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We study Boyer-Moore-type string searching algorithms. We analyze the Horspool’s variant. The 

searching time is linear. An exact expression of the linearity constant is derived and is proven to be 

asymptotically r. 1;~ d x < 2/(c + I), where c is the cardinality of the alphabet. We exhibit a stationary 

process and reduce the problem to a word enumeration problem. The same technique applies to 

other variants of the Boyer-Moore algorithm. 

1. Introduction 

String searching is an important component of many problems, including text 

editing, data retrieval and symbol manipulation. The string matching problem con- 

sists of finding one or all occurrences of a pattern in a text, where the pattern and the 

text are strings over some alphabet. A good parameter to evaluate the complexity of 

string searching algorithms is the number of text-pattern comparisons of charac- 

ters. The worst case is well known for most algorithms. Notably, for the Boyer-Moore 

algorithm studied here, the searching time is O(n) for a pattern of length m and a text 

of length ~1, rrl >m. Moreover, at least n-m + 1 characters must be inspected in the 

worst case [l 11. 

The average complexity is also important [14,9]. It is interesting to show (when 

possible!) that the expected number of comparisons cfi is asymptotically K. n; and 
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compare the linearity constant K for different string searching algorithms. One 

common characteristic of these algorithms is the dependence on history: the number 

of comparisons made to a given character depends on the result of comparisons to its 

neighbors. Hence, first attempts to derive asymptotics used Markov chains [6, 12, 2, 

31. Unfortunately, this quickly leads to a combinatorial explosion as the size of the 

pattern increases. Recently another algebraic approach, based on pattern enu- 

meration and combinatorics on words, facilitated an analysis of the Knuth- 

Morris-Pratt algorithm [lo]. 

In this paper we derive the analysis of the BayerMooreeHorspool or BMH 

algorithm [S]. This algorithm, described below, proceeds from right to left, a (presum- 

ably) efficient method for large alphabets. The method is rather in the same vein as 

[lo] but the dependence on history is much tighter. The originality of our approach is 

the immediate reduction to a stationary process. The study of this stationary process, 

using algebraic tool and combinatorics on words, leads to the linearity constant K. It 

appears to be a simple function of the cardinality c of the alphabet: K, - l/c + 0( l/c’). 

The organization of the paper is as follows. Section 2 briefly presents the BMH 

algorithm. In Section 3 we reduce the analysis to the study of a stationary process. 

Section 4 addresses the average performance; notably, the expected number of com- 

parisons C, - K,n is derived. Asymptotic bounds on K, are proven, and a conjecture is 

stated. All these results agree well with experimental values. The last section is our 

conclusion. In a preliminary version of this paper [4] we also studied Boyer-Moore 
automata. 

2. The Boyer-Moore-Horspool algorithm 

The Boyer-Moore (BM) algorithm positions the pattern over the leftmost charac- 

ters in the text and attempts to match it from right to left. If no mismatch occurs, then 

the pattern has been found. Otherwise, the algorithm computes a shift, the amount by 

which the pattern is moved to the right before a new matching attempt is undertaken. 

This shift can be computed with two heuristics: the match heuristic and the occurrence 

heuristic. In this paper we only consider the second one; it consists in aligning the last 

mismatching character in the text with the first character of the pattern matching it. 

A simplification was proposed in 1980 by Horspool [S]. In that paper it was pointed 

out that any character from the text read since the last shift can be used for the 

alignment. To maximize the average shift after a mismatch, the character compared 

with the last character of the pattern is chosen for the alignment. This also implies that 

the comparisons can be done in any order (left-to-right, right-to-left, random, etc.) [3]. 

Empirical results show that this simpler version is as good as the original algorithm. 

