
Theoretical Computer Science 92 (1992) 1655179

Elsevier

165

Fast average-case pattern matching
by multiplexing sparse tables

Russell W. Quong
School of Electrical Engineering, Purdue Unicersity at West Lafayette. USA

Abstract

Quong, R.W., Fast average-case pattern matching by multiplexing sparse tables, Theoretical

Computer Science 92 (1992) 1655179.

Pattern matching consists of finding occurrences of a pattern in some data. One general approach is

to sample the data collecting evidence about possible matches. By sampling appropriately, we force

matches to be sparse and can encode a table of size m as a series of smaller tables with total size

O((In r#/ln In m). This method yields practical algorithms with fast average-case running times for

a wide variety of pattern matching and pattern recognition problems.

We apply our technique of multiplexing sparse tables to the k-mismatches string searching

problem which asks for all occurrences of a pattern string P=p,, pl, _. ,p,_ 1, in a text string

T=r,,r,,t”_., with <k mismatches (substitutions), where P, T and k are given. Assuming

a uniform character distribution over an alphabet of size A, for k < m/(2 log, m), our algorithm has

an averaye-case running time of O(kn (log m)‘/(m log log m)) and uses O(m(log m)‘/(log log m))

space.

1. Introduction

The term “pattern matching” encompasses a wide variety of problems, including

two broad classes: (1) Pattern recognition: given a dictionary D of m known patterns,

and data X, find the entries in D that match X; (2) Pattern Searching: given a fixed

pattern P of size m, and text data T of size n, find all occurrences of P in T. Pattern

recognition problems commonly arises in spelling correctors, speech recognition and

machine vision. Pattern searching arises in problems such as string search, keyword

search and DNA sequence analysis.

We present a general, practical algorithmic method applicable to many of these

problems. In this paper, our focus is on fast average-case pattern searching. In

particular, we illustrate our method in an algorithm for the k-mismatches string

searching problem.

0304-3975/92/$05.00 0 1992 -Elsevier Science Publishers B.V. All rights reserved

166 R. W. Quong

1.1. Background

In searching a text string of n characters for all occurrences of a fixed pattern of

m characters, the linear time algorithms of Aho and Corasick [2] and Knuth, Morris,

and Pratt [12] use a finite automaton with a failure function. Boyer and Moore [S]

give a fast, practical algorithm with a sublinear average-case running time of roughly

0 (n/m) for small m. For large m, Knuth et al. [121 give a variant of the Boyer-Moore

algorithm with an average case running time of O(n(log, m)/m), where A = the

alphabet size. Yao [17] shows that this bound was optimal. For two-dimensional

matching, Zhu and Takaoka [l S] have an 0 (n” (log m2)/m2) average case algorithm,

where the pattern is an m, x m2 array and text is an n x n array. Baeza-Yates and

Regneir [4] improve this result to 0 (n’/m) time.

If the pattern string and text might have wildcard characters, Fischer and Paterson

[S] give an 0 (n log m log log m) based on multiplication. Depending on the character

distribution in the pattern, Abrahamson [l] dynamically chooses the better of two

algorithms for a O(n&polylog (m)) worst case solution for “generalized string

matching” where each position of the pattern can match an arbitrary set of characters.

The k-mismatches problem allows for <k mismatches but not for insertions or

deletions between the pattern and text. That is a match occurs when the pattern and

a text substring have a Hamming distance d k. Abrahamson’s approach works on this

problem also. Atallah [3] has mentioned a fast O(nlogm) probabilistic estimator

which works well if there is a statistically significant match between the pattern and

text.

In the k-differences problem, we allow <k differences (mismatches, insertions or

deletions) to occur between the pattern and text. By finding least common ancestors in

a suffix tree [16, 141 of the pattern and text, Landau and Vishkin [131 solve the

k-differences problem in O(kn) time in the worst (and average) case. Several variations

have since been devised [9, 151. Chang and Lawler [6] use a suffix tree of the

pattern achieving a sublinear average-case running time of O(kn(log m)/m) when

k < (m/(cI + log m)) - c2. This last algorithm gives strictly better asymptotic results

than our method (and for a harder problem). However, our method is of interest

because (i) it uses a different approach, giving an upper bound on how well every

alignment matches the text, and (ii) it is applicable to other types of pattern matching.

