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Large triangles in the d-dimensional unit cube�

Hanno Lefmann∗

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany

Abstract

We consider a variant of Heilbronn’s triangle problem by asking for a distribution of n points in the d-dimensional unit cube [0, 1]d
such that the minimum (two-dimensional) area of a triangle among these n points is as large as possible. Denoting by �off-line

d
(n) and

�on-line
d

(n) the supremum of the minimum area of a triangle among n points over all distributions of n points in [0, 1]d for the off-line

and the on-line situation, respectively, for fixed dimension d �2 we show that c1 · (log n)1/(d−1)/n2/(d−1) ��off-line
d

(n)�c′
1/n2/d

and c2/n2/(d−1) ��on-line
d

(n)�c′
2/n2/d for constants c1, c2, c′

1, c′
2 > 0 which depend on d only. Moreover, we provide a deter-

ministic polynomial time algorithm that achieves the lower bound �((log n)1/(d−1)/n2/(d−1)) on the minimum area of a triangle
among n points in [0, 1]d in the off-line case.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given any integer n�3, originally Heilbronn’s problem asks for the supremum �2(n) of the minimum area of a
triangle formed by three of n points over all distributions of n points in the unit square [0, 1]2. For primes n, the points
Pk = 1/n ·(k mod n, k2 mod n), k = 0, 1, . . . , n−1, easily show that �2(n) = �(1/n2), as was pointed out by Erdős,
see [14]. Komlós et al. [11] improved this to �2(n) = �(log n/n2), which is currently the best known lower bound,
and Bertram-Kretzberg et al. [4] provided a deterministic polynomial time algorithm achieving this lower bound. From
the other side, improving earlier results of Roth [14–18] and Schmidt [19], Komlós et al. [10] proved for some constant

c > 0 the upper bound �2(n) = O(2c
√

log n/n8/7). We remark that for n points chosen uniformly at random and
independently of each other in the unit square [0, 1]2, the expected value of the minimum area of a triangle among
these n points is �(1/n3), as was shown recently by Jiang et al. [9].

For fixed integers d �2, a variant of Heilbronn’s problem considered by Barequet [2], asks for the supremum �∗
d(n)

of the minimum volume of a simplex formed by some (d + 1) of n points over all distributions of n points in the
d-dimensional unit cube [0, 1]d . He showed in [2] the lower bound �∗

d(n) = �(1/nd), which was improved in [12] to
�∗

d(n) = �(log n/nd). In [13] for dimension d = 3 a deterministic polynomial time algorithm was given achieving
the lower bound �∗

3(n) = �(log n/n3). Recently, Brass [6] showed the upper bound �∗
d(n) = O(1/n1+1/(2d)) for odd
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d �3, while for even d �4 only �∗
d(n) = O(1/n) is known. Moreover, an on-line version of this variant was considered

by Barequet [3] for dimensions d = 3 and 4, where he showed the lower bounds �(1/n10/3) and �(1/n127/24),
respectively.

Here we investigate the following extension of Heilbronn’s triangle problem to higher dimensions: for fixed integers
d �2 and any given integer n�3, find n points in the d-dimensional unit cube [0, 1]d such that the minimum area of
a triangle determined by three of these n points is as large as possible. We consider the off-line as well as the on-line
version of our problem. In the off-line situation the number n of points is given in advance, while in the on-line case
the points are positioned one after the other in the unit cube [0, 1]d and at some time suddenly this process stops. Let
the corresponding supremum values—over all distributions of n points in [0, 1]d—on the minimum areas of a triangle
among n points in [0, 1]d be denoted by �off-pline

d (n) and �on-line
d (n), respectively.

Theorem 1. Let d �2 be a fixed integer. Then, for constants c1, c2, c
′
1, c

′
2 > 0, which depend on d only, for every

integer n�3, it is

c1 · (log n)1/(d−1)

n2/(d−1)
��off-line

d (n)�
c′

1

n2/d
, (1)

c2

n2/(d−1)
��on-line

d (n)�
c′

2

n2/d
. (2)

The lower bound (1) extends the results of Komlós et al. [11], who considered the case of dimension d = 2. The lower
bounds (1) and (2) in the off-line and the on-line situation, respectively, differ only by a factor of �((log n)1/(d−1)). In
contrast, the lower bounds in the on-line situation considered by Barequet [3], i.e., maximizing the minimum volume
of simplices among n points in [0, 1]d , differ by a factor of �(n1/3 · log n) for dimension d = 3 and by a factor of
�(n31/24 · log n) for dimension d = 4 from the currently best known lower bound �∗

d(n) = �(log n/nd); see [12] for
the off-line situation for any fixed dimension d �2.

