorithm.

1. Introduction

String searching is an important component of many problems, including text
editing, data retrieval and symbol manipulation. The string matching problem con-
sists of finding one or all occurrences of a pattern in a text, where the pattern and the
text are strings over some alphabet. A good parameter to evaluate the complexity of
string searching algorithms is the number of text-pattern comparisons of charac-
ters. The worst case is well known for most algorithms. Notably, for the Boyer—Moore
algorithm studied here, the searching time is O(n) for a pattern of length m and a text
of length n, n>m. Moreover, at least n—m+ 1 characters must be inspected in the
worst case [11].

The average complexity is also important [14,9]. It is interesting to show (when

possible!) that the expected number of comparisons C, is asymptotically K -n; and
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compare the linearity constant K for different string searching algorithms. One
common characteristic of these algorithms is the dependence on history: the number
of comparisons made to a given character depends on the result of comparisons to its
neighbors. Hence, first attempts to derive asymptotics used Markov chains [6, 12, 2,
3]. Unfortunately, this quickly leads to a combinatorial explosion as the size of the
pattern increases. Recently another algebraic approach, based on pattern enu-
meration and combinatorics on words, facilitated an analysis of the Knuth-
Morris—Pratt algorithm [10].

In this paper we derive the analysis of the Boyer-Moore-Horspool or BMH
algorithm [8]. This algorithm, described below, proceeds from right to left, a (presum-
ably) efficient method for large alphabets. The method is rather in the same vein as
[10] but the dependence on history is much tighter. The originality of our approach is
the immediate reduction to a stationary process. The study of this stationary process,
using algebraic tool and combinatorics on words, leads to the linearity constant K. It
appears to be a simple function of the cardinality ¢ of the alphabet: K.~ 1/c+O(1/c?).

The organization of the paper is as follows. Section 2 briefly presents the BMH
algorithm. In Section 3 we reduce the analysis to the study of a stationary process.
Section 4 addresses the average performance; notably, the expected number of com-
parisons C,~ K n is derived. Asymptotic bounds on K, are proven, and a conjecture is
stated. All these results agree well with experimental values. The last section is our
conclusion. In a preliminary version of this paper [4] we also studied Boyer—Moore
automata.

2, The Boyer—Moore—Horspool algorithm

The Boyer—Moore (BM) algorithm positions the pattern over the leftmost charac-
ters in the text and attempts to match it from right to left. If no mismatch occurs, then
the pattern has been found. Otherwise, the algorithm computes a shift, the amount by
which the pattern is moved to the right before a new matching attempt is undertaken.
This shift can be computed with two heuristics: the match heuristic and the occurrence
heuristic. In this paper we only consider the second one; it consists in aligning the last
mismatching character in the text with the first character of the pattern matching it.
A simplification was proposed in 1980 by Horspool [8]. In that paper it was pointed
out that any character from the text read since the last shift can be used for the
alignment. To maximize the average shift after a mismatch, the character compared
with the last character of the pattern is chosen for the alignment. This also implies that
the comparisons can be done in any order (left-to-right, right-to-left, random, etc.) [3].
Empirical results show that this simpler version is as good as the original algorithm.

The code for the Boyer—Moore-Horspool algorithm is extremely simple and is
presented in Fig. 1.



Average running time of the Boyer-Moore—Horspool algorithm 21

bmhsearch( text, n, pat, m ) /% Search pat[1..m] in text[1..n] */
char text[], pat[];
int n, m;
{
int d[ALPHABET_SIZE], i, j, k;

for( j = 0; j < ALPHABET_SIZE; j++ ) d[j] = m; /* Preprocess */
for( j = 1; j < m; j++ ) dlpat[jl] =m - 3;
for( i =m; i <= n; i += d[text[i]l] ) /* Search */
{

k =1i;

for( j =m; j > 0 && text[k] == pat{jl; j-- ) k--;

if( j == 0 ) Report_match_at_position( k + 1 );
}

Fig. 1. The Boyer—-Moore—Horspool algorithm.

As a convenience for further analysis, we use a pattern of length m + 1 instead of m.
The occurrence heuristics table is computed by associating a shift to any character in
the alphabet. Formally,

d[x]=min{s|s =m+1 or (1<s<m and pattern[m+1—s]=x)}.

Note that d[x] is m+ 1 for any character not appearing in the m first characters of
the pattern, and notably for the last one if it occurs only once. The shift is always
greater than 0. For example, the d table for the pattern abracadabra is

dl'a’]=3, d['b]=2, d[’c]=6, d['d]=4, d[¥]=],

and the value for any other character is 11.

Note that this can be seen as a special automaton, following Knuth, Morris and
Pratt [9] (see also [4]).