1.2. Overview

Our approach consists of(i) sampling the (text) data forcing matches to be sparse

and (ii) multiplexing a table of partial matches of size m into a series of smaller

subtables of total size O((ln m)2/lnlnm). We can update and check the subtables

quickly, ruling out almost all mismatches and identifying potential matches, which

then must be explicitly checked. This approach gives practical algorithms with good

average-case running times. In the worst case, our technique provides no information,

however, this probability is small. Our method applies naturally to a wide variety

Fast average-case pattern matching 167

of problems including multi-dimensional matching, generalized string matching,

searching for multiple keywords, and matching with mismatches.

In the next section, we state our definitions and assumptions about the problem.

Next, we give a naive algorithm which forms the basis for our approach. We present

our method in Section 4. We then give an example of exact string matching using our

approach in Section 5. In Section 6 we show how to multiplex a large table as a series

of smaller tables. In Section 7 we analyze the probability of incorrect potential

matches. In Section 8 we briefly describe modifications for different pattern searching

problems and outline a few of the possible variations to our method. In Section 9 we

consider implementation details and provide some preliminary data comparing

our algorithm with previous algorithms. Finally, we calculate the sample size in

Appendix A.

2. Definitions and assumptions

Let the pattern P=p,p, ...P~-~ and the text, T=totl . ..tnpl be strings from a finite

alphabet C of size A = 1 .Z I. We assume all ti and Pj can be sampled in constant time.

Characters in T and P are uniformly and independently distributed so that averaged

over all pi and tj, Pr(pi=tj)= l/A.

Let T[j:1]-tj...tj+l_1=thesubstringofToflength1startingattj.Alignmentjof

P refers to comparing P versus T[j : m]. Alignment i matches a text substring T[j : i]

if P[j- i: I] = T[j: I]. We rule out alignment i if we determine that P cannot match

T[i: m]. We assume a weak unit cost RAM model of computation in which all

arithmetic for numbers of size dm2 can be done in constant time. The notation logjx

means (log x-)j, and In x means log, x.

The algorithms in this paper operate on a sliding window of size m into the text and

sample the window backwards from right to left. We note that an algorithm that slides

the window by at least s positions and requires time @(t,i,) between slides requires

O(nt,i,/s) time to search T. For the rest of this paper, T(= to. . t,_ 1) refers to the text

in this window; all alignments are relative to this window. (See Fig. 1.)

Text
T

‘_ Text Window
c

to ti t m-l

I P I
Alignment 0 I

Alignment

I

P

Fig. 1. Sliding window of size m.

168 R. W. Quong

3. A naive algorithm

A general approach to pattern searching is to keep a value on how well

each alignment has matched the sampled text. We can use a table n [O.. . m- l] of

size m with n [i] containing the number of matches for alignment i. When we are

finished sampling, the alignment with the largest value is the best match. Updating

A[O...m- l] requires O(m) time.

For string matching, we sample the last N characters of T. For t = t,_ 1,

f,,-21 .-.rtm-N, we increment n [i] if alignment i matches t. Alignment i survives if

,4 [i] >,r, where 5 is a predetermined threshold. For the k-mismatches problem, we

choose N > k and, hence, z = N -k. If alignment i survives past the sampling, we check

if the rest of P actually matches T[i: m] with <k mismatches. Because Pr(pi=tj)

= l/A for random i, j, after N samples, E[A[i]] = N/A. If alignment i survives

the sampling but is not a true match, we call alignment i a false survivor.
For A 3 2, setting N = (2k + 4 In m +4Jklnm+ln2m) (see Appendix A) reduces the

probability of a false survivor to 0(1/m’), so that checking a false survivor does not

affect the average-case running time. We can rule out alignments 0, 1, . . . , m- N and

can slide the text window past these alignments. We show that the running time is

O(nmax(logm,k))fork~m/3.Fork~lnm,wehaveN~(6+4~)(lnm)~12lnmso

that for large m, we sample O(logm) characters between slides and we slide T by at

least (m-N)= O(m) positions. For In m < k <m/3, and large enough m, we have

2k d N < 9k/4 < 3m/4, which gives a minimum slide of m-N b m - 3m/4 3 m/4. The

time twin between slides is mN giving a running time of 0 (NH) = 0 (n max (k, In m)) for

kGml3.