Moreover, we provide a deterministic polynomial time algorithm—to some extent by derandomizing the arguments
in the proof of Theorem 1—which achieves the lower bound (1) in the off-line situation:

Theorem 2. Let d �2 be a fixed integer. For each integer n�3 one can find deterministically in time O(n5−2/d+�) for
any fixed � > 0 some n points in the d-dimensional unit cube [0, 1]d such that each triangle among these n points has
area �((log n)1/(d−1)/n2/(d−1)).

Theorem 2 extends the results from [4], where the case of dimension d = 2 was considered. Our considerations here
also yield better estimates on the running time of an algorithm, which is similar to the one analyzed in [4].

2. The off-line case

A line through the points Pi, Pj ∈ [0, 1]d is denoted by PiPj . Let dist(Pi, Pj ) be the Euclidean distance between the
points Pi and Pj . The area of a triangle determined by three points Pi, Pj , Pk ∈ [0, 1]d is denoted by area(Pi, Pj , Pk),
where area(Pi, Pj , Pk) := dist(Pi, Pj ) · h/2 and h is the Euclidean distance of the point Pk from the line PiPj . For
a subset S ⊆ [0, 1]d let vol(S) be its d-dimensional volume. Throughout this paper, let Cd denote the volume of the
d-dimensional unit ball in Rd .

2.1. A lower bound on �off-line
d (n)

First, we prove the lower bound in (1) from Theorem 1, namely that for fixed d �2 and for some constant c1 =
c1(d) > 0, it is

�off-line
d (n)�c1 · (log n)1/(d−1)

n2/(d−1)
. (3)
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Proof. Let d �2 be a fixed integer. For arbitrary integers n�3 and a suitable constant � > 0, we select uniformly

at random and independently of each other N = n1+� points P1, . . . , PN in the d-dimensional unit cube [0, 1]d . For
fixed 1� i < j < k�N , we give an upper bound on the probability that area(Pi, Pj , Pk)�A for some value A > 0,
which will be specified later. The point Pi can be anywhere in [0, 1]d . Given the point Pi , the probability that the point
Pj ∈ [0, 1]d has from Pi a Euclidean distance within the infinitesimal range [r, r + dr], is at most the difference of the
volumes of the d-dimensional balls with center Pi and with radii (r + dr) and r, respectively, hence

Prob(r �dist(Pi, Pj )�r + dr)�d · Cd · rd−1 dr, (4)

where Cd is equal to the volume of the d-dimensional unit ball in Rd . Given the points Pi and Pj with dist(Pi, Pj ) = r ,
the third point Pk ∈ [0, 1]d satisfies area(Pi, Pj , Pk)�A, if Pk is contained in the set Ci,j ∩ [0, 1]d , where Ci,j is
a d-dimensional cylinder, centered at the line PiPj with radius 2 · A/r and height

√
d. The d-dimensional volume

vol(Ci,j ∩ [0, 1]d) is at most Cd−1 · (2 · A/r)d−1 · √
d , and we infer for some constant c3 > 0:

Prob(area(Pi, Pj , Pk)�A)

�
∫ √

d

0
vol(Ci,j ∩ [0, 1]d) · d · Cd · rd−1 dr �

∫ √
d

0
Cd−1 ·

(
2 · A

r

)d−1

· √
d · d · Cd · rd−1 dr

= Cd−1 · Cd · 2d−1 · d3/2 · Ad−1 ·
∫ √

d

0
dr = c3 · Ad−1. (5)

In our further considerations we use hypergraphs.

Definition 3. A hypergraph G = (V , E) with vertex-set V and edge-set E is k-uniform if |E| = k for all edges E ∈ E .
A hypergraph G = (V , E) is linear if |E ∩ E′|�1 for all distinct edges E, E′ ∈ E . A subset I ⊆ V of the vertex-set is
independent if I contains no edges from E . The largest size |I | of an independent set in G is the independence number
�(G).

