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Abstract

Di*erent variants of guarded logics (a powerful generalization of modal logics) are surveyed
and an elementary proof for the decidability of guarded !xed point logics is presented. In a
joint paper with Igor Walukiewicz, we proved that the satis!ability problems for guarded !xed
point logics are decidable and complete for deterministic double exponential time (E. Gr(adel
and I. Walukiewicz, Proc. 14th IEEE Symp. on Logic in Computer Science, 1999, pp. 45–54).
That proof relies on alternating automata on trees and on a forgetful determinacy theorem for
games on graphs with unbounded branching. The exposition given here emphasizes the tree
model property of guarded logics: every satis!able sentence has a model of bounded tree width.
Based on the tree model property, we show that the satis!ability problem for guarded !xed point
formulae can be reduced to the monadic theory of countable trees (S!S), or to the �-calculus
with backwards modalities. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Guarded logics are de!ned by restricting quanti!cation in !rst-order logic, second-
order logic, !xed point logics or in!nitary logics in such a way that, semantically
speaking, each subformula can ‘speak’ only about elements that are ‘very close to-
gether’ or ‘guarded’.
Syntactically this means that all !rst-order quanti!ers must be relativised by certain

‘guard formulae’ that tie together all the free variables in the scope of the quanti!er.
Quanti!cation is of the form

∃y(�(x; y) ∧  (x; y)) or ∀y(�(x; y) →  (x; y))

where quanti!ers may range over a tuple y of variables, but are ‘guarded’ by a formula
� that must contain all the free variables of the formula  that is quanti!ed over. The
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guard formulae are of a simple syntactic form (in the basic version, they are just atoms).
Depending on the conditions imposed on guard formulae, one has logics with di*erent
levels of ‘closeness’ or ‘guardedness’. Again, there is a syntactic and a semantic view
of such guard conditions.
Let us start with the logic GF, the guarded fragment of !rst-order logic, as it was

introduced by AndrEeka et al. [1].

De�nition 1.1. GF is de!ned inductively as follows:
(1) Every relational atomic formula Rxi1 · · · xim or xi = xj belongs to GF.
(2) GF is closed under boolean operations.
(3) If x; y are tuples of variables, �(x; y) is a positive atomic formula, and  (x; y) is

a formula in GF such that free( )⊆ free(�)= x∪ y, then also the formulae

∃y(�(x; y) ∧  (x; y)) and ∀y(�(x; y) →  (x; y))

belong to GF.

Here free( ) means the set of free variables of  . An atom �(x; y) that relativizes
a quanti!er as in rule (3) is the guard of the quanti!er. Hence in GF, guards must be
atoms. But the really crucial property of guards (also for the more powerful guarded
logics that we will consider below) is that it must contain all free variables of the
formula that is quanti!ed over.
The main motivation for introducing the guarded fragment was to explain and gener-

alize the good algorithmic and model-theoretic properties of propositional modal logics
(see [1, 26]). Recall that the basic (poly)modal logic ML (also called Kn) extends
propositional logic by the possibility to construct formulae 〈a〉 and [a] (for any
a from a given set A of ‘actions’ or ‘modalities’) with the meaning that  holds at
some, respectively, each, a-successor of the current state. (We refer to [4] or [22] for
background on modal logic).
Although ML is formally a propositional logic we really view it as a fragment

of !rst-order logic. Kripke structures, which provide the semantics for modal logics,
are just relational structures with only unary and binary relations. There is a standard
translation taking every formula  ∈ML to a !rst-order formula  ∗(x) with one free
variable, such that for every Kripke structure K with a distinguished node w we have
that K; w |=  if and only if K |=  ∗(w). This translation takes an atomic proposition P
to the atom Px, it commutes with the Boolean connectives, and it translates the modal
operators by quanti!ers as follows:

〈a〉 ❀ (〈a〉 )∗(x) := ∃y(Eaxy ∧  ∗(y))

[a] ❀ ([a] )∗(x) := ∀y(Eaxy →  ∗(y))

where Ea is the transition relation associated with the modality a. The modal fragment
of !rst-order logic is the image of propositional modal logic under this translation.
Clearly the translation of modal logic into !rst-order logic uses only guarded quanti!-
cation, so we see immediately that the modal fragment is contained in GF. The guarded
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fragment generalizes the modal fragment by dropping the restrictions to use only two
variables and only monadic and binary predicates, and retains only the restriction that
quanti!ers must be guarded.
The following properties of GF have been demonstrated [1, 10]:

(1) The satis!ability problem for GF is decidable.
(2) GF has the !nite model property, i.e., every satis!able formula in the guarded

fragment has a !nite model.
(3) GF has (a generalized variant of) the tree model property.
(4) Many important model theoretic properties which hold for !rst-order logic and

modal logic, but not, say, for the bounded-variable fragments FOk , do hold also
for the guarded fragment.

(5) The notion of equivalence under guarded formulae can be characterized by a
straightforward generalization of bisimulation.

Further work on the guarded fragment can be found in [7–9, 17]. Based on this kind
of results AndrEeka, van Benthem, and NEemeti put forward the ‘thesis’ that it is the
guarded nature of quanti!cation that is the main reason for the good model-theoretic
and algorithmic properties of modal logics.
Let us discuss to what extent this explanation is adequate. One way to address

this question is to look at the complexity of GF. We have shown in [10] that the
satis!ability problem for GF is complete for 2EXPTIME, the class of problems solvable
by a deterministic algorithm in time 22

p(n)
, for some polynomial p(n). This seems

very bad, in particular if we compare it to the well-known fact that the satis!ability
problem for propositional modal logic is in PSPACE [19]. But dismissing the explanation
of AndrEeka, van Benthem, and NEemeti on these grounds would be too super!cial.
Indeed, the reason for the double exponential time complexity of GF is just the fact
that predicates may have unbounded arity (wheras ML only expresses properties of
graphs). Given that even a single predicate of arity n over a domain of just two element
leads to 22

n
possible types already on the atomic level, the double exponential lower

complexity bound is hardly a surprise. Further, in most of the potential applications
of guarded logics the arity of the relation symbols is bounded. But for GF-sentences
of bounded arity, the satis!ability problem can be decided in EXPTIME [10], which is
a complexity level that is reached already for rather weak extensions of ML (e.g. by
a universal modality) [25]. Thus, the complexity analysis does not really provide a
decisive answer to our question.
To approach the question from a di*erent angle, let us look at extensions of ML.

Indeed ML is a very weak logic and the really interesting modal logics extend ML by
features like path quanti!cation, temporal operators, least and greatest !xed points etc.
which are of crucial importance for most computer science applications. It has turned
out that many of these extended modal logics are algorithmically still manageable and
actually of considerable practical importance. The most important of these extensions
is the modal �-calculus L�, which extends ML by least and greatest !xed points and
subsumes most of the modal logics used for automatic veri!cation including CTL,
LTL, CTL∗, PDL, and also many description logics. The satis!ability problem for L�
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is known to be decidable and complete for EXPTIME [5]. Therefore, a good test for
the explanation put forward by AndrEeka, van Benthem, and NEemeti is the following
problem:
If we extend GF by least and greatest !xed points, do we still get a decidable
logic? If yes, what is its complexity? To put it di*erently, what is the penalty, in
terms of complexity, that we pay for adding !xed points to the guarded fragment?
In [13] we were able to give a positive answer to this question. The model-theoretic

and algorithmic methods that are available for the �-calculus on one side, and the
guarded fragments of !rst-order logic on the other side, can indeed be combined and
generalized to provide positive results for guarded !xed point logics. (Precise de!nitions
for these logics will be given in the next section.) In fact we could establish precise
complexity bounds.

