
Theoretical Computer Science 92 (1992) 213-221

Elsevier

213

Data compression with factor
automata*

Marc Zipstein
C.E.R.I.L. 25 Cows Blake Pascal. 91000 Evry, France

Abstract

Zipstein, M., Data compression with factor automata, Theoretical Computer Science 92 (1992)
213-221.

We present a data compression algorithm that uses the factor automaton. The method is related to

the Ziv and Lempel’s algorithm and gives an approximation of the entropy of a text.

Text compression algorithms are methods that reduce the number of symbols used

to represent a sequence of characters, therefore reducing the amount of space needed

to store it or the amount of time necessary to transmit it. Universal compression

methods may be used with no a priori knowledge on the content and the structure of

-the text to be treated.

There are two main classes of data compression methods: block encoding and

factor encoding. We present a new method of factor encoding which uses an automa-

ton that recognises all the factors of a text.

Block encoding parses the text in blocks of a fixed length (generally the letters) and

encodes each block in accordance with its probability of appearance, in such a way

that a frequent letter will have a shorter translation than a less frequent one. The

best-known block encoding method is the Huffman encoding [4] which uses a prefix

code of minimal average length.

Factor encoding parses the text in words of different lengths, and uses a dictionary

to translate each word. This dictionary may be fixed or it may be constructed as the

text is processed.

The most famous factor encoding algorithm is the Ziv and Lempel’s encoding [9]

which uses a dictionary closed by prefix. Ziv and Lempel have proposed another

*Work supported by P.R.C. Mathematics and Computer Science.

0304-3975/92,/$05.00 c; 1992-Elsevier Science Publishers B.V. All rights reserved

214 M. Zipsrein

factor encoding, where any factor of the text previously treated may be used. In their

article [S], they do not give any method for the determination of those factors. Rodeh

et al. [6] described an implementation of this encoding based on the factor tree. Our

method, described in Section 1, uses the factor automaton structure which gives

a compact representation of the set of the factors of the text. It is constructed

dynamically as the text is processed. The construction of the automaton and its use for

encoding is given in Section 2. The method gives a better compression ratio than the

Ziv and Lempel’s method on texts with low entropy and, as shown in Section 3, it also

gives an approximation of the entropy of the text; this approximation converges

towards the real value quicker than the one obtained by the Ziv and Lempel’s method.

1. The factor automaton and the factor encoding

We consider a finite alphabet A. Let A* be the set of the words on the alphabet A.

We denote by 1 w / the length of the word w.

The set of factors of a text T is:

F(T)={eA*: 32;,wA* zxiw=T}.

We denote the factor automaton of the text T by F(T). The construction of this

automaton is deduced from the one of suffix automaton, first presented by Blumer et

al. [l]. We use another construction of the factor automaton due to Crochemore [2].

We define the function position on the states of F(T) by: position(q) is the position

of the first occurrence of the longest word w that leads from the initial state to the state

q. This function is well defined because one property of the factor automaton defined

above is that there is a single word wq of maximum length that leads from the initial

state to a given state q, and all the words leading to state q are suffixes of wq.

We assign the position of the first letter of the text to be one, in order to preserve the

value 0 to indicate that a letter has not yet appeared in the text.

The automaton is built as the text is processed.

The encoding of a text T is defined by induction on prefixes of increasing length of

T: let t be a prefix of T. We assume the automaton F(t) has been constructed, and

that t has been encoded.

If the letter following t has never appeared in t then it is encoded by the pair (0,

ASCII code of the letter). Otherwise, the next word to be translated is w = w1 w2.. . w,,

M’~EA, such that TV is a prefix of T and w is the longest word such that for every i,

l~I~n,w,w~...M~iisafactorOftW,...Wi_,. The function position gives the position

p of the first occurrence of w. The word w is encoded by two integers: its position p and

its length 1 w /.

Any sequence of pairs, corresponding to the encoding of a text, can be deciphered.

The reason is that the decipherer and the encipherer have the same automaton when

they treat the same part of the text. To treat (p, 1 w I), the decipherer just has to follow

the transitions of the automaton, on the path that represents the text, from the state

Data compression with .&actor automata 215

p during 1 w 1 letters. Those letters are the ones of w, and the automaton dynamically

changes from P(t) to P(tw).

Example.

Encoding of aabbabbab

Text a a b b abbab

Translation Oa 11 Ob 31 25

Decoding of Oa 1 1 Ob 3 12 5
Assume Oa 1 1 Ob 3 1 has been treated. The factor automaton for aabb has been

constructed (see Fig. 1).

To translate the pair 2 5 the algorithm starts from state 2, corresponding to the

position of the encoded factor in the text, and follows five transitions along the main

path (corresponding to the text). The automaton is completed as the translation is

made; so, it is possible to follow five transitions from state 2. During the decoding of

the pair 2 5, after the translation of three letters, the automaton becomes as shown in

Fig. 2.

The remaining problem is an implementation problem. An efficient coding of the

integers has to be used because translating a factor needs two integers whereas the Ziv

and Lempel encoding only needs one. On the other hand, the translation of the whole

text needs less factors because Ziv and Lempel’s algorithm does not use every possible

factor, and our algorithm does.