We form a random 3-uniform hypergraph G = G(A) = (V , E3) with vertex-set V = {1, . . . , N}, where vertex i
corresponds to the random point Pi ∈ [0, 1]d , i = 1, . . . , n, and with edge-set E3, where {i, j, k} ∈ E3 if and only if
area(Pi, Pj , Pk)�A. The expected number E(|E3|) of edges in G satisfies by (5) for some constant c3 > 0:

E(|E3|)�
(

N

3

)
· c′

3 · Ad−1 �c3 · Ad−1 · N3. (6)

We use the following result on the independence number of linear k-uniform hypergraphs due to Ajtai et al. [1], see
[7].

Theorem 4 (Ajtai et al. [1], Duke et al. [7]). Let k�3 be a fixed integer. Let G = (V , E) be a k-uniform hypergraph
on |V | = N vertices with average degree tk−1 = k · |E |/|V |. If G is linear, then its independence number �(G)

satisfies for some constant c∗
k > 0:

�(G)�c∗
k · N

t
· (log t)1/(k−1). (7)

Let D := N−� for a suitable constant � with 0 < � < 1, which will be fixed later. Let BPD(G) be a random variable,
which counts the number of ‘bad pairs of triangles’ in G, which are among the N random points P1, . . . , PN ∈ [0, 1]d
those unordered pairs of triangles sharing an edge, where both triangles have area at most A and all sides of the two
triangles have length at least D. Let PD(G) be another random variable, which counts the number of unordered pairs
of distinct points with Euclidean distance at most D among the N randomly chosen points P1, . . . , PN ∈ [0, 1]d .

To apply Theorem 4, we estimate in the random hypergraph G = G(A) = (V , E3) the expected number E(BPD(G))

of ‘bad pairs of triangles’ and the expected number E(PD(G)) of unordered pairs of distinct points with Euclidean
distance at most D among the N random points P1, . . . , PN ∈ [0, 1]d . We show that both numbers E(BPD(G)) and
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E(PD(G)) are o(N) for some choice of the parameters A, D and N. Then in the hypergraph G on N vertices we delete
one vertex (point) from each unordered pair of vertices (points) with Euclidean distance at most D and from each ‘bad
pair of triangles’, which yields a linear-induced subhypergraph G∗ = (V ∗, E∗

3 ) of G = G(A) on (1 − o(1)) ·N vertices,
thus G∗ fulfills the assumptions of Theorem 4. An independent set in this subhypergraph G∗ yields a subset I of points
in the unit cube [0, 1]d , such that the area of each triangle arising in I is bigger than A.

First, we give an upper bound on the expected number E(PD(G)) of unordered pairs of distinct points with Euclidean
distance at most D among the N random points P1, . . . , PN ∈ [0, 1]d . For fixed integers i, j , 1� i < j �N , we have

Prob(dist(Pi, Pj )�D)�Cd · Dd,

since the point Pi can be anywhere in [0, 1]d and, given the point Pi with dist(Pi, Pj )�D, the point Pj is contained in
the d-dimensional ball with radius D and center Pi , i.e., Prob(dist(Pi, Pj )�D)�Cd · Dd . Thus, the expected number
E(PD(G)) of unordered pairs of distinct points with Euclidean distance at most D among the N points in [0, 1]d satisfies
for some constant c2 > 0:

E(PD(G))�
(

N

2

)
· Cd · Dd �c2 · N2 · Dd. (8)

Next, for fixed 1� i < j < k < l�N , we give an upper bound on the probability that the random points Pi, Pj , Pk, Pl

yield a ‘bad pair of triangles’, in which case the Euclidean distance between any two points from each of the two
triangles is at least D. There are

(4
2

)
choices for the joint side of the two triangles, given by the points Pi and Pj ,

say. Given the point Pi ∈ [0, 1]d , by (4) we have Prob(r �dist(Pi, Pj )�r + dr)�d · Cd · rd−1 dr . Given the points
Pi, Pj ∈ [0, 1]d with dist(Pi, Pj ) = r �D, the probability that both triangles Pi, Pj , Pk and Pi, Pj , Pl have area at
most A, is at most the square of the volume of the cylinder, which is centered at the line PiPj with height

√
d and

radius 2 · A/r . Thus, for dimension d �3 we obtain for some constant c4 > 0:

Prob(Pi, Pj , Pk, Pl form a ‘bad pair of triangles’)

