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Abstract 

Zipstein, M., Data compression with factor automata, Theoretical Computer Science 92 (1992) 
213-221. 

We present a data compression algorithm that uses the factor automaton. The method is related to 

the Ziv and Lempel’s algorithm and gives an approximation of the entropy of a text. 

Text compression algorithms are methods that reduce the number of symbols used 

to represent a sequence of characters, therefore reducing the amount of space needed 

to store it or the amount of time necessary to transmit it. Universal compression 

methods may be used with no a priori knowledge on the content and the structure of 

-the text to be treated. 

There are two main classes of data compression methods: block encoding and 

factor encoding. We present a new method of factor encoding which uses an automa- 

ton that recognises all the factors of a text. 

Block encoding parses the text in blocks of a fixed length (generally the letters) and 

encodes each block in accordance with its probability of appearance, in such a way 

that a frequent letter will have a shorter translation than a less frequent one. The 

best-known block encoding method is the Huffman encoding [4] which uses a prefix 

code of minimal average length. 

Factor encoding parses the text in words of different lengths, and uses a dictionary 

to translate each word. This dictionary may be fixed or it may be constructed as the 

text is processed. 

The most famous factor encoding algorithm is the Ziv and Lempel’s encoding [9] 

which uses a dictionary closed by prefix. Ziv and Lempel have proposed another 
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factor encoding, where any factor of the text previously treated may be used. In their 

article [S], they do not give any method for the determination of those factors. Rodeh 

et al. [6] described an implementation of this encoding based on the factor tree. Our 

method, described in Section 1, uses the factor automaton structure which gives 

a compact representation of the set of the factors of the text. It is constructed 

dynamically as the text is processed. The construction of the automaton and its use for 

encoding is given in Section 2. The method gives a better compression ratio than the 

Ziv and Lempel’s method on texts with low entropy and, as shown in Section 3, it also 

gives an approximation of the entropy of the text; this approximation converges 

towards the real value quicker than the one obtained by the Ziv and Lempel’s method. 

1. The factor automaton and the factor encoding 

We consider a finite alphabet A. Let A* be the set of the words on the alphabet A. 

We denote by 1 w / the length of the word w. 

The set of factors of a text T is: 

F(T)={eA*: 32;,wA* zxiw=T}. 

We denote the factor automaton of the text T by F(T). The construction of this 

automaton is deduced from the one of suffix automaton, first presented by Blumer et 

al. [l]. We use another construction of the factor automaton due to Crochemore [2]. 

We define the function position on the states of F( T) by: position(q) is the position 

of the first occurrence of the longest word w that leads from the initial state to the state 

q. This function is well defined because one property of the factor automaton defined 

above is that there is a single word wq of maximum length that leads from the initial 

state to a given state q, and all the words leading to state q are suffixes of wq. 

We assign the position of the first letter of the text to be one, in order to preserve the 

value 0 to indicate that a letter has not yet appeared in the text. 

The automaton is built as the text is processed. 

The encoding of a text T is defined by induction on prefixes of increasing length of 

T: let t be a prefix of T. We assume the automaton F(t) has been constructed, and 

that t has been encoded. 

If the letter following t has never appeared in t then it is encoded by the pair (0, 

ASCII code of the letter). Otherwise, the next word to be translated is w = w1 w2.. . w,, 

M’~EA, such that TV is a prefix of T and w is the longest word such that for every i, 

l~I~n,w,w~...M~iisafactorOftW,...Wi_,. The function position gives the position 

p of the first occurrence of w. The word w is encoded by two integers: its position p and 

its length 1 w /. 

Any sequence of pairs, corresponding to the encoding of a text, can be deciphered. 

The reason is that the decipherer and the encipherer have the same automaton when 

they treat the same part of the text. To treat (p, 1 w I), the decipherer just has to follow 

the transitions of the automaton, on the path that represents the text, from the state 
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p during 1 w 1 letters. Those letters are the ones of w, and the automaton dynamically 

changes from P(t) to P(tw). 

Example. 

Encoding of aabbabbab 

Text a a b b abbab 

Translation Oa 11 Ob 31 25 

Decoding of Oa 1 1 Ob 3 12 5 
Assume Oa 1 1 Ob 3 1 has been treated. The factor automaton for aabb has been 

constructed (see Fig. 1). 

To translate the pair 2 5 the algorithm starts from state 2, corresponding to the 

position of the encoded factor in the text, and follows five transitions along the main 

path (corresponding to the text). The automaton is completed as the translation is 

made; so, it is possible to follow five transitions from state 2. During the decoding of 

the pair 2 5, after the translation of three letters, the automaton becomes as shown in 

Fig. 2. 

