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Abstract

We discuss several complexity measures for Boolean functions: certi*cate complexity, sen-
sitivity, block sensitivity, and the degree of a representing or approximating polynomial. We
survey the relations and biggest gaps known between these measures, and show how they give
bounds for the decision tree complexity of Boolean functions on deterministic, randomized, and
quantum computers. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computational complexity is the sub*eld of theoretical computer science that aims
to understand “how much” computation is necessary and su8cient to perform certain
computational tasks. For example, given a computational problem it tries to establish
tight upper and lower bounds on the length of the computation (or on other resources,
like space).
Unfortunately, for many, practically relevant, computational problems no tight bounds

are known. An illustrative example is the well known P versus NP problem: for all
NP-complete problems the current upper and lower bounds lie exponentially far apart.
That is, the best known algorithms for these computational problems need exponential
time (in the size of the input) but the best lower bounds are of a linear nature.
One of the general approaches towards solving a hard problem (mathematical or

otherwise) is to set the goals a little bit lower and try to tackle a simpler problem
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*rst. The hope is that understanding of the simpler problem will lead to a better
understanding of the original, more di8cult, problem.
This approach has been taken with respect to computational complexity: simpler and

more limited models of computation have been studied. Perhaps the simplest model
of computation is the decision tree. The goal here is to compute a Boolean function
f : {0; 1}n →{0; 1} using queries to the input. In the most simple form a query asks
for the value of the bit xi and the answer is this value. (The queries may be more
complicated. In this survey we will only deal with this simple type of query.) The
algorithm is adaptive, that is the kth query may depend on the answers of the k − 1
previous queries. The algorithm can therefore be described by a binary tree, whence
its name ‘decision tree’.
For a Boolean function f we de*ne its deterministic decision tree complexity, D(f),

as the minimum number of queries that an optimal deterministic algorithm for f needs
to make on any input. This measure corresponds to the depth of the tree that an optimal
algorithm induces. Once the computational power of decision trees is better understood,
one can extend this notion to more powerful models of query algorithms. This results
in randomized and even quantum decision trees.
In order to get a handle on the computational power of decision trees (whether

deterministic, randomized, or quantum), other measures of the complexity of Boolean
functions have been de*ned and studied. Some prime examples are certi;cate com-
plexity, sensitivity, block sensitivity, the degree of a representing polynomial, and
the degree of an approximating polynomial. We survey the known relations and
biggest gaps between these complexity measures and show how they apply to
decision tree complexity, giving proofs of some of the central results. The main
results say that all of these complexity measures (with the possible exception of
sensitivity) are polynomially related to each other and to the decision tree com-
plexities in each of the classical, randomized, and quantum settings. We also iden-
tify some of the main remaining open questions. The complexity measures discussed
here also have interesting relations with circuit complexity [47, 4, 7], parallel com-
puting [10, 41, 31, 47], communication complexity [33, 9], and the construction of
oracles in computational complexity theory [6, 43, 15, 16], which we will not discuss
here.
The paper is organized as follows. In Section 2 we introduce some notation concern-

ing Boolean functions and multivariate polynomials. In Section 3 we de*ne the three
main variants of decision trees that we discuss: deterministic decision trees, randomized
decision trees, and quantum decision trees. In Section 4 we introduce certi*cate com-
plexity, sensitivity, block sensitivity, and the degree of a representing or approximating
polynomial. We survey the main relations and known upper and lower bounds between
these measures. In Section 5 we show how the complexity measures of Section 4 im-
ply upper and lower bounds on deterministic, randomized, and quantum decision tree
complexity. This section gives bounds that apply to all Boolean functions. Finally, in
Section 6 we examine some special subclasses of Boolean functions and tighten the
general bounds of Section 5 for those special cases.
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2. Boolean functions and polynomials

2.1. Boolean functions

A Boolean function is a function f : {0; 1}n →{0; 1}. Note that f is total, i.e.,
de*ned on all n-bit inputs. For an input x∈{0; 1}n, we use xi to denote its ith bit, so
x= x1 : : : xn. We use |x| to denote the Hamming weight of x (its number of 1’s). If
S is a set of (indices of) variables, then we use xS to denote the input obtained by
Lipping the S-variables in x. We abbreviate x{i} to xi. For example, if x=0011, then
x{2;3} =0101 and x4 = 0010. We call f symmetric if f(x) only depends on |x|. Some
common symmetric functions that we will refer to are:
• ORn(x)= 1 iM |x|¿1,
• ANDn(x)= 1 iM |x|= n,
• PARITYn(x)= 1 iM |x| is odd,
• MAJn(x)= 1 iM |x|¿n=2.
We call f monotone (increasing) if f(x) cannot decrease if we set more variables of
x to 1. A function that we will refer to sometimes is the “address function”. This is a
function on n= k + 2k variables, where the *rst k bits of the input provide an index
in the last 2k bits. The value of the indexed variable is the output of the function.
Wegener [46] gives a monotone version of the address function.

2.2. Multilinear polynomials

If S is a set of (indices of) variables, then the monomial XS is the product of
variables XS =

∏
i∈S xi. The degree of this monomial is the cardinality of S. A mul-

tilinear polynomial on n variables is a function p :Rn →C that can be written as
p(x)=

∑
S⊆[n] cSXS for some complex numbers cS . We call cS the coe>cient of

the monomial XS in p. The degree of p is the degree of its largest monomial:
deg(p)= max{|S|| cS �=0}. Note that if we restrict attention to the Boolean domain
{0; 1}n, then xi = xk

i for all k¿1, so considering only multilinear polynomials is no re-
striction when dealing with Boolean inputs. The next lemma implies that if multilinear
polynomials p and q are equal on all Boolean inputs, then they are identical:

Lemma 1. Let p; q :Rn →R be multilinear polynomials of degree at most d. If p(x)=
q(x) for all x∈{0; 1}n with |x|6d; then p= q.

Proof. De*ne r(x)=p(x)− q(x). Suppose r is not identically zero. Let V be a minimal-
degree term in r with non-zero coe8cient c, and x be the input where xj =1 iM xj
occurs in V . Then |x|6d, and hence p(x)= q(x). However, since all monomials in
r except for V evaluate to 0 on x, we have r(x)= c �=0=p(x) − q(x), which is a
contradiction. It follows that r is identically zero and p= q.