4. Multiplexing sparse tables

Our approach modifies the naive approach in two ways.

l Sample the text in blocks of size b = rlog, ml, so that matches between blocks are

sparse. We give points to alignment i depending on how well it matches the sampled

block. For the rest of this paper, we give one point to alignment i if and only if it

completely matches the sampled block.

l Multiplex n [] as a series of smaller subtables A, [1, A2 [1, . . . , At [1, where < is

a function of m. Let ij c 1 nj [] I= the size of nj [1. We require (n;= 1 ~j) 2 m, and

that all 3,j are mutually prime to one another. The points for alignment i are stored

in /lj[imodi.j] for all subtables /ij[1. We note that nj[imodAj]>/l[i] (the

naive table) for all i, j.
Define J.suM = I$= 1 lj, and iPRoD=flj= 1 ij. For example, if m= 300 and A= 26,

then the blocksize b = 2, and we might choose 3 subtables of sizes 7,8,9 so that 5 = 3,

A1 = 7, j.2 = 8, A3 = 9, &uM = 24, and /1 PRoD= 504. The points for alignment 123 are

stored in ,4, [4(123mod7)], A, [3(123mod S)] and n,[6(123mod9)]. A, [0] con-

tains the points for alignments 0,7,14, . . ,294.

Fast average-case pattern matching 169

Claim 1. On the average, less than one alignment receives a point per sample.

Proof. Let fi represent a block of b text characters, and let X,(p) and Xp be the

random variables (T.v.) representing the number of points alignment i and the entire

pattern P, respectively, receives on the sample b= T[m- b: b]. There are Ab>m

different possible blocks; there are m-b + 1 different alignments each of which

matches one block, so that

E~x~,=~~m~bXi(li)=m-~b+l<m-~+l<l. 0
p i=O

Claim 2. Each alignment i occupies a unique set of subtable entries.

Proof. By the Chinese remainder theorem, as A rRoD > m and all llj are mutually prime,

there can be only one alignment i that satisfies i = ij mod 3.j for a particular set of

subtable indices (iI , . . . , i<). 0

As will be shown in Section 4, setting ;lj= the jth prime gives asymptotic values of

13. suM z (In2 m)/(2 In In m), and (number of subtables) 5 z In m/(In In m). If alignment

i matches, we must have n [i] > z and, hence, /lj [i mod nj] > r for all j = 1, . . . ,t. After

N samples E[/lj[i]]=N(m-b+l)/(AbAj)<(N/Aj), which grows as N/~j. But

t = N - k, so that if we sample enough blocks, r grows as N and z+E [Aj[i]],

reducing the chance of a false survivor.

Our algorithm is as follows, given T, P, k and m.

1.

2.

3.

4.

5.

Determine the subtable sizes Aj and <, the number of subtables. (From a practical

standpoint, start the subtable sizes at 5 or larger as explained at the end of

Appendix A.) Set N= 1.25k+2ln~+3~~, for i=max(lj).

Precompute the tables /l/lj [i] [fi] which indicates how to update entry /ij [i] of

subtable j upon finding the sample fi = T[m - b : b], for all j, i, B. Our assumption

that the sample /l is the last b characters in T will be corrected as we sample

leftward into T. (For our present scheme of giving alignment i one point iff it

matches fi, increment AAj[imodAj][P[m-i-b:b]], for l<j<& and

0 < i < m - bN. This phase requires 0 ((m - N)c) = 0 (m In m/in In m) time.)

Initialize the subtables, by setting all entries Aj[i] =O, for all i,j. The variables

maxj will represent the maximum value of any entry in /lj[1. Set all maxj to 0.

Sample N adjacent blocks of b characters from the rightmost end of T. For the

9th block, fi,=T[m-(q+l)b:b], (q=O, l,..., N-l), increment Aj[i] by the

value AAj[(i-qb)mod;lj] [/I,]. The term (i-qb)modAj reflects the fact that

the 9th block is qb positions from the end of T, whereas we precomputed

AAj[i] [p,] to assume the sample was at the end of the text. In essence, we “left

rotate” the entries of /l/lj[] [] by -qb positions before updating nj[1.