�
(

4

2

)
·
∫ √

d

D

(
Cd−1 · √

d ·
(

2 · A

r

)d−1
)2

· d · Cd · rd−1 dr

= c4 · A2d−2 ·
∫ √

d

D

dr

rd−1

= c4

d − 2
· A2d−2 ·

(
1

Dd−2
− 1

d(d−2)/2

)
�c4 · A2d−2/Dd−2 (9)

For d = 2, with D = N−� for some constant � with 0 < � < 1, the expression (9) is bounded from above by
c4 · A2 · log N . Thus, for fixed dimension d �2 we infer

Prob(Pi, Pj , Pk, Pl form a ‘bad pair of triangles’)

�c4 · A2d−2 · log N/Dd−2,

and we obtain for a constant c4 > 0 for the expected number E(BPD(G)) of ‘bad pairs of triangles’ among the N
random points:

E(BPD(G))�
(

N

4

)
· c4 · A2d−2 · log N/Dd−2 �c4 · A2d−2 · N4 · log N/Dd−2. (10)

Using (6), (8), (10) and Markov’s inequality there exist N points in the unit cube [0, 1]d such that the corresponding
3-uniform hypergraph G = G(A) = (V , E3) on |V | = N vertices satisfies

|E3|�3 · c3 · Ad−1 · N3, (11)

PD(G)�3 · c2 · N2 · Dd, (12)

BPD(G)�3 · c4 · A2d−2 · N4 · log N/Dd−2. (13)
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For some suitable constant c∗ > 0, which will be specified later, we set

A := c∗ · (log n)1/(d−1)

n2/(d−1)
. (14)

Recall that N = n1+� and D = N−� for some constants �, � > 0 with � < 1.

Lemma 5. For fixed �, � > 0 with � < 4/((d − 1) · (1 + �)) − 3/(d − 1), it is

BPD(G) = o(|V |).

Proof. Using (13) and (14) with |V | = N = n1+� and D = N−�, where �, � > 0 are constants, we have

BPD(G) = o(|V |)
⇐� A2d−2 · N4 · log N/Dd−2 = o(N)

⇐⇒ N3+�(d−2) · log2 n · log N/n4 = o(1)

⇐⇒ n(1+�)(3+�(d−2))−4 · log3 n = o(1)

⇐� (1 + �) · (3 + � · (d − 2)) < 4,

which holds for 0 < � < 4/((d − 1) · (1 + �)) − 3/(d − 1). �

Lemma 6. For fixed � > 1/d , it is

PD(G) = o(|V |).

Proof. By (12) and (14), using |V | = N and D = N−� for some constant � > 0, we infer

PD(G) = o(|V |)
⇐� N2 · Dd = o(N)

⇐⇒ N · Dd = o(1)

⇐⇒ N1−�d = o(1)

⇐⇒ � > 1/d,

which holds for � > 1/d. �

Now we fix � := 1/(8d) and � := 1/(d− 1
2 ). Then all assumptions in Lemmas 5 and 6 are fulfilled. In the hypergraph

G = (V , E3) we delete one vertex from each ‘bad pair of triangles’, i.e., all corresponding triangles have side-lengths
at least D, and from each unordered pair of vertices where the corresponding points have Euclidean distance at most
D. Let V ∗ ⊆ V be the set of the remaining vertices. The resulting-induced subhypergraph G∗ = (V ∗, E∗

3 ) with
E∗

3 := [V ∗]3 ∩ E∗
3 fulfills |V ∗| = (1 − o(1)) · |V | by Lemmas 5 and 6 and with (11) we obtain

|V ∗|�N/2 and |E∗
3 |�3 · c3 · Ad−1 · N3. (15)

By (15) the hypergraph G∗ has average degree

t2 = 3 · |E∗
3 |

|V ∗| � 9 · c3 · Ad−1 · N3

N/2
= 18 · c3 · Ad−1 · N2 =: t2

1 . (16)

The induced subhypergraph G∗ does not contain any two distinct edges E, E′ ∈ E∗
3 with |E ∩ E′| = 2, i.e., G∗ is a

linear hypergraph. The assumptions of Theorem 4 are fulfilled by the 3-uniform subhypergraph G∗ of G. Notice that
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the term 1/t · log1/2 t is decreasing for t > e1/4. Thus, for t �2 we obtain for constants c∗
3, c, c1, c

∗ > 0 with (7),
(14)–(16) the following lower bound on its independence number:

