Complexity measures and decision tree complexity: a survey

Harry Buhrman ${ }^{\mathrm{a}, *, 1}$, Ronald de Wolf ${ }^{\mathrm{a}, \mathrm{b}, 1}$
${ }^{a}$ CWI, Kruislaan 413, P.O. Box 94079, 1098 SJ Amsterdam, Netherlands
${ }^{\mathrm{b}}$ University of Amsterdam, ILLC, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

Abstract

We discuss several complexity measures for Boolean functions: certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial. We survey the relations and biggest gaps known between these measures, and show how they give bounds for the decision tree complexity of Boolean functions on deterministic, randomized, and quantum computers. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Decision tree complexity; Complexity measures for Boolean functions; Randomized computing; Quantum computing

1. Introduction

Computational complexity is the subfield of theoretical computer science that aims to understand "how much" computation is necessary and sufficient to perform certain computational tasks. For example, given a computational problem it tries to establish tight upper and lower bounds on the length of the computation (or on other resources, like space).

Unfortunately, for many, practically relevant, computational problems no tight bounds are known. An illustrative example is the well known P versus NP problem: for all NP-complete problems the current upper and lower bounds lie exponentially far apart. That is, the best known algorithms for these computational problems need exponential time (in the size of the input) but the best lower bounds are of a linear nature.

One of the general approaches towards solving a hard problem (mathematical or otherwise) is to set the goals a little bit lower and try to tackle a simpler problem

[^0]first. The hope is that understanding of the simpler problem will lead to a better understanding of the original, more difficult, problem.

This approach has been taken with respect to computational complexity: simpler and more limited models of computation have been studied. Perhaps the simplest model of computation is the decision tree. The goal here is to compute a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using queries to the input. In the most simple form a query asks for the value of the bit x_{i} and the answer is this value. (The queries may be more complicated. In this survey we will only deal with this simple type of query.) The algorithm is adaptive, that is the k th query may depend on the answers of the $k-1$ previous queries. The algorithm can therefore be described by a binary tree, whence its name 'decision tree'.

For a Boolean function f we define its deterministic decision tree complexity, $D(f)$, as the minimum number of queries that an optimal deterministic algorithm for f needs to make on any input. This measure corresponds to the depth of the tree that an optimal algorithm induces. Once the computational power of decision trees is better understood, one can extend this notion to more powerful models of query algorithms. This results in randomized and even quantum decision trees.

In order to get a handle on the computational power of decision trees (whether deterministic, randomized, or quantum), other measures of the complexity of Boolean functions have been defined and studied. Some prime examples are certificate complexity, sensitivity, block sensitivity, the degree of a representing polynomial, and the degree of an approximating polynomial. We survey the known relations and biggest gaps between these complexity measures and show how they apply to decision tree complexity, giving proofs of some of the central results. The main results say that all of these complexity measures (with the possible exception of sensitivity) are polynomially related to each other and to the decision tree complexities in each of the classical, randomized, and quantum settings. We also identify some of the main remaining open questions. The complexity measures discussed here also have interesting relations with circuit complexity [47,4,7], parallel computing [10, 41, 31, 47], communication complexity [33, 9], and the construction of oracles in computational complexity theory $[6,43,15,16]$, which we will not discuss here.

The paper is organized as follows. In Section 2 we introduce some notation concerning Boolean functions and multivariate polynomials. In Section 3 we define the three main variants of decision trees that we discuss: deterministic decision trees, randomized decision trees, and quantum decision trees. In Section 4 we introduce certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial. We survey the main relations and known upper and lower bounds between these measures. In Section 5 we show how the complexity measures of Section 4 imply upper and lower bounds on deterministic, randomized, and quantum decision tree complexity. This section gives bounds that apply to all Boolean functions. Finally, in Section 6 we examine some special subclasses of Boolean functions and tighten the general bounds of Section 5 for those special cases.

2. Boolean functions and polynomials

2.1. Boolean functions

A Boolean function is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Note that f is total, i.e., defined on all n-bit inputs. For an input $x \in\{0,1\}^{n}$, we use x_{i} to denote its i th bit, so $x=x_{1} \ldots x_{n}$. We use $|x|$ to denote the Hamming weight of x (its number of 1 's). If S is a set of (indices of) variables, then we use x^{S} to denote the input obtained by flipping the S-variables in x. We abbreviate $x^{\{i\}}$ to x^{i}. For example, if $x=0011$, then $x^{\{2,3\}}=0101$ and $x^{4}=0010$. We call f symmetric if $f(x)$ only depends on $|x|$. Some common symmetric functions that we will refer to are:

- $\mathrm{OR}_{n}(x)=1$ iff $|x| \geqslant 1$,
- $\operatorname{AND}_{n}(x)=1$ iff $|x|=n$,
- $\operatorname{PARITY}_{n}(x)=1$ iff $|x|$ is odd,
- $\operatorname{MAJ}_{n}(x)=1$ iff $|x|>n / 2$.

We call f monotone (increasing) if $f(x)$ cannot decrease if we set more variables of x to 1 . A function that we will refer to sometimes is the "address function". This is a function on $n=k+2^{k}$ variables, where the first k bits of the input provide an index in the last 2^{k} bits. The value of the indexed variable is the output of the function. Wegener [46] gives a monotone version of the address function.

2.2. Multilinear polynomials

If S is a set of (indices of) variables, then the monomial X_{S} is the product of variables $X_{S}=\prod_{i \in S} x_{i}$. The degree of this monomial is the cardinality of S. A multilinear polynomial on n variables is a function $p: \mathbf{R}^{n} \rightarrow \mathbf{C}$ that can be written as $p(x)=\sum_{S \subseteq[n]} c_{S} X_{S}$ for some complex numbers c_{S}. We call c_{S} the coefficient of the monomial X_{S} in p. The degree of p is the degree of its largest monomial: $\operatorname{deg}(p)=\max \left\{|S| \mid c_{S} \neq 0\right\}$. Note that if we restrict attention to the Boolean domain $\{0,1\}^{n}$, then $x_{i}=x_{i}^{k}$ for all $k>1$, so considering only multilinear polynomials is no restriction when dealing with Boolean inputs. The next lemma implies that if multilinear polynomials p and q are equal on all Boolean inputs, then they are identical:

Lemma 1. Let $p, q: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be multilinear polynomials of degree at most d. If $p(x)=$ $q(x)$ for all $x \in\{0,1\}^{n}$ with $|x| \leqslant d$, then $p=q$.

Proof. Define $r(x)=p(x)-q(x)$. Suppose r is not identically zero. Let V be a minimaldegree term in r with non-zero coefficient c, and x be the input where $x_{j}=1$ iff x_{j} occurs in V. Then $|x| \leqslant d$, and hence $p(x)=q(x)$. However, since all monomials in r except for V evaluate to 0 on x, we have $r(x)=c \neq 0=p(x)-q(x)$, which is a contradiction. It follows that r is identically zero and $p=q$.

Below we sketch the method of symmetrization, due to Minsky and Papert [28] (see also [4, Section 4]). Let $p: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a polynomial. If π is some permutation
and $x=x_{1} \ldots x_{n}$, then $\pi(x)=\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$. Let S_{n} be the set of all $n!$ permutations. The symmetrization $p^{\text {sym }}$ of p averages over all permutations of the input, and is defined as

$$
p^{\mathrm{sym}}(x)=\frac{\sum_{\pi \in S_{n}} p(\pi(x))}{n!}
$$

Note that $p^{\text {sym }}$ is a polynomial of degree at most the degree of p. Symmetrizing may actually lower the degree: if $p=x_{1}-x_{2}$, then $p^{\text {sym }}=0$. The following lemma allows us to reduce an n-variate polynomial to a single-variate one.

Lemma 2 (Minsky and Papert). If $p: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a multilinear polynomial, then there exists a single-variate polynomial $q: \mathbf{R} \rightarrow \mathbf{R}$, of degree at most the degree of p, such that $p^{\text {sym }}(x)=q(|x|)$ for all $x \in\{0,1\}^{n}$.

Proof. Let d be the degree of $p^{\text {sym }}$, which is at most the degree of p. Let V_{j} denote the sum of all $\binom{n}{j}$ products of j different variables, so $V_{1}=x_{1}+\cdots+x_{n}, V_{2}=x_{1} x_{2}+$ $x_{1} x_{3}+\cdots+x_{n-1} x_{n}$, etc. Since $p^{\text {sym }}$ is symmetrical, it is easily shown by induction that it can be written as

$$
p^{\mathrm{sym}}(x)=c_{0}+c_{1} V_{1}+c_{2} V_{2}+\cdots+c_{d} V_{d}
$$

with $c_{i} \in \mathbf{R}$. Note that V_{j} assumes value $\binom{|x|}{j}=|x|(|x|-1)(|x|-2) \cdots(|x|-j+1) / j!$ on x, which is a polynomial of degree j of $|x|$. Therefore the single-variate polynomial q defined by

$$
q(|x|)=c_{0}+c_{1}\binom{|x|}{1}+c_{2}\binom{|x|}{2}+\cdots+c_{d}\binom{|x|}{d}
$$

satisfies the lemma.