Below we sketch the method of symmetrization, due to Minsky and Papert [28]
(see also [4, Section 4]). Let p :Rn →R be a polynomial. If � is some permutation



24 H. Buhrman, R. de Wolf / Theoretical Computer Science 288 (2002) 21–43

and x= x1 : : : xn, then �(x)= (x�(1); : : : ; x�(n)). Let Sn be the set of all n! permutations.
The symmetrization psym of p averages over all permutations of the input, and is de-
*ned as

psym(x) =

∑
�∈Sn p(�(x))

n!
:

Note that psym is a polynomial of degree at most the degree of p. Symmetrizing may
actually lower the degree: if p= x1 − x2, then psym = 0. The following lemma allows
us to reduce an n-variate polynomial to a single-variate one.

Lemma 2 (Minsky and Papert). If p :Rn →R is a multilinear polynomial; then there
exists a single-variate polynomial q :R→R; of degree at most the degree of p; such
that psym(x)= q(|x|) for all x∈{0; 1}n.

Proof. Let d be the degree of psym, which is at most the degree of p. Let Vj denote
the sum of all

(n
j

)
products of j diMerent variables, so V1 = x1 + · · ·+ xn; V2 = x1x2 +

x1x3 + · · ·+xn−1xn, etc. Since psym is symmetrical, it is easily shown by induction that
it can be written as

psym(x) = c0 + c1V1 + c2V2 + · · ·+ cdVd

with ci ∈R. Note that Vj assumes value
(|x|

j

)
= |x|(|x|−1)(|x|−2) · · · (|x|− j+1)=j! on

x, which is a polynomial of degree j of |x|. Therefore the single-variate polynomial q
de*ned by

q(|x|) = c0 + c1

( |x|
1

)
+ c2

( |x|
2

)
+ · · ·+ cd

( |x|
d

)

satis*es the lemma.

3. Decision tree complexity on various machine models

Below we de*ne decision tree complexity for three diMerent kinds of machine mod-
els: deterministic, randomized, and quantum.

3.1. Deterministic

A deterministic decision tree is a rooted ordered binary tree T . Each internal node of
T is labeled with a variable xi and each leaf is labeled with a value 0 or 1. Given an
input x∈{0; 1}n, the tree is evaluated as follows. Start at the root. If this is a leaf then
stop. Otherwise, query the variable xi that labels the root. If xi =0, then recursively
evaluate the left subtree, if xi =1 then recursively evaluate the right subtree. The output
of the tree is the value (0 or 1) of the leaf that is reached eventually. Note that an
input x deterministically determines the leaf, and thus the output, that the procedure
ends up in.
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We say a decision tree computes f if its output equals f(x), for all x∈{0; 1}n.
Clearly there are many diMerent decision trees that compute the same f. The com-
plexity of such a tree is its depth, i.e., the number of queries made on the worst-case
input. We de*ne D(f), the decision tree complexity of f, as the depth of an optimal
(= minimal-depth) decision tree that computes f.

3.2. Randomized

As in many other models of computation, we can add the power of randomization
to decision trees. There are two ways to view a randomized decision tree. Firstly, we
can add (possibly biased) coin Lips as internal nodes to the tree. That is, the tree may
contain internal nodes labeled by a bias p∈ [0; 1], and when the evaluation procedure
reaches such a node, it will Lip a coin with bias p and will go to the left child on
outcome ‘heads’ and to the right child on ‘tails’. Now an input x no longer determines
with certainty which leaf of the tree will be reached, but instead induces a probability
distribution over the set of all leaves. Thus, the tree outputs 0 or 1 with a certain
probability. The complexity of the tree is the number of queries on the worst-case
input and worst-case outcome of the coin Lips. A second way to de*ne a randomized
decision tree is as a probability distribution � over deterministic decision trees. The tree
is evaluated by choosing a deterministic decisions tree according to �, which is then
evaluated as before. The complexity of the randomized tree in this second de*nition
is the depth of the deepest T that has �(T )¿0. It is not hard to see that these two
de*nitions are equivalent.
We say that a randomized decision tree computes f with bounded-error if its out-

put equals f(x) with probability at least 2=3, for all x∈{0; 1}n. R2(f) denotes the
complexity of the optimal randomized decision tree that computes f with bounded
error. 2

3.3. Quantum

We brieLy sketch the framework of quantum computing, referring to [30] for more
details. The classical unit of computation is a bit, which can take on the values 0 or
1. In the quantum case, the unit of computation is a quantum bit or qubit, which is a
linear combination or superposition of the two classical values:

�0|0〉+ �1|1〉:
More generally, an m-qubit state |�〉 is a superposition of all classical m-bit strings:

|�〉 = ∑
i∈{0;1}m

�i|i〉:

2 The subscript ‘2’ in R2(f) refers to the 2-sided error of the algorithm: it may err on 0-inputs as well as
on 1-inputs. We will not discuss zero-error (Las Vegas) or one-sided error randomized decision trees here.
See [38, 31, 22, 23, 20, 8] for some results concerning such trees.
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Here �i is a complex number, called the amplitude of basis state |i〉. We require∑
i |�i|2 = 1. Mathematically speaking, the set of m-qubit quantum states is the set of

all unit vectors in the Hilbert spaced that has {| i〉 | i∈{0; 1}m} as an orthonormal basis.
There are two things we can do to such a state: measure it or apply a unitary

transformation to it. One of the axioms of quantum mechanics says that if we measure
the m-qubit register |�〉, then we will see the basis state |i〉 with probability |�i|2.
Since

∑
i |�i|2 = 1, we thus have a valid probability distribution over the classical m-

bit strings. After the measurement, |�〉 has “collapsed” to the speci*c observed basis
state |i〉 and all other information in the state will be lost.
Apart from measuring |�〉, we can also apply a unitary transformation to it. That

is, viewing the 2m amplitudes of |�〉 as a vector in C2m , we can obtain some new
state | 〉= ∑

i∈{0;1}m �i|i〉 by multiplying |�〉 with a unitary matrix U : | 〉=U |�〉.
A matrix U is unitary iM its inverse U−1 equals the conjugate transpose matrix U ∗.
Because unitarity is equivalent to preserving Euclidean norm, the new state | 〉 will
still have