The remaining problem is an implementation problem. An efficient coding of the 

integers has to be used because translating a factor needs two integers whereas the Ziv 

and Lempel encoding only needs one. On the other hand, the translation of the whole 

text needs less factors because Ziv and Lempel’s algorithm does not use every possible 

factor, and our algorithm does. 

Fig. 1 

Fig. 2. 
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2. Construction of factor automaton and encoding 

In order to save memory space, the implementation of the automaton uses a failure 

function, defined below. Such a failure function is used by Knuth, Morris and Pratt in 

their algorithm for pattern-matching in strings. 

Failure function 

Let d = (Q, A, i, T, d) be an automaton, d its transition function. Let t be a function 

from Q x A to Q (t is a transition function) and s a function from Q into itself. 

We say that the pair (t, s) represents the transition function d if both the following 

conditions hold: (1) t c d, (2) d(q, a) = d(s(q), a) whenever t(q, a) is not defined while 

d(q,a) and s(q) are. (s(q) is a stand-in of state q.) The function s is called a failure 

function. 

Construction of the factor automaton for a text T 

The algorithm given below simultaneously constructs the transition function, the 

failure function of the factor automaton and determines the pair that translates 

a factor. 

It makes use of a function “length” defined on the states of the automaton by 

length(q)=max{JuI, ueA* and d(i,u)=q}. 

Coding 

To determine the pair that translates a factor, the algorithm keeps an index, Index, 

that follows the transitions as the letters of Tare read. If no transition from the current 

state is allowed for the current letter, then a new coding pair has been found, and the 

index goes back to the initial state (see Fig. 3). 

Remarks 

The number of states in the automaton is at most twice the length of the text T since 

at most two new states may be created in the main While. 

Each state of the automaton is a final state. 

We use the term ‘tfactor automaton” despite the fact that factor automaton usually 

denotes the minimal automaton that recognises the factors of a text. 

3. Parsing with the method of factor and entropy 

The notion of entropy for a text T was first introduced by Shannon [7]. Entropy 

measures the quantity of information contained by a text, and corresponds to the 

minimal average number of symbols necessary to write a letter of the text. 
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Tactor_Automaton(T) 

Create a state(Initial);Length(Initial) = 0; -- 
Last = Initial;Index=Initial; 

Length w=O;Position(Initial)=l; _ 

While (the end of T is not reached) 

Create a state(q); -- 

a = (next letter of T); 

p = Last;Position(q)=Position(Last)+l; 

'*Encoding*/ 

If (d(Index, a) undefined) 

If (Index=Initial) Send(O,ASCII(a)); 

Else i 
Send(Position( Index)-Length_w,Length_w) 

Index=Initial;Length w=O; _ 

Else i 
Index=d(Index, a);Length w =Length_w+l; 1 _ 

'*Up-date of the automaton*/ 

While (p # initial and d(p, a) undefine) 

ial;) 

td(p, a) = q;p = S(P); 1 

If (d(p, a) undefine) 

(d(Initia1, a) = q;s(q) = Init 

Else 

If (Length (p)+l = Length(d(p, 

s(q) = d(p, a); 

Else { 

Create a state (r,copy of -- 

a)) ) 

state d(p, a) ); 

‘* same transitions, same stand-in state,same position*/ 

Length(r) = Length(p)+l; 

s(d(p, a)) = r; s(q) = r; 

While (Length(d(p,a)) 2 Length(r)) 

id(p, a) = r; P = S(P) ; 1 

Fig. 3. The algorithm for the construction of the factor automaton of a text i? 
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If the statistics of the text T are known, the probability of appearance of letter 

a being p(a) the entropy H(T) is 

H(T)=- c p(a)logp(a). 
OEA 

When the probability of the source is unknown, Ziv and Lempel’s method gives an 

asymptotical approximation of the entropy. This approximation is based on the 

number of factors used during the translation of the text. 

Definition. Let TEA*, T= (a,), IIE N. The Z-factorisation of T is the sequence of words 

(w,J=(w,,(T)) defined by induction: wO=uo. If wo,wl,...,wk are defined and 

WgW~...wk=aoa,...U,thenwk+,=U,+,U,+,...U,+,, where m is the least integer such 

as a n+1~n+2...~n+m4{W0,W1,...,Wk}. 

For every TEA*, we define nz(k, T)=Jw,(T)w,(T)...w,(T)I, i.e. the length of the 

text reached with the k first words of the Z-factorisation. 

The value klog k represents the number of bits necessary to write k factors and 

klog k/nz(k, T) is the average number of bits necessary to write a letter of T. 

SO, 
klogk 

H(T)<---- 
n,(k, T)’ 

It has been shown [9,3] that for almost every T, the entropy H is 

klogk 
H(T)= lim ~ 

k-p nz(k T)’ 

The parsing with the factors also gives an approximation of the entropy, and this 

approximation converges rapidly. 