3. Decision tree complexity on various machine models

Below we define decision tree complexity for three different kinds of machine models: deterministic, randomized, and quantum.

3.1. Deterministic

A deterministic decision tree is a rooted ordered binary tree T. Each internal node of T is labeled with a variable x_{i} and each leaf is labeled with a value 0 or 1 . Given an input $x \in\{0,1\}^{n}$, the tree is evaluated as follows. Start at the root. If this is a leaf then stop. Otherwise, query the variable x_{i} that labels the root. If $x_{i}=0$, then recursively evaluate the left subtree, if $x_{i}=1$ then recursively evaluate the right subtree. The output of the tree is the value (0 or 1) of the leaf that is reached eventually. Note that an input x deterministically determines the leaf, and thus the output, that the procedure ends up in.

We say a decision tree computes f if its output equals $f(x)$, for all $x \in\{0,1\}^{n}$. Clearly there are many different decision trees that compute the same f. The complexity of such a tree is its depth, i.e., the number of queries made on the worst-case input. We define $D(f)$, the decision tree complexity of f, as the depth of an optimal ($=$ minimal-depth) decision tree that computes f.

3.2. Randomized

As in many other models of computation, we can add the power of randomization to decision trees. There are two ways to view a randomized decision tree. Firstly, we can add (possibly biased) coin flips as internal nodes to the tree. That is, the tree may contain internal nodes labeled by a bias $p \in[0,1]$, and when the evaluation procedure reaches such a node, it will flip a coin with bias p and will go to the left child on outcome 'heads' and to the right child on 'tails'. Now an input x no longer determines with certainty which leaf of the tree will be reached, but instead induces a probability distribution over the set of all leaves. Thus, the tree outputs 0 or 1 with a certain probability. The complexity of the tree is the number of queries on the worst-case input and worst-case outcome of the coin flips. A second way to define a randomized decision tree is as a probability distribution μ over deterministic decision trees. The tree is evaluated by choosing a deterministic decisions tree according to μ, which is then evaluated as before. The complexity of the randomized tree in this second definition is the depth of the deepest T that has $\mu(T)>0$. It is not hard to see that these two definitions are equivalent.

We say that a randomized decision tree computes f with bounded-error if its output equals $f(x)$ with probability at least $2 / 3$, for all $x \in\{0,1\}^{n} . R_{2}(f)$ denotes the complexity of the optimal randomized decision tree that computes f with bounded error. ${ }^{2}$

3.3. Quantum

We briefly sketch the framework of quantum computing, referring to [30] for more details. The classical unit of computation is a bit, which can take on the values 0 or 1. In the quantum case, the unit of computation is a quantum bit or qubit, which is a linear combination or superposition of the two classical values:

$$
\alpha_{0}|0\rangle+\alpha_{1}|1\rangle .
$$

More generally, an m-qubit state $|\phi\rangle$ is a superposition of all classical m-bit strings:

$$
|\phi\rangle=\sum_{i \in\{0,1\}^{m}} \alpha_{i}|i\rangle .
$$

[^1]Here α_{i} is a complex number, called the amplitude of basis state $|i\rangle$. We require $\sum_{i}\left|\alpha_{i}\right|^{2}=1$. Mathematically speaking, the set of m-qubit quantum states is the set of all unit vectors in the Hilbert spaced that has $\left\{|i\rangle \mid i \in\{0,1\}^{m}\right\}$ as an orthonormal basis.

There are two things we can do to such a state: measure it or apply a unitary transformation to it. One of the axioms of quantum mechanics says that if we measure the m-qubit register $|\phi\rangle$, then we will see the basis state $|i\rangle$ with probability $\left|\alpha_{i}\right|^{2}$. Since $\sum_{i}\left|\alpha_{i}\right|^{2}=1$, we thus have a valid probability distribution over the classical m bit strings. After the measurement, $|\phi\rangle$ has "collapsed" to the specific observed basis state $|i\rangle$ and all other information in the state will be lost.

Apart from measuring $|\phi\rangle$, we can also apply a unitary transformation to it. That is, viewing the 2^{m} amplitudes of $|\phi\rangle$ as a vector in $\mathbf{C}^{2^{m}}$, we can obtain some new state $|\psi\rangle=\sum_{i \in\{0,1\}^{m}} \beta_{i}|i\rangle$ by multiplying $|\phi\rangle$ with a unitary matrix $U:|\psi\rangle=U|\phi\rangle$. A matrix U is unitary iff its inverse U^{-1} equals the conjugate transpose matrix U^{*}. Because unitarity is equivalent to preserving Euclidean norm, the new state $|\psi\rangle$ will still have $\sum_{i}\left|\beta_{i}\right|^{2}=1$. There is an extensive literature on how such large U can be obtained from small unitary transformations ("quantum gates") on few qubits at a time, see [30].

We formalize a query to an input $x \in\{0,1\}^{n}$ as a unitary transformation O that maps $|i, b, z\rangle$ to $\left|i, b \oplus x_{i}, z\right\rangle$. Here $|i, b, z\rangle$ is some m-qubit basis state, where i takes $\lceil\log n\rceil$ bits, b is one bit, z denotes the ($m-\lceil\log n\rceil-1$)-bit "workspace" of the quantum computer, which is not affected by the query, and \oplus denotes exclusive-or. This clearly generalizes the classical setting where a query inputs an i into a black-box, which returns the bit x_{i} : if we apply O to the basis state $|i, 0, z\rangle$ we get $\left|i, x_{i}, z\right\rangle$, from which the i th bit of the input can be read. Because O has to be unitary, we specify that it maps $|i, 1, z\rangle$ to $\left|i, 1-x_{i}, z\right\rangle$. Note that a quantum computer can make queries in superposition: applying O once to the state $(1 / \sqrt{n}) \sum_{i=1}^{n}|i, 0, z\rangle$ gives $(1 / \sqrt{n}) \sum_{i=1}^{n}\left|i, x_{i}, z\right\rangle$, which in some sense contains all bits of the input.

A quantum decision tree has the following form: we start with an m-qubit state $|\overrightarrow{0}\rangle$ where every bit is 0 . Then we apply a unitary transformation U_{0} to the state, then we apply a query O, then another unitary transformation U_{1}, etc. A T-query quantum decision tree thus corresponds to a big unitary transformation $A=U_{T} O U_{T-1} \cdots O U_{1} O U_{0}$. Here the U_{i} are fixed unitary transformations, independent of the input x. The final state $A|\overrightarrow{0}\rangle$ depends on the input x only via the T applications of O. The output is obtained by measuring the final state and outputting the rightmost bit of the observed basis state (without loss of generality, we can assume there are no intermediate measurements).

We say that a quantum decision tree computes f exactly if the output equals $f(x)$ with probability 1 , for all $x \in\{0,1\}^{n}$. The tree computes f with bounded-error if the output equals $f(x)$ with probability at least $2 / 3$, for all $x \in\{0,1\}^{n} . Q_{E}(f)$ denotes the number of queries of an optimal quantum decision tree that computes f exactly, $Q_{2}(f)$ is the number of queries of an optimal quantum decision tree that computes f with bounded-error. Note that we just count the number of queries, not the complexity of the U_{i}.

Unlike the classical deterministic or randomized decision trees, the quantum algorithms are not really trees anymore (the names 'quantum query algorithm' or 'quantum black-box algorithm' are also in use). Nevertheless, we prefer the term 'quantum decision tree', because such quantum algorithms generalize classical trees in the sense that they can simulate them, as sketched below. Consider a T-query deterministic decision tree. It first determines which variable it will query initially; then it determines the next query depending upon its history, and so on for T queries. Eventually, it outputs an output-bit depending on its total history. The basis states of the corresponding quantum algorithm have the form $|i, b, h, a\rangle$, where i, b is the query-part, h ranges over all possible histories of the classical computation (this history includes all previous queries and their answers), and a is the rightmost qubit, which will eventually contain the output. Let U_{0} map the initial state $|\overrightarrow{0}, 0, \overrightarrow{0}, 0\rangle$ to $|i, 0, \overrightarrow{0}, 0\rangle$, where x_{i} is the first variable that the classical tree would query. Now, the quantum algorithm applies O, which turns the state into $\left|i, x_{i}, \overrightarrow{0}, 0\right\rangle$. Then the algorithm applies a transformation U_{1} that maps $\left|i, x_{i}, \overrightarrow{0}, 0\right\rangle$ to $|j, 0, h, 0\rangle$, where h is the new history (which includes i and x_{i}) and x_{j} is the variable that the classical tree would query given the outcome of the previous query. Then the quantum tree applies O for the second time, it applies a transformation U_{2} that updates the workspace and determines the next query, etc. Finally, after T queries the quantum tree sets the answer bit to 0 or 1 depending on its total history. All operations U_{i} performed here are injective mappings from basis states to basis states, hence they can be extended to permutations of basis states, which are unitary transformations. Thus a T-query deterministic decision tree can be simulated by an exact T-query quantum algorithm. Similarly a T-query randomized decision tree can be simulated by a T-query quantum decision tree with the same error probability (basically because a superposition can "simulate" a probability distribution). Accordingly, we have $Q_{2}(f) \leqslant R_{2}(f) \leqslant D(f) \leqslant n$ and $Q_{2}(f) \leqslant Q_{E}(f) \leqslant D(f) \leqslant n$ for all f.