∑
i |�i|2 = 1. There is an extensive literature on how such large U can be

obtained from small unitary transformations (“quantum gates”) on few qubits at a time,
see [30].
We formalize a query to an input x∈{0; 1}n as a unitary transformation O that maps

|i; b; z〉 to |i; b⊕ xi; z〉. Here |i; b; z〉 is some m-qubit basis state, where i takes �log n

bits, b is one bit, z denotes the (m − �log n
 − 1)-bit “workspace” of the quantum
computer, which is not aMected by the query, and ⊕ denotes exclusive-or. This clearly
generalizes the classical setting where a query inputs an i into a black-box, which
returns the bit xi: if we apply O to the basis state |i; 0; z〉 we get |i; xi; z〉, from which
the ith bit of the input can be read. Because O has to be unitary, we specify that it maps
|i; 1; z〉 to |i; 1−xi; z〉. Note that a quantum computer can make queries in superposition:
applying O once to the state (1=

√
n)

∑n
i=1 |i; 0; z〉 gives (1=

√
n)

∑n
i=1 |i; xi; z〉, which in

some sense contains all bits of the input.
A quantum decision tree has the following form: we start with an m-qubit state |̃0〉

where every bit is 0. Then we apply a unitary transformation U0 to the state, then we
apply a query O, then another unitary transformation U1, etc. A T -query quantum de-
cision tree thus corresponds to a big unitary transformation A=UTOUT−1 · · ·OU1OU0.
Here the Ui are *xed unitary transformations, independent of the input x. The *nal state
A|̃0〉 depends on the input x only via the T applications of O. The output is obtained
by measuring the *nal state and outputting the rightmost bit of the observed basis
state (without loss of generality, we can assume there are no intermediate measure-
ments).
We say that a quantum decision tree computes f exactly if the output equals f(x)

with probability 1, for all x∈{0; 1}n. The tree computes f with bounded-error if the
output equals f(x) with probability at least 2=3, for all x∈{0; 1}n. QE(f) denotes the
number of queries of an optimal quantum decision tree that computes f exactly, Q2(f)
is the number of queries of an optimal quantum decision tree that computes f with
bounded-error. Note that we just count the number of queries, not the complexity of
the Ui.
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Unlike the classical deterministic or randomized decision trees, the quantum algo-
rithms are not really trees anymore (the names ‘quantum query algorithm’ or ‘quantum
black-box algorithm’ are also in use). Nevertheless, we prefer the term ‘quantum deci-
sion tree’, because such quantum algorithms generalize classical trees in the sense that
they can simulate them, as sketched below. Consider a T -query deterministic decision
tree. It *rst determines which variable it will query initially; then it determines the
next query depending upon its history, and so on for T queries. Eventually, it out-
puts an output-bit depending on its total history. The basis states of the corresponding
quantum algorithm have the form |i; b; h; a〉, where i; b is the query-part, h ranges over
all possible histories of the classical computation (this history includes all previous
queries and their answers), and a is the rightmost qubit, which will eventually contain
the output. Let U0 map the initial state |̃0; 0; 0̃; 0〉 to |i; 0; 0̃; 0〉, where xi is the *rst
variable that the classical tree would query. Now, the quantum algorithm applies O,
which turns the state into |i; xi; 0̃; 0〉. Then the algorithm applies a transformation U1

that maps |i; xi; 0̃; 0〉 to |j; 0; h; 0〉, where h is the new history (which includes i and
xi) and xj is the variable that the classical tree would query given the outcome of
the previous query. Then the quantum tree applies O for the second time, it applies
a transformation U2 that updates the workspace and determines the next query, etc.
Finally, after T queries the quantum tree sets the answer bit to 0 or 1 depending on its
total history. All operations Ui performed here are injective mappings from basis states
to basis states, hence they can be extended to permutations of basis states, which are
unitary transformations. Thus a T -query deterministic decision tree can be simulated by
an exact T -query quantum algorithm. Similarly a T -query randomized decision tree can
be simulated by a T -query quantum decision tree with the same error probability (ba-
sically because a superposition can “simulate” a probability distribution). Accordingly,
we have Q2(f)6R2(f)6D(f)6n and Q2(f)6QE(f)6D(f)6n for all f.

4. Some complexity measures

Let f : {0; 1}n →{0; 1} be a Boolean function. We can associate several measures
of complexity with such functions, whose de*nitions and relations are surveyed below.

4.1. Certi;cate complexity

Certi*cate complexity measures how many of the n variables have to be given a
value in order to *x the value of f.

De#nition 1. Let C be an assignment C : S →{0; 1} of values to some subset S of the
n variables. We say that C is consistent with x∈{0; 1}n if xi =C(i) for all i∈ S.
For b∈{0; 1}, a b-certi;cate for f is an assignment C such that f(x)= b whenever

x is consistent with C. The size of C is |S|, the cardinality of S.
The certi;cate complexity Cx(f) of f on x is the size of a smallest f(x)-certi*cate

that is consistent with x. The certi;cate complexity of f is C(f)= maxx Cx(f). The
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1-certi;cate complexity of f is C(1)(f)= max{x|f(x)=1} Cx(f), and similarly we de*ne
C(0)(f).

For example, C(1)(ORn)= 1 since it su8ces to set one variable xi =1 to force the
OR-function to 1. On the other hand, C(ORn)=C(0)(ORn)= n.

4.2. Sensitivity and block sensitivity

Sensitivity and block sensitivity measure how sensitive the value of f is to changes
in the input. Sensitivity was introduced in [10] (under the name of critical complexity)
and block sensitivity in [31]. 3

De#nition 2. The sensitivity sx(f) of f on x is the number of variables xi for which
f(x) �=f(xi). The sensitivity of f is s(f)= maxx sx(f).
The block sensitivity bsx(f) of f on x is the maximum number b such that there

are disjoint sets B1; : : : ; Bb for which f(x) �=f(xBi). The block sensitivity of f is
bs(f)= maxx bsx(f). (If f is constant, we de*ne s(f)= bs(f)= 0.)

Note that sensitivity is just block sensitivity with the size of the blocks Bi restricted
to 1. Simon [41] gave a general lower bound on s(f):

Theorem 1 (Simon). If f depends on all n variables; then we have s(f)¿ 1
2 log n −

1
2 log log n+ 1

2 .

Wegener [46] proved that this theorem is tight up to the O(log log n)-term for the
monotone address function.
We now prove some relations between C(f); s(f), and bs(f). Clearly, for all x we

have sx(f)6bsx(f) and bsx(f)6Cx(f) (since a certi*cate for x will have to contain
at least one variable of each sensitive block). Hence:

Proposition 1. s(f)6bs(f)6C(f).