The code for the BayerMoore-Horspool algorithm is extremely simple and is 

presented in Fig. 1. 
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bmhsearchc text, n, pat. m ) /* Search pat[l. .ml in textCl..nl */ 

char textElI pat[l; 

int n, m; 

i 
int d[ALPHABET_SIZE], i, j. k; 

for( j = 0; j < ALPHABET-SIZE; j++ ) dCj1 = m; /* preprocess *! 

for( j = 1; j < m; j++ ) d[patCjll = m - j; 

Report_match_at_position( k + 1 ); 

Fig. 1. The Boyer-Moore-Horspool algorithm. 

As a convenience for further analysis, we use a pattern of length m + 1 instead of m. 

The occurrence heuristics table is computed by associating a shift to any character in 

the alphabet. Formally, 

d[x]=min{sIs =m+l or (I <s<m and pattern[m+l-s]=x)}. 

Note that d[x] is m+ 1 for any character not appearing in the m first characters of 

the pattern, and notably for the last one if it occurs only once. The shift is always 

greater than 0. For example, the d table for the pattern abracadabra is 

d[‘a’] = 3, d[‘b’] =2, d[‘c’]=6, d[‘d’] =4, d[‘r’] = 1, 

and the value for any other character is 11. 

Note that this can be seen as a special automaton, following Knuth, Morris and 

Pratt [9] (see also [4]). 

3. A stationary process 

We turn now to the evaluation of average performance. Note that, for a given 

pattern and a given text, the algorithm is fully deterministic. Nevertheless, for a given 

pattern and a random text, a stationary stochastic process serves as a good model, as 

will be developed in this section. The next section will be devoted to the average 

performance when both pattern and text are random. 

We first state our probabilistic assumptions regarding the distribution of characters 

appearing in the text or in the pattern (in the case of a random pattern). 
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Probability assumptions. The distribution of characters occurring in the text or in the 

pattern is UH$OIVI. That is, given the random variable X, whose value may be any 

character from the c-alphabet A, for any character a in A: 

We first introduce the key notion of head. A head is a starting point in the text of 

a right-to-left comparison. It is always compared to the last character in the pattern. 

Definition 3.1. A character .Y in the text is a head iff it is read immediately after a shift. 

Theorem 3.2. For u given.fi.xed pattern p of length m + 1, let Yr, he the probability that 

u heud. Then, J& converges to u stationary probability the kth text character be 

HI: defined b)‘ 

1 
x;= 

E,[sh$] ’ 

where EJshft] denotes the average shift bvhen the aligned character ranges over the 

c values in the alphabet. 

Proof. Position k in a text is a head iff some position k-j is a head with an associated 

shift j. As such events are not independent, we consider the equivalent expression: 

m 

(t[k]#head) = U jt[k-j]=head and shijt>ji. 
j=l 

Note that if in position k-j we had a shift of less than j, say i, that case is considered 

now in position k-j + i (i.e. a different value of j). Thus, we obtain the following linear 

recurrence 

.SYk=l- i Pr(sh$>j).Xk_j, 
j=l 

with initial conditions H, + 1 = 1 and .Xk=O, for k<m. As Pr(shift=l)#O, 

the recurrence converges to l/C;= 1 Pr{shft >j } which can be rewritten as 

1 /x72: j Pr {shift =,j ) (see Fig. 2). 0 

Remark. The convergence of such a linear equation is exponential. 

In the following proposition, we state a general expression for E,[shift] as a func- 

tion of p and the distribution of characters in the text. 
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Fig. 2. Possible events such that the rlth position is not a head. 

Proposition 3.3. Let p = p’x be a pattern. There exists a sequence (a,, . , a,) of charac- 

ters and a unique sequence (w,, . . . . wj) qf words such that 

p =I M! ,...Wl.Y 

M!iE(al , . . ..aij I*. {ai) 

Let us denote / wiI by ki. Then, ji)r- u uniform character distribution in the text: 

j-l 

cE,[shiJi]=,j+ C (j-i)ki+(c-j)(m+ I). 
i=l 

!fj = c this simplifies to 

r-1 

CE,CStZ~~]=~+ C (~-i)ki. 

