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Abstract 

Quong, R.W., Fast average-case pattern matching by multiplexing sparse tables, Theoretical 

Computer Science 92 (1992) 1655179. 

Pattern matching consists of finding occurrences of a pattern in some data. One general approach is 

to sample the data collecting evidence about possible matches. By sampling appropriately, we force 

matches to be sparse and can encode a table of size m as a series of smaller tables with total size 

O(( In r#/ln In m). This method yields practical algorithms with fast average-case running times for 

a wide variety of pattern matching and pattern recognition problems. 

We apply our technique of multiplexing sparse tables to the k-mismatches string searching 

problem which asks for all occurrences of a pattern string P=p,, pl, _. ,p,_ 1, in a text string 

T=r,,r,, . . ..t”_., with <k mismatches (substitutions), where P, T and k are given. Assuming 

a uniform character distribution over an alphabet of size A, for k < m/(2 log, m), our algorithm has 

an averaye-case running time of O(kn (log m)‘/(m log log m)) and uses O(m( log m)‘/( log log m)) 

space. 

1. Introduction 

The term “pattern matching” encompasses a wide variety of problems, including 

two broad classes: (1) Pattern recognition: given a dictionary D of m known patterns, 

and data X, find the entries in D that match X; (2) Pattern Searching: given a fixed 

pattern P of size m, and text data T of size n, find all occurrences of P in T. Pattern 

recognition problems commonly arises in spelling correctors, speech recognition and 

machine vision. Pattern searching arises in problems such as string search, keyword 

search and DNA sequence analysis. 

We present a general, practical algorithmic method applicable to many of these 

problems. In this paper, our focus is on fast average-case pattern searching. In 

particular, we illustrate our method in an algorithm for the k-mismatches string 

searching problem. 
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1.1. Background 

In searching a text string of n characters for all occurrences of a fixed pattern of 

m characters, the linear time algorithms of Aho and Corasick [2] and Knuth, Morris, 

and Pratt [12] use a finite automaton with a failure function. Boyer and Moore [S] 

give a fast, practical algorithm with a sublinear average-case running time of roughly 

0 (n/m) for small m. For large m, Knuth et al. [ 121 give a variant of the Boyer-Moore 

algorithm with an average case running time of O(n(log, m)/m), where A = the 

alphabet size. Yao [17] shows that this bound was optimal. For two-dimensional 

matching, Zhu and Takaoka [l S] have an 0 (n” (log m2)/m2) average case algorithm, 

where the pattern is an m, x m2 array and text is an n x n array. Baeza-Yates and 

Regneir [4] improve this result to 0 (n’/m) time. 

If the pattern string and text might have wildcard characters, Fischer and Paterson 

[S] give an 0 (n log m log log m) based on multiplication. Depending on the character 

distribution in the pattern, Abrahamson [l] dynamically chooses the better of two 

algorithms for a O(n&polylog (m)) worst case solution for “generalized string 

matching” where each position of the pattern can match an arbitrary set of characters. 

The k-mismatches problem allows for <k mismatches but not for insertions or 

deletions between the pattern and text. That is a match occurs when the pattern and 

a text substring have a Hamming distance d k. Abrahamson’s approach works on this 

problem also. Atallah [3] has mentioned a fast O(nlogm) probabilistic estimator 

which works well if there is a statistically significant match between the pattern and 

text. 

In the k-differences problem, we allow <k differences (mismatches, insertions or 

deletions) to occur between the pattern and text. By finding least common ancestors in 

a suffix tree [16, 141 of the pattern and text, Landau and Vishkin [ 131 solve the 

k-differences problem in O(kn) time in the worst (and average) case. Several variations 

have since been devised [9, 151. Chang and Lawler [6] use a suffix tree of the 

pattern achieving a sublinear average-case running time of O(kn(log m)/m) when 

k < (m/(cI + log m)) - c2. This last algorithm gives strictly better asymptotic results 

than our method (and for a harder problem). However, our method is of interest 

because (i) it uses a different approach, giving an upper bound on how well every 

alignment matches the text, and (ii) it is applicable to other types of pattern matching. 

