Available online at www.sciencedirect.com

-

.~ ScienceDirect Theoretical

Computer Science

Sl nRiien
ELSEVIER Theoretical Computer Science 363 (2006) 11-17

www.elsevier.com/locate/tcs

Coloring octrees

Udo Adamy?, Michael Hoffmann?, J6zsef Solymosi®, Milo§ Stojakovié®:*:!

8nstitute for Theoretical Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
bDepurtment of Mathematics, University of British Columbia, Vancouver, Canada

Abstract

An octree is a recursive partition of the unit cube, such that in each step a cube is subdivided into eight smaller cubes. Those
cubes that are not further subdivided are the leaves of the octree. We consider the problem of coloring the leaves of an octree using
as few colors as possible such that no two of them get the same color if they share a facet. It turns out that the number of colors
needed depends on a parameter that we call unbalancedness. Roughly speaking, this parameter measures how much adjacent cubes
differ in size. For most values of this parameter we give tight bounds on the minimum number of colors, and extend the results to
higher dimensions.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Quadtree; Octree; Cube; Coloring

1. Introduction

Octrees are a fundamental data structure to store any three-dimensional data in such a way that search and insert
operations can be performed efficiently. Therefore, octrees are frequently used, for instance in computational geometry
and computer graphics (see e.g. [5]).

An octree is a binary partition of the unit cube, with some additional constraints. More precisely, an octree is obtained
by starting from a single cube, and recursively subdividing cubes into eight smaller cubes of equal size. The structure
of an octree can be seen as a tree, where each node represents a cube in the subdivision process. If a cube is further
subdivided, the corresponding node in the tree has eight children. The cubes associated to children nodes are also
referred to as subcubes of the cube that corresponds to the parent node. An example of an octree is shown in Fig. 1(a).

We say that two cubes in an octree are facet-adjacent, iff they share a two-dimensional facet (that is, a facet of one
of the cubes contains a facet of the other cube). Similarly, two cubes are called edge-adjacent, iff they share a one-
dimensional face, and vertex-adjacent, iff they share a zero-dimensional face. Whenever the term “adjacent” appears
without further qualification in the following, we refer to facet-adjacency.

The purpose of this paper is to analyze the problem of coloring the leaves of octrees (i.e., those cubes that are not
further subdivided) using as few colors as possible, such that no two adjacent cubes receive the same color. Fig. 1(b)

* Corresponding author.
E-mail addresses: adamy @inf.ethz.ch (U. Adamy), hoffmann @inf.ethz.ch (M. Hoffmann), solymosi@math.ubc.ca (J. Solymosi),
smilos @inf.ethz.ch, milosst@eunet.yu (M. Stojakovi¢).
1 Supported by the joint Berlin-Ziirich graduate program “Combinatorics, Geometry, and Computation”, financed by the German Science
Foundation (DFG) and ETH Zurich.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.06.021


http://www.elsevier.com/locate/tcs
mailto:adamy@inf.ethz.ch
mailto:hoffmann@inf.ethz.ch
mailto:solymosi@math.ubc.ca
mailto:smilos@inf.ethz.ch
mailto:milosst@eunet.yu

12 U. Adamy et al. / Theoretical Computer Science 363 (2006) 11—-17

£

() (W)

Fig. 1. An octree: (a) structure; (b) a proper 3-coloring.

shows a proper coloring of an octree using three colors. In all figures appearing in this paper we indicate the color of a
cube by coloring its bottom facet.

In an octree, adjacent cubes may differ in size. To capture this property, we introduce a parameter that measures the
unbalance. An octree is said to be k-unbalanced, if the edge lengths of neighboring cubes differ by at most a factor
of 2K, A 0-unbalanced octree is called balanced. If there is no condition on the balance of adjacent cubes, we call an
octree oo-unbalanced, or just unbalanced. As it turns out, the number of colors needed for coloring an octree depends
on this parameter.

1.1. Related work

The problem of coloring octrees has been formulated by Benantar et al. [1]. It is a natural generalization of the
corresponding problem for quadtrees, which are the two-dimensional counterparts of octrees obtained by recursively
subdividing a square into four congruent smaller squares.

For quadtrees the coloring problem appears in the context of solving linear elliptic partial differential equations on
shared-memory parallel computers [2]. The basic idea is the following. If the squares of a quadtree are colored with
respect to vertex-adjacency, then the squares that belong to one particular color class are spatially well separated and
can therefore be processed in parallel without conflict. They present a linear-time algorithm for coloring 1-unbalanced
quadtrees with at most six colors. For unbalanced quadtrees an algorithm using at most eight colors is given by Benantar
etal. [1].