�(G) � �(G∗)�c∗
3 · |V ∗|

t
· log1/2 t �c∗

3 · |V ∗|
t1

· log1/2 t1

� c∗
3 · N/2

(18 · c3 · Ad−1)1/2 · N
· log1/2

(
(18 · c3 · Ad−1)1/2 · N

)

� c · log1/2 n/A(d−1)/2 as N = n1+�

� c · (1/c∗)(d−1)/2 · n

log1/2 n
· log1/2 n�n

by choosing in (14) a small enough constant c∗ > 0. For t < 2, we have |E∗
3 | < 4 · |V ∗|/3, hence by omitting

from G∗ successively for each pair of edges with at least one joint vertex, one of these joint vertices, we obtain
�(G)��(G∗)�N/9�n. Thus, the hypergraph G contains an independent set I ⊆ V with |I | = n. These n vertices
yield n points in [0, 1]d , where each triangle arising from these n points has area at least A, i.e., �off-line

d (n) =
�((log n)1/(d−1)/n2/(d−1)), which finishes the proof of (3). �

2.2. A deterministic algorithm

Next, we prove Theorem 2. To provide for fixed integers d �2 a deterministic polynomial time algorithm, which finds

n points in the d-dimensional unit cube [0, 1]d that achieve the lower bound �off-line
d (n) = �((log n)1/(d−1)/n2/(d−1))

on the minimum area of a triangle among these n points, we discretize the d-dimensional unit cube [0, 1]d by considering
the standard d-dimensional T × · · ·× T -grid, where T = n� for some constant � > 0. With this discretization we now
must take into account collinear triples of grid-points in the T × · · · × T -grid, which have area equal to zero.

Proof. We proceed similarly as we did in Section 2.1 for proving the lower bound (1) in Theorem 1, but with some crucial
differences due to the occurring collinear triples of grid-points. Set D := T � �1 for some suitable constant 0 < � < 1.
For some real number A� 1

2 , which will be specified later, we form a hypergraph G = G(A, D) = (V , E2 ∪ E3 ∪ E0
3 )

which contains 2-element edges and two types of 3-element edges. The vertex-set V consists of the T d grid-points
P1, . . . , PT d from the T × · · · × T -grid with T = n� for some suitable constant � > 0. The edge-sets E2, E3 and E0

3
are defined as follows. For distinct grid-points P, Q ∈ V let {P, Q} ∈ E2 if and only if the Euclidean distance between
P and Q fulfills dist(P, Q)�D. For distinct grid-points P, Q, R ∈ V let {P, Q, R} ∈ E0

3 if and only if P, Q, R are
on a line. Moreover, for distinct grid-points P, Q, R ∈ V let {P, Q, R} ∈ E3 if and only if P, Q, R are not collinear,
area(P, Q, R)�A and pairwise the points P, Q, R have Euclidean distance bigger than D.

We are looking for a large independent set in this hypergraph G = G(A, D) = (V , E2 ∪ E3 ∪ E0
3 ), as an independent

set I ⊆ V in G corresponds to |I | many grid-points in the T × · · · × T -grid, such that the area of each triangle arising
among these |I | grid-points is bigger than A.

We use the following algorithmic version of Theorem 4 of Bertram-Kretzberg and this author [5], see also
Fundia [8].

Theorem 7. Let G = (V , E) be a k-uniform, linear hypergraph with average degree tk−1 := k · |E |/|V |. Then one can
find for any � > 0 in time O(|V | + |E | + |V |3/t3−�) an independent set I ⊆ V with |I | = �((|V |/t) · (log t)1/(k−1)).

To find a suitable induced subhypergraph of G = G(A, D) = (V , E2 ∪ E3 ∪ E0
3 ) to which Theorem 7 can be applied,

we first count in the hypergraph G = G(A, D) = (V , E2 ∪ E3 ∪ E0
3 ) carefully the numbers |E2|, |E3| and |E0

3 | of
2- and both types of 3-element edges, respectively, and the numbers s2(G; E3) of unordered pairs {E, E′} of distinct
edges E, E′ ∈ E3, which have two vertices in common, i.e., |E ∩ E′| = 2. Then in a certain induced subhypergraph
G∗ = (V ∗, E∗

2 ∪E∗
3 ∪E0∗

3 ) of G we destroy in one step all 2-element edges from E∗
2 , all edges from E0∗