1.2. Overview 

Our approach consists of(i) sampling the (text) data forcing matches to be sparse 

and (ii) multiplexing a table of partial matches of size m into a series of smaller 

subtables of total size O((ln m)2/lnlnm). We can update and check the subtables 

quickly, ruling out almost all mismatches and identifying potential matches, which 

then must be explicitly checked. This approach gives practical algorithms with good 

average-case running times. In the worst case, our technique provides no information, 

however, this probability is small. Our method applies naturally to a wide variety 
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of problems including multi-dimensional matching, generalized string matching, 

searching for multiple keywords, and matching with mismatches. 

In the next section, we state our definitions and assumptions about the problem. 

Next, we give a naive algorithm which forms the basis for our approach. We present 

our method in Section 4. We then give an example of exact string matching using our 

approach in Section 5. In Section 6 we show how to multiplex a large table as a series 

of smaller tables. In Section 7 we analyze the probability of incorrect potential 

matches. In Section 8 we briefly describe modifications for different pattern searching 

problems and outline a few of the possible variations to our method. In Section 9 we 

consider implementation details and provide some preliminary data comparing 

our algorithm with previous algorithms. Finally, we calculate the sample size in 

Appendix A. 

2. Definitions and assumptions 

Let the pattern P=p,p, ...P~-~ and the text, T=totl . ..tnpl be strings from a finite 

alphabet C of size A = 1 .Z I. We assume all ti and Pj can be sampled in constant time. 

Characters in T and P are uniformly and independently distributed so that averaged 

over all pi and tj, Pr(pi=tj)= l/A. 

Let T[j:1]-tj...tj+l_1=thesubstringofToflength1startingattj.Alignmentjof 

P refers to comparing P versus T[ j : m]. Alignment i matches a text substring T[ j : i] 

if P[j- i: I] = T[j: I]. We rule out alignment i if we determine that P cannot match 

T[i: m]. We assume a weak unit cost RAM model of computation in which all 

arithmetic for numbers of size dm2 can be done in constant time. The notation logjx 

means (log x-)j, and In x means log, x. 

The algorithms in this paper operate on a sliding window of size m into the text and 

sample the window backwards from right to left. We note that an algorithm that slides 

the window by at least s positions and requires time @(t,i,) between slides requires 

O(nt,i,/s) time to search T. For the rest of this paper, T( = to. . t,_ 1) refers to the text 

in this window; all alignments are relative to this window. (See Fig. 1.) 

Text 
T 

‘_ Text Window 
c 

to ti t m-l 

I P I 
Alignment 0 I 

Alignment 

I 

P 

Fig. 1. Sliding window of size m. 
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3. A naive algorithm 

A general approach to pattern searching is to keep a value on how well 

each alignment has matched the sampled text. We can use a table n [O.. . m- l] of 

size m with n [i] containing the number of matches for alignment i. When we are 

finished sampling, the alignment with the largest value is the best match. Updating 

A[O...m- l] requires O(m) time. 

For string matching, we sample the last N characters of T. For t = t,_ 1, 

f,,-21 .-.rtm-N, we increment n [i] if alignment i matches t. Alignment i survives if 

,4 [i] >,r, where 5 is a predetermined threshold. For the k-mismatches problem, we 

choose N > k and, hence, z = N -k. If alignment i survives past the sampling, we check 

if the rest of P actually matches T[i: m] with <k mismatches. Because Pr(pi=tj) 

= l/A for random i, j, after N samples, E[A[i]] = N/A. If alignment i survives 

the sampling but is not a true match, we call alignment i a false survivor. 
For A 3 2, setting N = (2k + 4 In m +4Jklnm+ln2m) (see Appendix A) reduces the 

probability of a false survivor to 0(1/m’), so that checking a false survivor does not 

affect the average-case running time. We can rule out alignments 0, 1, . . . , m- N and 

can slide the text window past these alignments. We show that the running time is 

O(nmax(logm,k))fork~m/3.Fork~lnm,wehaveN~(6+4~)(lnm)~12lnmso 

that for large m, we sample O(logm) characters between slides and we slide T by at 

least (m-N)= O(m) positions. For In m < k <m/3, and large enough m, we have 

2k d N < 9k/4 < 3m/4, which gives a minimum slide of m-N b m - 3m/4 3 m/4. The 

time twin between slides is mN giving a running time of 0 (NH) = 0 (n max (k, In m)) for 

kGml3. 

