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Dynamic programming is a general problem-solving technique that has been widely used in various 

fields such as control theory, operations research, biology and computer science. In many applica- 

tions dynamic programming problems satisfy additional conditions of convexity, concavity and 

sparsity. This paper presents a classification of dynamic programming problems and surveys 

efficient algorithms based on the three conditions. 

1. Introduction 

Dynamic programming is a general technique for solving discrete optimization 

problems. The idea underlying this technique is to represent a problem by a decision 

process (minimization or maximization) which proceeds in a series of stages; i.e., the 

problem is formulated as a recurrence relation involving a decision process. For 

formal models of dynamic programming, see [32,21]. Dynamic programming decom- 

poses a problem into a number of smaller subproblems each of which is further 

decomposed until subproblems have trivial solutions. For example, a problem of size 

n may decompose into several problems of size n - 1, each of which decomposes into 

several problems of size n - 2, etc. This decomposition seems to lead to an exponen- 

tial-time algorithm, which is indeed true in the traveling salesman problem [20, 91. 

In many problems, however, there are only a polynomial number of distinct 
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subproblems. Dynamic programming gains its efficiency by avoiding solving common 

subproblems many times. It keeps track of the solutions of subproblems in a table, 

and looks up the table whenever needed. (It was called the tabulation technique in 

ClOl.) 
Dynamic programming algorithms have three features in common: 

(1) a table, 

(2) the entry dependency of the table, and 

(3) the order to fill in the table. 

Each entry of the table corresponds to a subproblem. Thus the size of the table is 

the total number of subproblems including the problem itself. The entry dependency is 

defined by the decomposition: if a problem P decomposes into several subproblems 

Pi, P2,. . , Pk, the table entry of the problem P depends on the table entries of 

Pl,PZ,..., Pk. The order to fill in the table may be chosen under the restriction of the 

table and the entry dependency. Features (1) and (3) were observed in [6], and feature. 

(2) can be found in the literature [lo, 441 as dependency graphs. The dynamic 

programming formulation of a problem always provides an obvious algorithm which 

fills in the table according to the entry dependency. 

Dynamic programming has been widely used in various fields such as control 

theory, operations research, biology, and computer science. In many applications 

dynamic programming problems have some conditions other than the three features 

above. Those conditions are convexity, concavity and sparsity among which convex- 

ity and concavity were observed in an earlier work [S]. Recently, a number of 

algorithms have been designed that run faster than the obvious algorithms by taking 

advantage of these conditions. In the next section we introduce four dynamic pro- 

gramming problems which have wide applications. In Section 3 we describe algo- 

rithms exploiting convexity and concavity. In Section 4 we show how sparsity 

leads to efficient algorithms. Finally, we discuss open problems and some dynamic 

programming problems which do not belong to the class of problems we consider 

here. 

2. Dynamic programming problems 

We use the term matrices for tables especially when the table is rectangular. Let 

A be an n x m matrix. A[i,j] denotes the element in the ith row and the jth column. 

A [i : i’, j : j’] denotes the submatrix of A which is the intersection of rows i, i + 1, . . , i’ 

and columns j, j + 1, . . . , j’. A [i, j: j’] is a shorthand notation of A [i : i, j:j’]. Through- 

out the paper we assume that the elements of a matrix are distinct, since ties can be 

btoken consistently. 

Let n be the size of problems. We classify dynamic programming problems by the 

table size and entry dependency: a dynamic programming problem is called a tD/eD 

problem if its table size is O(n’) and a table entry depends on O(ne) other entries. In the 

following we define four dynamic programming problems. Specific problems such as 
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the least weight subsequence problem [24] are not defined in this paper since they are 

abstracted in the four problems; their definitions are left to references. 

Problem 2.1 (lD/ 1 D). Given a real-valued function w(i, j) for integers 0 < i < j d n and 

D[O], compute 

E[j]=min {D[i]+w(i,j)} for l<jbn, 
061</ 

(1) 

where D[i] is computed from E[i] in constant time. 

The least weight subsequence problem [24] is a special case of Problem 2.1 where 

D [i] = E [il. Its applications include an optimum paragraph formation problem and 

the problem of finding a minimum height B-tree. The modified edit distance problem 

(or sequence alignment with gaps) [15], which arises in molecular biology, geology 

and speech recognition, is a 2D/lD problem, but it is divided into 2n copies of 

Problem 2.1. A number of problems in computational geometry are also reduced to 

a variation of Problem 2.1 [I]. 

Problem 2.2 (2D/OD). Given D[i, 0] and D[O.j] for Odi,jbn, compute 

for 1 <i, j<n, (2) 

where xi,yj, and zi, j are computed in constant time, and D[i,j] is computed from 

E [i, j] in constant time. 

The string edit distance problem [49], the longest common subsequence problem 

[22], and the sequence alignment problem [42] are examples of Problem 2.2. The 

sequence alignment with linear gap costs [18] is also a variation of Problem 2.2. 

Problem 2.3 (20/l D). Given w(i, j) for 1 d i <j d IZ and C[i, i] = 0 for 1 d i < n, compute 

C[i,j]=w(i,j)+min {C[i,k-l]+C[k,j]} for l<i<j<n. (3) 
i<haj 

Some examples of Problem 2.3 are the construction of optimal binary search trees 

[36,55], the maximum perimeter inscribed polygon problem [SS, 561, and the con- 

struction of optimal t-ary tree [SS]. Wachs [48] extended the optimal binary search 

tree problem to the case in which the cost of a comparison is not necessarily one. 

Problem 2.4 (20/2D). Given w(i, j) for 06 i<j<<n, and D[i, 0] and D[O, j] for 

0 d i, j d n, compute 

E[i,j]=min {D[i’,j’]+w(i’+j’,i+j)} for l<i,j<n, 
O<r’<r 
OQl'Cl 

(4) 

where D[i, j] is computed from E[i, j] in constant time. 
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Problem 2.4 has been used to compute the secondary structure of RNA without 

multiple loops. The formulation of Problem 2.4 was provided by Waterman and 

Smith [SO]. 

The dynamic programming formulation of a problem always yields an obvious 

algorithm whose efficiency is determined by the table size and entry dependency. If 

a dynamic programming problem is a tD/eD problem an obvious algorithm takes 

time O(n’+‘) provided that the computation of each term (e.g. D[i] +w(i,j) in 

Problem 2.1) takes constant time. The space required is usually O(n’). The space may 

be sometimes reduced. For example, the space for the 2D/OD problem is O(n). (If we 

proceed row by row, it suffices to keep only one previous row.) Even when we need to 

recover the minimum path as in the longest common subsequence problem, O(n) 

space is still sufficient [22]. 

In the applications of Problems 2.1, 2.3 and 2.4 the cost function w is either convex 

or concave. In the applications of Problems 2.2 and 2.4 the problems may be sparse; 

i.e., we need to compute E [i,j] only for a sparse set of points. With these conditions 

we can design more efficient algorithms than the obvious algorithms. For nonsparse 

problems we would like to have algorithms whose time complexity is O(n’) or close to 

it. For the 2D/OD problem O(n2) time is actually the lower bound in a comparison 

tree model with equality tests [S, 541. For sparse problems we would like algo- 

rithms whose time complexity is close to the number of points for which we need to 

compute E. 

3. Convexity and concavity 

The convexity and concavity of the cost function w is defined by the Monge 

condition. It was introduced by Monge [41] in 1781, and revived by Hoffman [ZS] in 

connection with a transportation problem. Later, Yao [55] used it to solve the 2D/lD 

problem (Problem 2.3). Recently, the Monge condition has been used in a number of 

dynamic programming problems. 

We say that the cost function w is convex’ if it satisfies the convex Monge condition: 

w(a,c)+w(b,d)<w(b,c)+w(a,d) for all a<b and c<d. 

We say that the cost function w is concave if it satisfies the concave Monge condition: 

w(a,c)+w(b,d)~w(b,c)+w(a,d) for all a<b and c<d. 

Note that w(i,j) for i >j is not defined in Problems 2.1,2.3, and 2.4. Thus w satisfies the 

Monge condition for a < b < c < d. 

A condition closely related to the Monge condition was introduced by Aggarwal 

et al. [Z]. Let A be an n x m matrix. A is convex totally monotone if for a < b and c < d, 

A [a, c] > A [b, c] =c- A [a, d] 3 A [b, d]. 