Check if every subtable nj[] has at least one entry with > r points. If “yes”,

determine the corresponding alignments (see [ll, Ch. 4.3.21) and check that they

170 R. W. Quong

T = Text window P
I , XY, I
I I I --1

Alignment 123

Precomputed Tables Ah

M,[l[“aa”l=[.]

M,[l[“x~“]=[....l.,

M 1 [I[“=“] = [. . _ . _ . .
. I Point Tables

--‘A1=[.]

M 2[I[“=“] = [.] h2=[.]

A3=[. . 1

M2[l["zz"]=[........]

M3[I[“aa”] = [. J

M3[I[“=“] = [.]

Fig. 2. Updating the point table (alignment 123 matches 2nd to last block)

actually match T. Print the match if one exists. In either case, slide T the text

window (WI - Nb) positions to the right.

Figure 2 illustrates the algorithm for the previous example for A =26 (english

letters), m=300, b=2, 5 =3, A, =7, A2 =8, &=9, when alignment 123 matches the

sampled block /3 = “xy”. Figure 2 shows iln 1 [4] [xy] = 1. As /I = the second-to-last

block, we left rotate U, [. ..] [xy] by 2 positions before adding it to A, [. ..I.

Figure 3 gives pseudo-code for the last three steps of our algorithm,

The update tables /inj[] [] require O(m log* m/log log m) space in total and

require O(mt)=@ (m log m/(log log m)) time to precompute. As described in [11,
p. 2701, we can determine i from its subtable indices (ir, . , it;) (step 9 of Fig. 3) by

using a precomputed table of r numbers Mj, where Mj s 1 mod ~j and Mj s 0 mod %j,

for all j’#j. If the surviving entry in table nj[] is ij, then i=(CjZI Mjij)mod&,,,.

Computing i from (i 1, . . . , it) requires 0 (5) time and precomputing the Mj entries

requires o(m) time.

‘The running time of our algorithm is @(n/l sUM/m). Each sample is of size b,
which requires @(log, m) time to read. For each sample, we update %sUM sub-

table entries requiring O(&,) time. After sampling we slide T by II- bN
positions. Appendix A shows that for large enough k, m and if k&ln m, we

SparseMult (T, P) // checks if alignments 0. _ .m - Nb match

SetAj[J=maxj=O,fOrallj=O,...,~

for q = 0 to N - 1

p = T[m - (q + l)b : b]

for each subtable A, []
for 0 5 i < x,

increment Aj[(i, - qb) mod X,] by AAl[i][p]

maxJ = max(max,, A3[(iY - qb) mod Xj]);

end

end

end

8

9

10

11

if(maxj>T)foraUj=O,...,t

determine the matching alignment i // survivor

check if an actual match by comparing P and T[i : m]
print i if match

end

12 slide the text window T to the right by m - Nb characters

Fast average-case pattern matching 171

Fig. 3. A!gorithm for updating the subtables.

have N=1.25k+O(~lnlnm)<4k/3. For k<m/(2b)=m/(2log,m), we have

N <2m/(3 log,m), and we can slide T by T-bN > m/3 positions. Thus,

twin = O(N,&) = O(k log2 m/(log log m)) and we slide by o(m), for a total running

time of 0 (nk log2 m/(m log log m)).

5. An example

We give an explicit example where k=O for simplicity. Although having k=O

results in the exact string matching problem, the preceding ideas of our method still

apply. We note that there are better algorithms for this particular problem. Let m = 24,

and

P=OOO 001 010 OlJ NO 101 110 111

so that P is the concatenation of the binary numbers 0 to 7. The spacing in P

is for clarity alone. We shall use N = 2, b = 4, and two subtables of sizes J1 = 5 and

jb2=6. Then r-N-k=2. Assume we sample T[20:4] and find fi=“lllO”.

There are matches at alignments 3 and 10, underlined above in P.
Thus, nn,[3][11lo]=ii/l~[3][1110]= 1, and ~~,[lOmod5][1110]=

il~,[10mod6][1110]=1.A110therentriesin,U1,,[][1110]areO.Foralignment

3, we give a point to n i [3 mod 51 and A, [3 mod 61; for alignment 10, we give a point

to A, [lo mod 51 and A2 [lo mod 61. (See Fig. 4.)