4. Multiplexing sparse tables 

Our approach modifies the naive approach in two ways. 

l Sample the text in blocks of size b = rlog, ml, so that matches between blocks are 

sparse. We give points to alignment i depending on how well it matches the sampled 

block. For the rest of this paper, we give one point to alignment i if and only if it 

completely matches the sampled block. 

l Multiplex n [ ] as a series of smaller subtables A, [ 1, A2 [ 1, . . . , At [ 1, where < is 

a function of m. Let ij c 1 nj [ ] I= the size of nj [ 1. We require (n;= 1 ~j) 2 m, and 

that all 3,j are mutually prime to one another. The points for alignment i are stored 

in /lj[imodi.j] for all subtables /ij[ 1. We note that nj[imodAj]>/l[i] (the 

naive table) for all i, j. 
Define J.suM = I$= 1 lj, and iPRoD=flj= 1 ij. For example, if m= 300 and A= 26, 

then the blocksize b = 2, and we might choose 3 subtables of sizes 7,8,9 so that 5 = 3, 

A1 = 7, j.2 = 8, A3 = 9, &uM = 24, and /1 PRoD= 504. The points for alignment 123 are 

stored in ,4, [4(123mod7)], A, [3(123mod S)] and n,[6(123mod9)]. A, [0] con- 

tains the points for alignments 0,7,14, . . ,294. 
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Claim 1. On the average, less than one alignment receives a point per sample. 

Proof. Let fi represent a block of b text characters, and let X,(p) and Xp be the 

random variables (T.v.) representing the number of points alignment i and the entire 

pattern P, respectively, receives on the sample b= T[m- b: b]. There are Ab>m 

different possible blocks; there are m-b + 1 different alignments each of which 

matches one block, so that 

E~x~,=~~m~bXi(li)=m-~b+l<m-~+l<l. 0 
p i=O 

Claim 2. Each alignment i occupies a unique set of subtable entries. 

Proof. By the Chinese remainder theorem, as A rRoD > m and all llj are mutually prime, 

there can be only one alignment i that satisfies i = ij mod 3.j for a particular set of 

subtable indices (iI , . . . , i<). 0 

As will be shown in Section 4, setting ;lj= the jth prime gives asymptotic values of 

13. suM z ( In2 m)/(2 In In m), and (number of subtables) 5 z In m/( In In m). If alignment 

i matches, we must have n [i] > z and, hence, /lj [ i mod nj] > r for all j = 1, . . . ,t. After 

N samples E[/lj[i]]=N(m-b+l)/(AbAj)<(N/Aj), which grows as N/~j. But 

t = N - k, so that if we sample enough blocks, r grows as N and z+E [Aj[i]], 

reducing the chance of a false survivor. 

Our algorithm is as follows, given T, P, k and m. 

1. 

2. 

3. 

4. 

5. 

Determine the subtable sizes Aj and <, the number of subtables. (From a practical 

standpoint, start the subtable sizes at 5 or larger as explained at the end of 

Appendix A.) Set N= 1.25k+2ln~+3~~, for i=max(lj). 

Precompute the tables /l/lj [i] [fi] which indicates how to update entry /ij [ i] of 

subtable j upon finding the sample fi = T[m - b : b], for all j, i, B. Our assumption 

that the sample /l is the last b characters in T will be corrected as we sample 

leftward into T. (For our present scheme of giving alignment i one point iff it 

matches fi, increment AAj[imodAj][P[m-i-b:b]], for l<j<& and 

0 < i < m - bN. This phase requires 0 ((m - N)c) = 0 (m In m/in In m) time.) 

Initialize the subtables, by setting all entries Aj[i] =O, for all i,j. The variables 

maxj will represent the maximum value of any entry in /lj[ 1. Set all maxj to 0. 

Sample N adjacent blocks of b characters from the rightmost end of T. For the 

9th block, fi,=T[m-(q+l)b:b], (q=O, l,..., N-l), increment Aj[i] by the 

value AAj[(i-qb)mod;lj] [/I,]. The term (i-qb)modAj reflects the fact that 

the 9th block is qb positions from the end of T, whereas we precomputed 

AAj[i] [p,] to assume the sample was at the end of the text. In essence, we “left 

rotate” the entries of /l/lj[ ] [ ] by -qb positions before updating nj[ 1. 