4. Some complexity measures

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function. We can associate several measures of complexity with such functions, whose definitions and relations are surveyed below.

4.1. Certificate complexity

Certificate complexity measures how many of the n variables have to be given a value in order to fix the value of f.

Definition 1. Let C be an assignment $C: S \rightarrow\{0,1\}$ of values to some subset S of the n variables. We say that C is consistent with $x \in\{0,1\}^{n}$ if $x_{i}=C(i)$ for all $i \in S$.

For $b \in\{0,1\}$, a b-certificate for f is an assignment C such that $f(x)=b$ whenever x is consistent with C. The size of C is $|S|$, the cardinality of S.

The certificate complexity $C_{x}(f)$ of f on x is the size of a smallest $f(x)$-certificate that is consistent with x. The certificate complexity of f is $C(f)=\max _{x} C_{x}(f)$. The

1-certificate complexity of f is $C^{(1)}(f)=\max _{\{x \mid f(x)=1\}} C_{x}(f)$, and similarly we define $C^{(0)}(f)$.

For example, $C^{(1)}\left(\mathrm{OR}_{n}\right)=1$ since it suffices to set one variable $x_{i}=1$ to force the OR-function to 1 . On the other hand, $C\left(\mathrm{OR}_{n}\right)=C^{(0)}\left(\mathrm{OR}_{n}\right)=n$.

4.2. Sensitivity and block sensitivity

Sensitivity and block sensitivity measure how sensitive the value of f is to changes in the input. Sensitivity was introduced in [10] (under the name of critical complexity) and block sensitivity in [31]. ${ }^{3}$

Definition 2. The sensitivity $s_{x}(f)$ of f on x is the number of variables x_{i} for which $f(x) \neq f\left(x^{i}\right)$. The sensitivity of f is $s(f)=\max _{x} s_{x}(f)$.

The block sensitivity bs $s_{x}(f)$ of f on x is the maximum number b such that there are disjoint sets B_{1}, \ldots, B_{b} for which $f(x) \neq f\left(x^{B_{i}}\right)$. The block sensitivity of f is $b s(f)=\max _{x} b s_{x}(f)$. (If f is constant, we define $s(f)=b s(f)=0$.)

Note that sensitivity is just block sensitivity with the size of the blocks B_{i} restricted to 1 . Simon [41] gave a general lower bound on $s(f)$:

Theorem 1 (Simon). If f depends on all n variables, then we have $s(f) \geqslant \frac{1}{2} \log n-$ $\frac{1}{2} \log \log n+\frac{1}{2}$.

Wegener [46] proved that this theorem is tight up to the $\mathrm{O}(\log \log n)$-term for the monotone address function.

We now prove some relations between $C(f), s(f)$, and $b s(f)$. Clearly, for all x we have $s_{x}(f) \leqslant b s_{x}(f)$ and $b s_{x}(f) \leqslant C_{x}(f)$ (since a certificate for x will have to contain at least one variable of each sensitive block). Hence:

Proposition 1. $s(f) \leqslant b s(f) \leqslant C(f)$.
The biggest gap known between $s(f)$ and $b s(f)$ is quadratic and was exhibited by Rubinstein [37]:

Example 1. Let $n=4 k^{2}$. Divide the n variables in \sqrt{n} disjoint blocks of \sqrt{n} variables: the first block B_{1} contains $x_{1}, \ldots, x_{\sqrt{n}}$, the second block B_{2} contains $x_{\sqrt{n}+1}, \ldots, x_{2 \sqrt{n}}$, etc. Define f such that $f(x)=1$ iff there is at least one block B_{i} where two consecutive variables have value 1 and the other $\sqrt{n}-2$ variables are 0 . It is easy to see that $s(f)=\sqrt{n}$ and $b s(f)=n / 2$, so we have a quadratic gap between $s(f)$ and $b s(f)$.

[^2]Since $b s(f) \leqslant C(f)$, this is also a quadratic gap between $s(f)$ and $C(f)$ (Wegener and Zádori give a different function with a smaller gap between $s(f)$ and $C(f)$ [48]).

It has been open for quite a while whether $b s(f)$ can be upper bounded by a polynomial in $s(f)$. It may well be true that $b s(f) \in \mathrm{O}\left(s(f)^{2}\right)$.

Open problem 1. Is bs $(f) \in \mathrm{O}\left(s(f)^{k}\right)$ for some k ?
We proceed to give Nisan's proof [31] that $C(f)$ is bounded by $b s(f)^{2}$.
Lemma 3. If B is a minimal sensitive block for x, then $|B| \leqslant s(f)$.
Proof. If we flip one of the B-variables in x^{B}, then the function value must flip from $f\left(x^{B}\right)$ to $f(x)$ (otherwise B would not be minimal), so every B-variable is sensitive for f on input x^{B}. Hence $|B| \leqslant s_{x^{B}}(f) \leqslant s(f)$.

Theorem 2 (Nisan). $C(f) \leqslant s(f) b s(f)$.
Proof. Consider an input $x \in\{0,1\}^{n}$ and let B_{1}, \ldots, B_{b} be disjoint minimal sets of variables that achieve the block sensitivity $b=b s_{x}(f) \leqslant b s(f)$. We will show that the function $C: \bigcup_{i} B_{i} \rightarrow\{0,1\}$ that sets variables according to x is a sufficiently small certificate for $f(x)$.

If C is not an $f(x)$-certificate, then let x^{\prime} be an input that is consistent with C, such that $f\left(x^{\prime}\right) \neq f(x)$. Define B_{b+1} by $x^{\prime}=x^{B_{b+1}}$. Now f is sensitive to B_{b+1} on x and B_{b+1} is disjoint from B_{1}, \ldots, B_{b}, which contradicts $b=b s_{x}(f)$. Hence C is an $f(x)$ certificate. By the previous lemma we have $\left|B_{i}\right| \leqslant s(f)$ for all i, hence the size of this certificate is $\left|\bigcup_{i} B_{i}\right| \leqslant s(f) b s(f)$.

No quadratic gap between $b s(f)$ and $C(f)$ seems to be known. Some sub-quadratic gaps may be found in [48, Section 3].

4.3. Degree of representing polynomial

Definition 3. A polynomial $p: \mathbf{R}^{n} \rightarrow \mathbf{R}$ represents f if $p(x)=f(x)$ for all $x \in\{0,1\}^{n}$.
Note that since $x^{2}=x$ for $x \in\{0,1\}$, we can restrict attention to multilinear polynomials for representing f. It is easy to see that each f can be represented by a multilinear polynomial p. Lemma 1 implies that this polynomial is unique, which allows us to define:

Definition 4. The degree $\operatorname{deg}(f)$ of f is the degree of the multilinear polynomial that represents f.

For example, $\operatorname{deg}\left(\mathrm{AND}_{n}\right)=n$, because the representing polynomial is the monomial $x_{1} \ldots x_{n}$. The degree $\operatorname{deg}(f)$ may be significantly larger than $s(f), b s(f)$, and $C(f)$:

Example 2. Let f on $n=k^{2}$ variables be the AND of k ORs of k variables each. Both AND_{k} and OR_{k} are represented by degree- k polynomials, so the representing polynomial of f has degree $\operatorname{deg}(f)=k^{2}=n$. On the other hand, it is not hard to see that $s(f)=b s(f)=C(f)=\sqrt{n}$. Thus $\operatorname{deg}(f)$ is quadratically larger than $s(f), b s(f)$, and $C(f)$ in this case. ${ }^{4}$

On the other hand, $\operatorname{deg}(f)$ may also be significantly smaller than $s(f)$ and $b s(f)$, as the next example from Nisan and Szegedy [32] shows.

Example 3. Consider the function E_{12} defined by $E_{12}\left(x_{1}, x_{2}, x_{3}\right)=1$ iff $|x| \in\{1,2\}$. This function is represented by the following degree-2 polynomial:

$$
E_{12}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3} .
$$

Define E_{12}^{k} as the function on $n=3^{k}$ variables obtained by building a complete recursive ternary tree of depth k, where the 3^{k} leaves are the variables and each node is the $E_{12}-$ function of its three children. For $k>1$, the representing polynomial for E_{12}^{k} is obtained by substituting independent copies of the E_{12}^{k-1}-polynomial in the above polynomial for E_{12}. This shows that $\operatorname{deg}(f)=2^{k}=n^{1 / \log 3}$. On the other hand, it is easy to see that flipping any variable in the input $\overrightarrow{0}$ flips the function value from 0 to 1 , hence $s(f)=b s(f)=C(f)=n=\operatorname{deg}(f)^{\log 3}$ (Kushilevitz has found a slightly bigger gap, based on the same technique with a slightly more complex polynomial, see [33, footnote 1 on p. 560]).