The biggest gap known between s(f) and bs(f) is quadratic and was exhibited by
Rubinstein [37]:

Example 1. Let n=4k 2. Divide the n variables in
√
n disjoint blocks of

√
n variables:

the *rst block B1 contains x1; : : : ; x√n, the second block B2 contains x√n+1; : : : ; x2√n, etc.
De*ne f such that f(x)= 1 iM there is at least one block Bi where two consecutive
variables have value 1 and the other

√
n − 2 variables are 0. It is easy to see that

s(f)=
√
n and bs(f)= n=2, so we have a quadratic gap between s(f) and bs(f).

3 There has also been some work on average (block) sensitivity [5] and its applications [7, 40, 2]. In
particular, Shi [40] has shown that the average sensitivity of a total function f is a lower bound on its
approximate degree d̃eg(f).
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Since bs(f)6C(f), this is also a quadratic gap between s(f) and C(f) (Wegener
and ZVadori give a diMerent function with a smaller gap between s(f) and C(f) [48]).

It has been open for quite a while whether bs(f) can be upper bounded by a
polynomial in s(f). It may well be true that bs(f)∈O(s(f)2).

Open problem 1. Is bs(f)∈O(s(f)k) for some k?

We proceed to give Nisan’s proof [31] that C(f) is bounded by bs(f)2.

Lemma 3. If B is a minimal sensitive block for x; then |B|6s(f).

Proof. If we Lip one of the B-variables in xB, then the function value must Lip from
f(xB) to f(x) (otherwise B would not be minimal), so every B-variable is sensitive
for f on input xB. Hence |B|6sxB(f)6s(f).

Theorem 2 (Nisan). C(f)6s(f)bs(f).

Proof. Consider an input x∈{0; 1}n and let B1; : : : ; Bb be disjoint minimal sets of
variables that achieve the block sensitivity b= bsx(f)6bs(f). We will show that the
function C :

⋃
i Bi →{0; 1} that sets variables according to x is a su8ciently small

certi*cate for f(x).
If C is not an f(x)-certi*cate, then let x′ be an input that is consistent with C, such

that f(x′) �=f(x). De*ne Bb+1 by x′ = xBb+1 . Now f is sensitive to Bb+1 on x and
Bb+1 is disjoint from B1; : : : ; Bb, which contradicts b= bsx(f). Hence C is an f(x)-
certi*cate. By the previous lemma we have |Bi|6s(f) for all i, hence the size of this
certi*cate is |⋃i Bi|6s(f)bs(f).

No quadratic gap between bs(f) and C(f) seems to be known. Some sub-quadratic
gaps may be found in [48, Section 3].

4.3. Degree of representing polynomial

De#nition 3. A polynomial p :Rn →R represents f if p(x)=f(x) for all x∈{0; 1}n.

Note that since x2 = x for x∈{0; 1}, we can restrict attention to multilinear poly-
nomials for representing f. It is easy to see that each f can be represented by a
multilinear polynomial p. Lemma 1 implies that this polynomial is unique, which al-
lows us to de*ne:

De#nition 4. The degree deg(f) of f is the degree of the multilinear polynomial that
represents f.

For example, deg(ANDn)= n, because the representing polynomial is the monomial
x1 : : : xn. The degree deg(f) may be signi*cantly larger than s(f), bs(f), and C(f):
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Example 2. Let f on n= k2 variables be the AND of k ORs of k variables each.
Both ANDk and ORk are represented by degree-k polynomials, so the representing
polynomial of f has degree deg(f)= k2 = n. On the other hand, it is not hard to see
that s(f)= bs(f)=C(f)=

√
n. Thus deg(f) is quadratically larger than s(f), bs(f),

and C(f) in this case. 4

On the other hand, deg(f) may also be signi*cantly smaller than s(f) and bs(f),
as the next example from Nisan and Szegedy [32] shows.

Example 3. Consider the function E12 de*ned by E12(x1; x2; x3)= 1 iM |x| ∈ {1; 2}. This
function is represented by the following degree-2 polynomial:

E12(x1; x2; x3) = x1 + x2 + x3 − x1x2 − x1x3 − x2x3:

De*ne Ek
12 as the function on n=3k variables obtained by building a complete recursive

ternary tree of depth k, where the 3k leaves are the variables and each node is the E12-
function of its three children. For k¿1, the representing polynomial for Ek

12 is obtained
by substituting independent copies of the Ek−1

12 -polynomial in the above polynomial
for E12. This shows that deg(f)= 2k = n1= log 3. On the other hand, it is easy to see
that Lipping any variable in the input 0̃ Lips the function value from 0 to 1, hence
s(f)= bs(f)=C(f)= n= deg(f)log 3 (Kushilevitz has found a slightly bigger gap,
based on the same technique with a slightly more complex polynomial, see [33, footnote
1 on p. 560]).

Below we give Nisan and Szegedy’s proof that deg(f) can be no more than quadrat-
ically smaller than bs(f) [32]. This shows that the gap of the last example is close to
optimal. The proof uses the following theorem from [12, 36]:

Theorem 3 (Ehlich and Zeller; Rivlin and Cheney). Let p :R→R be a polynomial
such that b16p(i)6b2 for every integer 06i6n; and its derivative has |p′(x)|¿c
for some real 06x6n. Then deg(p)¿

√
cn=(c + b2 − b1).

Theorem 4 (Nisan and Szegedy). bs(f)62 deg(f)2.

Proof. Let polynomial p of degree d represent f. Let b= bs(f), and a and B1; : : : ; Bb

be the input and sets that achieve the block sensitivity. We assume without loss of
generality that f(a)= 0. We transform p(x1; : : : ; xN ) into a polynomial q(y1; : : : ; yb)
by replacing every xj in p as follows:
(1) xj =yi if aj =0 and j∈Bi,
(2) xj =1− yi if aj =1 and j∈Bi,
(3) xj = aj if j =∈Bi for every i.

4 It will follow from Theorem 10 and Corollary 2 that deg(f)6C(f)2, so this quadratic gap between
deg(f) and C(f) is optimal. Theorem 10 and Corollary 1 will imply deg(f)6bs(f)3, but the quadratic
gap between deg(f) and bs(f) of this example is the best we know of.
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Now it is easy to see that q has the following properties:
(1) q is a multilinear polynomial of degree6d,
(2) q(y)∈{0; 1} for all y∈{0; 1}b,
(3) q(̃0)=p(x)=f(x)= 0,
(4) q(ei)=p(xBi)=f(xBi)= 1 for all unit vectors ei ∈{0; 1}b.
Let r be the single-variate polynomial of degree6d obtained from symmetrizing q over
{0; 1}b. Note that 06r(i)61 for every integer 06i6b, and for some x∈ [0; 1] we have
r′(x)¿1 because r(0)= 0 and r(1)= 1. Applying Theorem 3 we get d¿

√
b=2.