Check if every subtable nj[ ] has at least one entry with > r points. If “yes”, 

determine the corresponding alignments (see [ll, Ch. 4.3.21) and check that they 
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T = Text window P 
I , XY, I 
I I I --1 

Alignment 123 

Precomputed Tables Ah 

M,[l[“aa”l=[ . . . . . . . ] 

M,[l[“x~“]=[....l., 

M 1 [ I[“=“] = [ . . _ . _ . . 
. I Point Tables 

--‘A1=[ . . . . . . ] 

M 2[ I[“=“] = [ . . . . . . . . ] h2=[ . . . . . . . ] 

A3=[. . 1 

M2[ l["zz"]=[........] 

M3[ I[“aa”] = [. ........ J 

M3[ I[“=“] = [. ........ ] 

Fig. 2. Updating the point table (alignment 123 matches 2nd to last block) 

actually match T. Print the match if one exists. In either case, slide T the text 

window (WI - Nb) positions to the right. 

Figure 2 illustrates the algorithm for the previous example for A =26 (english 

letters), m=300, b=2, 5 =3, A, =7, A2 =8, &=9, when alignment 123 matches the 

sampled block /3 = “xy”. Figure 2 shows iln 1 [4] [xy] = 1. As /I = the second-to-last 

block, we left rotate U, [ . ..] [xy] by 2 positions before adding it to A, [ . ..I. 

Figure 3 gives pseudo-code for the last three steps of our algorithm, 

The update tables /inj[ ] [ ] require O(m log* m/log log m) space in total and 

require O(mt)=@ (m log m/(log log m)) time to precompute. As described in [ 11, 
p. 2701, we can determine i from its subtable indices (ir, . , it;) (step 9 of Fig. 3) by 

using a precomputed table of r numbers Mj, where Mj s 1 mod ~j and Mj s 0 mod %j, 

for all j’#j. If the surviving entry in table nj[ ] is ij, then i=(CjZI Mjij)mod&,,,. 

Computing i from (i 1, . . . , it) requires 0 (5) time and precomputing the Mj entries 

requires o(m) time. 

‘The running time of our algorithm is @(n/l sUM/m). Each sample is of size b, 
which requires @(log, m) time to read. For each sample, we update %sUM sub- 

table entries requiring O(&,) time. After sampling we slide T by II- bN 
positions. Appendix A shows that for large enough k, m and if k&ln m, we 



SparseMult (T, P) // checks if alignments 0. _ .m - Nb match 

SetAj[J=maxj=O,fOrallj=O,...,~ 

for q = 0 to N - 1 

p = T[m - (q + l)b : b] 

for each subtable A, [ ] 
for 0 5 i < x, 

increment Aj[(i, - qb) mod X,] by AAl[i][p] 

maxJ = max(max,, A3[(iY - qb) mod Xj]); 

end 

end 

end 

8 

9 

10 

11 

if(maxj>T)foraUj=O,...,t 

determine the matching alignment i // survivor 

check if an actual match by comparing P and T[i : m] 
print i if match 

end 

12 slide the text window T to the right by m - Nb characters 
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Fig. 3. A!gorithm for updating the subtables. 

have N=1.25k+O(~lnlnm)<4k/3. For k<m/(2b)=m/(2log,m), we have 

N <2m/(3 log,m), and we can slide T by T-bN > m/3 positions. Thus, 

twin = O( N,&) = O(k log2 m/(log log m)) and we slide by o(m), for a total running 

time of 0 (nk log2 m/(m log log m)). 

5. An example 

We give an explicit example where k=O for simplicity. Although having k=O 

results in the exact string matching problem, the preceding ideas of our method still 

apply. We note that there are better algorithms for this particular problem. Let m = 24, 

and 

P=OOO 001 010 OlJ NO 101 110 111 

so that P is the concatenation of the binary numbers 0 to 7. The spacing in P 

is for clarity alone. We shall use N = 2, b = 4, and two subtables of sizes J1 = 5 and 

jb2=6. Then r-N-k=2. Assume we sample T[20:4] and find fi=“lllO”. 

There are matches at alignments 3 and 10, underlined above in P. 
Thus, nn,[3][11lo]=ii/l~[3][1110]= 1, and ~~,[lOmod5][1110]= 

il~,[10mod6][1110]=1.A110therentriesin,U1,,[ ][1110]areO.Foralignment 

3, we give a point to n i [3 mod 51 and A, [3 mod 61; for alignment 10, we give a point 

to A, [lo mod 51 and A2 [lo mod 61. (See Fig. 4.) 