Below we give Nisan and Szegedy's proof that $\operatorname{deg}(f)$ can be no more than quadratically smaller than $b s(f)$ [32]. This shows that the gap of the last example is close to optimal. The proof uses the following theorem from [12, 36]:

Theorem 3 (Ehlich and Zeller; Rivlin and Cheney). Let $p: \mathbf{R} \rightarrow \mathbf{R}$ be a polynomial such that $b_{1} \leqslant p(i) \leqslant b_{2}$ for every integer $0 \leqslant i \leqslant n$, and its derivative has $\left|p^{\prime}(x)\right| \geqslant c$ for some real $0 \leqslant x \leqslant n$. Then $\operatorname{deg}(p) \geqslant \sqrt{c n /\left(c+b_{2}-b_{1}\right)}$.

Theorem 4 (Nisan and Szegedy). $b s(f) \leqslant 2 \operatorname{deg}(f)^{2}$.
Proof. Let polynomial p of degree d represent f. Let $b=b s(f)$, and a and B_{1}, \ldots, B_{b} be the input and sets that achieve the block sensitivity. We assume without loss of generality that $f(a)=0$. We transform $p\left(x_{1}, \ldots, x_{N}\right)$ into a polynomial $q\left(y_{1}, \ldots, y_{b}\right)$ by replacing every x_{j} in p as follows:
(1) $x_{j}=y_{i}$ if $a_{j}=0$ and $j \in B_{i}$,
(2) $x_{j}=1-y_{i}$ if $a_{j}=1$ and $j \in B_{i}$,
(3) $x_{j}=a_{j}$ if $j \notin B_{i}$ for every i.

[^3]Now it is easy to see that q has the following properties:
(1) q is a multilinear polynomial of degree $\leqslant d$,
(2) $q(y) \in\{0,1\}$ for all $y \in\{0,1\}^{b}$,
(3) $q(\overrightarrow{0})=p(x)=f(x)=0$,
(4) $q\left(e_{i}\right)=p\left(x^{B_{i}}\right)=f\left(x^{B_{i}}\right)=1$ for all unit vectors $e_{i} \in\{0,1\}^{b}$.

Let r be the single-variate polynomial of degree $\leqslant d$ obtained from symmetrizing q over $\{0,1\}^{b}$. Note that $0 \leqslant r(i) \leqslant 1$ for every integer $0 \leqslant i \leqslant b$, and for some $x \in[0,1]$ we have $r^{\prime}(x) \geqslant 1$ because $r(0)=0$ and $r(1)=1$. Applying Theorem 3 we get $d \geqslant \sqrt{b / 2}$.

The following two theorems give, respectively, a weak bound for all functions, and a strong bound for almost all functions. We state the first without proof (see [32]).

Theorem 5 (Nisan and Szegedy). If f depends on all n variables, then we have $\operatorname{deg}(f) \geqslant \log n-\mathrm{O}(\log \log n)$.

The address function on $n=k+2^{k}$ variables has $\operatorname{deg}(f)=k+1$, which shows that the previous theorem is tight up to the $\mathrm{O}(\log \log n)$-term.

For the second result, define $X_{1}^{\text {even }}=\{x \| x \mid$ is even and $f(x)=1\}$, similarly for $X_{1}^{\text {odd }}$. Let $X_{1}=X_{1}^{\text {even }} \cup X_{1}^{\text {odd }}$. Let $p=\sum_{S} c_{S} X_{S}$ be the unique polynomial representing f, with c_{S} the coefficient of the monomial $X_{S}=\prod_{i \in S} x_{i}$. The Moebius inversion formula (see [4]) says

$$
c_{S}=\sum_{T \subseteq S}(-1)^{|S|-|T|} f(T),
$$

where $f(T)$ is the value of f on the input where exactly the variables in T are 1 . We learned about the next lemma via personal communication with Yaoyun Shi.

Lemma 4 (Shi and Yao). $\operatorname{deg}(f)=n$ iff $\left|X_{1}^{\text {even }}\right| \neq\left|X_{1}^{\text {odd }}\right|$.
Proof. Applying the Moebius formula with $S=\{1, \ldots, n\}$, we get

$$
c_{S}=\sum_{T \subseteq S}(-1)^{|S|-|T|} f(T)=(-1)^{n} \sum_{x \in X_{1}}(-1)^{|x|}=(-1)^{n}\left(\left|X_{1}^{\text {even }}\right|-\left|X_{1}^{\text {odd }}\right|\right) .
$$

Since $\operatorname{deg}(f)=n$ iff the monomial $x_{1} \ldots x_{n}$ has non-zero coefficient, the lemma follows.

As a consequence, we can exactly count the number of functions that have less than full degree:

Theorem 6. There are $\binom{2^{n}}{2^{n-1}}$ functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with $\operatorname{deg}(f)<n$.

Proof. We will count the number E of f for which $\left|X_{1}^{\text {even }}\right|=\left|X_{1}^{\text {odd }}\right|$; by Lemma 4 these are exactly the f satisfying $\operatorname{deg}(f)<n$. Suppose we want to assign f-value 1 to exactly i of the 2^{n-1} inputs for which $|x|$ is even. There are $\binom{2^{n-1}}{i}$ ways to do this. If we want $\left|X_{1}^{\text {even }}\right|=\left|X_{1}^{\text {odd }}\right|$, then there are only $\binom{2^{n-1}}{i}$ ways to choose the f-values of the odd x. Hence

$$
E=\sum_{i=0}^{2^{n-1}}\binom{2^{n-1}}{i}\binom{2^{n-1}}{i}=\binom{2^{n}}{2^{n-1}} .
$$

The second equality is Vandermonde's convolution [18, p. 174].
Note that $\left(\begin{array}{c}2^{n}-1\end{array}\right) \in \Theta\left(2^{2^{n}} / \sqrt{2^{n}}\right)$ by Stirling's formula. Since there are $2^{2^{n}}$ Boolean functions on n variables, we see that the fraction of functions with degree $<n$ is $\mathrm{o}(1)$. Thus almost all functions have full degree.

4.4. Degree of approximating polynomial

Apart from representing a function f exactly by means of a polynomial, we may also only approximate it with a polynomial, which can sometimes be of a smaller degree. ${ }^{5}$

Definition 5. A polynomial $p: \mathbf{R}^{n} \rightarrow \mathbf{R}$ approximates f if $|p(x)-f(x)| \leqslant 1 / 3$ for all $x \in\{0,1\}^{n}$. The approximate degree $\widetilde{\operatorname{deg}}(f)$ of f is the minimum degree among all multilinear polynomials that approximate f.

As a simple example: $\frac{2}{3} x_{1}+\frac{2}{3} x_{2}$ approximates OR_{2}, so $\widetilde{\operatorname{deg}}\left(\mathrm{OR}_{2}\right)=1$. In contrast, $\operatorname{deg}\left(\mathrm{OR}_{2}\right)=2$. Note that there may be many different minimal-degree polynomials that approximate f, whereas there is only one polynomial that represents f.

By the same technique as Theorem 4, Nisan and Szegedy [32] showed
Theorem 7 (Nisan and Szegedy). $b s(f) \leqslant 6 \widetilde{\operatorname{deg}}(f)^{2}$.
The approximate degree of f can sometimes be significantly smaller than the degree of f. Nisan and Szegedy [32] constructed a degree-O (\sqrt{n}) polynomial that approximates OR_{n}. Since $b s\left(\mathrm{OR}_{n}\right)=n$, the previous theorem implies that this degree is optimal. Since $\operatorname{deg}\left(\mathrm{OR}_{n}\right)=n$ we have a quadratic gap between $\operatorname{deg}(f)$ and $\widetilde{\operatorname{deg}}(f)$. This is the biggest gap known.

Ambainis [1] showed that almost all functions have high approximate degree:
Theorem 8 (Ambainis). Almost all f have $\widetilde{\operatorname{deg}}(f) \geqslant n / 2-\mathrm{O}(\sqrt{n} \log n)$.

[^4]
5. Application to decision tree complexity

The complexity measures discussed above are intimately related to the decision tree complexity of f in various models. In fact, $D(f), R_{2}(f), Q_{E}(f), Q_{2}(f), b s(f), C(f)$, $\operatorname{deg}(f)$, and $\widetilde{\operatorname{deg}}(f)$ are all polynomially related.

5.1. Deterministic

We start with two simple lower bounds on $D(f)$.
Theorem 9. $b s(f) \leqslant D(f)$.
Proof. On input x with disjoint sensitive blocks $B_{1}, \ldots, B_{b s(f)}$, a deterministic decision tree must query at least one variable in each block B_{i}, for otherwise we could flip that block (and hence the correct output) without the tree noticing it. Thus the tree must make at least $b s(f)$ queries on input x.