Theorem 1.2 (Gr(adel, Walukiewicz). The satis1ability problems for guarded 1xed
point logics are decidable and 2EXPTIME-complete. For guarded 1xed point sentences
of bounded width the satis1ability problem is EXPTIME-complete.

By the width of a formula  , we mean the maximal number of free variables in
the subformulae of  . For sentences that are guarded in the sense of GF, the width
is bounded by the maximal arity of the relation symbols, but there are other variants
of guarded logics where the width may be larger. Note that for guarded !xed point
sentences of bounded width the complexity level is the same as for �-calculus and for
GF without !xed points.
The proof that we give in [13] relies on alternating two-way tree automata (on trees

of unbounded branching), on a forgetful determinacy theorem for parity games, and
on a notion of tableaux for guarded !xed point sentences, which can be viewed as
tree representations of structures. We associate with every guarded !xed point sentence
 an alternating tree automaton A that accepts precisely the tableaux that represent
models for  . This reduces the satis!ability problem for guarded !xed point logic to
the emptiness problem for alternating two-way tree automata.
In this paper we discuss other variants of guarded logics, with more liberal notions of

guarded quanti!cation and explain alternative possibilities to design decision procedures
for guarded !xed point logics. Already in [3], van Benthem had proposed loosely
guarded quanti1cation (also called pairwise guarded quanti!cation) as a more general
way of restricting quanti!ers, and proved that also LGF, the loosely guarded fragment
of !rst-order logic, remains decidable. Here we motivate and introduce clique guarded
quanti1cation, which is even more liberal than loosely guarded quanti!cation, but
retains the same decidability properties.
The techniques for establishing decidability results for guarded !xed point logics

that we explain in this paper exploit a crucial property of such logics, namely the
(generalized variant of the) tree model property, saying that every satis!able sentence
of width k has a model of tree width at most k − 1. The tree width of a structure is a
notion coming from graph theory which measures how closely the structure resembles
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a tree. Informally a structure has tree width 6k, if it can be covered by (possibly
overlapping) substructures of size at most k + 1 which are arranged in a tree-like
manner. The tree model property for guarded logics is a consequence of their invariance
under a suitable notion of bisimulation, called guarded bisimulation.
Guarded bisimulations play a fundamental role for characterizing the expressive

power of guarded logics, in the same way as usual bisimulations are crucial for under-
standing modal logics. For instance, the characterization theorem by van Benthem [2],
saying that a property is de!nable in propositional modal logic if and only if it is !rst-
order de!nable and invariant under bisimulation, has a natural analogue for the guarded
fragment: GF can de!ne precisely the model classes that are !rst-order de!nable and
invariant under guarded bisimulation [1]. We will explain and prove a similar result
for the clique-guarded fragment in Section 3. There is a similar and highly non-trivial
characterisation theorem for the modal �-calculus, due to Janin and Walukiewicz [18],
saying that the properties de!nable in the modal �-calculus are precisely the properties
that are de!nable in monadic second-order logic and invariant under bisimulation. And,
as shown recently by Gr(adel et al. [12], this result also carries over to the guarded
world. Indeed, there is a natural fragment of second-order logic, called GSO, which
is between monadic second-order logic and full second-order logic, such that guarded
!xed point logic is precisely the bisimulation-invariant portion of GSO.

1.1. Outline of the paper

In Section 2 we discuss di*erent variants of guarded logics. In particular we in-
troduce the notion of clique-guarded quanti!cation and present the precise de!nitions
and elementary properties of guarded !xed point logics. In Section 3 we explain the
notions of guarded bisimulations, of tree width and of the unraveling of a structure. We
prove a characterization theorem for the clique-guarded fragment and discuss the tree
model property of guarded logics. Based on the tree model property we will present
in Section 4.2 a simpler decidability proof for guarded !xed point logic that replaces
the automata theoretic machinery used in [13] by an interpretation argument into the
monadic second-order theory of countable trees (S!S) which by Rabin’s famous result
[23] is known to be decidable. We then show in Section 4.3 that instead of using
S!S, one can also reduce guarded !xed point logic to the �-calculus with backwards
modalities which has recently been proved to be decidable (in EXPTIME, actually) by
Vardi [27].
We remark that this paper is to a considerable extent expository. The new results,

mostly concerning clique-guarded logics, can also be derived using the automata theo-
retic techniques of [13]. However, it is worthwhile to make the role of guarded bisimu-
lations explicit and to show how one can establish decidability results for guarded !xed
point logics via reductions to well-known formalisms such as S!S or the �-calculus.
Even if the automata theoretic method gives more eScient algorithms, the reduction
technique provides a simple and high-level method for proving decidability, avoiding
any explicit use of automata-theoretic machinery (the use of automata is hidden in
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the decision algorithms for S!S or the �-calculus). For the convenience of the reader,
we have included explicit proofs of some facts that are known – or straightforward
variations of known results – but where the proofs are hard to !nd.

2. Guarded logics

There are several ways to de!ne more general guarded logics than GF. On one side,
we can consider other notions of guardedness, and on the other side we can look at
guarded fragments of more powerful logics than !rst-order logic. We !rst consider
other guardedness conditions.

2.1. Loosely guarded quanti1cation

The direct translation of temporal formulae ( until ’), say over the temporal frame
(N;¡), into !rst-order logic is

∃y(x 6 y ∧ ’(y) ∧ ∀z((x 6 z ∧ z¡y) →  (z))

which is not guarded in the sense of De!nition 1.1. However, the quanti!er ∀z in this
formula is guarded in a weaker sense, which lead van Benthem [3] to the following
generalization of GF.

De�nition 2.1. The loosely guarded fragment LGF is de!ned in the same way as GF,
but the quanti!er-rule is relaxed as follows:

(3)′ If  (x; y) is in LGF, and �(x; y)= �1 ∧ · · · ∧ �m is a conjunction of atoms, then

∃y((�1 ∧ · · · ∧ �m) ∧  (x; y)) and ∀y((�1 ∧ · · · ∧ �m) →  (x; y))

belong to LGF, provided that free( )⊆ free(�)= x∪ y and for any two variables
z ∈ y, z′ ∈ x∪ y there is at least one atom �j that contains both z and z′.

In the translation of ( until ’) described above, the quanti!er ∀z is loosely guarded
by (x6z ∧ z¡y) since z coexists with both x and y in some conjunct of the guard.
On the other side, the transitivity axiom ∀xyz(Exy∧Eyz→Exz) is not in LGF. The
conjunction Exy∧Eyz is not a proper guard of ∀xyz since x and z do not coexist
in any conjunct. Indeed, it has been shown in [10] that there is no way to express
transitivity in LGF.