Thus, A,[ ]=[lOOlO] and A,[ ]=[OOOl lo]. Assume, we next find 

p=“lOl I”= T[16:4]. If “1011” was the last block in Talignments 1 and 5 would be 
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0123 4567 690 12 16 20 subtable 1 

T = ***t ***a **** **** ***a 1110 01234 

Align. (3) = 0 0000 1010 0111 0010 1110 1 

Align.(lO) = 00 0001 0100 1110 1 

Fig. 4. 

T = **** **** **** **** **NC* 1011 01234 

Align. (1) = 000 0010 1001 1100 1011 1011 1 

Align. (5) = 000 0010 1001 1100 1011 1 

Fig. 5. 

T= **** **** **** **** 1011 **** 0 1 2 3 4 

Align.(-3) = 0010 1001 1100 1011 1011 1 1 

Align. (1) = 000 0010 1001 1100 1011 1011 1 

Fig. 6. 

subtable 2 

012345 

012345 

1 

1 

012345 

1 

matches as shown in Fig. 5. (Remember, we precompute AA[ ] [/I] as if the /I were the 

last block in T, T[20: 41.) 

However, “1011” is actually the second to last block, so that we must adjust all 

alignments by - b or - 4, which corresponds to a cyclic left shift of 4 positions in each 

table. (See Fig. 6.) 

Thus, the points added to Ai [ ] and A2 [ ] are [0 1 1001 and [0 10 1001 for 

T[16:4] =“lOll”. The resulting subtables are [l 1 1 lo] and [0 102 lo]. Because 

A, [ ] has no entries >, 2 = r, we know there are no matches among alignments O-15. 

In this example, rather than update a table of size 16 we “only” had to update 11 

entries. 

6. Choosing suhtahle sizes 

Determining the subtable sizes reduces to the problem of finding mutually prime 

numbers J-r, . . . . A, whose product exceeds m and whose sum is minimized. In this 

section, let pi = the ith prime. We note that x + y < xy for 2 < x < y, so that if Ai = xy 

where x and y are mutually prime, splitting ~“i into two tables of size x and y decreases 

A SUM. It follows that each Izi should be of the form pr for some prime p and r> 1. 

In the continuous version of this problem, where each Ai can be any real number, 

setting ~“i =$Y minimizes AsuM. In particular 5 =ln n and 1+= e is optimal over all 

t showing that small 1bi are best. In our problem, we cannot choose 5 too small 
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otherwise there will not be enough primes ~$6 to use. We believe setting ~i=pi 

is asymptotically optimal. Using pi =i(lni+lnlni) [lo] we solve for 5. 

In l_rROD = i ln[i(lni+lnlni)]~ ‘lnx+ln(lnx+lnlnx)dx. 
i=l s 1 

Making the change of variable In x=y, integrating by parts, and taking the 

dominant terms gives 

In 2 pRoo~x(lnx-1)+xln(lnx+lnlnx)~5 

For In &ROD = In m, we get 5 z (In m)/( In In m), and pC z In m. Then, 

&uM=i$i lwiZiil i(lni+lnlni)< i i(ln4+lnln[) 
i=l 

~i”(ln~+lnlni;))~(1n2m)/(lnlnm) 

2 2 . 

7. False survivors 

Because we multiplex points for many alignments in a single subtable entry, false 

survivors are possible. In a subtable of size /2, we force the probability that an 

entry falsely survives to be 0(1/1.~). In Appendix A, we show that choosing 

N > (1.25 k + 2 In 3. + 3dm) meets this criterion (choose N by plugging in the 

largest 1”). 

For any subtable of size 2, the probability of no false survivors in the table 

is Pr(FS=O)=(l-X3)“> 1-X2. The probability of a false survivor is 

Pr(FS 3 l)= 1 - Pr(FS =O)< LX*. The probability of at least one false survivor in 

every subtable /ij [ ] of size 3.j is JJ Pr(FS in nj [ 1) < n(n,T’)< l/m2, as we have 

llpRoD=~(lj)>m. Thus, the probability of a nonmatching alignment surviving all 

subtables is 0(1/m*). A full check on this alignment requires O(m) time and adds 

a negligible factor of 0(1/m) to the total running time. 

If the pattern P or a large portion of P is periodic with a small period u, our method 

can fail badly if there are matches, because many alignments might match the sampled 

blocks. In this case it is best to modify the point tables so that only the first 

u alignments for the first period receive points. If an alignment i survives, all other 

alignments i + ku are known to survive. 
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8. Variations 

We outline how to extend our technique for different variations of pattern finding. 