1 The definitions of convexity and concavity were interchanged in some references. 
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Similarly, A is concatle totally monotone if for all u < b and c cd, 

A[n,c]<A[b,c] * A[a,d]>A[b,d]. 

Let rj be the row index such that A [rj,j] is the minimum value in column j. Convex 

total monotonicity implies that rl <r2 6. <r, (i.e. the minimum row indices are 

nondecreasing). Concave total monotonicity implies that y1 3r, 3. .3r,,, (i.e. the 

minimum row indices are nonincreasing). We say that an element A[i,j] is dead if 

i #rj (i.e. A [i, j] is not the minimum of column j). A submatrix of A is dead if all of its 

elements are dead. The convex (concave) Monge condition implies convex (concave) 

total monotonicity, respectively, but the converse is not true. Though the condition we 

have for the problems is the Monge condition, all the algorithms in this paper use only 

total monotonicity. 

3.1. The lD/lD problem 

Hirschberg and Larmore [24] solved the convex 1 D/ID problem in O(n log n) time 

using a queue. Galil and Giancarlo [15] proposed O(n log n) algorithms for both 

convex and concave cases. Miller and Myers [40] independently discovered an 

algorithm for the concave case, which is similar to Galil and Giancarlo’s. We des- 

cribe Galil and Giancarlo’s algorithms. We should mention that if D[i]=E[i] 

and MJ(~, i)=O (i.e. M: satisfies the triangle inequality or inverse triangle inequality), 

then the problem is trivial: E[j] = D[O] + w(0, j) in the concave case and 

E[j]=D[O]+w(O, l)+w(l,2)+. .+(j-1,j) in the convex case [S, 151. 

Let B[i, j] = D[i] + w(i,j) for O<i< j,<n. We say that B[i, j] is auailable if D[i] is 

known and therefore B[i,j] can be computed in constant time. That is, B[i,j] is 

available only after the column minima for columns 1,2, . . , i have been found. We 

call such matrix Bon-line since its entries become available as we proceed. If all entries 

of a matrix are given at the beginning, that matrix is called ofSine. The lD/lD 

problem is to find the column minima in the on-line upper triangular matrix B. It is 

easy to see that when w satisfies the convex (concave) Monge condition, so does B. 

Hence B is totally monotone. 

Galil and Giancarlo’s algorithms find column minima one at a time and process 

available entries so that we keep only possible candidates for future column minima. 

In the concave case we use a stack to maintain the candidates. Figure 1 shows the 

outline of the algorithm. For each j, 26 j<n, we find the minimum at column j as 

procedure concave lD/lD 
initialize stack with row 0; 
for j + 2 to n do 

find minimum at column j; 
update stack with row j - 1; 

end do 
end 

Fig. 1. Galil and Giancarlo’s algorithm for the concave lD/lD problem. 
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Fig. 2. Matrix B and stack elements at column j. 

follows. Suppose that (i1, II,), . . , (ik, hk) are on the stack ((iI, h,) is at the top of the 

stack). Initially, (0, n) is on the stack. The invariant on the stack elements is that in 

submatrix B[O:j-2,j:n] row i, for ldr<k is the best (gives the minimum) in 

the column interval [h,_, + 1, k,] (assuming k,+ 1 =j). By the concave total mono- 

tonicity of B, il, . , ik are nonincreasing (see Fig. 2). Thus the minimum at column j is 

the minimum of B[ii, j] and B[ j- l,j]. 

Now we update the stack with row j- 1 as follows. 

(1) If B[i,, j] <B[ j- 1, j], row j- 1 is dead by concave total monotonicity. If 

k, =j, we pop the top element because it is of no use in the future. 

(2) IfB[ii,j]>B[j-l,j], wecomparerowj-1 withrowi,atk,(i.e.B[i,,k,] vs. 

B[j-I, k,]) for r=1,2,... until row i, is better than row j-l at k,. If rowj- 1 is 

better than row i, at k,, row i, cannot give the minimum for any column because row 

j- 1 is better than row i, for column I < k, and row i,+ 1 is better than row i, for column 

I > k,; we pop the element (i,, h,) from the stack and continue to compare row j- 1 

with row i,, 1. If row i, is better than row j- 1 at k,, we need to find the border of the 

two rows j - 1 and i,, which is the largest k < k, such that row j - 1 is better than row i, 
for column l<k; i.e., finding the zero z of ,f(x)=B[j-1,x]-B[i,.,x]= 

w(j-1,x)-w(i,, x)+(D[,j-l]-D[ir]), then k= Lz]. Ifk>j+l, we push (j-l,k) 

into the stack. 

Popping stack elements takes amortized constant time because the total number of 

pop operations cannot be greater than II. If it is possible to compute the border k in 

constant time, we say that w satisfies the closest zero property. Concave functions such 

as w(i, j)=log(j-i) and m satisfy the closest zero property. For those simple 

functions the total time of the algorithm is O(n). For more general w we can 

compute k in O(log n) time using a binary search. Hence the total time is O(n log n) in 

general. 

The convex case is similar. We use a queue instead of a stack to maintain the 

candidates. Suppose that (iI, k,), . . . ,(ik, kk) are in the queue at column j ((ii, k,) is at 

the front and (ik, kk) is at the rear of the queue). The invariant on the queue elements is 
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that in B[O: j-2, j: n] row i, for 1 dr < k is the best in the interval [h,., h,, I - l] 

(assuming hk + I - 1 = n). By the convex total monotonicity of B, il, . . . , ik are nonde- 

creasing. Thus the minimum at column j is the minimum of B[i,, j] and B[ j- 1, j]. 

One property satisfied by the convex case only is that if B[ j- 1, j] < B[il, j], the 

whole queue is emptied by convex total monotonicity. This property is used to get 

a linear-time algorithm for the convex case as we will see shortly. 

3.2. The matrix searching technique 

Aggarwal et al. [2] show that the roM: maxima of a totally monotone matrix A can 

be found in linear time if A [i j] for any i, j can be computed in constant time (i.e. A is 

off-line). Since in this subsection we are concerned with row maxima rather than 

column minima, we define total monotonicity with respect to rows: an n x m matrix 

A is totally monotone if for all a < b and c < d, 

A[a,d]>A[a,c] * A[b,d]>A[b,c]. 

Also, an element A[i, j] is dead if A[i, j] is not the maximum of row i. 

We find the row maxima in O(m) time on n x m matrices when ndm. The key 

component of the algorithm is the subroutine REDUCE (Fig. 3). It takes as input an 

n x m totally monotone matrix A with n6m. REDUCE returns an n x n matrix 

Q which is a submatrix of A with the property that Q contains the columns of A which 

have the row maxima of A. 

Let k be a column index of Q whose initial value is 1. REDUCE maintains an 

invariant on k that for all 1 <j < k, Q [l : j - 1 ] is dead (see Fig. 4). Also, only dead 

columns are deleted. The invariant holds trivially when k= 1. If Q[k, k] > Q[k, k+ l] 

then Q[l : k, k + l] is dead by total monotonicity. Thus if k<n, we increase k by 1. If 

k=n, column k+ 1 is dead and k remains the same. If Q[k, k] <Q[k, k-t l] then 

Q [k : n, k] is dead by total monotonicity. Since Q [l : k - 1, k] was already dead by the 

invariant, column k is dead; we decrease k by 1 if k was greater than 1. 

procedure REDUCE(A) 

Q + A; 
Ic t 1; 
while Q has more than n columns do 

case 
Q[k, k] > Q[k, k + l] and k < R: k + k + 1; 
Q[k, k] > Q[k, k + l] and k = n: delete column k f 1; 
Q[k, kl I Q[k, k + I]: 

delete column k; 
ifk>lthenktk-1; 

end case 
end do 
return(Q); 

end 

Fig. 3. The REDUCE procedure. 
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1 k 

Fig. 4. Matrix Q (the shaded region is dead). 

procedure ROWMAX 

Q- REDUCE(A); 
if R = 1 then output the maximum and return; 

P + {Qz>Q4,...,Qz~n/z11; 
ROWMAX( 
from the known positions of the maxima in the even rows of Q: 

find the maxima in its odd rows; 

end 

Fig. 5. The SMAWK algorithm. 