i=l 

Proof. In the BMH algorithm the value of the last letter of the pattern is not used to 

compute the next shift; hence, we only consider the prefix p’ of length m. If the last 

head is the ith character ji of p’, it is aligned with the first occurrence of yi in p’; hence, 

the shift is si = 1+ kl + ... + ki_ 1. In other cases, the shift is m + 1. Each case happens 

with probability l/c. Hence, 

cE,[shifi]= i si+(c-j)(Fn+ 1) 
i=l 

I- 1 

=j+ 1 (j-i)ki+(c-Q)(m+ I). q 
i=l 

Example. Consider the pattern abcbchahaax = abcbc.bab.aa.x. Here, k 1 =2(b), and 

k2 =3(c). If the last head were a, we shift the pattern by one position, Similarly, if it 

were b we shift three positions; for c, shift six positions. Then. 

E,[sh$] = 
lO+(c-3)(m+ 1) 

c 
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We are now ready to derive the expected number .of comparisons. 

Theorem 3.4. Let c,(p) be the expected number of text-pattern comparisonsfor a given 

pattern p and a random text t. Then 

c,(P) =H 

n 
,” 1+:+;-$ 

( 1 

c,(P) =H 

n 
,” l+f 

( 1 

m=2, 

m=l 

When m tends to co 

~ r G(P) =H” c + 
EP p& 

i 1 
n P c-l 

1-G & [ 1 
+o 1 

( 4 

cm . 

Proof. Let us count the number of right-to-left comparisons performed from position 1. 

We compute S,(I), its average value for a given p and random text. Here, this number 

depends on history, but we can get very good approximations. A first approximation 

is [l] 

S,(l) __=I+;+...+;=c 
H,(l) C-l 

This assumes no knowledge on left neighbors: comparisons are random. However, if 

the last head position is attained in a backward reading, a match certainly occurs and 

the left neighbor will also be read. Hence, a second approximation is 

S,(l) 
H,(l- shift) 

C 
=- 

c-l 

which gives the correcting term Ep[ l/cShiD] - I/cm. 

This sequence of approximations easily generalizes. The kth approximation will 

yield a correcting term 
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provided that s1 + ... +sk<m. Noticing that 

EP [I ,,,,...!.$&,,] =c~-%[~]kl 
the result stated then follows. 

Let us turn now to small patterns. For 2-patterns, i.e. when m= 1, the right-to- 

left comparisons always stop at step 1 (or 2) with probability (c - 1)/c (or l/c). Hence, 

S,(1)= H,” (1 + l/c). For 3-patterns, i.e. when m= 2, one has a correcting term iff 

shift + 1 <m, or shift = 1, which occurs with probability l/c. Hence, the result 

1+ l/c+2/c2- l/r3. Notice that this also is: c/(c- l)+E,[l/cshir’] +0(1/c’). 0 

4. Average performance 

4. I. Some formalism 

We need to introduce some notation. From Proposition 3.3, it appears that we are 

led to enumerate patterns associated with sequences (ki). We do so using generating 

functions. Let W be a set of words, and (WI the size of a word WE JK Let s, be the 

number of words w of length n. The generating function enumerating words of W is 

S(z)= c s,z”. 
?I>0 

Proposition 4.1. We denote by Dj(Z,, . . . . Zj) the generating ,finction of words with 
exactly j<c diflerent characters, and by F(zl,..., z,) the generating function of words 
over a c-alphabet. They satisfy 

and 

Dj(z lr...rZj)' C Z;' 
Zl zj 

&I=“,...“, .x 

...zr”ci’--& . . . __ 
l-Zj’ 

F(z~, ... tZc)= i Dj(Z1, ... ,Zj) 
j= 1 

z&l+ W(...(l+&))). 