These extensions are mutually independent of one another and can be applied 

simultaneously. 

Our method handles context sensitive mismatches, where the cost of a mismatch 

depends on the mismatch itself and possibly the surrounding data. The choice of b, 

and the how to update alignment i on sampling fi will depend on the cost function. 

In generalized string matching [l], where P=p, . . . pm, each pattern element pi in 

P can match an arbitrary set of characters. For example, the pattern element [ + abc] 

matches a, b or c, and the pattern element [ - abc] matches any character but a, b or c. 

The effective alphabet size A’ is l/Pr (pi - tj), where pi N tj means pi matches tj. Use 

b = log,, m which increases the space usage by 0 (my), where ‘/ = log, A’. 

If transpositions are considered a single mismatch, sample the N blocks of the text 

T[m- b : b], . , T[m- Nb : b] as before, and then sample the same text, but shift the 

blocks by b/2 positions, for T[m - b -b/2 : b], . , T[m - Nb - b/2 : b]. By appropriate 

precomputation of the subtables, a transposition that occurs inside a block counts as 

one mismatch. A transposition that occurs at the seam between two blocks, will be 

compensated for in the overlapping block. 

If the pattern is two-dimensional (m, rows by m, columns) number the alignments 

column-by-column from the bottom left corner. Let m = (m,m,) and b = log, m. Form 

a block by sampling the top b characters in a column. Sample a block in each of the 

rightmost N columns. Alignments for block q must be adjusted by qm, positions. We 

slide the T text window row by row from right-to-left moving upwards by @(m,) rows 

at the end of the row scan. For exact matching, we get an average-case running time of 

O(n(log, m)2/m). This technique can be extended for arbitrary dimensions. 

For a set of patterns P = { P,, . . . , P,}, let mi = 1 Pi 1, and m_ = mini(Pi), the length of 

the shortest pattern. Give the first m- alignments for each Pi a unique id. Use these id’s 

in place of the alignments. For the k-mismatches problem we get a running time of 

O(knlogA(vm- )/m_). This approach is practical only if m_ is large. 

8.1. Alternative strategies 

Point schemes: For the k-mismatches problem, we have used a very simple point 

scheme of 1 point on a complete match. Clearly, other schemes exist. We note that 

limiting the precomputed table entries nnj [ i] [fl] to 1 further reduces the probability 

of a false survivor, without affecting the correctness of the algorithm. 

Other multiplexing schemes: Our current multiplexing scheme stores points for 

alignment i in nj[imod ~j]. In the event of more than one simultaneous matches, 

each subtable has two survivors. There is no method to determine which set of entries 

belong to a given alignment, so that many alignments must be checked via trial and 

error. For example, if two alignments match, in the worst case 0(2<)= O(m’i’“g log “) 

alignments would have to be explicitly checked. (With our current scheme, if more 
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than one alignment survives, it is best to continue sampling for, say, another z 0 (N) 

blocks to hopefully rule out some or all the survivors.) 

One method to alleviate the problem of multiple survivors is to rearrange the 

alignments, so that similar alignments occupy the same entries on many subtables. Let 

rc be a permutation of (0, 1, . . . , APROD ). We try to choose 71 such that if alignments ii 

and i, are similar, then n( il )=x( i2) mod ~j for as many %j as possible. We leave 

computing rc as an open question. 

9. Practical aspects 

If a subtable Aj fits in a single computer word, we can save space and time by storing 

the entries in parallel bit by bit in each a word as shown in Fig. 7. For example, the 

least significant bit (LSB) for entry i would be bit i in word 0; in general, bit bb for 

entry i would be the ith bit in word bb. In Fig. 7, nj[O] contains the value 3 =Ol 12; 

note only three words are needed to contain ilj[ . ..] compared with the normal 2, 

words. We update the table in parallel via logical bit operations. Updating the 

subtable requires 0 (lg k) time, as we need 0 (lg k) bits per entry, where lg x = log, x. 

In addition, each update table ililj [. . .] [/3] can be stored in a single com- 

puter word. To rotate the update tables, use a bit rotate instruction. The total 

space needed is 0 (A (lg k)( In m)/( In In m)) and the running time becomes 

O(kn lg klog m/(m log log m)). On a 32 bit machine, using subtables of sizes 32,31, 

29,28,27,26,2.5,23,19,17, and 11 allows for m d 100 x lo”, which should accommod- 

ate most problems. 