3. A stationary process

We turn now to the evaluation of average performance. Note that, for a given
pattern and a given text, the algorithm is fully deterministic. Nevertheless, for a given
pattern and a random text, a stationary stochastic process serves as a good model, as
will be developed in this section. The next section will be devoted to the average
performance when both pattern and text are random.

We first state our probabilistic assumptions regarding the distribution of characters
appearing in the text or in the pattern (in the case of a random pattern).



22 R.A. Baeza-Yates, M. Régnier

Probability assumptions. The distribution of characters occurring in the text or in the
pattern is uniform. That is, given the random variable X, whose value may be any
character from the c-alphabet A, for any character a in A4:

We first introduce the key notion of head. A head is a starting point in the text of
a right-to-left comparison. It is always compared to the last character in the pattern.

Definition 3.1. A character x in the text is a head iff it is read immediately after a shift.

Theorem 3.2. For a given fixed pattern p of length m+ 1, let #, be the probability that
the kth text character be a head. Then, #, converges to a stationary probability
A ) defined by

1
e —
» T, Lshift]’

where E,[shift] denotes the average shift when the aligned character ranges over the
¢ values in the alphabet.

Proof. Position k in a text is a head iff some position k —j is a head with an associated
shift j. As such events are not independent, we consider the equivalent expression:

(t[k]#head ;= |} {t[k—j]=head and shift>j}.
=1

Note that if in position k—j we had a shift of less than j, say i, that case is considered
now in position k —j+i (i.e. a different value of j). Thus, we obtain the following linear
recurrence

%7k:1f Z Pr{shlft>]}}/k,},
i=1
with initial conditions #,.,=1 and #,=0, for k<m. As Pr(shift=1)#0,
the recurrence converges to I/ZTZIPr{shift>j} which can be rewritten as
1/x7 " j Prishifi=j } (see Fig.2). [

Remark. The convergence of such a linear equation is exponential.

In the following proposition, we state a general expression for E,[shift] as a func-
tion of p and the distribution of characters in the text.
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shift > m — 1

shift N\

n—1 n
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text
shift > 1

shift > m — 2

Fig. 2. Possible events such that the nth position is not a head.

Proposition 3.3. Let p=p’x be a pattern. There exists a sequence (a,...,a;) of charac-
ters and a unique sequence (w, ..., w;) of words such that

p=w;.w X

ref *
Wl‘e\(al,...,ai} .1a,-}.

Let us denote {w;| by k;. Then, for a uniform character distribution in the text:

j-1
cE [shift1=j+ > (j—iYk;+(c—j)m~+1).
i=1
If j=c this simplifies to

c—1

cE [shift]=c+ Y (c—i)k,.

i=1

Proof. In the BMH algorithm the value of the last letter of the pattern is not used to
compute the next shift; hence, we only consider the prefix p’ of length m. If the last
head is the ith character y; of p’, it is aligned with the first occurrence of y; in p’; hence,
the shift is s;= 14k, + --- + k;_,. In other cases, the shift is m+ 1. Each case happens
with probability 1/c. Hence,

I

¢Ep[shift]= 3 si+(c—j)m+1)

i=1

—i+ Y itk le—j)m+ 1. O

i=1

Example. Consider the pattern abcbcbabaax = abcbe.bab.aa.x. Here, k, =2(b), and
ky=3(c). If the last head were a, we shift the pattern by one position. Similarly, if it
were b we shift three positions; for ¢, shift six positions. Then,

E,[shift] = 10+(C—(.3)(m+ 1)-
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We are now ready to derive the expected number .of comparisons.

Theorem 3.4. Let C,(p) be the expected number of texi-pattern comparisons for a given
pattern p and a random text t. Then

Cn(p) © c 1 1

Co(D) 12 1
=Hf|14+-4+—5—— =2

n P\ttt aETS m=s

C 1

"(p)=H;<1+—> m=1

n C

n r c—l+ 1 c
1—-cE, o Shift

Proof. Let us count the number of right-to-left comparisons performed from position .
We compute S,(/), its average value for a given p and random text. Here, this number
depends on history, but we can get very good approximations. A first approximation

is [1]
Sp(l) 1 1 C 1
bt = ——).
HO et T c—l( c"‘“)

This assumes no knowledge on left neighbors: comparisons are random. However, if
the last head position is attained in a backward reading, a match certainly occurs and
the left neighbor will also be read. Hence, a second approximation is

1
C.(p) ¢ E[c—'f} 1
‘ +O<‘m>

Spll)

1 1 1 1 1
H (I—shift)

Tt gt et et T
C C C C

¢ i 1 + 1
_C—l o Cshift

which gives the correcting term E, [1/c*"/']—1/c™
This sequence of approximations easily generalizes. The kth approximation will
yield a correcting term

1 1
it Hs—k=D + O<Cm—(k])>’
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provided that s; + --- + s, <m. Noticing that

1 -1 I
E, it s k=) =cE, oA |

the result stated then follows.