Recently, Eppstein et al. [3] proved several results on coloring quadtrees with respect to edge-adjacency. They prove
that 1-unbalanced quadtrees can be colored with three colors, and that unbalanced quadtrees can be colored using at
most four colors. Both bounds are tight in the sense that some quadtrees require this many colors. They also improved
the bound for coloring the squares of unbalanced quadtrees with respect to vertex-adjacency from eight to six colors,
and constructed a quadtree that requires at least five colors.

1.2. Our results

In this paper we mainly concentrate on octree coloring problems with respect to facet adjacency, and quadtree
coloring problems with respect to edge-adjacency.

However, recursive subdivisions of cubes are obviously not restricted to dimensions two and three. Since most of
our results naturally extend to cubes of arbitrary dimension, we present them in a more general setting. The following
definition provides the generalization of octrees to arbitrary dimensional structures, which we call 29-trees.

Definition 1. For d € N, a 2%-tree is a data structure formed by starting from a single d-dimensional cube and
recursively subdividing d-dimensional cubes into 2¢ smaller d-dimensional cubes of equal size.

Let k be a non-negative integer. A 2%-tree is called k-unbalanced if any two cubes that share a facet (that is, a facet
of one of the cubes contains a facet of the other cube) are within a factor of 2 in edge length.

By coloring a 2¢-tree we mean coloring its leaves, that is, those cubes that are not further subdivided. The coloring
of a 2¢-tree is called proper, iff any two cubes that share a facet are colored with different colors. We say that a 2¢-tree
is k-colorable, iff there exists a proper coloring for its leaves using at most k colors.



U. Adamy et al. / Theoretical Computer Science 363 (2006) 11—17 13

Table 1
Minimal number of colors needed to color a k-unbalanced 29-tree

d\k 0 1 2 3 4 5 6 0
2 2 3 4 4 4 4 4 4
3 2 4 5 5 5 5 5
4 2 4 6 6 6 6
5 2 4 <6 7 7 7
6 2 4 <6 8 8
7 2 4 <6 <8 9

The first observation that can be made is that a balanced 29-tree is 2-colorable, for every d € N. Indeed, since all
cubes in a balanced 2¢-tree have the same size, it can be represented as a finite set of cells of the axis parallel integer
grid subdivision in RY. The cells of this subdivision can be colored with two colors, by coloring all cells that have even
sum of their coordinates with color one, and all the others with color two. We will refer to this coloring as the coloring
in checkered fashion.

Our results are presented in Table 1. For each d and k, the corresponding entry ¢ in the table gives the minimal
number of colors needed to color a k-unbalanced 29-tree. This means that, on one hand, we provide an algorithm for
coloring k-unbalanced 2¢-trees with ¢ colors and, on the other hand, we give an example of a k-unbalanced 29-tree
which cannot be colored with ¢ — 1 colors.

The paper of Eppstein et al. [3] already settles this question ford = 2, k = 1, and d = 2, k = oo. These two results
are marked bold in the table.

Obviously, the values in the rows of the table are non-decreasing. The same holds for columns, since by using the
structure of a k-unbalanced 2¢-tree which is not c-colorable one can easily construct a k-unbalanced 2¢%!-tree which
is not c-colorable. These properties set upper and lower bounds in the cases in which we could not determine the exact
number of colors needed (empty cells).

2. Lower bounds

Eppstein et al. [3] gave a neat algorithm to color any 1-unbalanced quadtree using at most three colors. Moreover,
the color of each square in the quadtree can be set without knowledge of the subdivision.

For 1-unbalanced octrees, it turns out that three colors are not enough. For the proof of this claim we need the
following two lemmata.

Lemma 2. Let A, B and C be congruent cubes such that both B and C share a facet with A, and B and C share an
edge. Moreover, let the cube A be further subdivided into eight cubes (see Fig. 2(a)).

If these cubes are properly colored with three colors, then B and C have to get the same color, and the six subcubes
of A that are adjacent to B or C have to be colored in checkered fashion with the remaining two colors.

Proof. Suppose that the arrangement of cubes in Fig. 2 is properly 3-colored. We denote the two subcubes of A that
are adjacent to both B and C by A and A». Since B, A and A are pairwise adjacent they all have to be colored with
different colors. We can assume without loss of generality that B is colored with color 1, A; with color 2, and A, with
color 3. Since C is adjacent to both A and A», it has to be colored with color 1. Hence, each of the remaining four
subcubes of A that are adjacent to B or C has to be colored either with color 2, if it is adjacent to A, or with color 3, if
it is adjacent to A1. That gives exactly the coloring of the six subcubes of A by colors 2 and 3 in checkered fashion, as
shown in Fig. 2(b). O

Lemma 3. Let A, B, C and D be congruent cubes, such that all of B, C, and D share a facet with A, and that B and C
do not share an edge. Moreover, let cube A be further subdivided into eight cubes (see Fig. 3).