Definition. The F-factorisation of T is the sequence of words (II,,) = (u,( T)) defined by 

induction: u. =uo. If uo, ui, . . . , uk are defined and u~u~...o~=~~~~...u, then uk+i 

is a new letter or Uk+1=a,+,a,+,...a,+,, where m is the least integer such as 

U n+1&r+2...~,+, is not a factor of uOrl . ..uk. 

F-factorisation was introduced in [S] and used in [2]. 

We define n,(k,T)=~vO(T)ul(T)...uk(T)~. 

Proposition. Let T be an infinite text. For every integer k, the k jrst words of the Z- 

fuctorisution cover a shorter prefix of text than the k_first words of the F-fuctorisution: 

n,(k, T) d +(k, T). 

The F-factorisation always chooses the longest possible factor and all the words 

used by the Ziv and Lempel’s algorithm are factors. 
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The value k log k/n,( k, T) is the average number of bits necessary to write a letter 

of T. 

so, 

klogk 
H( T)d- 

n,(k, T)’ 

H(T)< 
klogk 

-< 
kiogk 

ndk, T) nz(k, T) 
and 

klogk 
H(T)= lim ___ 

k-. r n,(k, T)’ 

An estimation of the entropy is given from the parsing of a text with its factors. 

E.uperimentai npproximution entropy 

We construct the programs texts where the probability of appearance of each letter 

is known; so, a direct computation of the entropy is feasible. We use an alphabet with 

20 letters. 

We compare the values k log k/n,( k, T) and k log k,h,( k, T) with the entropy while 

more text was treated. 

The entropy of the source is the value calculated with the exact number of 

occurrences of the letters in the text. 

(1) Equiprohability: Every letter of the text has the same probability of appearance 

p(Ui) = 0.05, 0 < i < 20. The theoretical entropy is 4.321929. 

(2) All the letters but one have the same probability of appearance p(q)=O.Ol, 

0 < i < 20. The remaining letter a0 has a probability of 0.81. The theoretical entropy is 

1.508577. 

The estimation obtained by the method of factors converges to the exact value of 

the entropy faster than the one obtained by Ziv and Lempel’s method (see Tables 

1 and 2). 

Table 1 

Length Entropy 

of the source 

Approximation 

with factors 
Approximation 

by Ziv and Lempel [9] 

5000 4.3 19277 5.231993 5.794274 
10000 4.320462 5.099692 5.745548 
20000 4.321409 4.93616 5.63 1763 
30000 4.321482 4.851694 5.559893 
40000 4.321614 4.818317 5.502391 
50000 4.32 1640 4.797632 5.458225 
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Table 2 

Length Entropy Approximation 

of the source with factors 

Approximation 

by Ziv and Lempel [9] 

5000 1.554181 1.768732 2.252765 

10000 1.550892 1.774483 2.205569 

20000 1.515825 1.682011 2.106605 

30000 1.524914 1.656781 2.08643 1 

40000 1.508161 1.608550 2.039223 
50000 1.503307 1.580984 2.016964 
60000 1.497791 I .560479 1.998559 

70000 1.501193 1.552968 1.991666 

Table 3 

Source French C Lisp Equiprob Alphabet 

Length 62816 684497 75925 70000 530000 

Fact 29795 218057 26944 51617 481 

47.43% 31.86% 35.49% 73.74% 0.09% 

Compress 26043 233855 30767 288699 11309 

41.46% 34.16% 40.52% 63.60% 2.13% 

Huffman 33462 425063 48332 38909 385067 

53.27% 62.10% 63.66% 55.58% 72.65% 

4. Experimental results 

We have compared (see Table 3) the performances of the various data compression 

algorithms: the one based on the factor automaton, the Unix command “compress” 

which is an implementation of the variation of the Ziv and Lempel’s method proposed 

by Welch [S], and the Huffman coding implemented on Unix as the command “pack”. 

We tried different kinds of texts: texts in French, programs written in C or Lisp, and 

specially built texts: “Equiprob” is a text written on an alphabet of twenty letters, each 

letter having the same probability of appearance; “Alphabet” is the repetition of the 

line “ab.. . zAB.. Z”. 

In our implementation, named “Fact”, the automaton is discarded and recreated 

from scratch when it has 125000 states. 

*The method that uses the factor automaton is more efficient on texts with low 

entropy where it can find long factors, as in source programs or “alphabet”. 

On texts with higher entropy, as texts in natural language, frequent long factors are 

rare and the use of two integers to code one factor leads to a poorer performance than 

the Ziv and Lempel’s algorithm. 
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As the entropy increases, the block encoding methods, as the Huffman encoding, 

are more efficient. 
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