The following two theorems give, respectively, a weak bound for all functions, and
a strong bound for almost all functions. We state the *rst without proof (see [32]).

Theorem 5 (Nisan and Szegedy). If f depends on all n variables; then we have
deg(f)¿ log n− O(log log n).

The address function on n= k + 2k variables has deg(f)= k + 1, which shows that
the previous theorem is tight up to the O(log log n)-term.
For the second result, de*ne X even

1 = {x ||x| is even and f(x)= 1}, similarly for X odd
1 .

Let X1 =X even
1 ∪X odd

1 . Let p=
∑

S cSXS be the unique polynomial representing f, with
cS the coe8cient of the monomial XS =

∏
i∈S xi. The Moebius inversion formula (see

[4]) says

cS =
∑
T⊆S

(−1)|S|−|T |f(T );

where f(T ) is the value of f on the input where exactly the variables in T are 1. We
learned about the next lemma via personal communication with Yaoyun Shi.

Lemma 4 (Shi and Yao). deg(f)= n iA |X even
1 | �= |X odd

1 |.

Proof. Applying the Moebius formula with S = {1; : : : ; n}, we get

cS =
∑
T⊆S

(−1)|S|−|T |f(T ) = (−1)n
∑
x∈X1

(−1)|x| = (−1)n(|X even
1 | − |X odd

1 |):

Since deg(f)= n iM the monomial x1 : : : xn has non-zero coe8cient, the lemma follows.

As a consequence, we can exactly count the number of functions that have less than
full degree:

Theorem 6. There are
( 2n

2n−1

)
functions f : {0; 1}n →{0; 1} with deg(f)¡n.



32 H. Buhrman, R. de Wolf / Theoretical Computer Science 288 (2002) 21–43

Proof. We will count the number E of f for which |X even
1 |= |X odd

1 |; by Lemma 4
these are exactly the f satisfying deg(f)¡n. Suppose we want to assign f-value 1
to exactly i of the 2n−1 inputs for which |x| is even. There are

(2n−1

i

)
ways to do this.

If we want |X even
1 |= |X odd

1 |, then there are only
(2n−1

i

)
ways to choose the f-values of

the odd x. Hence

E =
2n−1∑
i=0

(
2n−1

i

)(
2n−1

i

)
=

(
2n

2n−1

)
:

The second equality is Vandermonde’s convolution [18, p. 174].

Note that
( 2n

2n−1

)∈Y(22
n
=
√
2n) by Stirling’s formula. Since there are 22

n
Boolean

functions on n variables, we see that the fraction of functions with degree ¡n is o(1).
Thus almost all functions have full degree.

4.4. Degree of approximating polynomial

Apart from representing a function f exactly by means of a polynomial, we may
also only approximate it with a polynomial, which can sometimes be of a smaller
degree. 5

De#nition 5. A polynomial p :Rn →R approximates f if |p(x) − f(x)|61=3 for all
x∈{0; 1}n. The approximate degree d̃eg(f) of f is the minimum degree among all
multilinear polynomials that approximate f.

As a simple example: 2
3x1 +

2
3x2 approximates OR2, so d̃eg(OR2)= 1. In contrast,

deg(OR2)= 2. Note that there may be many diMerent minimal-degree polynomials that
approximate f, whereas there is only one polynomial that represents f.

By the same technique as Theorem 4, Nisan and Szegedy [32] showed

Theorem 7 (Nisan and Szegedy). bs(f)66 d̃eg(f)2.

The approximate degree of f can sometimes be signi*cantly smaller than the degree
of f. Nisan and Szegedy [32] constructed a degree-O(

√
n) polynomial that approxi-

mates ORn. Since bs(ORn)= n, the previous theorem implies that this degree is optimal.
Since deg(ORn)= n we have a quadratic gap between deg(f) and d̃eg(f). This is the
biggest gap known.
Ambainis [1] showed that almost all functions have high approximate degree:

Theorem 8 (Ambainis). Almost all f have d̃eg(f)¿n=2− O(
√
n log n).

5 Also non-deterministic polynomials for f have been studied [49], but we will not cover that notion in
this survey.
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5. Application to decision tree complexity

The complexity measures discussed above are intimately related to the decision tree
complexity of f in various models. In fact, D(f), R2(f), QE(f), Q2(f), bs(f), C(f),

deg(f), and d̃eg(f) are all polynomially related.

5.1. Deterministic

We start with two simple lower bounds on D(f).

Theorem 9. bs(f)6D(f).

Proof. On input x with disjoint sensitive blocks B1; : : : ; Bbs(f), a deterministic decision
tree must query at least one variable in each block Bi, for otherwise we could Lip that
block (and hence the correct output) without the tree noticing it. Thus the tree must
make at least bs(f) queries on input x.

Theorem 10. deg(f)6D(f).

Proof. Consider a decision tree for f of depth D(f). Let L be a 1-leaf (i.e., a leaf
with output 1) and x1; : : : ; xr be the queries on the path to L, with values b1; : : : ; br .
De*ne the polynomial pL(x)=

∏
i:bi=1 xi

∏
i:bi=0 (1−xi). Then pL has degree r6D(f).

Furthermore, pL(x)= 1 if leaf L is reached on input x, and pL(x)= 0 otherwise. Let
p=

∑
L pL be the sum of all pL over all 1-leaves. Then p has degree6D(f), and

p(x)= 1 iM a 1-leaf is reached on input x, so p represents f.

Below we give some upper bounds on D(f) in terms of bs(f), C(f), deg(f), and
d̃eg(f). Beals et al. [3] prove

Theorem 11. D(f)6C(1)(f)bs(f).

Proof. The following describes an algorithm to compute f(x), querying at most
C(1)(f)bs(f) variables of x (in the algorithm, by a “consistent” certi*cate C or input
y at some point we mean a C or y that agrees with the values of all variables queried
up to that point).
(1) Repeat the following at most bs(f) times: Pick a consistent 1-certi*cate C and

query those of its variables whose x-values are still unknown (if there is no such
C, then return 0 and stop); if the queried values agree with C then return 1 and
stop.