For m = 0 (lO,OOO), the overhead of doing bit shifts on each addition is probably 

slower than simply using three or four mid-sized tables. Table 1 gives execution times 

of several different string searching algorithms on a SUN SPARCstation 1 (a 

10-l 5 MIP machine) running Sun OS 4.0. In all cases, n = 250,000, A = 2, and the text 

did not contain the pattern. All running times are in seconds and include file I/O time, 

preprocessing time and search times. We compiled our program, sparselllult, with 

version 1.37 of the GNU C+ + compiler. 

For comparison, egrep a fast regular expression searching program using a deter- 

ministic finite automaton, required 0.4 seconds when m = 378. An implementation of 

the Bayer-Moore algorithm, BM, required 0.3 seconds on the same search. We note 

that BM is not particularly well suited for searches of long binary patterns. R-L-naive 

LSB 7th bit 

LS bits word 0 

2nd LS bits word 1 

3rd LS bits word 2 

Fig. 7. If subtable size i.j < word size, map bits in parallel (here lj = 7). 



176 R. W. Quong 

Table 1 

Algorithm Table size n m k time (set) 

wep 
Boyer-Moore 

Boyer-Moore 

R-L-naive 

R-L-naive 

R-L-naive 

sparseMult 

sparseM& 

sparseMult 

sparseM& 

sparseMult 

sparseMult 

sparseMult 

sparseMult 

sparseM& 

(11,7,5) 

(13,11,9) 

(11,7,5) 

(13,11,9) 

(11,7,5) 

(13,11,9) 

(13,11,9) 

(13,11,9) 

(11,7,5,2) 

250 K 378 0 0.4 

250 K 378 0 0.3 

250 K 378 0 0.3 

250 K 378 0 3.4 

250K 378 5 6.2 

250 K 378 15 12.7 

250 K 378 0 0.2 

250 K 378 0 0.3 

250 K 300 5 0.6 

250 K 300 15 2.4 

250 K 300 15 1.8 

250 K 600 5 0.4 

250 K 600 15 0.8 

250 K 600 30 2.3 

250K 600 30 2.0 

is the algorithm from Section 3 that samples individual text characters from right to 

left ala BM. The above table shows that in all cases, sparseMult compared quite 

favorably with the other programs for both exact and k-mismatches string matching. 

10. Concluding remarks 

We have illustrated our method of multiplexing sparse matches in a series of small 

subtables for the k-mismatches problem. For an alignment i, the minimum value in its 

subtable entries gives an upper bound on how well i matches the sampled text. By 

modifying the sampling strategy or the point scheme, our technique is applicable to 

other types of pattern searching and pattern recognition problems. We close by asking 

for further refinements in sampling strategies, point schemes, and multiplexing 

methods. 

Appendix A (Choosing N) 

Naive algorithm 

Let X = Cj”= i Xj, where 

x on the jth sample. Xj= 1 

Xj is the r.v. for the number of points given to alignment 

if alignment x matches the ith sample, and is 0 otherwise. 

Thus, X represents the number of points in A [x] after N samples. For an alphabet 

size of A, we have a mean of p = E [X,] = 1 /A, and a variance of C? = (A - 1)/A’. In 

this section, we derive N such that the probability of a false survivor = Pr(X 2 r) d 

(1 /E), where E = 1 /Pr (false survivor). 
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As the Xj are i.i.d random variables, we apply Chernoff bound methods for a series 

of N Bernoulli trials [7] 

Pr(X-Np>r)<exp $ 
( > 

d l/E. 

We want Pr(X > r = N-k); thus, r = z - Np = ((A - 1) N/A -k), giving the exponent 

r2/(4Na2)=((A - 1) N - k)2/(4N(A - 1)). Taking the natural logarithm of both sides 

gives 

((A-l)N-Ak)2>4(A-l)Nln~. 

Expanding the left side gives a quadratic equation in N, 

(A-1)2NZ-(A-1)(2kA+41na)N+A2k230. 

Solving for N gives 

Ak 2lnc 2JkAlnE+lnzE 
N>-- ~ 

A-l+A-l+ A-l ’ 

As A32, making the substitutions 2 3 A/(A - l), 1 > l/(,4 - l), and 43fi/(A- l), 

and setting c=m2 gives the result N=(2k+4lnm+4Jklnm+lnZm) used in 

Chapter 3. 