Thus, A,[]=[lOOlO] and A,[]=[OOOl lo]. Assume, we next find

p=“lOl I”= T[16:4]. If “1011” was the last block in Talignments 1 and 5 would be

172 R. W. Quong

0123 4567 690 12 16 20 subtable 1

T = ***t ***a **** **** ***a 1110 01234

Align. (3) = 0 0000 1010 0111 0010 1110 1

Align.(lO) = 00 0001 0100 1110 1

Fig. 4.

T = **** **** **** **** **NC* 1011 01234

Align. (1) = 000 0010 1001 1100 1011 1011 1

Align. (5) = 000 0010 1001 1100 1011 1

Fig. 5.

T= **** **** **** **** 1011 **** 0 1 2 3 4

Align.(-3) = 0010 1001 1100 1011 1011 1 1

Align. (1) = 000 0010 1001 1100 1011 1011 1

Fig. 6.

subtable 2

012345

012345

1

1

012345

1

matches as shown in Fig. 5. (Remember, we precompute AA[] [/I] as if the /I were the

last block in T, T[20: 41.)

However, “1011” is actually the second to last block, so that we must adjust all

alignments by - b or - 4, which corresponds to a cyclic left shift of 4 positions in each

table. (See Fig. 6.)

Thus, the points added to Ai [] and A2 [] are [0 1 1001 and [0 10 1001 for

T[16:4] =“lOll”. The resulting subtables are [l 1 1 lo] and [0 102 lo]. Because

A, [] has no entries >, 2 = r, we know there are no matches among alignments O-15.

In this example, rather than update a table of size 16 we “only” had to update 11

entries.

6. Choosing suhtahle sizes

Determining the subtable sizes reduces to the problem of finding mutually prime

numbers J-r, A, whose product exceeds m and whose sum is minimized. In this

section, let pi = the ith prime. We note that x + y < xy for 2 < x < y, so that if Ai = xy

where x and y are mutually prime, splitting ~“i into two tables of size x and y decreases

A SUM. It follows that each Izi should be of the form pr for some prime p and r> 1.

In the continuous version of this problem, where each Ai can be any real number,

setting ~“i =$Y minimizes AsuM. In particular 5 =ln n and 1+= e is optimal over all

t showing that small 1bi are best. In our problem, we cannot choose 5 too small

Fast average-case pattern matching 113

otherwise there will not be enough primes ~$6 to use. We believe setting ~i=pi

is asymptotically optimal. Using pi =i(lni+lnlni) [lo] we solve for 5.

In l_rROD = i ln[i(lni+lnlni)]~ ‘lnx+ln(lnx+lnlnx)dx.
i=l s 1

Making the change of variable In x=y, integrating by parts, and taking the

dominant terms gives

In 2 pRoo~x(lnx-1)+xln(lnx+lnlnx)~5

For In &ROD = In m, we get 5 z (In m)/(In In m), and pC z In m. Then,

&uM=i$i lwiZiil i(lni+lnlni)< i i(ln4+lnln[)
i=l

~i”(ln~+lnlni;))~(1n2m)/(lnlnm)

2 2 .

7. False survivors

Because we multiplex points for many alignments in a single subtable entry, false

survivors are possible. In a subtable of size /2, we force the probability that an

entry falsely survives to be 0(1/1.~). In Appendix A, we show that choosing

N > (1.25 k + 2 In 3. + 3dm) meets this criterion (choose N by plugging in the

largest 1”).

For any subtable of size 2, the probability of no false survivors in the table

is Pr(FS=O)=(l-X3)“> 1-X2. The probability of a false survivor is

Pr(FS 3 l)= 1 - Pr(FS =O)< LX*. The probability of at least one false survivor in

every subtable /ij [] of size 3.j is JJ Pr(FS in nj [1) < n(n,T’)< l/m2, as we have

llpRoD=~(lj)>m. Thus, the probability of a nonmatching alignment surviving all

subtables is 0(1/m*). A full check on this alignment requires O(m) time and adds

a negligible factor of 0(1/m) to the total running time.

If the pattern P or a large portion of P is periodic with a small period u, our method

can fail badly if there are matches, because many alignments might match the sampled

blocks. In this case it is best to modify the point tables so that only the first

u alignments for the first period receive points. If an alignment i survives, all other

alignments i + ku are known to survive.