2.2. Clique-guarded quanti1cation

In this paper we introduce a new, even more liberal, variant of guarded quanti!cation,
which leads to what we may call clique-guarded logics. To motivate this notion, let
us look at the semantic meaning of guardedness.
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De�nition 2.2. Let B be a structure with universe B and vocabulary �. A set X = {b1;
: : : ; bn}⊆B is guarded in B if there exists an atomic formula �(x1; : : : ; xn) such that
B |= �(b1; : : : ; bn). Note that every singleton set X = {b} is guarded (by the atom b= b).
A tuple (b1; : : : ; bn)∈Bn is guarded if {b1; : : : ; bn}⊆X for some guarded set X .

Clearly, sentences of GF can refer only to guarded tuples. Consider now the LGF-
sentence

(∃xyz : Rxyz)(∀uv : Ryuv ∧ Rzuv)’(y; z; u; v):

While the !rst quanti!er is guarded even in the sense of GF, the second one is only
loosely guarded: the quanti!ed variables u; v coexist in an atom of the guard (in fact
in both of them) and they also coexist with each of the other free variables y; z in
one of the atoms. The subformula ’ can hence talk about quadruples (y; z; u; v) in a
structure, that are not guarded in the sense of the de!nition just given, but in weaker
sense.
The corresponding semantic de!nition of a loosely guarded set in a structure B is

inductive.

De�nition 2.3. A set X is loosely guarded in the structure B if it either is a guarded
set, or if there exists a loosely guarded set X ′ such that for every a∈X −X ′ and every
b∈X there is a guarded set Y with {a; b}⊆Y ⊆X .

For instance, in the structure B=(B; R), with universe B= {a; b; c; d; e} and a ternary
relation consisting of the triples (a; b; c); (b; d; e); (c; d; e), the set {b; c; d; e} is loosely
guarded. Note that the elements of a loosely guarded set need not coexist in a single
atom of the structure, but they are all ‘adjacent’ in the sense of the locality graph or
Gaifman graph of a structure.

De�nition 2.4. The Gaifman graph of a relational structure B (with universe B) is
the undirected graph G(B)= (B; EB) where

EB = {(a; a′): a �= a′; there exists a guarded set X ⊆ B with a; a′ ∈ X }:
A set X of elements of a structure B is clique-guarded in B if it induces a clique
in G(B). A tuple (b1; : : : ; bn)∈Bn is clique-guarded if its components form a clique-
guarded set.

Lemma 2.5. Every loosely guarded set is also clique-guarded.

Proof. We proceed by induction on the de!nition of a loosely guarded set. If X is
guarded, then it is obviously also clique-guarded. Otherwise there exists a loosely
guarded set X ′ and, for every a∈X − X ′, b∈X a guarded set containing both a
and b. Hence all such a and b are connected in G(B). It remains to consider elements
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a; b that are both contained in X ∪X ′. In that case, a and b are connected in G(B)
because, by induction hypothesis, X ′ induces a clique in G(B).

The converse is not true, as the following example shows. Consider a structure
A=(A; R) with universe A= {a1; a2; a3; b12; b23; b13} and one ternary relation R con-
taining the triangles (a1; a2; b12); (a2; a3; b23); (a1; a3; b13). Then {a1; a2; a3} is neither
guarded nor loosely guarded, but induces a clique in G(A).
Note that for each !nite vocabulary � and each k ∈N, there is a positive, exis-

tential !rst-order formula clique(x1; : : : ; xk) such that, for every �-structure B and all
b1; : : : ; bk ∈B

B |= clique(b1; : : : ; bk)⇔ b1; : : : ; bk induce a clique in G(B):

De�nition 2.6. The clique-guarded fragment CGF of !rst-order logic is de!ned in
the same way as GF and LGF, but with the clique-formulae as guards. Hence, the
quanti!cation rule for CGF is
(3)′′ If  (x; y) is a formula CGF, then

∃y(clique(x; y) ∧  (x; y)) and ∀y(clique(x; y) →  (x; y))

belong to CGF, provided that free( )⊆ free(clique)= x∪ y.

Note that quanti!ers over tuples are in principle no longer needed in CGF (contrary
to GF and LGF), since they can be written as sequences of clique-guarded quanti!ers
over single variables.

2.3. Alternative de1nitions of CGF

In practice, one will of course not write down the clique-formulae explicitly. One
possibility is not to write them down at all, i.e., to take the usual (unguarded) !rst-order
syntax and to change the semantics of quanti!ers so that only clique-guarded tuples
are considered. More precisely: let ’(x; y) be a !rst-order formula, B a structure and
a be a clique-guarded tuple of elements of B. Then B |=∃y’(a; y) if there exists an
element b such that (a; b) is clique-guarded and B |=’(a; b). Similarly for universal
quanti!ers. It is easy to see that, for !nite vocabularies, this semantic de!nition of
CGF is equivalent to the one given above.
An alternative possibility is to permit as guards any existential positive formula ((x)

that implies clique(x). This is what Maarten Marx [20, 16] uses in his de!nition of
the packed fragment PF. The di*erences between the clique-guarded fragment and the
packed fragment are purely syntactical. PF and CGF have the same expressive power.
The work of Maarten Marx and ours have been done independently.
Every LGF-sentence is equivalent to a CGF-sentence. (The analogous statement for

formulae is only true if we impose that the free variables must be interpreted by loosely
guarded tuples. However, in this paper, we restrict attention to sentences.) We observe
that CGF has strictly more expressive power than LGF.
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Proposition 2.7. The CGF-sentence ∀xyz(clique(x; y; z)→Rxyz) is not equivalent to
any sentence in LGF.

The good algorithmic and model-theoretic properties of GF go through also for
LGF and CGF. In most cases, in particular for decidability, for the characteriza-
tion via an appropriate notion of guarded bisimulation and for the tree model prop-
erty, the proofs for GF extend without major diSculties. An exception is the !nite
model property which, for GF, has been established in [10], and where the extension
to LGF and CGF, recently established by Ian Hodkinson [15], requires considerable
e*ort.

Notation. We use the notation (∃y : �) and (∀y : �) for relativized quanti!ers,

i.e., we write guarded formulae in the form (∃y : �) (x; y) and (∀y : �) (x; y). When
this notation is used, then it is always understood that � is indeed a proper guard as
speci!ed by condition (3), (3)′, or (3)′′.

2.4. Guarded 1xed point logics

We now de!ne guarded !xed point logics, which can be seen as the natural common
extensions of GF, LGF and CGF on one side, and the �-calculus on the other side.