Multiplexed tables 

Let Xi, s be a random variable which is 1 if the alignment i matches sample B. Then 

E [Xi, p] = p = l/A” < l/m, and g2 <(m - 1)/m’. For an entry A [i’] of a subtable of size 

I,, let 

j=l i=i’(modA) 

X represents the number of points in A [i’] after N samples. X consists of N,, = Nm/I. 
identical Bernoulli trials, Xi, B, and we solve 

Pr(X-N0p3r)bexp (Al) 

As before, we want Pr (X 3 t = N - k); thus, r = ((A - 1) N/I_ - k), giving an exponent 

of 

r2 2 
((I.- l)N-Ak)’ 

Y=4N:02,/.= 4Ni(m- 1)/m ’ 4Noa 

*Taking the natural logarithm of Equation A.l, plugging in the previous equation, 

and multiplying through by - 1 gives the first and third terms of 

((~_-1)N-~k)234N;11n&>4N~~ (m- Ulne 
m ’ 
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Expanding the first term and subtracting the second term gives the quadratic 

equation 

Solve the quadratic for N gives 

2Alns 21 k(A-l)lna+ln*a 1 (A-1)2 

Setting E = A3 so that In E = 3 In jL, and assuming A3 5, we have (for each 

term in the preceding equation, respectively) A/(2- 1) < 1.25, 2 In E/(A - 1)2 <In %, and 

2R/(A - 1) < 3, and (In E)/(II - 1) <In I_, which gives 

For all subtable sizes, we have 2 <p <~ln m, so that In A is O(lnlnm). Thus, 

N= 1.25k+ O($ln lnm). We note that the smaller the subtable, the larger N must 

be, as the A/(;l-- 1) factor in the dominant first term increases. We force 3.3 5 for this 

reason. 

References 

Cl1 
PI 

[31 
c41 

ISI 

[61 

c71 

PI 

c91 

IlO1 

1111 

Cl21 

1131 

Karl Abrahamson, Generalized string matching, SIAM J. Comput. 16 (1987) 103991048. 

A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18 

(6) (1975) 333-340. 

M. Atallah, Private communication. 

Ricardo Baeza-Yates and Mireille Regnier, Fast algorithms for two-dimensional and multiple pattern 

matching, in: Proc. SWAT 90, Lecture Notes in Computer Science, Vol. 447 (Springer, Berlin, 1990) 

332-347. 
Robert S. Boyer and J. Strother Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977) 

762-772. 

William I. Chang and Eugene L. Lawler, Approximate string matching in sublinear expected time, in: 

Proc. 3lst IEEE Symp. on Foundations of Computer Science (1990) 116-124. 

T. Cormen, C.E. Leiserson and R. Rivest, Introduction to Algorithms (McGraw Hill, New York, NY, 

1990). 

M.J. Fischer and MS. Paterson, String matching and other products, in: R.M. Karp, ed., Complexity 
ofComputation (SIAM-AMS Proceedings 7) (American Mathematical Society, Providence, RI, 1974) 

113-125. 

Z. Galil and K. Park, An improved algorithm for approximate string matching, in: Lecture notes in 

computer science, Vol. 372 (Springer, Berlin, 1989) 394-404. 
R. Graham, D.E. Knuth and 0. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA, 

1989). 

Donald Knuth, Seminumerical Algorithms, The Art of Programming Vol. 2 (Addison-Wesley, Reading, 

MA, 1981). 
Donald E. Knuth, James H. Morris and Vaughan R. Pratt, Fast pattern matching in strings, SIAM J. 
Comput. 6 (2) (1977) 323-350. 
Gad M. Landau and Uzi Vishkin, Introducing efficient parallelism into approximate string matching 

and a new serial algorithm, in: Proc. 18th ACM Symp. on Theory of Computing (1985) 220-230. 



Fast am-age-case pattern matching 179 

[14] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976) 

262-272. 

[15] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization, 

SIAM J. Comput. 17 (6) (1988) 1253-1262. 

[16] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th IEEE Symp. on Switching and Automata 
Theory (1973) l-11. 

1171 Andrew Chi-Chih Yao, The complexity of pattern matching for a random string, SIAM J. Comput. 
8 (3) (1979) 368-387. 

[18] Rui F. Zhu and Tadao Takaoka, A technique for two-dimensional pattern matching, Comm. ACM 32 

(1989) 1110-1120. 