For the time analysis of REDUCE, let a, b, and c denote, respectively, the number of 

times the first, second, and third branches of the case statement are executed. Since 

a total of m--n columns are deleted and a column is deleted only in the last two 

branches, we have b + c = m - n. Let c’ be the number of times k decreases in the third 

branch. Then c’ < c. Since k starts at 1 and ends no larger than n, a-cd a-c’ < n - 1. 

We have time t=a+b+c<a+2b+c<2m-n-1. 
In order to find the row maxima of an n x m totally monotone matrix A with n dm, 

we first use REDUCE to get an n x n matrix Q, and then recursively find the row 

maxima of the submatrix of Q which is composed of even rows of Q. After having 

found the row maxima of even rows, we compute the row maxima in odd rows. The 

procedure ROWMAX in Fig. 5 shows the algorithm. 

Let T(n, m) be the time taken by ROWMAX for an n x m matrix. The call to 

REDUCE takes time O(m). The assignment of the even rows of Q to P is just the 

manipulation of a list of rows, and can be done in O(n) time. P is an (n/2) x n totally 

monotone matrix, so the recursive call takes time T(n/2, n). Once the positions of the 

maxima in the even rows of Q have been found, the maximum in each odd row is 

restricted to the interval of maximum positions of the neighboring even rows. Thus, 

finding all maxima in the odd rows can be done in O(n) time. For some constants cr 

and c2, the time satisfies the following inequality 

T(n, m) < cl n + c2m + T(n/2, n), 
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which gives the solution T(n, m)62(c1 +c,)n +c2m. Since n<m, this is O(m). The 

bookkeeping for maintaining row and column indices also takes linear time. 

When n>m, the row maxima can be found in O(m(1 +log(n/m))) time [2]. But it 

suffices to have O(n) time by extending the matrix to an n x n matrix with - cc and 

applying RO WMAX. Therefore, we can find the row maxima of an n x m matrix in 

O(n + m) time. By simple modifications we can find the column minima of a matrix in 

O(n+mj time whenever the matrix is convex or concave totaiiy monotone. We wiii 

refer to the algorithm for finding the column minima as the SMAWK algorithm. 

There are two difficulties in applying the SMAWK algorithm to the lD/lD 

problem. First of all, B is not rectangular. In the convex case we may put + cc into the 

lower half of B. Then B is still totally monotone. In the concave case, however, total 

monotonicity no longer holds with + co entries. A more serious difficulty is that the 

SMAWK algorithm requires that matrix A be off-line. In the lD/lD problem B[i, j] is 

available only after the column minima for columns 1, . . . , i have been found. Though 

the SMAWK algorithm cannot be directly applied to the lD/lD problem, many 

algorithms for this problem [52, 11, 17, 34, 1, 33, 353 use it as a subroutine. 

3.3. The 1 D/lD problem revisited 

Wilber [52] proposed an O(n) time algorithm for the convex lD/lD problem when 

D[i] = E [il. However, his algorithm does not work if the matrix B is on-line, which 

happens when many copies of the lD/lD problem proceed simultaneously (i.e. the 

computation is interleaved among many copies) as in the mixed convex and concave 

cost problem [11] and the modified edit distance problem [15]. Eppstein [11] 

extended Wilber’s algorithm for interleaved computation. Galil and Park [17] gave 

a linear time algorithm which is more general than Eppstein’s and simpler than both 

-Wilber’s and Eppstein’s. Larmore and Schieber [38] developed another linear-time 

algorithm, which is quite different from Galil and Park’s. Klawe [34] reported yet 

another linear-time algorithm. 

For the concave lD/lD problem a series of algorithms were developed, and the best 

algorithm is almost linear: an O(alog log n) time algorithm due to Aggarwal and 

Klawe [l], an O(n log* n) algorithm due to Klawe [33], and finally an O(nu(n)) 

algorithm due to Klawe and Kleitman [35]. The function log*n is defined to be 

min{iJlog”’ n < l}, where log”’ n means applying the log function i times to n, and 

a(n) is a functional inverse of Ackermann’s function as defined below. We define 

the functions L,(n) for i= - l,O, 1,2, . recursively: L_ 1(n) = n/2, and for i30, 

Li(n) = min {sl Ly! 1 (n) < l}. Thus, L,,(n) = r log n 1, LI(n) is essentially log* n, Lz(n) is 
P‘.c.Pnt;.?ll., lnn**.A otr. \XJo mr..x, AAtmo ,Iw\_m;n f-1 T /ML ,I ~~~~lLrlu‘lJ I”& rc, CICb. 7” CI l,“W UbIIIIL u(rr, - 11,111 ,a, Ls(‘C, q 3,. 

Aggarwal and Klawe [l] introduce staircase matrices and show that a number of 

problems in computational geometry can be reduced to the problem of finding the 

row minima of totally monotone staircase matrices. We define staircase matrices in 

terms of columns: an n x m matrix S is a staircase matrix if 
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(1) there are integers 5 for j= 1, 2, . . , m associated with S such that 

1 <fi <fi< ... bf,dn, and 

(2) S[i,j] is a real number if and only if 1 d i<fj and 1 f j<m. Otherwise, S[i, j] is 

undefined. 

We call column j a step-column if j = 1 or h >J_ 1 for j > 2, and we say that S has 

t steps if it has t step-columns. Fig. 6 shows a staircase matrix with four steps. 

Instead of the lD/lD problem we consider its generalization: 

E[j]=min (D[i]+iQl(i,j)) for ldj<n, 
ocr<l, 

(5) 

where O<fr 6... <fn < n. D [i] for i = 0, . ,fi are given, and D [i] for i =h_ 1 + 1, . ,A 

(j> 1) are easily computed from E[ j- 11. This problem occurs as a subproblem in 

a solution of the 2D/2D problem. It becomes the 1 D/l D problem iffj=j- 1. 

Let B[i, j] = D [i] + w(i, j) again. Now B is an on-line staircase matrix. When w is 

convex, we present a linear-time algorithm that is an extension of Galil and Park’s 

algorithm [17] to on-line staircase matrices. 

As we compute E from E[l] to E[n], we reduce the staircase matrix B to 

successively smaller staircase matrices B’. For each staircase matrix B’ we maintain 

two indices r and c: r is the first row of B’, c its first column. That is, B’[i, j] = B[i, j] if 

i > r and j > c, B’ [i, j] is undefined otherwise. We use an array N [ 1 : n] to store interim 

column minima before row r; i.e., N [ j] = B[i, j] for some i<r (its usage will be clear 

shortly). At the beginning of each stage the following invariants hold: 

(a) E[ j] for all 16 j < c have been found. 

(b) E[ j] for jac is min (N[ j], mini,,B’[i, j]). 

Invariant (a) means that D [i] for all 0 < i <J are known, and therefore B’[r : JI, c : n] is 

available. Initially, r = 0, c = 1, and N [ j] = +co for all 1 < j < n. 

Let p = min ($ + c - r + 1, n). We construct a matrix G which consists of N [c : p] as 

its first row and B’[r:L,c:p] as the other rows. G is a square matrix unless 

Fig. 6. Staircase matrix B’. 
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n <J+c---r+ 1. Since matrix G is convex totally monotone, its column minima 

F[c:p] can be found using the SMAWK algorithm. Let c’ be the first step-column 

after c, and H be the part of B’ below G. 

(1) If c’>p (i.e., H is empty), we have found column minima E [c: p] which are 

F[c:p] by invariant (b). 

If c’ dp, column minima E[c : c’ - l] have been found. For the other column 

minima we need to process H. For each row in H we make two comparisons: one with 

its first entry, the other with its last entry until case (2) or (3) happens. Let i be the 

current row of H, andji the first column of row i. Initially, i =f + 1. Assume inductively 

that the part of H above row i(fl in Fig. 6) is dead. 

(2) If B’[i, ji] < F[j;], then rows r, . . . , i- 1 of B’ are dead by the convex total 

monotonicity of B’ (i.e. emptying the queue in Galil and Giancarlo’s algorithm). 

(3) If B’[i,j;] >F[ji] and B’[i, p]< F[p], then B’[r:i- 1, p+ 1 :n] (c( is in Fig. 6) is 

dead. Though G is not dead, we can store F [ ji : p] into N[ji : p] and remove rows 

r, . . . , i- 1. 