De�nition 2.8. The guarded !xed point logics �GF; �LGF, and �CGF are obtained by
adding to GF; LGF, and CGF, respectively, the following rules for constructing !xed
point formulae: Let W be a k-ary relation symbol; x = x1; : : : ; xk a k-tuple of distinct
variables, and  (W; x) be a guarded formula that contains only positive occurrences
of W , no free !rst-order variables other than x1; : : : ; xk , and where W is not used in
guards. Then we can build the formulae

[LFP Wx :  ](x) and [GFP Wx :  ](x):

The semantics of the !xed point formulae is the usual one: Given a structure A pro-
viding interpretations for all free second-order variables in  , except W , the formula
 (W; x) de!nes an operator on k-ary relations W ⊆Ak , namely

 A : W �→  A(W ) := {a ∈ Ak : A |=  (W; a)}:

Since W occurs only positively in  , this operator is monotone (i.e., W ⊆ W ′ implies
 A(W )⊆  A(W ′)) and therefore has a least !xed point LFP( A) and a greatest !xed
point GFP( A). Now, the semantics of least !xed point formulae is de!ned by

A |= [LFP Wx :  (W; x)](a) i* a ∈ LFP( A)

and similarly for the greatest !xed points.
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Least and greatest !xed point can be de!ned inductively. For a formula  (W; x)
with k-ary relation variable W a structure A, and ordinals � set

W 0 := ∅; W̃
0
:= Ak;

W �+1 :=  A(W�); W̃
�+1

:=  A(W̃
�
);

W * :=
⋃

�¡*
W�; W̃

*
:=

⋂
�¡*

W̃
�

for limit ordinals *:

The relations W� (resp. W̃ �) are called the stages of the LFP-induction (resp. GFP-
induction) of  (W; x) on A. Since the operator  A is monotone, we have W 0 ⊆W 1 ⊆
· · · ⊆W� ⊆W�+1 ⊆ · · · and W̃ 0 ⊇ W̃ 1 ⊇ · · · ⊇ W̃ � ⊇ W̃ �+1 ⊇ · · ·, and there exist ordi-
nals �; �′ such that W� =LFP( A) and W̃ �′ =GFP( A). These are called the closure
ordinals of the LFP-induction resp. GFP-induction of  (W; x) on A.

2.5. Finite and countable models

Contrary to GF, LGF, CGF, and also to the modal �-calculus, guarded !xed point
logics do not have the !nite model property [13].

Proposition 2.9. Guarded 1xed point logic �GF (even with only two variables; without
nested 1xed points and without equality) contains in1nity axioms.

Proof. Consider the conjunction of the formulae

∃xyFxy
(∀xy : Fxy)∃xFyx
(∀xy : Fxy)[LFPWx : (∀y : Fyx)Wy](x):

The !rst two formulae say that a model should contain an in!nite F-path and the third
formula says that F is well-founded, thus, in particular, acyclic. Therefore every model
of the three formulae is in!nite. On the other side, the formulae are clearly satis!able,
for instance by (!;¡).

While the !nite model property fails for guarded !xed point logics we recall, for
future use, that the L(owenheim–Skolem property is true even for the (unguarded) least
!xed point logic (FO+LFP), i.e., every satis!able !xed point sentence has a countable
model. This result is part of the folklore on !xed point logic, but it is hard to !nd a
published proof. Our exposition follows the one in [6].

Theorem 2.10. Every satis1able sentence in (FO + LFP); and hence every satis1able
sentence in �GF; �LGF; or �CGF; has a model of countable cardinality.

Proof. Consider a !xed point formula of form  (x) := [LFP Rx : ’(R; x)](x), with !rst-
order ’ such that A |=  (a) for some in!nite model A.
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For any ordinal �, let R� be stage � of the least !xed point induction of ’ on A.
Expand A by a monadic relation U , a binary relation ¡, and a m + 1-ary relation

S (where m is the arity of R) such that
(1) (U;¡) is a well-ordering of length (+ 1, and ¡ is empty outside U .
(2) S describes the stages of ’A in the following way:

S := {(u; b): for some ordinal �6 (; u is the �th element of (U;¡);

and b ∈ R�}:
In the expanded structure A∗ := (A; U;¡; S) the stages of the operator ’A are de!ned
by the sentence

- := ∀u∀x(Sux↔∃z(z ¡ u ∧ ’[Ry=∃z(z ¡ u ∧ Szy)](x))):

Here ’[Ry=∃ z(z¡u∧ S zy)](x)) is the formula obtained form ’(R; x) by replacing all
occurrences of subformula Ry by ∃z(z¡u∧ Szy).
Let B∗=(B; UB;¡B; SB) be a countable elementary substructure of A∗, contain-

ing the tuple a. Since A∗ |= -, also B∗ |= - and therefore SB encodes the stages of
’B. Since also B∗ |=∃uSua, it follows that a is contained in the least !xed point of
’B, i.e., B |=  (a).
A straightforward iteration of this argument gives the desired result for arbitrary

nestings of !xed point operators, and hence for the entire !xed point logic FO+LFP.

2.6. Guarded in1nitary logics

It is well known that !xed point logics have a close relationship to in!nitary logics
(with bounded number of variables).

De�nition 2.11. GF∞; LGF∞, and CGF∞ are the in!nitary variants of the guarded
fragments GF, LGF, and CGF, respectively. For instance GF∞ extends GF by the
following rule for building new formulae: If /⊆GF∞ is any set of formulae, then
also

∨
/ and

∧
/ are formulae of GF∞. The de!nitions for LGF∞ and CGF∞ are

anologous.

In the sequel we explicitly talk about the clique-guarded case only, i.e., about �CGF
and CGF∞, but all results apply to the guarded and loosely guarded case as well. The
following simple observation relates �CGF with CGF∞.

Proposition 2.12. For each  ∈ �CGF of width k and each cardinal (; there is a
 ′ ∈CGF∞; also of width k; which is equivalent to  on all structures up to cardi-
nality (.

Proof. Consider a !xed point formula [LFP Rx : ’(R; x)](x). For every ordinal �, there
is a formula ’�(x)∈CGF∞ that de!nes the stage � of the induction of ’. Indeed, let
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’0(x) := false, let ’�+1(x) :=’[Ry=’�(y)](x), that is, the formula that one obtains
from ’(R; x) if one replaces each atom Ry (for any y) by the formula ’�(y), and for
limit ordinals *, let ’*(x) :=

∨
�¡* ’

�(x). On structures of bounded cardinality, also
the closure ordinal of any !xed-point formula is bounded. Hence for every cardinal
( there exists an ordinal � such that [LFP Rx : ’(R; x)](x) is equivalent to ’�(x) on
structures of cardinality at most (.

Remark. Without the restriction on the cardinality of the structures, this result fails.
Indeed there are very simple !xed point formulae, even in the modal �-calculus (such as
well-foundedness axioms), that are not equivalent to any formulae of the full in!nitary
logic L∞!.

3. Guarded bisimulation and the tree model property

Tree width is an important notion in graph theory. Many diScult or undecidable
computational problems on graphs become easy on graphs of bounded tree width. The
tree width of a structure measures how closely it resembles a tree. Informally, a struc-
ture has tree width 6 k, if it can be covered by (possibly overlapping) substructures
of size at most k +1 which are arranged in a tree-like manner. For instance, trees and
forests have tree width 1, cycles have tree width 2, and the (n×n)-grid has tree width
n. Here we need the notion of tree width for arbitrary relational structures. For readers
who are familiar with the notion of tree width in graph theory we can simply say that
the tree width of a structure is the tree width of its Gaifman graph. Here is a more
detailed de!nition.