If these cubes are properly colored with three colors, then B, C, and D get the same color, and the eight subcubes
of A are colored in checkered fashion with the remaining two colors.

Proof. Apply Lemma 2 twice, once to the cubes A, B, and D, and then to the cubes A, C,and D. [



14 U. Adamy et al. / Theoretical Computer Science 363 (2006) 11—-17

() ()

Fig. 2. Illustration for Lemma 2: (a) configuration; (b) forced coloring.

(a (b)

Fig. 3. Illustration for Lemma 3: (a) configuration; (b) forced coloring.

Note that a collection of cubes can be colored in checkered fashion with two fixed colors in two different ways.
Using the configurations from the last two lemmata as building blocks, we give a lower bound on the number of colors
needed to properly color 1-unbalanced octrees.

Theorem 4. There exists a 1-unbalanced octree that is not 3-colorable.

Proof. We show that the 1-unbalanced arrangement of cubes presented in Fig. 4 cannot be colored with three colors.
Some cubes of the octree are omitted, since they will not be needed for the analysis. However, they can be easily added
without violating the 1-unbalancedness. Note that the cubes that appear in the example are of three different sizes—we
will refer to them as big, medium, and small cubes. Denote the two big cubes that are subdivided by A and B, and
denote the two medium subcubes of A that are subdivided into small cubes by A and A;, as shown in Fig. 4(a).

Now, suppose there is a proper 3-coloring. First, we look at the two adjacent big cubes at the back of the configuration,
behind A and B. We denote the one behind A by C, and the one behind B by D. They have to be colored with different
colors. We can assume without loss of generality that D is colored with color 1 and C is colored with color 2.

Then, apart from A there are three big cubes adjacent to the subdivided cube B. This arrangement enables us to use
Lemma 3. Since we know that the cube D has color 1, the other two big cubes should also be colored with color 1.
Further, the subcubes of B have to be colored in checkered fashion with colors 2 and 3.

Finally, the subcubes of A (except A1 and A») together with the cube C and the big cube below A form the configuration
from Lemma 2. Since C is colored with color 2, the other one should have color 2 as well. The six medium subcubes
of A have to be colored in checkered fashion with colors 1 and 3.

It remains to prove that this coloring is not proper. Consider the subdivided cube A and its three neighboring medium
cubes that are shaded in Fig. 4(b). By Lemma 3 the medium cubes above and below A both have the same color.
Similarly, the medium cubes above and below A, both have the same color. But, we already know that the two cubes
above A1 and A; are colored in checkered fashion using colors 2 and 3, whereas the two cubes below A and A; are
colored in checkered fashion using colors 1 and 3. Contradiction. [

Theorem 5. There exists a d-unbalanced 2°-tree that cannot be (d + 1)-colored.

Proof. We are going to provide examples of a 2-unbalanced quadtree that requires four colors and a 3-unbalanced
octree that requires five colors. The latter example can be generalized to prove the statement in higher dimensions.



U. Adamy et al. / Theoretical Computer Science 363 (2006) 11-17 15

7
7

e 1 o s 0 s 0 Y o s o s 0 s 0 s 0 )
0 0 o 1 o s 0 s 0 s o e e o s 0 e o s 0 )

n
WA
N

Suauy:

(@ (b)

Fig. 4. A 1-unbalanced octree that is not 3-colorable: (a) configuration, with the forced coloring of all big cubes; (b) two configurations to apply
Lemma 2.

(a) (b)

Fig. 5. A 2-unbalanced quadtree that is not 3-colorable: (a) initial 3-clique; (b) remaining colors are forced.

First, we consider the 2-unbalanced quadtree as shown in the Fig. 5. Note that some squares of the depicted quadtree
are omitted, as they will not be needed for the analysis. They can be easily added without violating the 2-unbalancedness.

Assume that this quadtree can be 3-colored. The three squares marked in Fig. 5(a) are pairwise adjacent, and, hence,
have to be colored differently. If we proceed to color those squares for which the color is uniquely determined, we end
up with the coloring depicted in Fig. 5(b). Obviously, this cannot be extended to the last square. Contradiction.

Next, we exhibit a 3-unbalanced octree T that cannot be colored with four colors. The construction is shown in
Fig. 6(a). Note that it contains a blow-up of the quadtree from Fig. 5 to three dimensions as a ground structure.