174 R. W. Quong

8. Variations

We outline how to extend our technique for different variations of pattern finding.

These extensions are mutually independent of one another and can be applied

simultaneously.

Our method handles context sensitive mismatches, where the cost of a mismatch

depends on the mismatch itself and possibly the surrounding data. The choice of b,

and the how to update alignment i on sampling fi will depend on the cost function.

In generalized string matching [l], where P=p, . . . pm, each pattern element pi in

P can match an arbitrary set of characters. For example, the pattern element [+ abc]

matches a, b or c, and the pattern element [- abc] matches any character but a, b or c.

The effective alphabet size A’ is l/Pr (pi - tj), where pi N tj means pi matches tj. Use

b = log,, m which increases the space usage by 0 (my), where ‘/ = log, A’.

If transpositions are considered a single mismatch, sample the N blocks of the text

T[m- b : b], . , T[m- Nb : b] as before, and then sample the same text, but shift the

blocks by b/2 positions, for T[m - b -b/2 : b], . , T[m - Nb - b/2 : b]. By appropriate

precomputation of the subtables, a transposition that occurs inside a block counts as

one mismatch. A transposition that occurs at the seam between two blocks, will be

compensated for in the overlapping block.

If the pattern is two-dimensional (m, rows by m, columns) number the alignments

column-by-column from the bottom left corner. Let m = (m,m,) and b = log, m. Form

a block by sampling the top b characters in a column. Sample a block in each of the

rightmost N columns. Alignments for block q must be adjusted by qm, positions. We

slide the T text window row by row from right-to-left moving upwards by @(m,) rows

at the end of the row scan. For exact matching, we get an average-case running time of

O(n(log, m)2/m). This technique can be extended for arbitrary dimensions.

For a set of patterns P = { P,, . . . , P,}, let mi = 1 Pi 1, and m_ = mini(Pi), the length of

the shortest pattern. Give the first m- alignments for each Pi a unique id. Use these id’s

in place of the alignments. For the k-mismatches problem we get a running time of

O(knlogA(vm-)/m_). This approach is practical only if m_ is large.

8.1. Alternative strategies

Point schemes: For the k-mismatches problem, we have used a very simple point

scheme of 1 point on a complete match. Clearly, other schemes exist. We note that

limiting the precomputed table entries nnj [i] [fl] to 1 further reduces the probability

of a false survivor, without affecting the correctness of the algorithm.

Other multiplexing schemes: Our current multiplexing scheme stores points for

alignment i in nj[imod ~j]. In the event of more than one simultaneous matches,

each subtable has two survivors. There is no method to determine which set of entries

belong to a given alignment, so that many alignments must be checked via trial and

error. For example, if two alignments match, in the worst case 0(2<)= O(m’i’“g log “)

alignments would have to be explicitly checked. (With our current scheme, if more

Fast average-case pattern matching 175

than one alignment survives, it is best to continue sampling for, say, another z 0 (N)

blocks to hopefully rule out some or all the survivors.)

One method to alleviate the problem of multiple survivors is to rearrange the

alignments, so that similar alignments occupy the same entries on many subtables. Let

rc be a permutation of (0, 1, . . . , APROD). We try to choose 71 such that if alignments ii

and i, are similar, then n(il)=x(i2) mod ~j for as many %j as possible. We leave

computing rc as an open question.

9. Practical aspects

If a subtable Aj fits in a single computer word, we can save space and time by storing

the entries in parallel bit by bit in each a word as shown in Fig. 7. For example, the

least significant bit (LSB) for entry i would be bit i in word 0; in general, bit bb for

entry i would be the ith bit in word bb. In Fig. 7, nj[O] contains the value 3 =Ol 12;

note only three words are needed to contain ilj[. ..] compared with the normal 2,

words. We update the table in parallel via logical bit operations. Updating the

subtable requires 0 (lg k) time, as we need 0 (lg k) bits per entry, where lg x = log, x.

In addition, each update table ililj [. . .] [/3] can be stored in a single com-

puter word. To rotate the update tables, use a bit rotate instruction. The total

space needed is 0 (A (lg k)(In m)/(In In m)) and the running time becomes

O(kn lg klog m/(m log log m)). On a 32 bit machine, using subtables of sizes 32,31,

29,28,27,26,2.5,23,19,17, and 11 allows for m d 100 x lo”, which should accommod-

ate most problems.