Let us turn now to small patterns. For 2-patterns, ie. when m=1, the right-to-
left comparisons always stop at step 1 (or 2) with probability (c —1)/c (or 1/c). Hence,
S,(H=H (1 +1/c). For 3-patterns, ie. when m=2, one has a correcting term iff
shift+1<m, or shift=1, which occurs with probability 1/c. Hence, the result
14 1/c+2/c*—1/c3. Notice that this also is: ¢/(c— 1)+ E,[1/c¢™/] +O(1/c*). O

4. Average performance

4.1. Some formalism

We need to introduce some notation. From Proposition 3.3, it appears that we are
led to enumerate patterns associated with sequences (k;). We do so using generating
functions. Let W be a set of words, and |w| the size of a word wel¥. Let s, be the
number of words w of length n. The generating function enumerating words of W is

Proposition 4.1. We denote by Di(z,,...,z;) the generating function of words with
exactly j<c different characters, and by F(z,,...,z.) the generating function of words
over a c-alphabet. They satisfy

Z1 Z;

Diz,,....z;)= Z Z‘{“‘...z}”f=ci

1—21 I—Zj’

p=wi...owr. X

and

F(zy,....z.)= Y Djlzy,...,2)

j=1

czy (c—1)z, z.
- 1 1 .
l——zl< * 1-2z, +1—czc
Proof. Applying classical rules [7], the generating function for words w; is
z;(1/(1 —iz;)). Concatenation translates to a product, and we have c(c—1)...(c—j
+ 1)=¢{ choices for the sequence (a, ,...,q;). Note that the generating function of all

strings of length m, F,(z4,...,2.), is the restriction k; + --- +k.=m of F(zy,...,z.),
where k; is the degree of z; in F,,. O
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Notably, all possible patterns of length m are given by the coefficient of degree m in
F(z,...,z), namely, F,,(1,..., 1) or ¢™. For example, for c=2 (binary alphabet) we have

2
Fo(zy.23) =220+ 2L (zn 12z, 1) =224 22,2, Z 22z, 2,

jiz0

21*222

The total number of patterns is F,(1, 1)=2"

4.2. Average number of heads

We now assume that both text and pattern are random. We first study the average
number of heads for patterns of length m+ 1. Then we derive an asymptotic expression
when m tends to oo and study its asymptotic behavior when the alphabet size ¢ tends
to oc.

Theorem 4.2. The probability of being a head, when p ranges over all patterns of length
m+1 on a c-ary alphabet is

PR (10

j c—1

H(e,m=c Y, )
=1 > . . .
! e e Y =Dk (e —j)m+ 1)

i=1

ﬁli <£>“

c—1

Moreover,

Ph(c)= lim #(c, m)=c Z

m= o

+O((1—1/c)"/m).

i=1
Corollary 4.3. For a binary alphabet, the result is

Ph(c)=81n2—5~0.5452.

Proof.

C m)_ Z Z Pattern[shlﬁ] [2 Z ]D (Zl’ e Zj)'

As [Z% .27 A (c, m)—c’/j ]_[,_1(1/1)"'] and 1/E,[shift1=1/(c+Y{=1 (c+i)k;), the
expression of J# (¢, m) follows. For large patterns, only the last term does not converge
to 0 when m goes to infinity, and Ph(c) follows.

For a binary alphabet (¢ =2), the expected shift is E,[shift ]=(2+4k,})/2. Then,

m—2 .
2 2 moim2 1
# (2, 2 2-5 O]
&= 2'"<< N ZO i+3 ) oin +O< 2’”)
J
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Table 1 gives some exact values for this probability, from which it seems that
H(c, m) quickly converges.

Theorem 4.4. Let Phic) be lim,, ... H(c, m), where H(c, m) is the probability of being
a head, when p ranges over all possible patterns of length m—1 on a c-ary alphabet. Then

1
jSPh((’)S

2
¢ c+1°

Conjecture. When ¢— oo, then Ph(c)—1/c.
Proof. For any pattern, the shift on the ith different character is greater than or equal
to i. Hence,

CE [shifi]> 142+ +c=—"" cgm.

If ¢>m, one gets the tighter bound: 1+ --- +m+(c—m)(m+1). The lower bound
is a direct consequence of Jensen’s inequality [15], that can be expressed as:
E(l/s)=1/E(s). O

Practically, the computations in Table 1 show that the lower bound is very tight.
We are currently working to exhibit the underlying process and the random variables
involved. We conjecture that some variant of the central limit theorem should apply.