Assume that this octree can be 4-colored. The four cubes marked in Fig. 6(a) are pairwise adjacent, and, hence, have
to be colored differently. If we proceed to color those cubes for which the color is uniquely determined, we end up with
the coloring depicted in Fig. 6(b). Obviously, this cannot be extended to the last cube. Contradiction.

In the following, we use the octree T to construct corresponding examples in higher dimensions. First, we show
how to construct a 4-unbalanced 2*-tree 7". Start with a four-dimensional cube C. A copy of T is then placed onto an
arbitrary facet of C. We extend (“grow”) each of the three-dimensional cubes in the copy of T to the four-dimensional
cube, such that it does not overlap with the cube C.



16 U. Adamy et al. / Theoretical Computer Science 363 (2006) 11—-17

pd e /. / pd e /. /

(@ (b)

Fig. 6. A 3-unbalanced octree that is not 4-colorable: (a) initial 4-clique; (b) remaining colors are forced.

The obtained configuration of four-dimensional cubes can be easily completed (by adding more cubes) to a 2*-tree
T’. Since the octree T has only four levels of subdivision, 7" is a 4-unbalanced 24 _tree.

The cubes in 7”7 obtained from cubes in T are adjacent to one another the same way as in 7, and in addition they are
all adjacent to the cube C. Since T cannot be colored with four colors, T’ cannot be colored with five colors.

This construction can be repeated in the same fashion, each time increasing the dimension by 1. This way, for every
d >3 we obtain a d-unbalanced 29-tree that cannot be (d 4+ 1)-colored. [

3. Algorithms for coloring 2¢-trees

We proved that at least four colors are needed to color a 1-unbalanced octree. Somewhat surprisingly, four colors
are enough even for a 1-unbalanced 2%-tree of arbitrary dimension.

Theorem 6. Every k-unbalanced 24 _tree is (2k + 2)-colorable, for k>0, d >2.

Proof. We color the cubes of the k-unbalanced 2¢-tree according to their size—all the cubes with edge length 27 are
colored in the checkered fashion using the colors (2/ mod 2k + 2) and (2/ + 1 mod 2k + 2).

It remains to be shown that this coloring is proper. Two cubes of different size that are colored with the same color
have edge ratio at least 28*!, and therefore they cannot be adjacent in a k-unbalanced 2%-tree. If two adjacent cubes
have the same size then they are colored with different colors by definition of the coloring in checkered fashion. Hence,
the coloring is proper. [

The upper bound we just obtained is tight in some cases, but not in general. The theorem below provides a better
upper bound, if d < 2k.

Theorem 7. Every 24 _tree is (d + 2)-colorable, for d >2.

Proof. We follow the idea presented in [3]. First, we assign an arbitrary color to the unit cube. Then, we subdivide it
recursively assigning colors to the newly obtained cubes—in step ¢ we color all cubes of edge size 277 Note that this
way cubes are colored even if they are subdivided. Eventually, we obtain a coloring of all leaves of the 2¢-tree.

For each subdivision of a cube of color ¢ into 2¢ subcubes, we color them as follows. A pairwise non-adjacent half
of them (one color class of the checkered 2-coloring) is colored with color c. After that each of the cubes in the other
half has d neighbors of color ¢ and d more neighbors (since at that moment no cube of smaller size has been colored).
Altogether, there are at most d + 1 different colors in its neighborhood. Hence, one of the d + 2 colors can be used to
colorit. O

Note that the existence of a coloring for the case d = 2 (quadtrees) follows from the four-color theorem for planar
graphs [4].



U. Adamy et al. / Theoretical Computer Science 363 (2006) 11—17 17

4. Open problems

It remains to determine the exact number of colors needed to color 2-unbalanced octrees (is it four or five?). We

conjecture that four colors are enough.
Another interesting direction is to investigate the octree coloring problems with respect to edge/vertex-adjacency,

where to the best of our knowledge no results have been obtained so far.

References

[1] M. Benantar, U. Dogrusoz, J.E. Flaherty, M.S. Krishnamoorthy, Coloring quadtrees, Manuscript, 1996.

[2] M. Benantar, J.E. Flaherty, M.S. Krishnamoorthy, Coloring procedures for finite element computation on shared-memory parallel computers,
in: Adaptive, Multilevel, and Hierarchical Computation Strategies, AMD, Vol. 157, New York, 1992, pp. 435-449.

[3] D. Eppstein, M.W. Bern, B. Hutchings, Algorithms for coloring quadtrees, Algorithmica 32 (1) (2002) 87-94.

[4] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1) (1997) 2—44.

[5] H. Samet, The quadtree and related hierarchical data structures, ACM Comput. Surveys (CSUR) 16 (2) (1984) 187-260.