For m = 0 (lO,OOO), the overhead of doing bit shifts on each addition is probably

slower than simply using three or four mid-sized tables. Table 1 gives execution times

of several different string searching algorithms on a SUN SPARCstation 1 (a

10-l 5 MIP machine) running Sun OS 4.0. In all cases, n = 250,000, A = 2, and the text

did not contain the pattern. All running times are in seconds and include file I/O time,

preprocessing time and search times. We compiled our program, sparselllult, with

version 1.37 of the GNU C+ + compiler.

For comparison, egrep a fast regular expression searching program using a deter-

ministic finite automaton, required 0.4 seconds when m = 378. An implementation of

the Bayer-Moore algorithm, BM, required 0.3 seconds on the same search. We note

that BM is not particularly well suited for searches of long binary patterns. R-L-naive

LSB 7th bit

LS bits word 0

2nd LS bits word 1

3rd LS bits word 2

Fig. 7. If subtable size i.j < word size, map bits in parallel (here lj = 7).

176 R. W. Quong

Table 1

Algorithm Table size n m k time (set)

wep
Boyer-Moore

Boyer-Moore

R-L-naive

R-L-naive

R-L-naive

sparseMult

sparseM&

sparseMult

sparseM&

sparseMult

sparseMult

sparseMult

sparseMult

sparseM&

(11,7,5)

(13,11,9)

(11,7,5)

(13,11,9)

(11,7,5)

(13,11,9)

(13,11,9)

(13,11,9)

(11,7,5,2)

250 K 378 0 0.4

250 K 378 0 0.3

250 K 378 0 0.3

250 K 378 0 3.4

250K 378 5 6.2

250 K 378 15 12.7

250 K 378 0 0.2

250 K 378 0 0.3

250 K 300 5 0.6

250 K 300 15 2.4

250 K 300 15 1.8

250 K 600 5 0.4

250 K 600 15 0.8

250 K 600 30 2.3

250K 600 30 2.0

is the algorithm from Section 3 that samples individual text characters from right to

left ala BM. The above table shows that in all cases, sparseMult compared quite

favorably with the other programs for both exact and k-mismatches string matching.

10. Concluding remarks

We have illustrated our method of multiplexing sparse matches in a series of small

subtables for the k-mismatches problem. For an alignment i, the minimum value in its

subtable entries gives an upper bound on how well i matches the sampled text. By

modifying the sampling strategy or the point scheme, our technique is applicable to

other types of pattern searching and pattern recognition problems. We close by asking

for further refinements in sampling strategies, point schemes, and multiplexing

methods.

Appendix A (Choosing N)

Naive algorithm

Let X = Cj”= i Xj, where

x on the jth sample. Xj= 1

Xj is the r.v. for the number of points given to alignment

if alignment x matches the ith sample, and is 0 otherwise.

Thus, X represents the number of points in A [x] after N samples. For an alphabet

size of A, we have a mean of p = E [X,] = 1 /A, and a variance of C? = (A - 1)/A’. In

this section, we derive N such that the probability of a false survivor = Pr(X 2 r) d

(1 /E), where E = 1 /Pr (false survivor).

Fast average-case pattern matching 171

As the Xj are i.i.d random variables, we apply Chernoff bound methods for a series

of N Bernoulli trials [7]

Pr(X-Np>r)<exp $
(>

d l/E.

We want Pr(X > r = N-k); thus, r = z - Np = ((A - 1) N/A -k), giving the exponent

r2/(4Na2)=((A - 1) N - k)2/(4N(A - 1)). Taking the natural logarithm of both sides

gives

((A-l)N-Ak)2>4(A-l)Nln~.

Expanding the left side gives a quadratic equation in N,

(A-1)2NZ-(A-1)(2kA+41na)N+A2k230.

Solving for N gives

Ak 2lnc 2JkAlnE+lnzE
N>-- ~

A-l+A-l+ A-l ’

As A32, making the substitutions 2 3 A/(A - l), 1 > l/(,4 - l), and 43fi/(A- l),

and setting c=m2 gives the result N=(2k+4lnm+4Jklnm+lnZm) used in

Chapter 3.