De�nition 3.1. A structure B (with universe B) has tree width k if k is the min-
imal natural number satisfying the following condition. There exists a directed tree
T =(V; E) and a function F :V →{X ⊆B: |X |6 k+1}, assigning to every node v of T
a set F(v) of at most k+1 elements of B, such that the following two conditions hold.
(i) For every guarded set X in B there exists a node v of T with X ⊆F(v).
(ii) For every element b of B, the set of nodes {v∈V : b∈F(v)} is connected (and

hence induces a subtree of T ).
For each node v of T , F(v) induces a substructure F(v)⊆B of cardinality at most
k +1. (Since F(v) may be empty, we also permit empty substructures.) 〈T; (F(v)v∈T )〉
is called a tree decomposition of width k of B.

Remark. A more concise, but equivalent, formulation of clause (i) would be that
B=

⋃
v∈T F(v).

By de!nition, every guarded set X ⊆B is contained in some F(v). A simple graph
theoretic argument shows that the same is true for loosely guarded and clique-guarded
sets.
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Lemma 3.2. Let 〈T; (F(v)v∈T )〉 be a tree decomposition of B and X ⊆B be a clique-
guarded set in B. Then there exists a node v of T such that X ⊆F(v).

Proof. For each b∈X , let Vb be the set of nodes v such that b∈F(v). By the de!nition
of a tree decomposition, each Vb induces a subtree of T . For all b; b′ ∈X the intersection
Vb ∩Vb′ is non-empty, since b and b′ are adjacent in G(B) and must therefore coexist
in some atomic fact that is true in B. It is known that any collection of pairwise
overlapping subtrees of a tree has a common node (see e.g. [24, p. 94]). Hence there
is a node v of the T such that F(v) contains all elements of X .

3.1. Guarded bisimulations

The notion of bisimulation from modal logic generalises in a straightforward way
to various notions of guarded bisimulation that describe indistinguishability in guarded
logics. We focus here on clique-bisimulations, the appropriate notion for clique-guarded
formulae. The notions of guarded or loosely guarded bisimulations can be de!ned
analogously.

De�nition 3.3. A clique-k-bisimulation, between two �-structures A and B is a non-
empty set I of !nite partial isomorphisms f :X →Y from A to B, where X ⊆A and
Y ⊆B are clique-guarded sets of size at most k, such that the following back and forth
conditions are satis!ed. For every f :X →Y in I ,
forth: for every clique-guarded set X ′⊆A of size at most k there exists a partial

isomorphism g :X ′→Y ′ in I such that f and g agree on X ∩X ′.
back: for every clique-guarded set Y ′⊆B of size at most k there exists a partial

isomorphism g :X ′ �→Y ′ in I such that f−1 and g−1 agree on Y ∩Y ′.

Clique-bisimulations are de!ned in the same way, without restriction on the size of
X; Y; X ′ and Y ′. Two �-structures A and B are clique-(k-)bisimilar if there exists a
cliqe-(k-)bisimulation between them. Obviously, two structures are clique-bisimilar if
and only if they are clique-k-bisimilar for all k.

Remark. One can describe clique-k-bisimilarity also via a guarded variant of the in-
!nitary Ehrenfeucht–Fra(UssEe game with k pebbles. One just has to impose that after
every move, the set of all pebbled elements induces a clique in the Gaifman graph of
each of the two structures. Then A and B are clique-k-bisimilar if and only if Player
II has a winning strategy for this guarded game.

Adapting basic and well-known model-theoretic techniques to the present situation,
one obtains the following result.

Theorem 3.4. Let A and B be two �-structures. The following are equivalent:
(i) A and B are clique-k-bisimilar.
(ii) For all sentences  ∈CGF∞ of width at most k; A |=  ⇔ B |=  .
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Proof. (i)⇒ (ii): Let I be a clique-k-bisimulation between A and B, let a1; : : : ; an

∈A, b1; : : : ; bn ∈B, and  (x1; : : : ; xn) be any formula in CGF∞ with width at most k
such that A |=  (a1; : : : ; an) and B |=¬ (b1; : : : ; bn). We show, by induction on  , that
there is no partial isomorphism f∈ I with f(a1)= b1; : : : ; f(an) = bn. By setting n=0,
the claim follows.
If  is atomic this is obvious, and the induction steps for formulae  =

∨
/ and

 =¬’ are immediate. Hence the only interesting case concerns formulae of the form

 (x) := (∃y : clique(x; y))’(x; y):
Since A |=  (a), there exists a tuple a′ in A such that A |= clique(a; a′)∧’(a; a′).
Suppose, towards a contradiction, that some f∈ I takes a to b. Since the set a∪ a′ is
clique-guarded there exists a partial isomorphism g∈ I , taking a to b and a′ to some
tuple b′ in B. But then the tuple b∪ b′ is clique-guarded and B |=¬’(b; b′), which
contradicts the induction hypothesis.
(ii)⇒ (i): Let I be the set of all partial isomorphisms f : a �→ b, taking a clique-

guarded tuple a in A to a clique-guarded tuple b in B such that for all formulae
 (x)∈CGF∞ of width at most k, A |=  (a) i* B |=  (b). Since A and B cannot be
distinguished by sentences of width k in CGF∞, I contains the empty map and is
therefore non-empty. It remains to show that I satis!es the back and forth properties.
For the forth property, take any partial isomorphism f :X →Y in I and any clique-

guarded set X ′ in A of size at most k. Let X ′= {a1; : : : ; ar ; a′1; : : : ; a
′
s} where X ∩X ′

= {a1; : : : ; ar}. We have to show that there exists a g∈ I , de!ned on X ′ that coincides
with f on X ∩X ′.
Suppose that no such g exists. Let a= a1; : : : ; ar , a′= a′1; : : : ; a

′
s, b=f(a), and let T

be the set of all tuples b′= b′1; : : : ; b
′
s such that b∪ b′ is clique-guarded in B. Since there

is no appropriate g∈ I there exists for every tuple b′ ∈T a formula ’b′(x; y)∈CGF∞

such that A |=’b′(a; a′) but B |=¬’b′(b; b′). But then we can construct the formula

 (x) := (∃y : clique(x; y)) ∧ {’b′(x; y): b′ ∈ T}:
Clearly, A |=  (a) but B |=¬ (b) which is impossible, given that f ∈ I maps a to b.
The proof for the back property is analogous.

In particular, this shows that clique-(k-)bisimilar structures cannot be separated by
�CGF-sentences (of width k).

3.2. Characterizing CGF via clique-guarded bisimulations

We show next that the characterisations of propositional modal logic and GF
as bisimulation-invariant fragments of !rst-order logic [1, 2] have their counter-
part for CGF and clique-guarded bisimulation. The proof is a straightforward
adaptation of van Benthems proof for modal logic, but for the convenience of the
reader, we present it in full. However, we assume that the reader is familiar with the
notions of elementary extensions and !-saturated structures (see any textbook on model
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theory, such as [14, 21]). We recall that every structure has an !-saturated elementary
extension.

Theorem 3.5. A 1rst-order sentence is invariant under clique-guarded bisimulation if
and only if it is equivalent to a CGF-sentence.