(4) Otherwise, B’[i, ji:p] (7 in Fig. 6) is dead by convex total monotonicity. We go 

on to the next row of H. 
If case (4) is repeated until the last row of H, we have found column minima E[c: p]. 

This case will be called (4’). Note that whenever a new step-column starts, column 

minima for previous columns have been found, so all entries involved in the computa- 

tion above become available. If case (2) or (3) happens, we start a new stage with r = i 
and c =,ii. Otherwise, we start a new stage with c =p + 1 (r remains the same). The two 

invariants hold at the beginning of new stages. 

Let i’ be the last row of B’ which was involved in the computation (e.g. i’=fL: =f, in 

case (1) and i’ =f, in case (4’)). Each stage takes time O(i’ - r). If case (2) or (3) happens, 

we charge the time to rows r, . . , i’ - 1 because these rows are removed from B’. If case 

(1) or (4’) happens, as long as p < n, O(,fl-r) time is charged to columns c, . . . , p 
because these columns are removed, but the remaining 0(&-J) in case (4’) is counted 

separately. Note that &-fi: is the number of rows in H, and these rows can never be 

a part of a future H. Overall, the remaining O(f,-,i)‘s are summed up to O(n). If p = n 
in case (1) or (4’) we have finished the whole computation, and rows r, . . . , n- 1 have 

not been charged yet; O&r) time is charged to the rows. Thus the total time of the 

algorithm is linear in n. 

When M: is concave, Klawe and Kleitman’s algorithm [35] solves Recurrence 5 in 

O(nz(n)) time. They gave an algorithm for finding the row minima of off-line staircase 

matrices, and then modified it to work for on-line staircase matrices. If the matrix B is 

transposed, finding column minima in B becomes finding row minima in the trans- 

posed matrix. We say that a staircase matrix has shape (t, n, m) if it has at most t steps, 

at most n rows, and at most w1 columns. We describe their off-line algorithm without 

going into the details. 

The idea of Klawe and Kleitman’s algorithm is to reduce the number of steps of 

a staircase matrix to two, for the row minima of a staircase matrix with two steps can 

be found in linear time using the SMAWK algorithm. We first reduce a staircase 



60 Z. Galil, K. Park 

matrix of shape (n, n, m) to a staircase matrix of shape (n/(~c(n))~, n/(~(n))~,m) in 

O(ma(n)+n) time. Then we successively reduce the staircase matrix to staircase 

matrices with fewer steps by the following reduction scheme: a staircase matrix of 

shape (n/L,(n), n, m) is reduced to a set of staircase matrices G1, . . . , G, in O(m + n) 

time, where Gi is of shape (Hi/L,_ 1 (ni), ni, mi), If= 1 Iii < n, and I:= 1 mi < m + n. It is 

shown by induction on s that by the reduction scheme the processing (finding row 

minima) of a staircase matrix of shape (n/L,(n), n, m) can be done in O(sm + s2 n) time. 

Thus the staircase matrix of shape (n/(~(n))~, ~/(@(a))~, m) can be processed in 

O(ma(n) + ?I). 

3.4. Mixed convex and concave costs 

Eppstein [l 11 suggested an approach for general w(i,j) based upon convexity and 

concavity. In many applications the cost function w(i,j) may be represented by 

a function of the difference j - i; i.e. w(i, j) = g( j - i). Then g is convex or concave in the 

usual sense exactly when w is convex or concave by the Monge condition. For general 

NJ, it is not possible to solve the lD/lD problem more efficiently than the obvious 

O(n’) algorithm because we must look at each of the possible values of w(i,j). 

However, this argument does not apply to g because g( j-i) has only n values. 

A general g can be divided into piecewise convex and concave functions. Let 

cO, c1 , . . , c, be the indices in the interval [ 1, n] (cO = 1 and c, = n) such that g is convex 

in [l, c,], concave in [cl, cl], and so on. By examining adjacent triples of the values of 

g, we can easily divide [l, n] into s such intervals in linear time. We form s functions 

g1,g2, . . . , gS as follows: g,(x)=g(x) if cP_ i dxdc,; g,(x)=+oc otherwise. Then Re- 

currence 1 becomes 

E[ j] = min EP[ j], 
ISP<\ 

where 

Ep[j]= min {D[i]+gP( j-i)}. (6) 
OS!<, 

We solve Recurrence 6 independently for each gP, and find E[ j] as the minimum of 

the s results obtained. 

It turns out that convex gP remains convex in the entire interval [l, n], and therefore 

we could apply the algorithm for the convex 1 D/ 1 D problem directly. The solution for 

concave gP is more complicated because the added infinity values interfere with 

concavity. Eppstein solves both convex and concave gP in such a way that the average 

time per segment is bounded by O(na(n/s)). Consider a fixed gP, either convex or 

concave. Let B,[i, j] = D [i] +gp( j- i). Then E,[j] is the minimum of those values 

B,[1’, j] such that cP_ 1 < j- i < cp; the valid B, entries for E, form a diagonal strip of 

width ap=cp-cp_ 1. We divide this strip into triangles as shown in Fig. 7. We solve 

the recurrence independently on each triangle, and piece together the solutions to 

obtain the solution for the entire strip. E,[j] for each j is determined by an upper 
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Fig. 7. B, entries and triangles. 

triangle and a lower triangle. The computation within an upper triangle is a lD/lD 

problem of size up. The computation within a lower triangle does not look like 

a lD/lD problem. However, observe that all B, entries for a lower triangle are 

available at the beginning of the computation; we can reverse the order of j. Each 

triangle is solved in O(a,cr(a,)) time. (If the triangle is convex, it is actually O(a,).) 

Since a strip is composed of O(n/a,) upper and lower triangles, the total time to 

compute E, is O(ncc(a,)). The time for all E,‘s is 0(x;= 1 m(a,)). Since I”,= 1 up= n, the 

sum is maximized when each u,=n/s by the concavity of a; the time is O(nscc(n/s)). 

Since the time for combining values to get E is O(ns), the overall time is O(nscr(n/s)). 

Note that the time bound is never worse than 0(n2). 

3.5. The 2D/lD problem 

For the convex 2D/lD problem Frances Yao [SS] gave an O(n’) algorithm. She 

imposed one more condition on w which comes from the applications: 

w(i, j) < w(i’, j’) if [i, j] G [i’, j’]. 

That is, w is monotone on the lattice of intervals ordered by inclusion. 

Lemma 3.1. (Yao [SS]). If w sutisjes the convex Monge condition and the condition 

above, C dejined by Recurrence 3 also satisjes the convex Monge condition. 

Let Ck(i, j) denote w(i, j) + C[i, k- 11 + C[k, j]. Let Ki, j be the index k where the 

m.inimum is achieved for C[i, j]; i.e. C[i, j] = Ck(i, j). 

Lemma 3.2 (Yao [SS]). IfC sutis$es the convex Monge condition, we have 

Ki,j_1~Ki,j~Ki+l,j for i<j. 
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Proof. It is true when i + 2 =j; therefore assume that i+ 2 <j. We prove the first 

inequality. Let k=Ki,j-l. Thus Ck(i, j- l)<C,,(i, j- 1) for i<k’<k. We need to show 

that Ck(i, j)<C,.(i,j) for i<k’< k, which means Ki,j>k. Take the convex Monge 

condition of C at k’ < k d j- 1 <j 

C[k’,j-l]+C[k,j]<C[k,j-l]+C[k’,j]. 

Adding w(i, j- l)+ w(i, j)+C[i, k’- l] + C[i, k- l] to both sides, we get 

C,,(i,j-l)+C,(i,j),<C,(i,j- l)+CJi,j). 

Since Ck(i, j- l)< Ckr(i, j- l), we have Ck(i, j)< Ck,(i, j). Similarly, the second inequal- 

ity follows from the convex Monge condition of C at i< i+ 1 <k < k’ with 

k=Ki+,,j. 0 

Once Ki,j-1 and Ki+l.j are given, C[i, j] and Ki, j can be computed in 

O(Ki+ i,j - Ki,j_ 1 + 1) time by Lemma 3.2. Consequently, when we compute C(i, j) for 

diagonal d=j-i= 1,2, . . . . n- 1, the total amount of work for a fixed d is O(n); the 

overall time is O(n’). 