Proof. Applying classical rules 173, the generating function for words wi is 

Zi(l/( 1 - izi)). Concatenation translates to a product, and we have c(c- 1). . (c-j 
+ 1) = cl choices for the sequence (a 1,. . , aj). Note that the generating function of all 

strings of length m, F,(zl ,..., z,), is the restriction kl + ... +k,=m of F(zl ,..., zC), 
where ki is the degree of Zi in F,. 0 
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Notably, all possible patterns of length m are given by the coefficient of degree m in 

F(z, . . . ) z), namely, F,( 1,. , 1) or cm. For example, for c = 2 (binary alphabet) we have 

2ZZZl m-2 

F,(z,,z,)=2zy+ -(z 
z1-222 

~~‘-(2z2)m~1)=2z;1+2z2Z1 1 z{(2z2)m-2-i 
jb0 

The total number of patterns is F,(l, l)= 2”. 

4.2. Average number of he& 

We now assume that both text and pattern are random. We first study the average 

number of heads for patterns of length m + 1. Then we derive an asymptotic expression 

when m tends to x and study its asymptotic behavior when the alphabet size c tends 

to x. 

Theorem 4.2. Tke probability of‘being a head, when p ranges ouer all patterns of length 

m+ 1 on a c-ary alpkabet is 

kl+...+ki_l<mj+ C (j-W+(c-.W+l) 

Moreover, 
i=l 

Pk(c)= lim X(c, m)=c c + 0( (1 - l/c)“/m). 
m - ZZ c- 1 

k, > 1 
i=l,....c-1 C+ 1 (c-i)ki 

i=l 

Corollary 4.3. For a binary alphabet, the result is 

Pk(c) = 8 In 2 - 5 - 0.5452. 

Proof. 

As [z:l . ..z~~]X(c. m)=cj/j! n!~t(i/j)~~j” and l/E,[skift] = l/(c+_CFI: (c+i)k,), the 

expression of H (c, m) follows. For large patterns, only the last term does not converge 

to 0 when m goes to infinity, and Pk(c) follows. 

For a binary alphabet (c=2), the expected shift is EJskijt] =(2+ k,)/2. Then, 



Table 1 gives some exact values for this probability, from which it seems that 

H(c, m) quickly converges. 

Theorem 4.4. Let Ph(c) be lim, _ * H(c, m), where H(c, m) is the probability of being 

a head, when p ranges otler all possible patterns of length in+ 1 on a c-ary alphabet. Then 

2 
&Ph(c)<- 
c c+l 

Conjecture. When C+ZO, then Ph(c)+ I/c. 

Proof. For any pattern, the shift on the ith different character is greater than or equal 

to i. Hence, 

cE,[sh$]> 1 +2+ . . . SC=----- 
c(cf1) c<m 

2 
, 

If c>m, one gets the tighter bound: 1 + ... + m+(c -m)(m + 1). The lower bound 

is a direct consequence of Jensen’s inequality [15], that can be expressed as: 

E(l/s)> l/E(s). 0 

Practically, the computations in Table 1 show that the lower bound is very tight. 

We are currently working to exhibit the underlying process and the random variables 

involved. We conjecture that some variant of the central limit theorem should apply. 

Exact values for .X (c, m) 

m+ I 2 3 4 5 

8 
9 

10 

15 
20 

25 
30 

0.666667 0.600000 0.571429 0.555556 

0.583333 0.476 190 0.433333 0.410256 

0.558333 0.421958 0.368094 0.339860 

0.550000 0.395 198 0.332003 0.299440 

0.547024 0.38 1249 0.310381 0.273988 

0.545908 0.373737 0.296842 0.257047 

0.545474 0.369597 0.288135 0.245365 

0.545300 0.367275 0.282438 0.237120 

0.545229 0.365954 0.278663 0.23 1206 

0.545178 0.364246 0.271961 0.218487 
0.545 177 0.3641 18 0.270950 0.215601 
0.545 177 0.364108 0.270783 0.214899 

0.545171 0.364107 0.270754 0.2 I4722 
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4.3. Average number qf comparisons 

Theorem 4.5. Let c,,, be the expected number of text-pattern comparisons for random 

texts of size n and random patterns of length m+ 1. Then, 

C 
?=X(c,m) I+i+s+O $ 

n ( C ( 1) 

or, for large patterns, 

. 