Proof. We have already established that CGF-sentences (in fact even sentences from
CGF∞) are invariant under clique-guarded bisimulations. For the converse, suppose
that  is a satis!able !rst-order sentence that is invariant under clique-guarded bisimu-
lations. Let / be the set of sentences ’∈CGF such that  |=’. It suSces to show that
/ |=  . Indeed, by the compactness theorem, already a !nite conjunction of sentences
from / will then imply, and hence be equivalent to,  .
Since  was assumed to be satis!able, so is /. Take any model A |=/. We have

to prove that A |=  . Let TCGF(A) be the CGF-theory of A, i.e., the set of all CGF-
sentences that hold in A.

Claim. TCGF(A) ∪ { } is satis1able.

Otherwise there were sentences ’1; : : : ; ’n∈TCGF(A) such that  |=¬(’1∧ · · · ∧’n).
Hence ¬(’1∧ · · · ∧’n) is a CGF-sentence implied by  and is therefore contained in
/. But then A |=¬(’1∧ · · · ∧’n) which is impossible since ’1; : : : ; ’n ∈TCGF(A). This
proves the claim.
Take any model B |=TCGF(A)∪{ }, and let A+ and B+ be !-saturated elementary

extensions of A and B, respectively.

Claim. A+ and B+ are clique-bisimilar.
Let I be the set of partial isomorphisms f :X →Y from clique-guarded subsets of A+

to clique-guarded subsets of B+ such that, for all formulae ’(x) in CGF and all tuples
a from X , we have that A+ |=’(a) i* B+ |=’(fa). The fact that A+ and B+ are
!-saturated implies that the back and forth conditions for clique-guarded bisimulations
are satis!ed by I . Indeed, let f∈X , and let X ′ be any clique-guarded set in A+,
with X ′ ∩X = {a1; : : : ; ar} and X ′ − X = {a′1; : : : ; a′s}. Let / be the set of all formulae
of form ’(fa1; : : : ; far; y1; : : : ; ys) ∈ CGF such that A+ |=’(a1; : : : ; ar ; a′1; : : : ; a

′
s). For

every formula ’(fa; y) ∈ /, we have A+ |=(∃y : clique(a; y))’(a; y) and therefore also
B+ |=(∃y : clique(fa; y))’(fa; y). Hence / is a consistent type of (B+; fa) which is,
by !-saturation, realized in B+ by some !xed tuple b such that (fa; b) is clique-
guarded. Hence the function g taking a to fa and a′ to b is a partial isomorphism
with domain X ′ that coincides with f on X ∩X ′. The back property is proved in the
same way, exploiting that A+ is !-saturated.
We can now complete the proof of the theorem. Since B |=  and B+ is an ele-

mentary extension of B, we have that B+ |=  . By assumption,  is invariant under
clique-guarded bisimulations, so A+ |=  and therefore also A |=  .
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An analogous result applies to clique-k-bisimulations and CGF-sentences of width
k, for any k ∈N.

3.3. Unravelings of structures

The k-unraveling B(k) of a structure B is de!ned inductively. We build a tree
T , together with functions F and G such that for each node v of T , F(v) induces
a clique-guarded substructure F(v)⊆B, and G(v) induces a substructure G(v)⊆B(k)

that is isomorphic to F(v). Further, 〈T; (G(v))v∈T 〉 will be a tree decomposition of
B(k).
The root of T is 7, with F(7)=G(7)= ∅. Given a node v of T with F(v)= {a1; : : : ;

ar} and G(v)= {a∗1 ; : : : ; a∗r } we create for every clique-guarded set {b1; : : : ; bs} in B

with s 6 k a successor node w of v such that F(w)= {b1; : : : ; bs} and G(w) is a
set {b∗1 ; : : : ; b∗s } which is de!ned as follows. For those i, such that bi = aj ∈F(v), put
b∗i = a∗j so that G(w) has the same overlap with G(v) as F(w) has with F(v). The
other b∗i in G(w) are fresh elements.
Let fw :F(w)→G(w) be the bijection taking bi to b∗i for i=1; : : : ; s. For F(w) being

the substructure of B induced by F(w), de!ne G(w) so that fw is an isomorphism from
F(w) to G(w). Finally B(k) is the structure with tree decomposition 〈T; (G(v)v∈T )〉.
Note that the k-unraveling of a structure has tree width at most k − 1.

Proposition 3.6. B and B(k) are k-bisimilar.

Proof. Let I be the set of functions fv :F(v)→G(v) for all nodes v of T .

It follows that no sentence of width k in CGF∞, and hence no sentence of width k
in �CGF distinguishes between a structure and its k-unraveling. Since every satis!able
sentence in �CGF has a model of at most countable cardinality, and since the k-
unraveling of a countable model is again countable we obtain the following tree model
property for guarded !xed point logic.

Theorem 3.7 (Tree model property). Every satis1able sentence in �CGF with width
k has a countable model of tree width at most k − 1.

Remark. In fact the decision algorithms for guarded !xed point logics imply a stronger
version of the tree model property, where the underlying tree has branching bounded
by O(| |k) (see [13]).

4. Decision procedures

Once the tree model property is established, there are several ways to design decision
algorithms for guarded logics. We focus here on guarded !xed point logics (in fact on
�CGF which contains �GF and �LGF).
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4.1. Tree representations of structures

Let 〈T; (F(v))v∈T 〉 be a tree decomposition of width k − 1 of a �-structure D with
universe D. We want to describe D by a tree with a !nite set of labels. To this end,
we !x a set K of 2k constants and choose a function f :D→K assigning to each
element d of D a constant ad ∈K such that the following condition is satis!ed. If v; w
are adjacent nodes of T , then distinct elements of F(v)∪F(w) are always mapped to
distinct constants of K .
For each constant a∈K , let Oa be the set of those nodes v∈T at which the constant

a occurs, i.e., for which there exists an element d∈F(v) such that f(d)= a. Further,
we introduce for each m-ary relation R of D a tuple VR := (Ra)a∈Km of monadic relations
on T with

Ra := {v ∈ T : there exist d1; : : : ; dm ∈ F(v) such that

F(v) |= Rd1 · · ·dm and f(d1) = a1; : : : ; f(dm) = am}:

The tree T =(V; E) together with the monadic relations Oa and Ra (for R∈ �) is called
the tree structure T (D) associated with D (and, strictly speaking, with its tree decom-
position and with K and f).