The 0(n2) time construction of optimal binary search trees due to Knuth [36] is 

immediate from Yao’s result because the problem is formulated as the convex 2D/ 1 D 

problem. Yao [SS, 561 gave an O(n’logd) algorithm for the maximum perimeter 

inscribed d-gon problem using the 20110 problem, which was improved to 

O(dn logd-’ n) by Aggarwal and Park [3]. Yao’s technique is general in the sense that 

it applies to any dynamic programming problem with convexity or concavity. It gives 

a tighter bound on the range of indices as in the convex 2D/lD problem. In some 

cases, however, the tighter bound by itself may not be sufficient to reduce the 

asymptotic time complexity. The 1 D/ 1 D problem and the concave 2D/ 1 D problem are 

such cases. Aggarwal and Park [3] solved the concave 2D/lD problem in time 

0(n2~(n)) by dividing it into n concave lD/lD problems. If we fix Zin Recurrence 3, it 

becomes a 1 D/ 1 D problem: 

D’[q]= min {D’[p]+w’(p,q)) for ldqdm, 
o<p<q 

where D’[q]=C[[q+z’], w’(p,q)=C[p+i^+l,q+~‘]+w(~~q+$ and m=n-L 

3.6. The 20120 problem 

We define a partial order on the points ((i, j)(O<i,j,<nj: (i’,j’)<(i, j) if i’<i and 

j’<j. We define the domain d(i, j) of a point (i, j) to be the set of points (i’, j’) such that 

(i’, j’)<(i, j), and the diagonal index of a point (i, j) to be i+j. Let dk(i, j) be the set of 

points (i’, j’) in d(i, j) whose diagonal index is k=i’+j’. The 20120 problem has 

a property that the function w depends only on the diagonal index of its two argument 

points. Thus when we compute E[i, j], we have only to consider the minimum among 

the D[i’, j’] entries in dk(ir j), where k=i’+j’. 
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Waterman and Smith [Sl] used this property to obtain an 0(n3) algorithm without 

convexity and concavity assumptions. Their algorithm proceeds row by row to 

compute E[i, j]. When we compute row i, for each column j we keep only the 

minimum D entry in &(i, j) for each k. That is, we define 

H’[k, j] = min D[i’, j’]. 
(i.i’k&(i.ll 

Then, Recurrence 4 can be written as 

E[i,j]= min {H’[k,j]+w(k,i+j)}. 
!T<1+,- I 

For each i, j we compute H’[k, j] from Him1 [k, j] for all k in O(n) time, since 

Hi[k,j]=min{Hi~‘[k,j],D[i-1,k-i+1]}.ThenE[i,j]iscomputedinO(n)time. 

The overall time is 0(n3). 

Using the convexity and concavity of w. Eppstein et al. [12] gave an 0(n2 log2 n) 

algorithm for the 2D/2D problem. As in Galil and Giancarlo’s algorithm for the 

1 D/ 1 D problem, it maintains possible candidates for future points in a data structure. 

Subsequently, asymptotically better algorithms were discovered. 

Aggarwal and Park [3] suggested a divide-and-conquer approach combined with 

the matrix searching technique for the 2D/2D problem. We partition E into four 

n/2 x n/2 submatrices El, E,, E,, and E4 as shown in Fig. 8. Let T(n) be the time 

complexity of the algorithm for the problem of size n. We recursively compute El in 

T(n/2) time. We compute the influence of El on E, in 0(n2) time, and recursively 

compute Ez in T(n/2) time, taking into account the influence of El on E,; similarly for 

E3. Finally, we compute the influence of El on Eq, the influence of E2 on Eq, and the 

influence of E, on Ed, all in 0(n2) time, and then recursively compute E4 in T(n/2) 
time. This yields T(n) = 4T(n/2) + 0(n2). Since T( 1) = O(l), we get T(n) = 0(n2 log n). 

The influence of El on E2 is computed as follows (other influences are computed 

similarly). Each point (i, j+ n/2) in row i of E, has the same domain in El, and thus 

El E2 

E3 E4 

Fig. 8. The partition of matrix E. 
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depends on the same diagonal minima in E,. Consequently, consider the matrix 

X,[k,j] for l<j<n/2 and O<k<i+n/2 where 

Xi[k,j]=Hi[k,n/2+1]+w(k,i+j+n/2). (7) 

That is, X,[k, j] contains the influence of E, on point (i, j+n/2). Then E[1’, j+ n/2] is 

the minimum of the two: min,Xi[k, j], and the recursive solution of E2. Computing 

the influence of El on E, reduces to computing the column minima of Xi for 

1 <i< n/2. The matrix Xi is totally monotone when w is either convex or concave. As 

mentioned before, H’[k, n/2 + l] for all k can be computed from Hi- ’ [k, n/2 + l] in 

O(n) time. Once this has been done, the column minima of Xi can be computed in O(n) 

time using the SMAWK algorithm. The total time for computing the influence 

is O(n’). 

Larmore and Schieber [38] gave an algorithm for the 20/2D problem, which runs 

in O(n2) time for the convex case and in O(n2a(n)) time for the concave case. Their 

algorithm uses an algorithm for the lD/fD problem as a subroutine, and this is the 

only place where the convex and concave cases differ. 

We assume that n+ 1 is a power of two. The algorithm can be easily modified for 

n + 1 that is not a power of two. For 0 ,< 1 <log, (n + I), we define a square of level I to be 

a 2’ x 2’ square of points whose upper left corner is at the point (i, j) such that both 

i and j are multiples of 2’. Let S!,. c be the square of level 1 whose upper left corner is at 

the point (u2’, ~2~). Let SL, * be the set of squares of level I whose upper left corner is in 

row ~2’. Similarly S!+, is the set of squares of level I whose upper left corner is in 

column 212’. Note that each square St, c consists of four squares of level I - 1. Let S’(i, j) 

be the square of level I that contains the point (i,j). We extend the partial order < over 

the squares: S’ < S if every point in S’ precedes every point in S. 

For 0 < 1 <log, (n + l), we define 

E,[i,j]=min{D[i’,j’]+w(i’+j’, i+j)lS’(i’,j’)<S’(i,j)}. 

Note that E,[i,j]=E[i,j], and E,[i,j] for I>0 is an approximation of E[i,j]. 

Suppose that the matrix D is off-line. Let Elog,,,i+,,[i,j]=+cc for all (i, j). We 

compute the matrix EI given the matrix E 1+1 from l=log,(n+ l)- 1 to 0. Consider 

If ’ a point (p, q), and let S,, t: = S’+ ’ (p, q). There are four cases depending on the position 

of the square S’(p, 4) in the square S’+ ‘(p, q). 

(1) S’(p, q) is the upper left subsquare of S” ‘(p, q). That is, S’(p, q)=Si,, 2v. It is 

easy to see that E,[ p, q] = El+ 1 [p, q]. 

(2) S’( p, q) is the upper right subsquare of S’+ ’ (p, q). That is, S’(p, q)=S$,, *“+ 1. 
The points in the squares of Si, 2v that precede the square S\,, 2L.+ 1 have to be 

considered when computing E,[ p, q] (see Fig. 9). For the points (i, j) in the squares of 

s:,2”+1> we define the column recurrence 

CRE[i, j] =min{D[i’, j’] +w(i’+j’, i+j) 1 (i’, j’)ESfF, 2U and S’(i’, j’)<S’(i, j)}. 

Then, &CP, d=min{h+ I CP, d, CRfJp, 41). 
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Fig. 9. S’( p, q) is the upper right subsquare of S’+ ‘(p, 4). 

(3) S’(p, q) is the lower left subsquare of S”‘(p, q). That is, S’(p, q)=Si,+ I, 2u. The 

points in the squares of S\,, * that precede the square S:,+ r, 2a have to be considered 

when computing EI[p, q]. For the points (i,j) in the squares of S:,+ r, .+, we define the 

row recurrence 

RRt[i,j] =min{D[i’,j’] + w(i’+j’, i+j)l (~“,J”)E&,, * and S’(i’,j’)<S’(i,j)}. 

Then, EICp,ql=min(E,+,Cp,ql,RRtCp,ql}. 
(4) S’(p,q)is thelowerright subsquareofS’+r(p,q).That is,S’(p,q)=S&,+,,,,+,. 