Multiplexed tables

Let Xi, s be a random variable which is 1 if the alignment i matches sample B. Then

E [Xi, p] = p = l/A” < l/m, and g2 <(m - 1)/m’. For an entry A [i’] of a subtable of size

I,, let

j=l i=i’(modA)

X represents the number of points in A [i’] after N samples. X consists of N,, = Nm/I.
identical Bernoulli trials, Xi, B, and we solve

Pr(X-N0p3r)bexp (Al)

As before, we want Pr (X 3 t = N - k); thus, r = ((A - 1) N/I_ - k), giving an exponent

of

r2 2
((I.- l)N-Ak)’

Y=4N:02,/.= 4Ni(m- 1)/m ’ 4Noa

*Taking the natural logarithm of Equation A.l, plugging in the previous equation,

and multiplying through by - 1 gives the first and third terms of

((~_-1)N-~k)234N;11n&>4N~~ (m- Ulne
m ’

178 R. W. Quong

Expanding the first term and subtracting the second term gives the quadratic

equation

Solve the quadratic for N gives

2Alns 21 k(A-l)lna+ln*a 1 (A-1)2

Setting E = A3 so that In E = 3 In jL, and assuming A3 5, we have (for each

term in the preceding equation, respectively) A/(2- 1) < 1.25, 2 In E/(A - 1)2 <In %, and

2R/(A - 1) < 3, and (In E)/(II - 1) <In I_, which gives

For all subtable sizes, we have 2 <p <~ln m, so that In A is O(lnlnm). Thus,

N= 1.25k+ O($ln lnm). We note that the smaller the subtable, the larger N must

be, as the A/(;l-- 1) factor in the dominant first term increases. We force 3.3 5 for this

reason.

References

Cl1
PI

[31
c41

ISI

[61

c71

PI

c91

IlO1

1111

Cl21

1131

Karl Abrahamson, Generalized string matching, SIAM J. Comput. 16 (1987) 103991048.

A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18

(6) (1975) 333-340.

M. Atallah, Private communication.

Ricardo Baeza-Yates and Mireille Regnier, Fast algorithms for two-dimensional and multiple pattern

matching, in: Proc. SWAT 90, Lecture Notes in Computer Science, Vol. 447 (Springer, Berlin, 1990)

332-347.
Robert S. Boyer and J. Strother Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977)

762-772.

William I. Chang and Eugene L. Lawler, Approximate string matching in sublinear expected time, in:

Proc. 3lst IEEE Symp. on Foundations of Computer Science (1990) 116-124.

T. Cormen, C.E. Leiserson and R. Rivest, Introduction to Algorithms (McGraw Hill, New York, NY,

1990).

M.J. Fischer and MS. Paterson, String matching and other products, in: R.M. Karp, ed., Complexity
ofComputation (SIAM-AMS Proceedings 7) (American Mathematical Society, Providence, RI, 1974)

113-125.

Z. Galil and K. Park, An improved algorithm for approximate string matching, in: Lecture notes in

computer science, Vol. 372 (Springer, Berlin, 1989) 394-404.
R. Graham, D.E. Knuth and 0. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, MA,

1989).

Donald Knuth, Seminumerical Algorithms, The Art of Programming Vol. 2 (Addison-Wesley, Reading,

MA, 1981).
Donald E. Knuth, James H. Morris and Vaughan R. Pratt, Fast pattern matching in strings, SIAM J.
Comput. 6 (2) (1977) 323-350.
Gad M. Landau and Uzi Vishkin, Introducing efficient parallelism into approximate string matching

and a new serial algorithm, in: Proc. 18th ACM Symp. on Theory of Computing (1985) 220-230.

Fast am-age-case pattern matching 179

[14] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976)

262-272.

[15] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization,

SIAM J. Comput. 17 (6) (1988) 1253-1262.

[16] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th IEEE Symp. on Switching and Automata
Theory (1973) l-11.

1171 Andrew Chi-Chih Yao, The complexity of pattern matching for a random string, SIAM J. Comput.
8 (3) (1979) 368-387.

[18] Rui F. Zhu and Tadao Takaoka, A technique for two-dimensional pattern matching, Comm. ACM 32

(1989) 1110-1120.