Lemma 4.1. Two occurrences of a constant a∈K at nodes u; v of T represent the
same element of D if and only if a occurs in the label of all nodes on the link between
u and v. (The link between two nodes u; v in a tree T is the smallest connected
subgraph of T containing both u and v:)

An arbitrary tree T =(V; E) with monadic relations Oa and VR does de!ne a tree
decomposition of width k−1 of some structure D, provided that the following axioms
are satis!ed.
(1) At each node v, at most k of the predicates Oa are true.
(2) Neighbouring nodes agree on their common elements. For all m-ary relation sym-

bols R∈ � we have the axiom

consistent( VR) :=
∧
a∈Km

∀x∀y
((

Exy ∧ ∧
a∈a

(Oax ∧ Oay)
)

→ (Rax ↔ Ray)
)

:

These are !rst-order axioms over the vocabulary �∗ := {E}∪ {Oa : a∈K}∪ {Ra :R∈
�; a⊆K}. Given a tree structure T with underlying tree T =(V; E) and monadic predi-
cates Oa and Ra satisfying (1) and (2), we obtain a structure D such that T (D)=T as
follows. For every constant a∈K , we call two nodes u; w of T a-equivalent if T |=Oav
for all nodes v on the link between u and w. Clearly this is an equivalence relation
on OT

a . We write [v]a for the a-equivalence class of the node v. The universe of D is
the set of all a-equivalence classes of T for a∈K , i.e.,

D := {[v]a: v ∈ T; a ∈ K; T |= Oav}:
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For every m-ary relation symbol R in �, we de!ne

RD := {([v1]a1 ; : : : ; [vm]am): T |= Ra1 :::amv for some

(and hence all) v ∈ [v1]a1 ∩ · · · ∩ [vm]am}:

4.2. Reduction to S!S

We now describe a translation from �CGF into monadic second-order logic on count-
able trees. Given a formula ’(x1; : : : ; xm)∈ �CGF and a tuple a= a1; : : : ; am over K ,
we construct a monadic second-order formula ’a(z) with one free variable. The for-
mulae ’a(z) describe in the associated tree structure T (D) the same properties of
clique-guarded tuples as ’(x) does in D. (We will make this statement more precise
below).
On a directed tree T =(V; E) we can express that U contains all nodes on the link

between x and y by the formula

connect(U; x; y) := Ux ∧ Uy ∧ ∃r(Ur ∧ ∀z(Ezr → ¬Uz)

∧∀w∀z(Ewz ∧ Uz ∧ z �= r → Uw)):

For any set a⊆K we can then construct a monadic second-order formula

linka(x; y) := ∃U
(
connect(U; x; y) ∧ ∀z

(
Uz → ∧

a∈a
Oaz
))

saying that the tuple a occurs at all nodes on the link between x and y. The translation
is now de!ned by induction as follows:
(1) If ’(x) is an atom Sxi1 · · · xim then ’a(z) := Sbz where b=(ai1 ; : : : ; aim).
(2) If ’=(xi = xj), let ’a(z)= true if ai = aj and ’a(z)= false otherwise.
(3) If ’(x) := clique(x), let

cliquea(z) :=
∧

a;a∈a
∃y
(
linka;a′(y; z) ∧

∨
R∈�

∨
b:a;a′∈b

Rby

)
:

(4) If ’= -∧#, let ’a(z)= -a(z)∧#a(z).
(5) If ’=¬#, let ’a(z)=¬#a(z).
(6) If ’=(∃y : clique(x; y))-(x; y), let

’a(z) := ∃y
(
linka(y; z) ∧

∨
b

( ∧
b∈b

Oby ∧ cliqueab(y) ∧ -ab(y)
))

:

(7) If ’= [LFP Sx : -(S; x)](x), let

’a(z) := ∀ VS
((

consistent( VS) ∧∧
b
∀x(Sb x ↔ -b( VS; x))

)
→ Saz

)
:

Here VS is a tuple (Sb)b∈Km of monadic predicates where m is the arity of S.
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Theorem 4.2. Let ’(x) be a formula in �CGF and D be a structure with tree de-
composition 〈T; (F(v))v∈T 〉. For an appropriate set of constants K and a function
f :D→K; let T (D) be the associated tree structure. Then; for every node v of T and
every clique-guarded tuple d ⊆F(v) with f(d)= a;

D |= ’(d)⇔T (D) |= ’a(v):

Proof. We proceed by induction on ’. The non-trivial cases are the clique-guards,
existential quanti!cation and least !xed points.
For the clique-guards, note that the translated formula cliquea(v) says that for any

pair a; a′ of components of a, there is a node w, such that
• a; a′ occur at all nodes on the link from v to w and hence represent the same elements

d; d′ at w as they do at v.
• T (D) |=Rbw for some predicate R and some tuple b that contains both a and a′. By

induction hypothesis, this means that d; d′ are components of some tuple d ′ such
that D |=Rd ′.
Hence T (D) |= cliquea(v) if and only if the tuple d induces a clique in the Gaifman

graph G(D).
Suppose now that ’(x)= (∃y : clique(x; y))-(x; y) and that D |=’(d). Then there

exists a tuple d ′ such that D |= clique(d ; d ′)∧ -(d ; d ′).
By Lemma 3.2 there exists a node w of T such that all components of d ∪ d ′ are

contained in F(w).
Let f(d ′)= b. By induction hypothesis it follows that

T (D) |= ∧
b∈b

Obw ∧ cliqueab(w) ∧ -ab(w):

Let U be the set of nodes on the link between v and w. Then the tuple d occurs in
F(u) for all nodes u∈U . It follows that T (D) |= linka(v; w). Hence T (D) |=’a(v).

Conversely, if T (D) |=’a(v) then there exists a node w such that the constants a
occur at all nodes on the link between v and w (and hence correspond to the same tuple
d) and such that T (D) |= cliqueab(w)∧ -ab(w) for some tuple b. By induction hypoth-
esis this implies that D |= clique(d ; d ′)∧ -(d ; d ′) for some tuple d ′, hence D |=’(d).

Finally, let ’(x)= [LFP Sx : -(S; x)](x). By de!nition, D |=’(d) is true if and only
if d is contained in every !xed point of the operator -D, i.e., is in every relation S
such that S = {c: (D; S) |= -(S; c)}.

We !rst observe that, for guarded tuples d , this is equivalent to the seemingly
weaker condition that d is contained in every S such that c ∈ S i* D |= -(S; c) for
all guarded tuples c. Indeed, this is obvious since -(S; x) is a Boolean combination
of quanti!er-free formulae not involving x, of positive atoms of the form Su where
u is a recombination of the variables appearing in x and of formulae starting with a
guarded existential quanti!er. Therefore the truth values of Sc for unguarded tuples c
never matters for the question whether a given guarded tuple is in ’D(S).
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Recall that the formula associated with ’(x) and a is

’a(z) := (∀ VS)
((

consistent( VS) ∧∧
b
∀x(Sbx ↔ -b( VS; x))

)
→ Saz

)
:

Consider any tuple VS =(Sb)b∈Km of monadic relations on T (D) that satisi!es the con-
sistency axiom such that

(T (D); VS) |= ∧
b
∀x(Sbx ↔ -b( VS; x)):

This tuple VS de!nes a relation S on D such that for all nodes w of T and all tuples
c in F(w) with f(c)= b, we have c ∈ S i* w∈ Sb. Conversely, each relation S on D

de!nes such a tuple VS of monadic relations on T (D) which describes the truth values
of S on all guarded tuples of D. Since T (D) |= Sbw↔ -b( VS; w) it follows by induction
hypothesis that D |= Sc↔ -(S; c). Further d ∈ S if and only if v∈ Sa.
Hence the formula ’a(v) is true in T (D) if and only if d is contained in all relations

S over D such that for all guarded tuples c, c ∈ S i* c ∈ -D(S). By the remarks above,
this is equivalent to saying that d is in the least !xed point of -D.

Theorem 4.3. The satis1ability problem for �CGF is decidable.

Proof. Let  be a sentence in �CGF of vocabulary � and width k. We translate  
into a monadic second-order sentence  ∗ such that  is satis!able if and only if there
exists a countable tree T =(V; E) with T |=  ∗.
Fix a set K of 2k constants and let VO be the tuple of monadic relations Oa for a∈K .