Fig. 1

Fig. 2.

216 M. Zipstein

2. Construction of factor automaton and encoding

In order to save memory space, the implementation of the automaton uses a failure

function, defined below. Such a failure function is used by Knuth, Morris and Pratt in

their algorithm for pattern-matching in strings.

Failure function

Let d = (Q, A, i, T, d) be an automaton, d its transition function. Let t be a function

from Q x A to Q (t is a transition function) and s a function from Q into itself.

We say that the pair (t, s) represents the transition function d if both the following

conditions hold: (1) t c d, (2) d(q, a) = d(s(q), a) whenever t(q, a) is not defined while

d(q,a) and s(q) are. (s(q) is a stand-in of state q.) The function s is called a failure

function.

Construction of the factor automaton for a text T

The algorithm given below simultaneously constructs the transition function, the

failure function of the factor automaton and determines the pair that translates

a factor.

It makes use of a function “length” defined on the states of the automaton by

length(q)=max{JuI, ueA* and d(i,u)=q}.

Coding

To determine the pair that translates a factor, the algorithm keeps an index, Index,

that follows the transitions as the letters of Tare read. If no transition from the current

state is allowed for the current letter, then a new coding pair has been found, and the

index goes back to the initial state (see Fig. 3).

Remarks

The number of states in the automaton is at most twice the length of the text T since

at most two new states may be created in the main While.

Each state of the automaton is a final state.

We use the term ‘tfactor automaton” despite the fact that factor automaton usually

denotes the minimal automaton that recognises the factors of a text.

3. Parsing with the method of factor and entropy

The notion of entropy for a text T was first introduced by Shannon [7]. Entropy

measures the quantity of information contained by a text, and corresponds to the

minimal average number of symbols necessary to write a letter of the text.

Data compression with factor automata 217

Tactor_Automaton(T)

Create a state(Initial);Length(Initial) = 0; --
Last = Initial;Index=Initial;

Length w=O;Position(Initial)=l; _

While (the end of T is not reached)

Create a state(q); --

a = (next letter of T);

p = Last;Position(q)=Position(Last)+l;

'*Encoding*/

If (d(Index, a) undefined)

If (Index=Initial) Send(O,ASCII(a));

Else i
Send(Position(Index)-Length_w,Length_w)

Index=Initial;Length w=O; _

Else i
Index=d(Index, a);Length w =Length_w+l; 1 _

'*Up-date of the automaton*/

While (p # initial and d(p, a) undefine)

ial;)

td(p, a) = q;p = S(P); 1

If (d(p, a) undefine)

(d(Initia1, a) = q;s(q) = Init

Else

If (Length (p)+l = Length(d(p,

s(q) = d(p, a);

Else {

Create a state (r,copy of --

a)))

state d(p, a));

‘* same transitions, same stand-in state,same position*/

Length(r) = Length(p)+l;

s(d(p, a)) = r; s(q) = r;

While (Length(d(p,a)) 2 Length(r))

id(p, a) = r; P = S(P) ; 1

Fig. 3. The algorithm for the construction of the factor automaton of a text i?

218 M. Zipstein

If the statistics of the text T are known, the probability of appearance of letter

a being p(a) the entropy H(T) is

H(T)=- c p(a)logp(a).
OEA

When the probability of the source is unknown, Ziv and Lempel’s method gives an

asymptotical approximation of the entropy. This approximation is based on the

number of factors used during the translation of the text.

Definition. Let TEA*, T= (a,), IIE N. The Z-factorisation of T is the sequence of words

(w,J=(w,,(T)) defined by induction: wO=uo. If wo,wl,...,wk are defined and

WgW~...wk=aoa,...U,thenwk+,=U,+,U,+,...U,+,, where m is the least integer such

as a n+1~n+2...~n+m4{W0,W1,...,Wk}.

For every TEA*, we define nz(k, T)=Jw,(T)w,(T)...w,(T)I, i.e. the length of the

text reached with the k first words of the Z-factorisation.

The value klog k represents the number of bits necessary to write k factors and

klog k/nz(k, T) is the average number of bits necessary to write a letter of T.

SO,
klogk

H(T)<----
n,(k, T)’

It has been shown [9,3] that for almost every T, the entropy H is

klogk
H(T)= lim ~

k-p nz(k T)’

The parsing with the factors also gives an approximation of the entropy, and this

approximation converges rapidly.

Definition. The F-factorisation of T is the sequence of words (II,,) = (u,(T)) defined by

induction: u. =uo. If uo, ui, . . . , uk are defined and u~u~...o~=~~~~...u, then uk+i

is a new letter or Uk+1=a,+,a,+,...a,+,, where m is the least integer such as

U n+1&r+2...~,+, is not a factor of uOrl . ..uk.

F-factorisation was introduced in [S] and used in [2].

We define n,(k,T)=~vO(T)ul(T)...uk(T)~.