(2) Pick a consistent y∈{0; 1}n and return f(y).
The non-deterministic “pick a C” and “pick a y” can easily be made deterministic by
choosing the *rst C (resp. y) in some *xed order. Call this algorithm A. Since A runs
for at most bs(f) stages and each stage queries at most C(1)(f) variables, A queries
at most C(1)(f)bs(f) variables.
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It remains to show that A always returns the right answer. If it returns an answer
in step (1), this is either because there are no consistent 1-certi*cates left (and hence
f(x) must be 0) or because x is found to agree with a particular 1-certi*cate C. In
both cases A gives the right answer.
Now consider the case where A returns an answer in step (2). We will show that

all consistent y must have the same f-value. Suppose not. Then there are consistent
y; y′ with f(y)= 0 and f(y′)= 1. A has queried b= bs(f) 1-certi*cates C1; C2; : : : ; Cb.
Furthermore, y′ contains a consistent 1-certi*cate Cb+1. We will derive from these Ci

disjoint sets Bi such that f is sensitive to each Bi on y. For every 16i6b+1, de*ne Bi

as the set of variables on which y and Ci disagree. Clearly, each Bi is non-empty, for
otherwise the procedure would have returned 1 in step (1). Note that yBi agrees with
Ci, so f(yBi)= 1, which shows that f is sensitive to each Bi on y. Suppose variable
k occurs in some Bi (16i6b), then xk =yk �=Ci(k). If j¿i, then Cj has been chosen
consistent with all variables queried up to that point (including xk), so we cannot have
xk =yk �=Cj(k). This shows that k =∈Bj, hence all Bi and Bj are disjoint. But then f
is sensitive to bs(f) + 1 disjoint sets on y, which is a contradiction. Accordingly, all
consistent y in step (2) must have the same f-value, and A returns the right value
f(y)=f(x) in step (2), because x is one of those consistent y.

Combining with C(1)6C(f)6s(f)bs(f) (Theorem 2) we obtain:

Corollary 1. D(f)6s(f)bs(f)26bs(f)3.

It might be possible to improve this to D(f)6bs(f)2. This would be optimal, since
the function f of Example 2 has bs(f)=

√
n and D(f)= n.

Open problem 2. Is D(f)∈O(bs(f)2)?

Of course, Theorem 11 also holds with C(0) instead of C(1). Since bs(f)6
max{C(0)(f); C(1)(f)}, we also obtain the following result, due to [6, 21, 43].

Corollary 2. D(f)6C(0)(f)C(1)(f).

Now, we will show that D(f) is upper bounded by deg(f)4 and d̃eg(f)6. The *rst
result is due to Nisan and Smolensky, below we give their (previously unpublished)
proof. It improves the earlier result D(f)∈O(deg(f)8) of Nisan and Szegedy [32].
Here a maxonomial of f is a monomial with maximal degree in f’s representing
polynomial p.

Lemma 5 (Nisan and Smolensky). For every maxonomial M of f; there is a set B
of variables in M such that f(̃0B) �=f(̃0).

Proof. Obtain a restricted function g from f by setting all variables outside of M
to 0. This g cannot be constant 0 or 1, because its unique polynomial representation
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(as obtained from p) contains M . Thus there is some subset B of the variables in M
that makes g(̃0B) �= g(̃0) and hence f(̃0B) �=f(̃0).

Lemma 6 (Nisan and Smolensky). There exists a set of deg(f)bs(f) variables that
intersects each maxonomial of f.

Proof. Greedily take all variables in maxonomials of f, as long as there is a max-
onomial that is still disjoint from those taken so far. Since each such maxonomial
will contain a sensitive block for 0̃, and there can be at most bs(f) disjoint sen-
sitive blocks, this procedure can go on for at most bs(f) maxonomials. Since each
maxonomial contains deg(f) variables, the lemma follows.

Theorem 12 (Nisan and Smolensky). D(f)6deg(f)2bs(f)62 deg(f)4.

Proof. By the previous lemma, there is a set of deg(f)bs(f) variables that intersects
each maxonomial of f. Query all these variables. This induces a restriction g of f on
the remaining variables, such that deg(g)¡deg(f) (because the degree of each max-
onomial in the representation of f drops at least one) and bs(g)6bs(f). Repeating this
inductively for at most deg(f) times, we reach a constant function and learn the value
of f. This algorithm uses at most deg(f)2bs(f) queries, hence D(f)6deg(f)2bs(f).
Theorem 4 gives the second inequality of the theorem.

Combining Corollary 1 and Theorem 7 we obtain the following result from [3]
(improving the earlier D(f)∈O(d̃eg(f)8) result of Nisan and Szegedy [32]):

Theorem 13. D(f)∈O(d̃eg(f)6).

Finally, since deg(f) may be polynomially larger or smaller than bs(f), the fol-
lowing theorem may be weaker or stronger than Theorem 11. The proof uses an idea
similar to the above Nisan–Smolensky proof.

Theorem 14. D(f)6C(1)(f) deg(f).

Proof. Let p be the representing polynomial for f. Choose some certi*cate C : S →
{0; 1} of size6C(1)(f). If we *ll in the S-variables according to C, then p must
reduce to a constant function (constant 0 if C is a 0-certi*cate, constant 1 if C is a
1-certi*cate). Hence the certi*cate has to intersect each maxonomial of p. Accordingly,
querying all variables in S reduces the polynomial degree of the function by at least
1. Repeating this deg(f) times, we end up with a constant function and hence know
f(x). In all, this algorithm takes at most C(1)(f) deg(f) queries.

5.2. Randomized

Here we show that D(f), R2(f), bs(f), and d̃eg(f) are all polynomially related.
We *rst give the bounded-error analogues of Theorems 10 and 9:
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Theorem 15. d̃eg(f)6R2(f).

Proof. Consider a randomized decision tree for f of depth R2(f), viewed as a prob-
ability distribution � over diMerent deterministic decision trees T , each of depth at
most R2(f). Using the technique of Theorem 10, we can write each of those T as a
0=1-valued polynomial pT of degree at most R2(f). De*ne p=

∑
T �(T )pT , which

has degree at most R2(f). Then it is easy to see that p gives the acceptance probability
of R, so p approximates f.

Nisan [31] proved.

Theorem 16 (Nisan). bs(f)63R2(f).

Proof. Consider an algorithm with R2(f) queries, and an input x that achieves the
block sensitivity. For every set S such that f(x) �=f(xS), the probability that the algo-
rithm queries a variable in S must be ¿1=3, otherwise the algorithm could not “see”
the diMerence between x and xS with su8cient probability. Hence on input x the al-
gorithm has to make an expected number of at least 1=3 queries in each of the bs(f)
sensitive blocks, so the total expected number of queries on input x must be at least
bs(f)=3. Since the worst-case number of queries on input x is at the least the expected
number of queries on x, the theorem follows.