Theorem 10. $\operatorname{deg}(f) \leqslant D(f)$.

Proof. Consider a decision tree for f of depth $D(f)$. Let L be a 1-leaf (i.e., a leaf with output 1) and x_{1}, \ldots, x_{r} be the queries on the path to L, with values b_{1}, \ldots, b_{r}. Define the polynomial $p_{L}(x)=\prod_{i: b_{i}=1} x_{i} \prod_{i: b_{i}=0}\left(1-x_{i}\right)$. Then p_{L} has degree $r \leqslant D(f)$. Furthermore, $p_{L}(x)=1$ if leaf L is reached on input x, and $p_{L}(x)=0$ otherwise. Let $p=\sum_{L} p_{L}$ be the sum of all p_{L} over all 1-leaves. Then p has degree $\leqslant D(f)$, and $p(x)=1$ iff a 1-leaf is reached on input x, so p represents f.

Below we give some upper bounds on $D(f)$ in terms of $b s(f), C(f), \operatorname{deg}(f)$, and $\widetilde{\operatorname{deg}} g(f)$. Beals et al. [3] prove

Theorem 11. $D(f) \leqslant C^{(1)}(f) b s(f)$.
Proof. The following describes an algorithm to compute $f(x)$, querying at most $C^{(1)}(f) b s(f)$ variables of x (in the algorithm, by a "consistent" certificate C or input y at some point we mean a C or y that agrees with the values of all variables queried up to that point).
(1) Repeat the following at most $b s(f)$ times: Pick a consistent 1-certificate C and query those of its variables whose x-values are still unknown (if there is no such C, then return 0 and stop); if the queried values agree with C then return 1 and stop.
(2) Pick a consistent $y \in\{0,1\}^{n}$ and return $f(y)$.

The non-deterministic "pick a C " and "pick a y " can easily be made deterministic by choosing the first C (resp. y) in some fixed order. Call this algorithm A. Since A runs for at most $b s(f)$ stages and each stage queries at most $C^{(1)}(f)$ variables, A queries at most $C^{(1)}(f) b s(f)$ variables.

It remains to show that A always returns the right answer. If it returns an answer in step (1), this is either because there are no consistent 1 -certificates left (and hence $f(x)$ must be 0) or because x is found to agree with a particular 1-certificate C. In both cases A gives the right answer.

Now consider the case where A returns an answer in step (2). We will show that all consistent y must have the same f-value. Suppose not. Then there are consistent y, y^{\prime} with $f(y)=0$ and $f\left(y^{\prime}\right)=1$. A has queried $b=b s(f) 1$-certificates $C_{1}, C_{2}, \ldots, C_{b}$. Furthermore, y^{\prime} contains a consistent 1 -certificate C_{b+1}. We will derive from these C_{i} disjoint sets B_{i} such that f is sensitive to each B_{i} on y. For every $1 \leqslant i \leqslant b+1$, define B_{i} as the set of variables on which y and C_{i} disagree. Clearly, each B_{i} is non-empty, for otherwise the procedure would have returned 1 in step (1). Note that $y^{B_{i}}$ agrees with C_{i}, so $f\left(y^{B_{i}}\right)=1$, which shows that f is sensitive to each B_{i} on y. Suppose variable k occurs in some $B_{i}(1 \leqslant i \leqslant b)$, then $x_{k}=y_{k} \neq C_{i}(k)$. If $j>i$, then C_{j} has been chosen consistent with all variables queried up to that point (including x_{k}), so we cannot have $x_{k}=y_{k} \neq C_{j}(k)$. This shows that $k \notin B_{j}$, hence all B_{i} and B_{j} are disjoint. But then f is sensitive to $b s(f)+1$ disjoint sets on y, which is a contradiction. Accordingly, all consistent y in step (2) must have the same f-value, and A returns the right value $f(y)=f(x)$ in step (2), because x is one of those consistent y.

Combining with $C^{(1)} \leqslant C(f) \leqslant s(f) b s(f)$ (Theorem 2) we obtain:
Corollary 1. $D(f) \leqslant s(f) b s(f)^{2} \leqslant b s(f)^{3}$.
It might be possible to improve this to $D(f) \leqslant b s(f)^{2}$. This would be optimal, since the function f of Example 2 has $b s(f)=\sqrt{n}$ and $D(f)=n$.

Open problem 2. Is $D(f) \in \mathrm{O}\left(b s(f)^{2}\right)$?
Of course, Theorem 11 also holds with $C^{(0)}$ instead of $C^{(1)}$. Since $b s(f) \leqslant$ $\max \left\{C^{(0)}(f), C^{(1)}(f)\right\}$, we also obtain the following result, due to $[6,21,43]$.

Corollary 2. $D(f) \leqslant C^{(0)}(f) C^{(1)}(f)$.
Now, we will show that $D(f)$ is upper bounded by $\operatorname{deg}(f)^{4}$ and $\widetilde{\operatorname{deg}}(f)^{6}$. The first result is due to Nisan and Smolensky, below we give their (previously unpublished) proof. It improves the earlier result $D(f) \in \mathrm{O}\left(\operatorname{deg}(f)^{8}\right)$ of Nisan and Szegedy [32]. Here a maxonomial of f is a monomial with maximal degree in f 's representing polynomial p.

Lemma 5 (Nisan and Smolensky). For every maxonomial M of f, there is a set B of variables in M such that $f\left(\overrightarrow{0}^{B}\right) \neq f(\overrightarrow{0})$.

Proof. Obtain a restricted function g from f by setting all variables outside of M to 0 . This g cannot be constant 0 or 1 , because its unique polynomial representation
(as obtained from p) contains M. Thus there is some subset B of the variables in M that makes $g\left(\overrightarrow{0}^{B}\right) \neq g(\overrightarrow{0})$ and hence $f\left(\overrightarrow{0}^{B}\right) \neq f(\overrightarrow{0})$.

Lemma 6 (Nisan and Smolensky). There exists a set of $\operatorname{deg}(f) b s(f)$ variables that intersects each maxonomial of f.

Proof. Greedily take all variables in maxonomials of f, as long as there is a maxonomial that is still disjoint from those taken so far. Since each such maxonomial will contain a sensitive block for $\overrightarrow{0}$, and there can be at most $b s(f)$ disjoint sensitive blocks, this procedure can go on for at most $b s(f)$ maxonomials. Since each maxonomial contains $\operatorname{deg}(f)$ variables, the lemma follows.

Theorem 12 (Nisan and Smolensky). $D(f) \leqslant \operatorname{deg}(f)^{2} b s(f) \leqslant 2 \operatorname{deg}(f)^{4}$.
Proof. By the previous lemma, there is a set of $\operatorname{deg}(f) b s(f)$ variables that intersects each maxonomial of f. Query all these variables. This induces a restriction g of f on the remaining variables, such that $\operatorname{deg}(g)<\operatorname{deg}(f)$ (because the degree of each maxonomial in the representation of f drops at least one) and $b s(g) \leqslant b s(f)$. Repeating this inductively for at most $\operatorname{deg}(f)$ times, we reach a constant function and learn the value of f. This algorithm uses at most $\operatorname{deg}(f)^{2} b s(f)$ queries, hence $D(f) \leqslant \operatorname{deg}(f)^{2} b s(f)$. Theorem 4 gives the second inequality of the theorem.

Combining Corollary 1 and Theorem 7 we obtain the following result from [3] (improving the earlier $D(f) \in \mathrm{O}\left(\widetilde{\operatorname{deg}}(f)^{8}\right)$ result of Nisan and Szegedy [32]):

Theorem 13. $D(f) \in \mathrm{O}\left(\widetilde{\operatorname{deg}}(f)^{6}\right)$.
Finally, since $\operatorname{deg}(f)$ may be polynomially larger or smaller than $b s(f)$, the following theorem may be weaker or stronger than Theorem 11. The proof uses an idea similar to the above Nisan-Smolensky proof.

Theorem 14. $D(f) \leqslant C^{(1)}(f) \operatorname{deg}(f)$.
Proof. Let p be the representing polynomial for f. Choose some certificate $C: S \rightarrow$ $\{0,1\}$ of size $\leqslant C^{(1)}(f)$. If we fill in the S-variables according to C, then p must reduce to a constant function (constant 0 if C is a 0 -certificate, constant 1 if C is a 1 -certificate). Hence the certificate has to intersect each maxonomial of p. Accordingly, querying all variables in S reduces the polynomial degree of the function by at least 1. Repeating this $\operatorname{deg}(f)$ times, we end up with a constant function and hence know $f(x)$. In all, this algorithm takes at most $C^{(1)}(f) \operatorname{deg}(f)$ queries.