3 and all unordered
pairs {E, E′} of distinct edges E, E′ ∈ E3 with |E ∩E′| = 2. The resulting-induced subhypergraph G∗∗ of G∗ contains
only edges from E∗

3 , hence is 3-uniform and also linear, and at this stage we apply to G∗∗ the algorithm from Theorem 7.
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For nonnegative integers a1, . . . , ad , which are not all equal to zero, we denote by gcd(a1, . . . , ad)�0 the greatest
common divisor of a1, . . . , ad . Notice that for distinct grid-points P = (p1, . . . , pd) and Q = (q1, . . . , qd) in the
T × · · · × T -grid there are exactly gcd(|q1 − p1|, . . . , |qd − pd |) − 1 grid-points on the segment [P, Q] excluding the
endpoints P and Q.

Lemma 8. For some constant c3,0 > 0, the number |E0
3 | of collinear triples of grid-points in the d-dimensional

T × · · · × T -grid fulfills

|E0
3 |�c3,0 · T 2d · log T . (17)

Notice that for a constant c0
3 > 0 one can obtain easily the upper bound |E0

3 |�c0
3 · T 2d+1—which would suffice for

our purposes—as one can choose two grid-points P and R from the T × · · · × T -grid in at most T 2d ways and at most
T grid-points from the segment [P, R]. However, in order to get a better estimate on the running time of our algorithm,
we use the upper bound (17) on the number of collinear triples of grid-points in the T × · · · × T -grid.

Proof. Let P, Q, R be a collinear triple in the d-dimensional T × · · · × T -grid, where the grid-point Q lies on the
segment [P, R]. For distinct grid-points P = (p1, . . . , pd) and R = (r1, . . . , rd) let ai := ri − pi , i = 1, . . . , d. With
0�pi, ri �T for i = 1, . . . , d we have |ai |�T . By symmetry, which we take into account by spending an additional
constant factor c > 0, we may assume that ad > 0. There are T d choices for the grid-point P. Given the grid-point
P and given a1, . . . , ad , on the segment [P, R] there are exactly gcd(|a1|, . . . , |ad |) − 1 grid-points Q excluding the
endpoints P and R. Observe that for a divisor t �1 there are at most (2 · T + 1)/t integers i, −T � i�T , which are
divisible by t. Hence for constants c, c′, c3,0 > 0 the number of collinear triples in the d-dimensional T × · · · × T -grid
is at most

c · T d ·
T∑

ad=1

T∑
ad−1=−T

. . .
T∑

a1=−T

gcd(|a1|, . . . , |ad |)

�c · T d ·
T∑

t=1
t · T

t
·
(

2 · T + 1

t

)d−1

�c′ · T 2d ·
T∑

t=1

1

td−1
�c0

3 · T 2d for d �3. (18)

For dimension d = 2, we obtain from (18) the upper bound c3,0 · T 4 · log T , hence we have |E0
3 |�c0

3 · T 2d · log T for
any fixed dimension d �2. �

Lemma 9. For some constant c3 > 0, the number |E3| of nondegenerate triangles P, Q, R with area(P, Q, R)�A in
the d-dimensional T × · · · × T -grid satisfies

|E3|�c3 · Ad−1 · T d+2. (19)

Proof. Let P, Q, R yield a nondegenerate triangle in the d-dimensional T × · · · × T -grid with area(P, Q, R)�A. A
grid-point P = (p1, . . . , pd) can be chosen in T d ways. Given the grid-point P = (p1, . . . , pd), any other grid-point
R = (r1, . . . , rd) is determined by a vector a = (a1, . . . , ad)� with ai := ri − pi for i = 1, . . . , d, hence |ai |�T .
Each grid-point Q with Euclidean distance at most 2 · A/(

∑d
i=1 a2

i )
1/2 from the line PR determines a triangle P, Q, R

with area at most A. By symmetry, which we take into account by a constant factor c > 0, we may assume that
0� |a1|, . . . , |ad−1|� |ad |�T where ad �= 0. The Euclidean distance of a grid-point Q = (p1 + q1, . . . , pd + qd)

with q := (q1, . . . , qd)� from the line PR is given by (〈q, q〉 − 〈a, q〉2/〈a, a〉)1/2, where 〈a, b〉 denotes the standard
scalar product of the vectors a and b. Hence, if area(P, Q, R)�A, then for each j �= d we obtain