Combined with Corollary 1 we see that the gap between D(f) and R2(f) can be at
most cubic [31]:

Corollary 3 (Nisan). D(f)627R2(f)3.

There may be some room for improvement here, because the biggest gap known
between D(f) and R2(f) is much less than cubic:

Example 4. Let f on n=2k variables be the complete binary AND–OR-tree of depth
k. For instance, for k =2 we have f(x)= (x1 ∨ x2)∧ (x3 ∨ x4). It is easy to see that
deg(f)= n and hence D(f)= n. There is a simple randomized algorithm for f [42, 38]:
randomly choose one of the two subtrees of the root and recursively compute the value
of that subtree; if its value is 0 then output 0, otherwise compute the other subtree and
output its value. It can be shown that this algorithm always gives the correct answer
with expected number of queries O(n�), where �= log((1+

√
33)=4) ≈ 0:7537 : : : . Saks

and Wigderson [38] showed that this is asymptotically optimal for zero-error algorithms
for this function, and Santha [39] proved the same for bounded-error algorithms. Thus
we have D(f)= n=1(R2(f)1:3:::).

Open problem 3. What is the biggest gap between D(f) and R2(f)?
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5.3. Quantum

As in the classical case, deg(f) and d̃eg(f) give lower bounds on quantum query
complexity. The next lemma from [3] is also implicit in the combination of some
proofs in [15, 16].

Lemma 7. Let A be a quantum decision tree that makes T queries. Then there exist
complex-valued n-variate multilinear polynomials �i of degree at most T; such that
the ;nal state of A is∑

i∈{0;1}m

�i(x)|i〉

for every input x∈{0; 1}n.

Proof. Let |�k〉 be the state of quantum decision tree (on input x) just before the kth
query. Note that |�k+1〉=UkO|�k〉. The amplitudes in |�0〉 depend on the initial state
and on U0 but not on x, so they are polynomials of x of degree 0. A query maps basis
state |i; b; z〉 to |i; b⊕ xi; z〉, so if the amplitude of |i; 0; z〉 in |�0〉 is � and the amplitude
of |i; 1; z〉 is �, then the amplitude of |i; 0; z〉 after the query becomes (1− xi)� + xi�
and the amplitude of |i; 1; z〉 becomes xi�+(1− xi)�, which are polynomials of degree
1. (In general, if the amplitudes before a query are polynomials of degree6j, then
the amplitudes after the query will be polynomials of degree6j + 1.) Between the
*rst and the second query lies the unitary transformation U1. However, the amplitudes
after applying U1 are just linear combinations of the amplitudes before applying U1,
so the amplitudes in |�1〉 are polynomials of degree at most 1. Continuing inductively,
the amplitudes of the *nal state are found to be polynomials of degree at most T . We
can make these polynomials multilinear without aMecting their values on x∈{0; 1}n,
by replacing all xmi by xi.

Theorem 17. deg(f)6 2QE(f).

Proof. Consider an exact quantum algorithm for f with QE(f) queries. Let S
be the set of basis states corresponding to a 1-output. Then the acceptance probability
is P(x)=

∑
k∈S |�k(x)|2. By the previous lemma, the �k are polynomials of degree

6QE(f), so P(x) is a polynomial of degree62QE(f). But P represents f, so it has
degree deg(f) and hence deg(f)6 2QE(f).

By a similar proof:

Theorem 18. d̃eg(f)6 2Q2(f).

Both theorems are tight for f=PARITYn: here we have deg(f)= d̃eg(f)= n [28]
and QE(f)=Q2(f)= �n=2
 [3, 13]. No f is known with QE(f)¿deg(f) or Q2(f)¿
d̃eg(f), so the following question presents itself:
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Open problem 4. Are QE(f)∈O(deg(f)) and Q2(f)∈O(d̃eg(f))?

Note that the degree lower bounds of Theorems 6 and 8 now imply strong lower
bounds on the quantum decision tree complexities of almost all f. In particular,
Theorem 8 implies that Q2(f) ¿ n=4 − O(

√
n log n) for almost all f. In contrast,

Van Dam [45] has shown that Q2(f)6 n=2 +
√
n for all f.

Combining Theorems 17 and 18 with Theorems 12 and 13 we obtain the polynomial
relations between classical and quantum complexities of [3]:

Corollary 4. D(f)∈O(QE(f)4) and D(f)∈O(Q2(f)6).

Some other quantum lower bounds via degree lower bounds may be found in
[3, 1, 29, 14, 8].
The biggest gap that is known between D(f) and QE(f) is only a factor of 2:

D(PARITYn)= n and QE(PARITYn)= �n=2
. The biggest gap we know between D(f)
and Q2(f) is quadratic: D(ORn)= n and Q2(ORn)∈1(

√
n) by Grover’s quantum

search algorithm [19]. Also, R2(ORn)∈Y(n), deg(ORn)= n, d̃eg(ORn)∈Y(
√
n).

Open problem 5. What are the biggest gaps between the classical D(f); R2(f) and
their quantum analogues QE(f); Q2(f)?

The previous two open problems are connected via the function f=Ek
12 on n=3k

variables (Example 3): this has D(f)= s(f)= n but deg(f)= n1= log 3. The complexity
QE(f) is unknown; it must lie between n1= log 3=2 and n. However, it must either show a
gap between D(f) and QE(f) (partly answering the last question) or between deg(f)
and QE(f) (answering the penultimate question).

6. Some special classes of functions

Here we look more closely at several special classes of Boolean functions.

6.1. Symmetric functions

Recall that a function is symmetric if f(x) only depends on the Hamming weight
|x| of its input, so permuting the input does not change the value of the function. A
symmetric f is fully described by giving a vector (f0; f1; : : : ; fn)∈{0; 1}n+1, where
fk is the value of f(x) for |x|= k. Because of this and Lemma 2, there is a close
relationship between polynomials that represent symmetric functions, and single-variate
polynomials that assume values 0 or 1 on {0; 1; : : : ; n}. Using this relationship, von zur
Gathen and Roche [17] prove deg(f)= (1− o(1))n for all symmetric f:

Theorem 19 (von zur Gathen and Roche). If f is non-constant and symmetric; then
deg(f)= n− O(n0:548). If; furthermore; n+ 1 is prime; then deg(f)= n.
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In fact, von zur Gathen and Roche conjecture that deg(f)= n − O(1) for all sym-
metric f. The biggest gap they found is deg(f)= n − 3 for some speci*c f and n.
Via Theorems 10 and 17, the above degree lower bounds give strong lower bounds on
D(f) and QE(f).
For the case of approximate degrees of symmetric f, Paturi [34] gave the following

tight characterization. De*ne 3(f)= min{|2k − n + 1| :fk �=fk+1}. Informally, this
quantity measures the length of the interval around Hamming weight n=2 where fk is
constant.