5.2. Randomized

Here we show that $D(f), R_{2}(f), b s(f)$, and $\widetilde{\operatorname{deg} g}(f)$ are all polynomially related. We first give the bounded-error analogues of Theorems 10 and 9:

Theorem 15. $\widetilde{\operatorname{deg}}(f) \leqslant R_{2}(f)$.
Proof. Consider a randomized decision tree for f of depth $R_{2}(f)$, viewed as a probability distribution μ over different deterministic decision trees T, each of depth at most $R_{2}(f)$. Using the technique of Theorem 10, we can write each of those T as a $0 / 1$-valued polynomial p_{T} of degree at most $R_{2}(f)$. Define $p=\sum_{T} \mu(T) p_{T}$, which has degree at most $R_{2}(f)$. Then it is easy to see that p gives the acceptance probability of R, so p approximates f.

Nisan [31] proved.
Theorem 16 (Nisan). $b s(f) \leqslant 3 R_{2}(f)$.
Proof. Consider an algorithm with $R_{2}(f)$ queries, and an input x that achieves the block sensitivity. For every set S such that $f(x) \neq f\left(x^{S}\right)$, the probability that the algorithm queries a variable in S must be $\geqslant 1 / 3$, otherwise the algorithm could not "see" the difference between x and x^{S} with sufficient probability. Hence on input x the algorithm has to make an expected number of at least $1 / 3$ queries in each of the $b s(f)$ sensitive blocks, so the total expected number of queries on input x must be at least $b s(f) / 3$. Since the worst-case number of queries on input x is at the least the expected number of queries on x, the theorem follows.

Combined with Corollary 1 we see that the gap between $D(f)$ and $R_{2}(f)$ can be at most cubic [31]:

Corollary 3 (Nisan). $D(f) \leqslant 27 R_{2}(f)^{3}$.
There may be some room for improvement here, because the biggest gap known between $D(f)$ and $R_{2}(f)$ is much less than cubic:

Example 4. Let f on $n=2^{k}$ variables be the complete binary AND-OR-tree of depth k. For instance, for $k=2$ we have $f(x)=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$. It is easy to see that $\operatorname{deg}(f)=n$ and hence $D(f)=n$. There is a simple randomized algorithm for $f[42,38]$: randomly choose one of the two subtrees of the root and recursively compute the value of that subtree; if its value is 0 then output 0 , otherwise compute the other subtree and output its value. It can be shown that this algorithm always gives the correct answer with expected number of queries $\mathrm{O}\left(n^{\alpha}\right)$, where $\alpha=\log ((1+\sqrt{33}) / 4) \approx 0.7537 \ldots$. Saks and Wigderson [38] showed that this is asymptotically optimal for zero-error algorithms for this function, and Santha [39] proved the same for bounded-error algorithms. Thus we have $D(f)=n=\Theta\left(R_{2}(f)^{1.3 . \cdots}\right)$.

Open problem 3. What is the biggest gap between $D(f)$ and $R_{2}(f)$?

5.3. Quantum

As in the classical case, $\operatorname{deg}(f)$ and $\widetilde{\operatorname{deg}}(f)$ give lower bounds on quantum query complexity. The next lemma from [3] is also implicit in the combination of some proofs in [15, 16].

Lemma 7. Let A be a quantum decision tree that makes T queries. Then there exist complex-valued n-variate multilinear polynomials α_{i} of degree at most T, such that the final state of A is

$$
\sum_{i \in\{0,1\}^{m}} \alpha_{i}(x)|i\rangle
$$

for every input $x \in\{0,1\}^{n}$.
Proof. Let $\left|\phi_{k}\right\rangle$ be the state of quantum decision tree (on input x) just before the k th query. Note that $\left|\phi_{k+1}\right\rangle=U_{k} O\left|\phi_{k}\right\rangle$. The amplitudes in $\left|\phi_{0}\right\rangle$ depend on the initial state and on U_{0} but not on x, so they are polynomials of x of degree 0 . A query maps basis state $|i, b, z\rangle$ to $\left|i, b \oplus x_{i}, z\right\rangle$, so if the amplitude of $|i, 0, z\rangle$ in $\left|\phi_{0}\right\rangle$ is α and the amplitude of $|i, 1, z\rangle$ is β, then the amplitude of $|i, 0, z\rangle$ after the query becomes $\left(1-x_{i}\right) \alpha+x_{i} \beta$ and the amplitude of $|i, 1, z\rangle$ becomes $x_{i} \alpha+\left(1-x_{i}\right) \beta$, which are polynomials of degree 1. (In general, if the amplitudes before a query are polynomials of degree $\leqslant j$, then the amplitudes after the query will be polynomials of degree $\leqslant j+1$.) Between the first and the second query lies the unitary transformation U_{1}. However, the amplitudes after applying U_{1} are just linear combinations of the amplitudes before applying U_{1}, so the amplitudes in $\left|\phi_{1}\right\rangle$ are polynomials of degree at most 1 . Continuing inductively, the amplitudes of the final state are found to be polynomials of degree at most T. We can make these polynomials multilinear without affecting their values on $x \in\{0,1\}^{n}$, by replacing all x_{i}^{m} by x_{i}.

Theorem 17. $\operatorname{deg}(f) \leqslant 2 Q_{E}(f)$.
Proof. Consider an exact quantum algorithm for f with $Q_{E}(f)$ queries. Let S be the set of basis states corresponding to a 1 -output. Then the acceptance probability is $P(x)=\sum_{k \in S}\left|\alpha_{k}(x)\right|^{2}$. By the previous lemma, the α_{k} are polynomials of degree $\leqslant Q_{E}(f)$, so $P(x)$ is a polynomial of degree $\leqslant 2 Q_{E}(f)$. But P represents f, so it has degree $\operatorname{deg}(f)$ and hence $\operatorname{deg}(f) \leqslant 2 Q_{E}(f)$.

By a similar proof:
Theorem 18. $\widetilde{\operatorname{deg}}(f) \leqslant 2 Q_{2}(f)$.
Both theorems are tight for $f=\operatorname{PARITY}_{n}$: here we have $\operatorname{deg}(f)=\widetilde{\operatorname{deg}}(f)=n$ [28] and $Q_{E}(f)=Q_{2}(f)=\lceil n / 2\rceil[3,13]$. No f is known with $Q_{E}(f)>\operatorname{deg}(f)$ or $Q_{2}(f)>$ $\operatorname{deg}(f)$, so the following question presents itself:

Open problem 4. Are $Q_{E}(f) \in \mathrm{O}(\operatorname{deg}(f))$ and $Q_{2}(f) \in \mathrm{O}(\widetilde{\operatorname{deg}}(f))$?
Note that the degree lower bounds of Theorems 6 and 8 now imply strong lower bounds on the quantum decision tree complexities of almost all f. In particular, Theorem 8 implies that $Q_{2}(f) \geqslant n / 4-\mathrm{O}(\sqrt{n} \log n)$ for almost all f. In contrast, Van Dam [45] has shown that $Q_{2}(f) \leqslant n / 2+\sqrt{n}$ for all f.

Combining Theorems 17 and 18 with Theorems 12 and 13 we obtain the polynomial relations between classical and quantum complexities of [3]:

Corollary 4. $D(f) \in \mathrm{O}\left(Q_{E}(f)^{4}\right)$ and $D(f) \in \mathrm{O}\left(Q_{2}(f)^{6}\right)$.

Some other quantum lower bounds via degree lower bounds may be found in [3, 1, 29, 14, 8].
The biggest gap that is known between $D(f)$ and $Q_{E}(f)$ is only a factor of 2: $D\left(\right.$ PARITY $\left._{n}\right)=n$ and $Q_{E}\left(\right.$ PARITY $\left._{n}\right)=\lceil n / 2\rceil$. The biggest gap we know between $D(f)$ and $Q_{2}(f)$ is quadratic: $D\left(\mathrm{OR}_{n}\right)=n$ and $Q_{2}\left(\mathrm{OR}_{n}\right) \in \Theta(\sqrt{n})$ by Grover's quantum search algorithm [19]. Also, $R_{2}\left(\mathrm{OR}_{n}\right) \in \Theta(n), \operatorname{deg}\left(\mathrm{OR}_{n}\right)=n, \widetilde{\operatorname{deg}}\left(\mathrm{OR}_{n}\right) \in \Theta(\sqrt{n})$.

Open problem 5. What are the biggest gaps between the classical $D(f), R_{2}(f)$ and their quantum analogues $Q_{E}(f), Q_{2}(f)$?

The previous two open problems are connected via the function $f=E_{12}^{k}$ on $n=3^{k}$ variables (Example 3): this has $D(f)=s(f)=n$ but $\operatorname{deg}(f)=n^{1 / \log 3}$. The complexity $Q_{E}(f)$ is unknown; it must lie between $n^{1 / \log 3} / 2$ and n. However, it must either show a gap between $D(f)$ and $Q_{E}(f)$ (partly answering the last question) or between $\operatorname{deg}(f)$ and $Q_{E}(f)$ (answering the penultimate question).

6. Some special classes of functions

Here we look more closely at several special classes of Boolean functions.