Similarly to the previous cases, EI [ p, q] = min { EI + 1 [ p, q], CR; [ p, q], RRf, [ p, q] }. 
From the fact that the function w depends only on the diagonal index of the points 

we have the following observations: 

(a) The value of E,[i,j] (also CRf,[i,j] and RRf,[i,j]) is the same for all points in 

a square of level 1 which have the same diagonal index i+j. 

(b) To compute CRf,[i, j] (or RRf,[i,j]) it is sufficient to consider only the min- 

imum D[i’,j’] among all points in a square of level 1 which have the same diagonal 

index i’ + j’. 

By observation (a) we keep 2’+ ’ - 1 values for each square of level 1 (corresponding 

to the diagonals). Since there are (n + 1)2/22’ squares at level 1, El has O(n2/2’) values. 

Thus the overall computation above takes 0(n2) time except for the row and column 

recurrences. To compute El from El+ r, we have to solve (n + 1)/2’+r row recurrences 

and (n+ 1)/2”l column recurrences. We will show that each recurrence is solved by 

four instances of Recurrence 5. Overall, there are O(n) instances of Recurrence 5, 

which implies O(n2) time for convex w and O(n’a(n)) for concave w. 

Now we show how to compute CR L. The algorithm for the row recurrences is 

analogous. Each square of level 1 will be assigned a color, either red or black. The 

upper left square is red, and all squares of level 1 are assigned colors in the checker- 

board fashion. Consider the diagonals that intersect the squares in Si,zV+ 1. Each 

diagonal intersects at most two squares in S\. 2V+ r, one red square and one black 

square. By observation (a) the value of CR L [i, j] is the same for a diagonal in a square, 
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but each diagonal intersects two squares. Thus we divide the row recurrence into two 

recurrences: the red recurrence for points in red squares and the black recurrence for 

points in black squares. By observation (b) we need to consider only the minimum 

D [i’, j’] for a diagonal in a square, but again each diagonal in Si, 2V intersects two 

squares, one red square and one black square. Thus we divide the red recurrence into 

two recurrences: The red-red recurrence and the red-black recurrence. Similarly, the 

black recurrence is divided into two recurrences. Therefore, each row or column 

recurrence is solved by four instances of the lD/lD problem. 

In the 2D/2D problem, however, the matrix D is on-line. Larmore and Schieber 

modified the algorithm above so that it computes the entries of E = E, row by row and 

uses only available entries of D without increasing the time complexity. Therefore, it 

leads to an O(n’) time algorithm for the convex case and an O(n’ u(n)) time algorithm 

for the concave case. 

3.7. Variations of the 20120 problem 

When w(i, j) is a general function of the difference j-i (i.e. w(i, j)=g( j- i), and g is 

piecewise convex and concave with s segments), Eppstein [l l] suggests an O(n’sa(n/s) 

log n) algorithm for the 2D/2D problem. We use the partition of Aggarwal and Park in 

Fig. 8. Since Equation 7 involves w, finding the column minima of Xi differs from the 

case where w is either convex or concave. As in Subsection 3.4, we divide the matrix Xi 

into diagonal strips and the strips into triangles. Thus the column minima of Xi can be 

found in O(nsa(n/s)) time. Computing the influence for all 1 di<ni2 takes time 

O(n*m(n/s)). This gives the time 

T(n)=4T(n/2)+O(n2sa(n/s))=O(n2sct(n/s)logn). 

If w(i, j) is a linear function of the difference j - i (i.e. w(i, j) = a( j - i) + b for some 

constants a and b), the 2D/2D problem reduces to a 2D/OD problem as follows 

[31,51]. We divide the domain d(i, j) of point (i, j) into three regions: 

d(i- 1, j), d(i, j- l), and (i- 1, j- 1). (Of course, d(i- 1, j) and d(i, j- 1) overlap, but 

this does not affect the minimum.) The minimization among points in d(i-1,j) to 

compute E [i, j] may be simplified: 

min (DC?, j’]+w(i’+j’, i+j)} 
i'<i+I,j'<l 

= min {D[i’,j’]+w(i’+j’,i-l+j)}+a 
l’<lPl,,‘<, 

=E[i-l,j]+a. 

Since E[i, j] is the minimum of the minima in three regions, 

E[i,j]= min {D[i’,j’]+w(i’+j’,i+j)} 
“<!,,‘<I 

=min{E[i-l,j]+a,E[i,j-l]+a,D[i-l,j-l]+w(i+j-2,i+j)}, 

which is a 2D/OD problem. 
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4. Sparsity 

Dynamic programming problems may be sparse. Sparsity arises in the 2D/OD 

problem and 2D/2D problem [29, 7, 131. In sparse problems we need to compute 

E only for a sparse set S of points. Let M be the number of points in the sparse set S. 

Since the table size is O(n2) in the two-dimensional problems, M < n2. We assume that 

the sparse set S is given. (In the actual problems S is obtained by a preprocessing 

~23, 131.) 

4.1. The 20100 problem 

We define the range R(i,j) of a point (i,j) to be the set of points (i’, j’) such that 

(i,j)<(i’,j’). We also define two subregions of R(i,j): the upper range UR(i,j) and the 

lower range LR(i,j). UR(i,j) is the set of points (i’, j’)ER(i,j) such that j’-i’>j-i, 

and LR(i,j) is the set of points (i’,j’)~R(i,j) such that j’-i’<j-i. 

Consider the case of Recurrence 2 where Xi = a, yj = b, zi, j = 0 if (i, J’)ES; Zi, j = a + b 

otherwise, for constants a and b, and E [i,j] = D[i, j] (i.e. the edit distance problems 

when replacements are not allowed). Then Recurrence 2 becomes 

1 

D[il,j]+a(i-i,) 

D [i, j] = min DCij,l+b(j-ji) 

min (D[i’,j’]+a(i-i’-l)+b(j-j’-l)] for (i,j)ES, 
(I’. j’l<ri, I) 
ii.J’JFS (8) 

where i1 is the largest row index such that i1 ti and (ir, j)ES, and j, is the largest 

column index such that j, <j and (i, j, )ES. The main computation in Recurrence 8 can 

be represented by 

E[i, j] = min {D[i’, j’] +f(i’, j’, i, j)} for (i, j)ES, (9) 
li’.,‘)<il,/J 

(i’.J’kS 

where f is a linear function of i’, j’, i, and j for all points (i, j) in R(i’, j’). This case will 

be called the rectangle case because R(i’, j’) is a rectangular region. The rectangle case 

includes other sparse problems. In the linear 2D/2D problem, which is a 2D/OD 

problem, f(i’, j’, i, j)= w(i’ +j’, i+j) is a linear function, Eppstein et al. [13] gave an 

O(n + M log log min(h;l, n2/M)) time algorithm for the linear 2D/2D problem. In the 

longest common subsequence (LCS) problem,f(i’, j’, i, j) = 1 and E [i, j] = D[i, j], and 

we are looking for the maximum rather than the minimum. For the LCS problem 

where S is the set of matching points Hunt and Szymanski [29] gave an O(M log n) 

algorithm, which may also be implemented in O(M log log n) time with van Emde 

Boas’s data structure [46,47]. Sincef is so simple, the LCS problem can be made even 

more sparse by considering only dominant matches [23, 71. Apostolic0 and Guerra [7] 

gave an algorithm whose time complexity is either O(nlogn+ M’log(n’/M’)) or 

O(M’loglogn) depending on data structure, where M’ is the number of dominant 
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matches. It was observed in [13] that Apostolico and Guerra’s algorithm can be 

implemented in O(M’ log log min(M’, n’/M’)) time using Johnson’s data structure 

[30] which is an improvement upon van Emde Boas’s data structure. 

Consider the case of Recurrence 2 where Xi =yj= a, Zi,j = 0 if (i, j)ES; zi, j =a 

otherwise, and E[i, j] =lI[i, j] (i.e., the unit-cost edit distance problem [44] and 

approximate string matching [16]). Recurrence 2 becomes 

( D[ir,j]+a(i-ir) 

D[i, j] =min 

i 

~Ckh1+4-jI) 
min {D[i’,j’]+axmax(i-i’-l,j-j/-l)} for (i,j)ES. 