Theorem 20 (Paturi). If f is non-constant and symmetric; then d̃eg(f)=
Y(

√
n(n− 3(f))).

Paturi’s result implies lower bounds on R2(f) and Q2(f). For Q2(f) these bounds
are in fact tight (a matching upper bound was shown in [3]), but for R2(f) a stronger
bound can be obtained from Theorem 16 and the following result [44]:

Proposition 2 (TurVan). If f is non-constant and symmetric; then s(f)¿ �(n+1)=2
.

Proof. Let k be such that fk �=fk+1, and |x|= k. Without loss of generality, assume
k 6 �(n − 1)=2� (otherwise give the same argument with 0s and 1s reversed). Note
that Lipping any of the n− k 0-variables in x Lips the function value. Hence s(f)¿
sx(f)¿ n− k ¿ �(n+ 1)=2
.

This lemma is tight, since s(MAJn)= �(n+ 1)=2
.
Collecting the previous results, we have tight characterizations of the various decision

tree complexities of all symmetric f:

Theorem 21. If f is non-constant and symmetric; then
• D(f)= (1− o(1))n;
• R2(f)=Y(n);
• QE(f)=Y(n);
• Q2(f)=Y(

√
n(n− 3(f))).

6.2. Monotone functions

One nice property of monotone functions was shown in [31]:

Proposition 3 (Nisan). If f is monotone; then C(f)= s(f)= bs(f).

Proof. Since s(f)6 bs(f)6 C(f) for all f, we only have to prove C(f)6 s(f).
Let C : S →{0; 1} be a minimal certi*cate for some x with |S|=C(f). Without loss
of generality we assume f(x)= 0. For each i∈ S it must hold that xi =0 and f(xi)= 1,
for otherwise i could be dropped from the certi*cate, contradicting minimality. Thus
each variable in S is sensitive in x, hence C(f)6 sx(f)6 s(f).
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Theorem 11 now implies:

Corollary 5. If f is monotone; then D(f)6 s(f)2.

This corollary is exactly tight, since the function f of Example 2 has D(f)= n and
s(f)=

√
n and is monotone.

Also, the lower bound of Theorem 4 can be improved to

Proposition 4. If f is monotone; then s(f)6 deg(f).

Proof. Let x be an input on which the sensitivity of f equals s(f). Assume without
loss of generality that f(x)= 0. All sensitive variables must be 0 in x, and setting
one or more of them to 1 changes the value of f from 0 to 1. Hence by *xing all
variables in x except for the s(f) sensitive variables, we obtain the OR function on
s(f) variables, which has degree s(f). Therefore deg(f) must be at least s(f).

The above two results strengthen some of the previous bounds for monotone
functions:

Corollary 6. If f is monotone; then D(f)∈O(R2(f)2); D(f)∈O(QE(f)2); and D(f)
∈O(Q2(f)4).

For the special case where f is both monotone and symmetric, we have:

Proposition 5. If f is non-constant; symmetric; and monotone; then deg(f)= n.

Proof. Note that f is simply a threshold function: f(x)= 1 iM |x|¿ t for some t. Let
p :R→R be the non-constant single-variate polynomial obtained from symmetrizing
f. This has degree6deg(f) 6 n and p(i)= 0 for i∈{0; : : : ; t − 1}; p(i)= 1 for
i∈{t; : : : ; n}. Then the derivative p′ must have zeroes in each of the n − 1 intervals
(0; 1); (1; 2); : : : ; (t−2; t−1); (t; t+1); : : : ; (n−1; n). Hence p′ has degree at least n−1,
which implies that p has degree n and deg(f)= n.

6.3. Monotone graph properties

An interesting and well studied subclass of the monotone functions are the mono-
tone graph properties. Consider an undirected graph on n vertices. There are N =

(n
2

)
possible edges, each of which may be present or absent, so we can pair up the set
of all graphs with the set of all N -bit strings. A graph property P is a set of graphs
that is closed under permutation of the vertices (so isomorphic graphs have the same
properties). The property is monotone if it is closed under the addition of an edge.
We are now interested in the question: At how many edges must we look in order to
determine if a graph has the property P? This is just the decision-tree complexity of
P if we view P as a total Boolean function on N bits.
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A property P is called evasive if D(P)=N , so if we have to look at all edges in
the worst case. The evasiveness conjecture (also sometimes called Aanderaa–Karp–
Rosenberg conjecture) says that all non-constant monotone graph properties P are
evasive. This conjecture is still open; see [27] for an overview. The conjecture has
been proved for graphs where the number of vertices is a prime power [25], but the
best known general bound is D(P)∈Z(N ) [35, 25, 26]. This bound also follows from
a degree-bound by Dodis and Khanna [11, Theorem 2]:

Theorem 22 (Dodis and Khanna). If P is a non-constant monotone graph property;
then deg(P)∈5(N ).

Corollary 7. If P is a non-constant monotone graph property; then D(P)∈5(N ) and
QE(P)∈5(N ).

Thus, the evasiveness conjecture holds up to a constant factor for both deterministic
classical and exact quantum algorithms. D(P)=N may actually hold for all monotone
graph properties P, but [8] exhibit a monotone P with QE(P)¡N . Only much weaker
lower bounds are known for the bounded-error complexity of such properties [26, 20, 8].

Open problem 6. Are D(P)=N and R2(P)∈Z(N ) for all non-constant monotone
graph properties P?

There is no P known with R2(P)∈ o(N ), but the OR-problem can trivially be turned
into a monotone graph property P with Q2(P)∈ o(N ), in fact Q2(P)∈Y(n) [8].

Finally, we mention a result about sensitivity from [46]:

Theorem 23 (Wegener). s(P) ¿ n − 1 for all non-constant monotone graph proper-
ties P.

This theorem is tight, as witnessed by the property “No vertex is isolated” [44].
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