6.1. Symmetric functions

Recall that a function is symmetric if $f(x)$ only depends on the Hamming weight $|x|$ of its input, so permuting the input does not change the value of the function. A symmetric f is fully described by giving a vector $\left(f_{0}, f_{1}, \ldots, f_{n}\right) \in\{0,1\}^{n+1}$, where f_{k} is the value of $f(x)$ for $|x|=k$. Because of this and Lemma 2, there is a close relationship between polynomials that represent symmetric functions, and single-variate polynomials that assume values 0 or 1 on $\{0,1, \ldots, n\}$. Using this relationship, von zur Gathen and Roche [17] prove $\operatorname{deg}(f)=(1-\mathrm{o}(1)) n$ for all symmetric f :

Theorem 19 (von zur Gathen and Roche). If f is non-constant and symmetric, then $\operatorname{deg}(f)=n-\mathrm{O}\left(n^{0.548}\right)$. If, furthermore, $n+1$ is prime, then $\operatorname{deg}(f)=n$.

In fact, von zur Gathen and Roche conjecture that $\operatorname{deg}(f)=n-\mathrm{O}(1)$ for all symmetric f. The biggest gap they found is $\operatorname{deg}(f)=n-3$ for some specific f and n. Via Theorems 10 and 17, the above degree lower bounds give strong lower bounds on $D(f)$ and $Q_{E}(f)$.

For the case of approximate degrees of symmetric f, Paturi [34] gave the following tight characterization. Define $\Gamma(f)=\min \left\{|2 k-n+1|: f_{k} \neq f_{k+1}\right\}$. Informally, this quantity measures the length of the interval around Hamming weight $n / 2$ where f_{k} is constant.

Theorem 20 (Paturi). If f is non-constant and symmetric, then $\widetilde{\operatorname{deg}}(f)=$ $\Theta(\sqrt{n(n-\Gamma(f))})$.

Paturi's result implies lower bounds on $R_{2}(f)$ and $Q_{2}(f)$. For $Q_{2}(f)$ these bounds are in fact tight (a matching upper bound was shown in [3]), but for $R_{2}(f)$ a stronger bound can be obtained from Theorem 16 and the following result [44]:

Proposition 2 (Turán). If f is non-constant and symmetric, then $s(f) \geqslant\lceil(n+1) / 2\rceil$.
Proof. Let k be such that $f_{k} \neq f_{k+1}$, and $|x|=k$. Without loss of generality, assume $k \leqslant\lfloor(n-1) / 2\rfloor$ (otherwise give the same argument with 0 s and 1 s reversed). Note that flipping any of the $n-k 0$-variables in x flips the function value. Hence $s(f) \geqslant$ $s_{x}(f) \geqslant n-k \geqslant\lceil(n+1) / 2\rceil$.

This lemma is tight, since $s\left(\mathrm{MAJ}_{n}\right)=\lceil(n+1) / 2\rceil$.
Collecting the previous results, we have tight characterizations of the various decision tree complexities of all symmetric f :

Theorem 21. If f is non-constant and symmetric, then

- $D(f)=(1-\mathrm{o}(1)) n$,
- $R_{2}(f)=\Theta(n)$,
- $Q_{E}(f)=\Theta(n)$,
- $Q_{2}(f)=\Theta(\sqrt{n(n-\Gamma(f))})$.

6.2. Monotone functions

One nice property of monotone functions was shown in [31]:
Proposition 3 (Nisan). If f is monotone, then $C(f)=s(f)=b s(f)$.
Proof. Since $s(f) \leqslant b s(f) \leqslant C(f)$ for all f, we only have to prove $C(f) \leqslant s(f)$. Let $C: S \rightarrow\{0,1\}$ be a minimal certificate for some x with $|S|=C(f)$. Without loss of generality we assume $f(x)=0$. For each $i \in S$ it must hold that $x_{i}=0$ and $f\left(x^{i}\right)=1$, for otherwise i could be dropped from the certificate, contradicting minimality. Thus each variable in S is sensitive in x, hence $C(f) \leqslant s_{x}(f) \leqslant s(f)$.

Theorem 11 now implies:
Corollary 5. If f is monotone, then $D(f) \leqslant s(f)^{2}$.
This corollary is exactly tight, since the function f of Example 2 has $D(f)=n$ and $s(f)=\sqrt{n}$ and is monotone.

Also, the lower bound of Theorem 4 can be improved to
Proposition 4. If f is monotone, then $s(f) \leqslant \operatorname{deg}(f)$.
Proof. Let x be an input on which the sensitivity of f equals $s(f)$. Assume without loss of generality that $f(x)=0$. All sensitive variables must be 0 in x, and setting one or more of them to 1 changes the value of f from 0 to 1 . Hence by fixing all variables in x except for the $s(f)$ sensitive variables, we obtain the OR function on $s(f)$ variables, which has degree $s(f)$. Therefore $\operatorname{deg}(f)$ must be at least $s(f)$.

The above two results strengthen some of the previous bounds for monotone functions:

Corollary 6. If f is monotone, then $D(f) \in \mathrm{O}\left(R_{2}(f)^{2}\right), D(f) \in \mathrm{O}\left(Q_{E}(f)^{2}\right)$, and $D(f)$ $\in \mathrm{O}\left(Q_{2}(f)^{4}\right)$.

For the special case where f is both monotone and symmetric, we have:

Proposition 5. If f is non-constant, symmetric, and monotone, then $\operatorname{deg}(f)=n$.
Proof. Note that f is simply a threshold function: $f(x)=1$ iff $|x| \geqslant t$ for some t. Let $p: \mathbf{R} \rightarrow \mathbf{R}$ be the non-constant single-variate polynomial obtained from symmetrizing f. This has degree $\leqslant \operatorname{deg}(f) \leqslant n$ and $p(i)=0$ for $i \in\{0, \ldots, t-1\}, p(i)=1$ for $i \in\{t, \ldots, n\}$. Then the derivative p^{\prime} must have zeroes in each of the $n-1$ intervals $(0,1),(1,2), \ldots,(t-2, t-1),(t, t+1), \ldots,(n-1, n)$. Hence p^{\prime} has degree at least $n-1$, which implies that p has degree n and $\operatorname{deg}(f)=n$.

6.3. Monotone graph properties

An interesting and well studied subclass of the monotone functions are the monotone graph properties. Consider an undirected graph on n vertices. There are $N=\binom{n}{2}$ possible edges, each of which may be present or absent, so we can pair up the set of all graphs with the set of all N-bit strings. A graph property P is a set of graphs that is closed under permutation of the vertices (so isomorphic graphs have the same properties). The property is monotone if it is closed under the addition of an edge. We are now interested in the question: At how many edges must we look in order to determine if a graph has the property P ? This is just the decision-tree complexity of P if we view P as a total Boolean function on N bits.

A property P is called evasive if $D(P)=N$, so if we have to look at all edges in the worst case. The evasiveness conjecture (also sometimes called Aanderaa-KarpRosenberg conjecture) says that all non-constant monotone graph properties P are evasive. This conjecture is still open; see [27] for an overview. The conjecture has been proved for graphs where the number of vertices is a prime power [25], but the best known general bound is $D(P) \in \Omega(N)[35,25,26]$. This bound also follows from a degree-bound by Dodis and Khanna [11, Theorem 2]:

Theorem 22 (Dodis and Khanna). If P is a non-constant monotone graph property, then $\operatorname{deg}(P) \in \Omega(N)$.

Corollary 7. If P is a non-constant monotone graph property, then $D(P) \in \Omega(N)$ and $Q_{E}(P) \in \Omega(N)$.

Thus, the evasiveness conjecture holds up to a constant factor for both deterministic classical and exact quantum algorithms. $D(P)=N$ may actually hold for all monotone graph properties P, but [8] exhibit a monotone P with $Q_{E}(P)<N$. Only much weaker lower bounds are known for the bounded-error complexity of such properties [26, 20, 8].

Open problem 6. Are $D(P)=N$ and $R_{2}(P) \in \Omega(N)$ for all non-constant monotone graph properties P ?

There is no P known with $R_{2}(P) \in \mathrm{o}(N)$, but the OR-problem can trivially be turned into a monotone graph property P with $Q_{2}(P) \in \mathrm{o}(N)$, in fact $Q_{2}(P) \in \Theta(n)$ [8].

Finally, we mention a result about sensitivity from [46]:
Theorem 23 (Wegener). $s(P) \geqslant n-1$ for all non-constant monotone graph properties P.

This theorem is tight, as witnessed by the property "No vertex is isolated" [44].

Acknowledgements

We thank Noam Nisan for permitting us to include his and Roman Smolensky's proof of Theorem 12, Louis Wingers for finding a bug in an earlier version of Theorem 6, and an anonymous referee for some useful comments that improved the presentation of the paper.