〈q, q〉 − 〈a, q〉2

〈a, a〉 � 4 · A2

〈a, a〉 ⇐⇒ ∑
1� i<j �d

(ai · qj − aj · qi)
2 �4 · A2 �⇒ |ad · qj − aj · qd |�2 · A. (20)

Since the triangle P, Q, R is nondegenerate, we have (ai · qj − aj · qi)
2 �1 for at least one pair (i, j) with i �= j ,

thus area(P, Q, R)� 1
2 . Therefore, given qd there are at most (4 · A + 1)/|ad |�6 · A/|ad | choices for each qj , j �= d,

altogether at most (6 · A/|ad |)d−1 choices for all qj , j �= d. Since Q is a grid-point in the T × · · · × T -grid, there are
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at most T choices for qd . We infer that, given the grid-points P and R, the number of nondegenerate triangles P, Q, R

with area(P, Q, R)�A in the T × · · · × T -grid is at most

T ·
(

6 · A

|ad |
)d−1

.

Summing over all these choices of the grid-points P and R, for some constants c, c3 > 0 we obtain the following upper
bound on the number of nondegenerate triangles P, Q, R with area(P, Q, R)�A in the T × · · · × T -grid

c · T d · ∑
0� |a1|,...,|ad−1|� |ad |�T ;ad �=0

T ·
(

6 · A

|ad |
)d−1

�c · 2 · 6d−1 · Ad−1 · T d+1 ·
T∑

ad=1

(2 · ad + 1)d−1

ad−1
d

�c3 · Ad−1 · T d+2,

which proves (19). �

Lemma 10. The number |E2| of unordered pairs {P, Q} of distinct grid-points in the d-dimensional T × · · · × T -grid
with dist(P, Q)�D satisfies for some constant c2 > 0:

|E2|�c2 · T d · Dd. (21)

Proof. There are T d choices for a grid-point P = (p1, . . . , pd) in the d-dimensional T × · · · × T -grid. Given the
grid-point P = (p1, . . . , pd), any other grid-point Q = (q1, . . . , qd) with dist(P, Q)�D fulfills |pi − qi |�D,
i = 1, . . . , d, hence with D�1 there are at most 2 · D + 1�3 · D choices for each qi , and the upper bound (21)
follows. �

Lemma 11. For some constant c4 > 0, the number s2(G; E3) of unordered pairs {E, E′} of distinct edges E, E′ ∈ E3
with |E ∩ E′| = 2 in the hypergraph G = G(A, D) = (V , E2 ∪ E3 ∪ E0

3 ) fulfills

s2(G; E3)�c4 · A2d−2 · T d+2 · log T/Dd−2. (22)

Proof. As in the proof of Lemma 9 we may assume that each nondegenerate triangle in the d-dimensional T ×· · ·×T -
grid has area at least 1

2 . For the grid-points P, Q, R, S in the T × · · · × T -grid let P, Q, R and P, R, S be two
nondegenerate triangles with 1

2 �area(P, Q, R)�A and 1
2 �area(P, R, S)�A, where in each triangle P, Q, R and

P, R, S pairwise the grid-points have Euclidean distance bigger than D. A grid-point P can be chosen in T d ways. Given
the grid-point P = (p1, . . . , pd), any other grid-point R = (r1, . . . , rd) is determined by a vector a = (a1, . . . , ad)�
with ai := ri − pi , i = 1, . . . , d, hence |ai |�T . Each grid-point Q in the T × · · · × T -grid with distance at most
2 · A/(

∑d
i=1 a2

i )
1/2 from the line PR determines a triangle P, Q, R with area(P, Q, R)�A. By symmetry, which we

take into account by a constant factor c > 0, we may assume that 0� |a1|, . . . , |ad−1|� |ad |�T with ad �= 0. The
Euclidean distance of a grid-point Q = (p1 + q1, . . . , pd + qd) with q = (q1, . . . , qd)� from the line PR is given by
(〈q, q〉 − 〈a, q〉2/〈a, a〉)1/2, hence, if area(P, Q, R)�A, for each j �= d we have by (20):

|ad · qj − aj · qd |�2 · A.