V.i’b3.1~ 
0. jlES (10) 

The main computation in Recurrence 10 can also be represented by Recurrence 9, 

wherefis a linear function in each of UR(?, j’) and LR(1’, j’). This case will be called 

the triangle case because UR(i’, j’) and LR(?, j’) are triangular regions. The fragment 

alignment with linear gap costs [13] belongs to the triangle case, where 

f(i’, j’, i, j)=w( I( j-i)-( j’-?)I). For the fragment alignment problem Wilbur and 

Lipman [53] proposed an O(M’) algorithm with M matching fragments. Eppstein 

et al. [ 131 improved it by obtaining an O(n + M log log min(M, n’/M)) time algorithm 

when the gap costs are linear. (They also obtained an O(n + M log M) algorithm for 

convex gap costs, and an O(n + M log Ma(M)) algorithm for concave gap costs [14].) 

4.2. The rectangle case 

We solve Recurrence 9 when f is a linear function for all points in R(i’, j’) [13]. 

Lemma 4.1. Let P he the intersection ofR(p, q) and R(r, s), and (i, j) be a point in P. Zf 

D[p,q]+f(p,q, i,j)<D[r,s]+f(r,s, i,j) (i.e. (p,q) is better than (r,s) at one point), 

then (p, q) is better than (r, s) at all points in P. 

Proof. Immediate from the linearity off: 0 

By Lemma 4.1, whenever the ranges of two points overlap, we can decide by one 

comparison which point takes over the overlapping region. Thus the matrix E can be 

partitioned into regions such that for each region P there is a point (i, j) that is the best 

for points in P. Obviously, R(i, j) includes P. We refer to (i, j) as the owner of P. The 

partition of E is not known in advance, but we discover it as we proceed row by row. 

A region P is uctioe at row i if P intersects row i. At a particular row active regions are 

column intervals of that row, and the boundaries are the column indices of the owners 

of active regions. We maintain the owners of active regions in a list ACTIVE. 

Let ir, iz, . . , i, ( p < M) be the nonempty rows in the sparse set S, and RO WCs] be 

the sorted list of column indices representing points of row i, in S. The algorithm 

consists of p steps, one for each nonempty row. During step s, it processes the points in 
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ROW[s]. Given ACTIVE at step s, the processing of a point (i,,j) consists of 

computing E[&,j] and updating ACTIVE with (&,j). Computing E(i,,j) simply 

involves looking up which region contains (i,,j). Suppose that (&,j’) is the owner of 

the region that contains (i,, j). Then E[i,,j] =D[&,j’] +f(il,j’, i,,j). Now we update 

ACTIVE to possibly include (i,,j) as an owner. Since R(i,,j’) contains (i,,j), R(i,,j’) 

includes R(i,, j). If (i,, j’) is better than (i,.j) at (i,+ l,j+ l), then (i,,j) will never be the 

owner of an active region by Lemma 4.1. Otherwise, we must end the region of (i,,j’) 

at columnj, and add a new region of (i,,j) starting at column j+ 1. Further, we must 

test (i,,j) successively against the owners with larger column indices in ACTIVE, to 

see which is better in their regions. If (i,,j) is better, the old region is no longer active, 

and (is,j) takes over the region. We continue to test against other owners. If (&,j) is 

worse, we have found the end of its region. Fig. 10 shows the outline of the algorithm. 

For each point in S we perform a lookup operation and amortized constant number 

of insertion and deletion operations on the list ACTIVE; altogether O(M) operations. 

The rest of the algorithm takes time O(M). The total time of the algorithm is 

O(M+ T(M)) where T(M) is the time required to perform O(M) insertion, deletion 

and lookup operations on ACTIVE. If ACTIVE is implemented as a balanced search 

tree, we obtain T(M) = O(A4 log n). Column indices in ACT1 VE are integers in [0, n], 

but they can be relabeled to integers in [0, min(n, M)] in O(n) time. Since ACTIVE 

contains integers in 10, min(n, M)], it may be implemented by van Emde Boas’s data 

structure to give T(M)= O(M log log M). Even better, by using the fact that for each 

nonempty row the operations on ACTIVE may be reorganized so that we perform all 

the lookups first, then all the deletions, and then all the insertions [13], we can use 

Johnson’s data structure to obtain T(M)= O(M log log min(M, n*/M)) as follows. 

When the numbers manipulated by the data structure are integers in [l, n], Johnson’s 

data structure supports insertion, deletion and lookup operations in O(loglog D) 

time, where D is the length of the interval between the nearest integers in the structure 

below and above the integer that is being inserted, deleted or looked up [30]. With 

Johnson’s data structure T(A4) is obviously O(M log log M). It remains to show that 

T(M) is also bounded by O(M log log(n2/A4)). 

Lemma 4.2 (Eppstein et al. [I 31). A homogeneous sequence ofk < n operations (i.e. all 

insertions, all deletions or all lookups) on Johnson’s data structure requires 

O(k log log(n/k)) time. 

procedure sparse 2D/QD 
for s + 1 to p do 

for each j in ROW[s] do 
look up ACTIVE to get (i,.,j’) whose region contains (is,j); 

Qs, A - D[k, ?I+ f(G, j’, i,, j); 
update ACTIVE with (i,,j); 

end do 
end do 

end 

Fig. 10. The algorithm of Eppstein et al. 
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Let m, for 1 bs dp be the number of points in row i,. By Lemma 4.2 the total time 

spent on row i, is O(m, log log(n/m,)). The overall time is O(C,“, 1 m, log log(n/m,)). By 

introducing another summation the sum above is I:= 1 CT’: 1 log log(n/m,). Since 

I,“= 1 Cyz 1 n/m, < n2 and cf=, m, = M, we have 

i T log log(n/m,) < M log log(n2/M) 
s=l j=l 

by the concavity of the log log function. Hence, Recurrence 9 for the rectangle case 

is solved in O(n + M loglogmin(M, n’/M)) time. Note that the time is never worse 

than O(n2). 

4.3. The triangle case 

We solve Recurrence 9 when f is a linear function in each of UR(i’,j’) and LR(i’,j’) 

[13]. Let ,J, and ,f; be the linear functions for points in UR(i’,j’) and LR(i’,j’), 

respectively. 

Lemma 4.3. Let P he the intersection of CJR( p, q) and UR(r, s), and (i, j) be a point in P. 

rfoC~,4l+fU(p,q,i,j)<DCr,sl+,f,( r, s, i, j) (i.e. (p, q) is better than (r, s) at one point), 

then (p, q) is better than (r, s) at all points in P. 

Lemma 4.3 also holds for lower ranges. For each point in S, we divide its range into 

the upper range and the lower range, and we handle upper ranges and lower ranges 

separately. Recurrence 9 can be written as 

E[i,j]=min{UI[i,j], LI[i,j]}, 

where 

UI [i, j] = min {D [i’, j’] +f,(i’, j’, i, j)}, (11) 
Il’.i’l<ll. I) 
,‘-‘<,-I 

and 

LI [i, j] = min {D [i’, j’] +f;(i’, j’, i, j)}. (12) 
(I’. I’l-xl’. iI 
,‘-121-1 

We compute E row by row. The computation of Recurrence 11 is the same as that of 

the rectangle case except that regions here are bounded by forward diagonals (d = j - i) 

instead of columns. Recurrence 12 is more complicated since regions are bounded by 

columns and forward diagonals when we proceed by rows (see Fig. 11). 

Let il, i2, . . . , i, (p< M) be the nonempty rows in the sparse set S. At step s, we 

compute LI for row i,. Assume that we have active regions PI, . , P, listed in sorted 

order of their appearance on row i,. We keep the owners of these regions in a doubly 

linked list 0 WNER. Since there are two types of boundaries, we maintain the 

boundaries of active regions by two lists CBOUND (column boundaries) and 
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Fig. Il. Regions in the matrix LI 

DBOUND (diagonal boundaries). Each boundary in CBOUND and DBOUND has 

a pointer to an element on 0 WNER. Searching for the region containing a point (is,j) 

is then accomplished by finding the rightmost boundary to the left of (i,,j) in each 

boundary list, and choosing among the two boundaries the one that is closer to (i_j). 