References

[1] A. Ambainis, A note on quantum black-box complexity of almost all Boolean functions, Inform. Process. Lett. 71(1) (1999) 5-7. Also at http://arxiv.org/abs/quant-ph/9811080.
[2] A. Ambainis, R. de Wolf, Average-case quantum query complexity, in: Proc. 17th Annu. Symp. on Theoretical Aspects of Computer Science (STACS'2000), Lecture Notes in Computer Science, Vol. 1770, Springer, Berlin, 2000, pp. 133-144, quant-ph/9904079.
[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, Quantum lower bounds by polynomials, in: Proc. 39th FOCS, 1998, pp. 352-361, quant-ph/9802049.
[4] R. Beigel, The polynomial method in circuit complexity. Proc. 8th IEEE Structure in Complexity Theory Conf., 1993, pp. 82-95.
[5] A. Bernasconi, Sensitivity vs. block sensitivity (an average-case study), Inform. Process. Lett. 59 (3) (1996) 151-157.
[6] M. Blum, R. Impagliazzo, Generic oracles and oracle classes (extended abstract), Proc. 28th FOCS, 1987, pp. 118-126.
[7] R.B. Boppana, The average sensitivity of bounded-depth circuits, Inform. Proc. Lett. 63 (5) (1997) 257-261.
[8] H. Buhrman, R. Cleve, R. de Wolf, Ch. Zalka, Bounds for small-error and zero-error quantum algorithms. Proc. 40th FOCS, 1999, pp. 358-368, cs.CC/9904019.
[9] H. Buhrman, R. de Wolf, Communication complexity lower bounds by polynomials, cs.CC/9910010, 1999.
[10] S. Cook, C. Dwork, R. Reischuk, Upper and lower time bounds for parallel random access machines without simultaneous writes, SIAM J. Comput. 15 (1986) 87-97.
[11] Y. Dodis, S. Khanna, Space-time tradeoffs for graph properties, Proc. 26th ICALP, 1999, pp. 291-300.
[12] H. Ehlich, K. Zeller, Schwankung von Polynomen zwischen Gitterpunkten, Math. Z. 86 (1964) 41-44.
[13] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, A limit on the speed of quantum computation in determining parity, Phys. Rev. Lett. 81 (1998), 5442-5444, quant-ph/9802045.
[14] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, How many functions can be distinguished with k quantum queries? quant-ph/9901012, 7 January 1999.
[15] S. Fenner, L. Fortnow, S. Kurtz, L. Li, An oracle builder's toolkit, Proc. 8th IEEE Structure in Complexity Theory Conf., 1993, pp. 120-131.
[16] L. Fortnow, J. Rogers, Complexity limitations on quantum computation, J. Comput. Systems Sci. 59 (2) (1999) 240-252, Earlier version in Complexity'98, cs.CC/9811023.
[17] J. von zur Gathen, J.R. Roche, Polynomials with two values, Combinatorica 17 (3) (1997) 345-362.
[18] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1989.
[19] L.K. Grover, A fast quantum mechanical algorithm for database search, Proc. 28th STOC, 1996, pp. 212-219, quant-ph/9605043.
[20] P. Hajnal, An $n^{4 / 3}$ lower bound on the randomized complexity of graph properties, Combinatorica 11 (1991) 131-143, Earlier version in Structures'90.
[21] J. Hartmanis, L.A. Hemachandra, One-way functions, robustness and the non-isomorphism of NP-complete sets, Proc. 2nd IEEE Structure in Complexity Theory Conf., 1987, pp. 160-174.
[22] R. Heiman, I. Newman, A. Wigderson, On read-once threshold formulae and their randomized decision tree complexity, Theoret. Comput. Sci. 107 (1) (1993) 63-76, Earlier version in Structures'90.
[23] R. Heiman, A. Wigderson, Randomized vs. deterministic decision tree complexity for read-once Boolean functions, Comput. Complexity 1 (1991) 311-329, Earlier version in Structures'91.
[24] J. Kahn, G. Kalai, N. Linial, The influence of variables on Boolean functions, Proc. 29th FOCS, 1988, pp. 68-80.
[25] J. Kahn, M. Saks, D. Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984) 297-306, Earlier version in FOCS'83.
[26] V. King, Lower bounds on the complexity of graph properties, Proc. 20th STOC, 1988, pp. 468-476.
[27] L. Lovász, N. Young, Lecture notes on evasiveness of graph properties. Tech. Report, Princeton University, 1994. Available at http://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/ english/scripts.html.
[28] M. Minsky, S. Papert, Perceptrons, 2nd expanded ed., MIT Press, Cambridge, MA, 1968, 1988.
[29] A. Nayak, F. Wu, The quantum query complexity of approximating the median and related statistics, Proc. 31st STOC, 1999, pp. 384-393, quant-ph/9804066.
[30] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, MA, 2000.
[31] N. Nisan, CREW PRAMs and decision trees, SIAM J. Comput. 20 (6) (1991) 999-1007, Earlier version in STOC' 89.
[32] N. Nisan, M. Szegedy, On the degree of Boolean functions as real polynomials, Comput. Complexity 4 (4) (1994) 301-313, Earlier version in STOC'92.
[33] N. Nisan, A. Wigderson, On rank vs. communication complexity, Combinatorica 15 (4) (1995) 557-565, Earlier version in FOCS'94.
[34] R. Paturi, On the degree of polynomials that approximate symmetric Boolean functions (preliminary version), Proc. 24th STOC, 1992, pp. 468-474.
[35] R. Rivest, S. Vuillemin, On recognizing graph properties from adjacency matrices, Theoret. Comput. Sci. 3 (1976) 371-384.
[36] T.J. Rivlin, E.W. Cheney, A comparison of uniform approximations on an interval and a finite subset thereof, SIAM J. Numer. Anal. 3 (2) (1966) 311-320.
[37] D. Rubinstein, Sensitivity vs. block sensitivity of Boolean functions, Combinatorica 15 (2) (1995) 297-299.
[38] M. Saks, A. Wigderson, Probabilistic Boolean decision trees and the complexity of evaluating game trees, Proc. 27th FOCS, 1986, pp. 29-38.
[39] M. Santha, On the Monte Carlo decision tree complexity of read-once formulae, Proc. 6th IEEE Structure in Complexity Theory Conf., 1991, pp. 180-187.
[40] Y. Shi, Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables, Inform. Process. Lett. 75 (1-2) (2000) 79-83, quant-ph/9904107.
[41] H.U. Simon, A tight $\Omega(\log \log n)$-bound on the time for parallel RAM's to compute non-degenerate Boolean functions, in: Symp. on Foundations of Computation Theory, Lecture Notes in Computer Science, Vol. 158, Springer, Berlin, 1983, pp. 439-444.
[42] M. Snir, Lower bounds for probabilistic linear decision trees, Theoret. Comput. Sci. 38 (1985) 69-82.
[43] G. Tardos, Query complexity, or why is it difficult to separate $N P^{A} \cap \operatorname{coN} N P^{A}$ from P^{A} by random oracles A ?, Combinatorica 9 (4) (1989) 385-392.
[44] G. Turán, The critical complexity of graph properties, Inform. Process. Lett. 18 (1984) 151-153.
[45] W. van Dam, Quantum oracle interrogation: Getting all information for almost half the price, Proc. 39th FOCS, 1998, pp. 362-367, quant-ph/9805006.
[46] I. Wegener, The critical complexity of all (monotone) Boolean functions and monotone graph properties, Information and Control 67 (1985) 212-222.
[47] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science, Teubner, Stuttgart, 1987.
[48] I. Wegener, L. Zádori, A note on the relations between critical and sensitive complexity, J. Inform. Process. Cybernet. (EIK) 25 (8/9) (1989) 417-421.
[49] R. de Wolf, Characterization of non-deterministic quantum query and quantum communication complexity, Proc. 15th IEEE Conf. on Computational Complexity, 2000, pp. 271-278, cs.CC/0001014.

[^0]: * Corresponding author.

 E-mail addresses: buhrman@cwi.nl (H. Buhrman), rdewolf@cwi.nl (R. de Wolf).
 ${ }^{1}$ Partially supported by the EU fifth framework project QAIP, IST-1999-11234.

[^1]: ${ }^{2}$ The subscript ' 2 ' in $R_{2}(f)$ refers to the 2 -sided error of the algorithm: it may err on 0 -inputs as well as on 1 -inputs. We will not discuss zero-error (Las Vegas) or one-sided error randomized decision trees here. See $[38,31,22,23,20,8]$ for some results concerning such trees.

[^2]: ${ }^{3}$ There has also been some work on average (block) sensitivity [5] and its applications [7, 40, 2]. In particular, Shi [40] has shown that the average sensitivity of a total function f is a lower bound on its approximate degree $\widetilde{\operatorname{deg}}(f)$.

[^3]: ${ }^{4}$ It will follow from Theorem 10 and Corollary 2 that $\operatorname{deg}(f) \leqslant C(f)^{2}$, so this quadratic gap between $\operatorname{deg}(f)$ and $C(f)$ is optimal. Theorem 10 and Corollary 1 will imply $\operatorname{deg}(f) \leqslant b s(f)^{3}$, but the quadratic gap between $\operatorname{deg}(f)$ and $b s(f)$ of this example is the best we know of.

[^4]: ${ }^{5}$ Also non-deterministic polynomials for f have been studied [49], but we will not cover that notion in this survey.