Proposition. Let T be an infinite text. For every integer k, the k jrst words of the Z-

fuctorisution cover a shorter prefix of text than the k_first words of the F-fuctorisution:

n,(k, T) d +(k, T).

The F-factorisation always chooses the longest possible factor and all the words

used by the Ziv and Lempel’s algorithm are factors.

Data compression with factor automata 219

The value k log k/n,(k, T) is the average number of bits necessary to write a letter

of T.

so,

klogk
H(T)d-

n,(k, T)’

H(T)<
klogk

-<
kiogk

ndk, T) nz(k, T)
and

klogk
H(T)= lim ___

k-. r n,(k, T)’

An estimation of the entropy is given from the parsing of a text with its factors.

E.uperimentai npproximution entropy

We construct the programs texts where the probability of appearance of each letter

is known; so, a direct computation of the entropy is feasible. We use an alphabet with

20 letters.

We compare the values k log k/n,(k, T) and k log k,h,(k, T) with the entropy while

more text was treated.

The entropy of the source is the value calculated with the exact number of

occurrences of the letters in the text.

(1) Equiprohability: Every letter of the text has the same probability of appearance

p(Ui) = 0.05, 0 < i < 20. The theoretical entropy is 4.321929.

(2) All the letters but one have the same probability of appearance p(q)=O.Ol,

0 < i < 20. The remaining letter a0 has a probability of 0.81. The theoretical entropy is

1.508577.

The estimation obtained by the method of factors converges to the exact value of

the entropy faster than the one obtained by Ziv and Lempel’s method (see Tables

1 and 2).

Table 1

Length Entropy

of the source

Approximation

with factors
Approximation

by Ziv and Lempel [9]

5000 4.3 19277 5.231993 5.794274
10000 4.320462 5.099692 5.745548
20000 4.321409 4.93616 5.63 1763
30000 4.321482 4.851694 5.559893
40000 4.321614 4.818317 5.502391
50000 4.32 1640 4.797632 5.458225

220 M. Zipstein

Table 2

Length Entropy Approximation

of the source with factors

Approximation

by Ziv and Lempel [9]

5000 1.554181 1.768732 2.252765

10000 1.550892 1.774483 2.205569

20000 1.515825 1.682011 2.106605

30000 1.524914 1.656781 2.08643 1

40000 1.508161 1.608550 2.039223
50000 1.503307 1.580984 2.016964
60000 1.497791 I .560479 1.998559

70000 1.501193 1.552968 1.991666

Table 3

Source French C Lisp Equiprob Alphabet

Length 62816 684497 75925 70000 530000

Fact 29795 218057 26944 51617 481

47.43% 31.86% 35.49% 73.74% 0.09%

Compress 26043 233855 30767 288699 11309

41.46% 34.16% 40.52% 63.60% 2.13%

Huffman 33462 425063 48332 38909 385067

53.27% 62.10% 63.66% 55.58% 72.65%

4. Experimental results

We have compared (see Table 3) the performances of the various data compression

algorithms: the one based on the factor automaton, the Unix command “compress”

which is an implementation of the variation of the Ziv and Lempel’s method proposed

by Welch [S], and the Huffman coding implemented on Unix as the command “pack”.

We tried different kinds of texts: texts in French, programs written in C or Lisp, and

specially built texts: “Equiprob” is a text written on an alphabet of twenty letters, each

letter having the same probability of appearance; “Alphabet” is the repetition of the

line “ab.. . zAB.. Z”.

In our implementation, named “Fact”, the automaton is discarded and recreated

from scratch when it has 125000 states.

*The method that uses the factor automaton is more efficient on texts with low

entropy where it can find long factors, as in source programs or “alphabet”.

On texts with higher entropy, as texts in natural language, frequent long factors are

rare and the use of two integers to code one factor leads to a poorer performance than

the Ziv and Lempel’s algorithm.

Data compression with factor automata 221

As the entropy increases, the block encoding methods, as the Huffman encoding,

are more efficient.

References

[l] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler. M.T. Chen and J. Seiferas, The smallest automaton

recognizing the subwords of a text, Theoret Comput. Sci. 40(l) (1985) 31-56.
[Z] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1986) 63-86.
133 G. Hansel, Estimation of the entropy by the Lempel-Ziv method, in: Gross and Perrin, eds., Ekctronic

DictioNaries and Automata in Computational Linguistics (actes de l’ecole de printemps, Oleron, 1987)

Lecture Notes in Computer Science (Springer, Berlin, 1989) 51-65.

[4] D.A. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE 40 (1952)

1098&1101.
[S] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory IT 22(l)

(1976) 75-81.

[6] M. Rodeh, V.R. Pratt and S. Even, Linear algorithm for data compression via string-matching, J. ACM

28 (1981) 1624.

[7] C. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948) 379-423 and

623-656.

[S] T.A. Welch, A technique for high-performance data compression, IEEE Comput. 17(6) (1984) 8-19.
[9] J. Ziv and A. Lempel, Compression of individual sequences via variable length-coding, IEEE Trans.

Inform. Theory IT 24 (1978) 530-536.