Further, for each m-relation symbol R∈ �, let VR be the tuple of monadic relation Ra
where a∈Km. The desired monadic second-order sentence has the form

 ∗ := (∃ VO)(∃ VR)(= ∧ ∀x ∅(x)):

Here = is the !rst-order axiom expressing that the tree T expanded by the relations
VO and VR does describe a tree structure T (D) associated to some �-structure D. We
have shown above that this can be done in !rst-order logic. The formula  ∅(x) is the
translation of  (and the empty tuple of constants) into monadic second-order logic,
as described by Theorem 4.2.
If  is satis!able, then by Theorem 3.7,  has a countable model D of tree width

k − 1. By Theorem 4.2, the associated tree structure T (D) satis!es =∧∀x ∅(x), hence
there exists a tree T such that T |=  ∗. Conversely, if T |=  ∗, then there exists an
expansion T =(T; VO; VR) which satis!es = and hence describes the tree decomposition
of a �-structure D. Since T |=∀x ∅(x), it follows by Theorem 4.2 that D |=  .
The decidability of �CGF now follows by the decidability of S!S, the monadic

second-order theory of countable trees, a famous result that has been established by
Rabin [23].
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Note that while this reduction argument to S!S gives a somewhat more elementary
decidability proof (modulo Rabin’s result, of course), it does not give good complexity
bounds. Indeed, even the !rst-order theory of countable trees is non-elementary, i.e.
its time complexity exceeds every bounded number of iterations of the exponential
function.

4.3. Reduction to the �-calculus with backwards modalities

Instead of reducing the satis!ability problem for �CGF to the monadic second-order
theory of trees, we can de!ne a similar reduction to the �-calculus with backward
modalities and then invoke Vardi’s decidability result for this logic [27].
For a set of actions A, the �-calculus with backwards modalities L←� , permits, for

each action a∈A, besides the common modal operators 〈a〉 and [a] also the backwards
operators 〈a← 〉 and [a← ] corresponding to the backwards transitions E←a := {(w; v):
(v; w)∈Ea}. Hence 〈a← 〉’ is true at state w in a Kripke structure K if and only if
there exists a state v, such that K; v |=’ and w is reachable from v via action a.
Here we will need L←� on trees (V; E) with only one transition relation. We can write

〈+〉, [+] for the forward modal operators, and 〈−〉, [−] for the backwards operators,
and then use the abbreviations

✸’ := 〈+〉’ ∨ 〈−〉’ and ’ := [+]’ ∧ [−]’:

Hence ✸ and are the usual modal operators on symmetric Kripke structures.
Finally, it is convenient for our reduction argument to permit the use of simulta-

neous least and greatest !xed points in L←� . Let VX =(X1; : : : ; Xr) be a sequence of
propositional variables, and V’( VX )= (’1( VX ); : : : ; ’r( VX )) be a sequence of L←� -formulae
in which all occurrences of X1; : : : ; Xr are positive. Then, for each i6r, the expressions
[� VX : V’( VX )]i and [ > VX : V’( VX )]i are formulae in L←� .

On every Kripke structure K with universe V , the sequence V’( VX ) de!nes an operator
V’K that maps any tuple VS =(S1; : : : ; Sr) of subsets Si ⊆V to a new tuple (’K

1 ( VS); : : : ;
’K

r ( VS)) where ’K
i ( VS)= {v :K; v |=’i( VS)}.

Since the variables in VX occur only positive in V’, the operator V’K has a least
!xed point VX

∞
=(X∞1 ; : : : ; X∞r ). Now, the semantics of simultaneous least !xed point

formulae is given by

K; v |= [� VX : V’( VX )]i ⇔ v ∈ X∞i :

The meaning of a simultaneous greatest !xed point [> VX : V’( VX )]i is de!ned similarly.
It is well-known that simultaneous !xed points can be rewritten as nestings of simple
!xed points, so the use of simultaneous !xed points does not change the expressive
power of L←� .

Theorem 4.4 (Vardi). Every satis1able formula in L←� has a tree model. Further; the
satis1ability problem for L←� is decidable and EXPTIME-complete.
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On connected Kripke structures (in particular on trees), the universal modality is
de!nable in L←� . For every formula ’, we write ∀’ to abbreviate the formula �X:’∧
✷X . It is easy to see that ∀’ is satis!ed at some state of a connected Kripke structure
K if and only if ’ is satis!ed at all states of K .
Let D be a � structure of bounded tree width, and let T (D) be its tree represen-

tation as described in Section 4.1. We view T (D) as a Kripke structure, with atomic
propositions Oa and Ra. Having available an universal modality, the axioms for tree
representations T (D) given in the previous subsection, can easily be expressed by
modal formulae. For instance, the consistency axioms can be written

consistent( VR) := ∀ ∧
a∈Km

(∧
a∈a

Oa ∧ Ra →
(∨

a∈a
¬Oa ∨ Ra

))
:

Theorem 4.5. Let D be a structure with tree decomposition 〈T; (F(v))v∈T 〉. For an
appropriate set of constants K and a function f :D→K; let T (D) be the associated
tree structure. For every formula ’(x1; : : : ; xm) in �CGF and every tuple a∈Km we
can construct a formula ’a ∈L←� such that; for every node v of T and every clique-
guarded tuple d ⊆ F(v) with f(d)= a;

D |= ’(d)⇔T (D); v |= ’a:

Proof. The translation is very similar to the translation into monadic second-order logic
that was given in the previous section.
(1) If ’(x) is an atom Sxi1 · · · xim then ’a := Sb where b=(ai1 ; : : : ; aim).
(2) If ’=(xi = xj), then ’a := true if ai = aj and ’a : = false otherwise.
(3) For the guard formulae clique(x), let

cliquea :=
∧

a;a′∈a
�X:


 ∨

R∈�
b : a;a′∈b

Rb ∨✸(Oa ∧ Oa′ ∧ X )


 :

(4) If ’= - ∧ #, then ’a := -a ∧ #a.
(5) If ’=¬#, then ’a :=¬#a.
(6) If ’=(∃y : clique(x; y))-(x; y), then

’a :=
∨
b
�X:
((∧

b∈b
Ob ∧ cliqueab ∧ -ab

)
∨✸

(∧
a∈a

Oa ∧ X
))

:

(7) If ’ := [LFP Sx : -(S; x)](x), let

’a := [� VS : V-( VS))]a:

Here VS is a tuple of !xed point varriables sb and V-( VS) is the tuple of the formulae
-b( VS) for all b∈Km (where m is the arity of S).

The proof that the translation is correct is analogous to the proof of Theorem 4.2.
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We now get another proof for the decidability of guarded !xed point logic. Given a
sentence  ∈ �CGF, we translate it into the L←� -sentence  ∅ according to Theorem 4.5
and take the conjunction with the consistency axioms in L←� for tree representations
T (D). Then use Vardi’s decidability result for L←� . By the tree model property of L←� ,
the tree model property of �CGF and Theorem 4.5 this gives a decision procedure for
�CGF.
However, it is not clear whether this argument can be modi!ed to provide the optimal

complexity bounds for guarded !xed point logic.
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