Suppose that (il, j’) is the owner of the region that contains (i,,j). Then 

LI[i,, j] = D[ir, j’] +J;(i,., j’, i,, j). Again, LR(i,, j’) includes LR(i,, j). If (i,, j’) is better 

than (i,y, j) at (i,+ l,j+ I), then (i,, j) will never be the owner of an active region by 

Lemma 4.3. Otherwise, we insert (one or two) new regions into 0 WNER, and update 

CBOUND and DBOUND. 
One complication in Recurrence 12 is that when we have a region bounded on the 

left by a diagonal and on the right by a column, we must remove it when the row on 

which these two boundaries meet is processed (Pz in Fig. 11). A point is a cut point if 

such an active region ends at the point. We keep lists CUT[i], 1 <ibn. CUT[i] 
contains the cut points of row i. To finish step s, we process all cut points in rows 

i,+l,...,i,+i. Assume we have processed cut points in rows i, + 1, . . . , i - 1. We show 

how to process CUT[liJ, idi,,,. If CUT[i] is empty, we ignore it. Otherwise, we sort 

the points in CUT[i] by column indices, and process one by one. Let (i, j) be a cut 

point in CUT[i]. Three active regions meet at (i, j). PI, P2, and P3 be the three regions 

from left to right (see Fig. ll), and (il,j,) and (i3,j3) be the owners of P, and P3, 
respectively. Note that j=j, and j-i=j, -il. P2 is no longer active. If (jr, j,) is better 

than (iJ,jj) at (i+ 1, j+ l), PI takes over the intersection of PI and P,. Otherwise, P3 
takes it over. 

Lemma 4.4. The total number of cut points is at most 2M. 

Proof. Since each point in S creates two boundaries in the matrix LI, 2M boundaries 

are created. Whenever we have a cut point, two boundaries meet and one of them is 

removed. Therefore, there can be at most 2M cut points. 0 

CBOUND and DBOUND are implemented by Johnson’s data structure. To sort 

CUT[i], we also use Johnson’s data structure. If there are ci cut points in row i, 
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sorting CUT[i] can be done in O(ci log log min(M, n/ci)) time [30]. The total time for 

sorting is 0(x;= 1 ci log log min(M, n/ci)), which is O(M log log min(M, n2/M)) since 

I;= I cid2M. Therefore, Recurrence 12 and Recurrence 9 for the triangle case are 

solved in O(n + M log log min(M, n2/M)) time. 

4.4. The 2D/2D problem 

The 20120 problem is also represented by Recurrence 9, where 

f (i’, j’, i,j)= w(i’+j’, i+j), and w is either convex or concave. Eppstein et al. [14] 

introduced the dynamic minimization problem which arises as a subproblem in their 

algorithm: consider 

E’[y]==min{D’[x]+w(x,y)} for ldx,y<2n, 
X 

where w is either convex or concave. The values of D’ are initially set to +co. We can 

perform the following two operations: 

(a) Compute the value of E’[y] for some y. 

(b) Decrease the value of D’[x] for some x. 

Note that operation (b) involving one value of D’[x] may simultaneously change 

E’[ y] for many y’s. 

Recall that the row indices giving the minima for E’ are nondecreasing when w is 

convex and nonincreasing when w is concave. We call a row x live if row x supplies the 

minimum for some E’[y]. We maintain live rows and their intervals in which rows 

give the minima using a data structure. Computing E’[y] is simply looking up which 

interval contains y. Decreasing D’[x] involves updating the interval structure: deleting 

some neighboring live rows and finally performing a binary search at each end. Again 

with a balanced search tree the amortized time per operation is O(logn). The time 

may be reduced to O(loglogn) with van‘Emde Boas’s data structure for simple w that 

satisfies the closest zero property. 

We solve the 2D/2D problem by a divide-and-conquer recursion on the rows of the 

sparse set S. For each level of the recursion, having t points in the subprogram of that 

level, we choose a row r such that the numbers of points above r and below r are each 

at most t/2. Such a row always exists, and it can be found in O(t) time. Thus we can 

partition the points into two sets: those above row r, and those on and below row r. 

Within each level of the recursion, we will need the points of each set to be sorted by 

their column indices. This can be achieved by initially sorting all points, and then at 

each level of the recursion performing a pass through the sorted list to divide it into 

the two sets. Thus the order we need will be achieved at a linear cost per level of the 

recursion. We compute all the minima by performing the following steps: 

(1) recursively solve the problem above row r, 
(2) compute the influence of the points above row r on the points on and below row 

r, and 

(3) recursively solve the problem on and below row r. 
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Let S1 be the set of points above row r, and S2 be the set of points on and below row 

r. The influence of Si on S2 is computed by the dynamic minimization problem. We 

process the points in Si and S2 in order by their column indices. Within a given 

column we first process the points of S2, and then the points of S,. By proceeding 

along the sorted lists of points in each set, we only spend time on columns that 

actually contain points. If we use this order, then when we process a point (i,jj in S2, 

the points (i’,j’) of S1 that have been processed are exactly those with j’<j. To process 

a point (i, j) in Si (let x= i+j), we perform the operation of decreasing D’[x] to 

min(D’[x], D[i, j]). To process a point (i, j) in SZ (let y= i+j), we perform the 

operation of computing E’[y]. 

Note that the time per data structure operation can be taken to be O(logM) or 

O(log log M) rather than O(log n) or O(log log n) because we consider only diagonals 

that actually contain points in S. Thus the influence of Si on SZ can be computed in 

O(M log M) or O(M log log M) time depending on w. Since there are O(log M) levels 

of recursion, the total time is O(n + M log2 M) in general or O(n + M log M log log M) 
for simple cost functions. We can further reduce the time bounds. We divide E alter- 

nately by rows and columns at the center of the matrix rather than the center of the 

sparse set, similarly to Aggarwal and Park’s algorithm for the nonsparse 2D/2D 
problem. With Johnson’s data structure and a special implementation of the binary 

search, O(n+ M log M logmin(M, n2/M)) or O(n+ M log M loglogmin(M, n’/M)) 
for simple w can be obtained [14]. 

Larmore and Schieber [38] extended their algorithm for the nonsparse 2D/2D 
problem to the sparse case. They achieved O(n+ M log min{M, n2/M}) time for 

}) time for concave w. convex w, and O(n + Mcr(M ) log min {M, n2/M 

5. Conclusion 

We have discussed a number of algorithms for dynamic programming problems 

with convexity, concavity and sparsity conditions. These algorithms use two out- 

standing algorithmic techniques: one is matrix searching, and the other is maintaining 

possible candidates in a data structure. Sometimes combinations of these two tech- 

niques result in efficient algorithms. Divide-and-conquer is also useful with the two 

techniques. 

As mentioned earlier, though the condition we have for convexity or concavity is 

the Monge condition, all algorithms are valid when the weaker condition of total 

monotonicity holds. It remains open whether there are better algorithms that actually 

use the Monge condition. Another notable open problem is whether there exists 

a linear time algorithm for the concave 1 D/l D problem. Recently, Larmore [37] gave 

an algorithm for the concave lD/lD problem which is optimal for the decision tree 

model, but whose time complexity is unknown. 

The (single-source) shortest-path problem is a well-known dynamic programming 

problem. By the Bellman-Ford formulation it is a 2D/lD problem, and by the 
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Floyd-Warshall formulation it is a 3D/OD problem [39]. Though Dijkstra’s algo- 

rithm takes advantage of sparsity of graphs, it is not covered in this paper since 

comprehensive treatments may be found in [43,39]. We should also mention two 

important dynamic programming problems that do not share the conditions we 

considered: the matrix chain product [4] and the membership for context-free gram- 

mars [26]. The matrix chain product is a 2D/lD problem, so an O(n3) time algorithm 

is obvious [4]. Further improvement is possible by the observation that the problem 

is equivalent to the optimal triangulation of a polygon. An O(n2) algorithm is due to 

Yao [56], and an O(n log n) algorithm is due to Hu and Shing [27,28]. The member- 

ship for context-free grammars can be formulated as a 20/l D problem. The 

CockeeYounger-Kasami algorithm [26] is an 0(n3) time algorithm based on the 

dynamic programming formulation. Asymtotically better algorithms were developed: 

an O(M(n)) algorithm by Valiant [45] and an O(n3/logn) algorithm by Graham, et al. 

[19], where M(n) is the time complexity of matrix multiplication. 

Since dynamic programming has numerous applications in various fields, we may 

find more problems which fit into our four dynamic programming problems. It may 

also be worthwhile to find other conditions that lead to efficient algorithms. 
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