Corollary 4.6. For a binary alphabet, the average number of comparisons is very close to 

( 
261n28lnj-y nZl.2782n 

1 

with a difference not exceeding 0.02n. 

Proof. It is desirable to derive 

The rightmost character contributes l/c to E,[~/c”~‘~~] and is found with probability 

l/c. Other characters contribute at most: (l/c’+ l/c3 + ... + l/cc)l/c=O(l/c3). Now 

Table 2 

Expected number of comparisons per character 

WI+1 2 3 4 5 

^ 
L 

3 
4 

5 

6 
I 

8 

9 
10 

15 

20 

25 
30 

0.916667 0.711111 0.633929 0.595556 
1.07813 0.7078 19 0.577734 0.513477 
1.16927 0.671381 0.512026 0.437875 
1.22044 0.643041 0.466753 0.388051 
1.24812 0.62505 1 0.437543 0.355491 
1.26270 0.614318 0.418757 0.333594 
1.27025 0.608056 0.406556 0.318453 
1.27412 0.604426 0.398543 0.307757 
1.27609 0.602321 0.393227 0.300084 
1.27804 0.599555 0.383782 0.283581 
1.27810 0.599347 0.382357 0.279837 
1.27811 0.599329 0.382122 0.278927 
1.27811 0.599328 0.382081 0.278696 
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summing over all patterns yields the correction 

Table 2 gives some values for the second order approximation of c,,,,/n for 

different values of c and m. Note that only for c = 2 the expected number of compari- 

sons increases with m. 

Figure 3 shows the theoretical results compared with experimental results for c = 2 

and c ==4. The experimental results are the average of 100 trials for searching 100 

random patterns in a random text of 50,000 characters. 

5. Concluding remarks 

In this paper we have realized an extensive study of a Boyer-Moore-type string 

searching algorithm. We first derived an average analysis of the Boyer-Mooree 

Horspool algorithm. The expected number of text-pattern comparisons c, is linear in 

the size of the text, and we derived the linearity constant K = c,,,/n when n goes to 

I 
0.9 - 

c 
“-TX+1 

0.8 - 

0.7 - 

0.6 - 

0.5 - 

c=4 
0.4 - 

0.3 I I 1 I I I , 1 I I I I I I 
2 3 4 5 6 7 8 9 IO 11 12 13 14 15 

Length of the Pattern (m) 

Fig. 3. Experimental versus theoretical values for cR,.,/n. 
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infinity. The case of a given pattern was addressed first. Then, averaging over all 

patterns, we derived K. Finally, we pointed out a tight asymptotic result, namely, 

K - l/c, where c is the cardinality of the alphabet. 

The approach combines two different tools. First, probability theory is used to 

establish a stationary process. This avoids combinatorial explosion which limited 

other Markov-type analyses, due to the variety of searched patterns to be considered; 

hence, this approach facilitates the analysis. Probabilities also provide an asymptotic 

development of the linearity constant. Second, the analysis reduces to a word enumer- 

ation problem and algebraic tools such as generating functions appear powerful. 

These theoretical results appear to be very close to experimental results obtained by 

simulation [ 11. Moreover, their convergence to the asymptotic results is very fast. Our 

results also prove that as c increases, Bayer-Moore performs better (as expected!). 

Recently, Sunday [13] suggested using the character of the text after the character 

corresponding to the last position of the pattern to address the d table. The analysis 

presented here is applicable, considering a pattern of length m+ 1 for the head 

probability, and a pattern of length m for the expected number of comparisons. 

Our analytic results easily generalize to nonuniform distributions when one con- 

siders a given pattern. Averaging over all patterns is more intricate and is the object of 

current research. Also, we are extending this kind of analysis to new multiple string 

searching and two dimensional pattern matching algorithms [S]. 
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