Table 1
Exact values for #'(c,m)

¢

m+1 2 3 4 5
2 0.666667 0.600000 0.571429 0.555556
3 0.583333 0.476190 0.433333 0.410256
4 0.558333 0.421958 0.368094 0.339860
5 0.550000 0.395198 0.332003 0.299440
6 0.547024 0.381249 0.310381 0.273988
7 0.545908 0.373737 0.296842 0.257047
8 0.545474 0.369597 0.288135 0.245365
9 0.545300 0.367275 0.282438 0.237120
10 0.545229 0.365954 0.278663 0.231206
15 0.545178 0.364246 0.271961 0.218487
20 0.545177 0.364118 0.270950 0.215601
25 0.545177 0.364108 0.270783 0.214899

o
<

0.545177 0.364107 0.270754 0.214722
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4.3. Average number of comparisons

Theorem 4.5. Let C, ,, be the expected number of text-pattern comparisons for random
texts of size n and random patterns of length m+ 1. Then,

Com 1 2 1
== (c, m)<1+ -+ +O<—3)>
n c ¢ c

or, for large patterns,

C, 1 2 1
- =Ph(c)<1 + -+ 5 +O<—3>>.
n c ¢ c

Corollary 4.6. For a binary alphabet, the average number of comparisons is very close to

17
(261n2—81n3—7>nz1.2782n

with a difference not exceeding 0.02n.

Proof. It is desirable to derive

¢ 1 1
Eallpanerns[l—lgO (:T + EP[WJ-I-O(;))} ’

The rightmost character contributes 1/c to E,[1/c™¥"] and is found with probability
1/c. Other characters contribute at most: (1/c2+1/¢3+ --- +1/¢)1/c=0(1/c3). Now

Table 2
Expected number of comparisons per character

¢

m+1 2 3 4 S
2 0.916667 0.711111 0.633929 0.595556
3 1.07813 0.707819 0.577734 0.513477
4 1.16927 0.671381 0.512026 0.437875
5 1.22044 0.643041 0.466753 0.388051
6 1.24812 0.625051 0.437543 0.355491
7 1.26270 0.614318 0.418757 0.333594
8 1.27025 0.608056 0.406556 0.318453
9 1.27412 0.604426 0.398543 0.307757
10 1.27609 0.602321 0.393227 0.300084
15 1.27804 0.599555 0.383782 0.283581
20 1.27810 0.599347 0.382357 0.279837
25 1.27811 0.599329 0.382122 0.278927

30 1.27811 0.599328 0.382081 0.278696
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summing over all patterns yields the correction

1 1 1 1
EallpatternsI:H;:;C(CZ +O <C-3>:|=%(C, m)<? +O <c—3->> .

Table 2 gives some values for the second order approximation of C, ,./n for
different values of ¢ and m. Note that only for ¢ =2 the expected number of compari-
sons increases with m.

Figure 3 shows the theoretical results compared with experimental results for c=2
and ¢=4. The experimental results are the average of 100 trials for searching 100
random patterns in a random text of 50,000 characters.

5. Concluding remarks

In this paper we have realized an extensive study of a Boyer—Moore-type string
searching algorithm. We first derived an average analysis of the Boyer—-Moore—
Horspool algorithm. The expected number of text-pattern comparisons C,, is linear in
the size of the text, and we derived the linearity constant K =C,/n when n goes to

0-3 T i T 1 1 L T ¥ L4 T L T 1

Length of the Pattern (m)

Fig. 3. Experimental versus theoretical values for C,_ /n.
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infinity. The case of a given pattern was addressed first. Then, averaging over all
patterns, we derived K. Finally, we pointed out a tight asymptotic result, namely,
K ~1/c, where ¢ is the cardinality of the alphabet.

The approach combines two different tools. First, probability theory is used to
establish a stationary process. This avoids combinatorial explosion which limited
other Markov-type analyses, due to the variety of searched patterns to be considered;
hence, this approach facilitates the analysis. Probabilities also provide an asymptotic
development of the linearity constant. Second, the analysis reduces to a word enumer-
ation problem and algebraic tools such as generating functions appear powerful.
These theoretical results appear to be very close to experimental results obtained by
simulation [ 1]. Moreover, their convergence to the asymptotic results is very fast. Our
results also prove that as ¢ increases, Boyer—Moore performs better (as expected!).

Recently, Sunday [13] suggested using the character of the text after the character
corresponding to the last position of the pattern to address the d table. The analysis
presented here is applicable, considering a pattern of length m+1 for the head
probability, and a pattern of length m for the expected number of comparisons.

Our analytic results easily generalize to nonuniform distributions when one con-
siders a given pattern. Averaging over all patterns is more intricate and is the object of
current research. Also, we are extending this kind of analysis to new multiple string
searching and two dimensional pattern matching algorithms [5].
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