Since A� 1
2 , given qd there are at most (4 · A + 1)/|ad |�6 · A/|ad | choices for each qj , j �= d. Altogether, given qd ,

there are at most (6 · A/|ad |)d−1 choices for all qj , j �= d. Given the grid-points P and R, by varying over the at most
T possible values for qd , the number of nondegenerate triangles P, Q, R with area(P, Q, R)�A in the d-dimensional
T × · · · × T -grid is at most

T ·
(

6 · A

|ad |
)d−1

,

hence there are at most (T · (6 · A/|ad |)d−1)2 choices for the grid-points Q and S.
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Since we have by assumption dist(P, R) > D, we infer with |a1|, . . . , |ad−1|� |ad | that |ad | > D/
√

d. Summing
over all possible choices for the grid-points P and R in the T ×· · ·×T -grid, we obtain for constants c, c′, c4 > 0 on the
number of unordered pairs {E, E′} of distinct edges E, E′ ∈ E3 with |E ∩ E′| = 2 in the hypergraph G = G(A, D) =
(V , E2 ∪ E3 ∪ E0

3 ) the following upper bound

c · T d ·
T∑

|ad |=�D/
√

d�

|ad |∑
ad−1=−|ad |

· · ·
|ad |∑

a1=−|ad |

(
T ·

(
6 · A

|ad |
)d−1

)2

�c · 62d−2 · A2d−2 · T d+2 ·
T∑

|ad |=�D/
√

d�

(2 · |ad | + 1)d−1

a2d−2
d

�c′ · A2d−2 · T d+2 ·
T∑

ad=�D/
√

d�

1

ad−1
d

�c4 · A2d−2 · T d+2/Dd−2 for d �3. (23)

For dimension d = 2 we obtain from (23) the upper bound c4 · A2 · T 4 · log T , thus s2(G; E3)�c4 · A2d−2 · T d+2 ·
log T/Dd−2 for each fixed dimension d �2. �

By (19) the average degree t2 of the hypergraph G = (V , E2 ∪ E3 ∪ E0
3 ) for the 3-element edges from E3 satisfies

t2 = 3 · |E3|
|V | � 3 · c3 · Ad−1 · T d+2

T d
= 3 · c3 · Ad−1 · T 2 =: t2

0 . (24)

Set p := T ε/t0 �1 for some small constant ε > 0, i.e., p = �(T ε/(A(d−1)/2 · T )). Moreover, for some suitable
constant c > 0, which will be fixed later, let

A := c · T 2

n2/(d−1)
· (log n)1/(d−1) � 1

2
, (25)

hence p�1 provided that ε�d − 1/�.
To simplify the presentation we use a probabilistic argument, which will be derandomized shortly. With probability

p we select uniformly at random and independently of each other vertices from the vertex-set V. Let V ∗ be the set of the
chosen vertices. Let G∗ = (V ∗, E∗

2 ∪ E∗
3 ∪ E0∗

3 ) be the resulting-induced subhypergraph of G with E∗
2 := E2 ∩ [V ∗]2,

E∗
3 := E3 ∩ [V ∗]3 and E0∗

3 := E0
3 ∩ [V ∗]3. Let E(|V ∗|), E(|E∗

2 |), E(|E∗
3 |), E(|E0∗

3 |), E(s2(G∗; E∗
3 )) be the expected

numbers of vertices, 2-element edges, 3-element edges (nondegenerate triangles with area at most A), collinear triples
of grid-points and unordered pairs {E, E′} of edges E, E′ ∈ E∗

3 with |E ∩ E′| = 2 in G∗ = (V ∗, E∗
2 ∪ E∗

3 ∪ E0∗
3 ),

respectively. With (17), (19), (21), (22), (24) we infer for some constants c′
1, c

′
2, c

′
3, c

′
3,0, c

′
4 > 0:

E(|V ∗|) = p · T d = c′
1 · T d−1+ε/A(d−1)/2,

E(|E∗
2 |) = p2 · |E2|�p2 · c2 · T d · Dd �c′

2 · T d−2+2ε · Dd/Ad−1,

E(|E∗
3 |) = p3 · |E3|�p3 · c3 · Ad−1 · T d+2 �c′

3 · T d−1+3ε/A(d−1)/2,

E(|E0∗
3 |) = p3 · |E0

3 |�p3 · c3,0 · T 2d · log T �c′
3,0 · T 2d−3+3ε · log T/A3(d−1)/2,

E(s2(G∗; E∗
3 )) = p4 · s2(G; E3)�p4 · c4 · A2d−2 · T d+2 · log T/Dd−2 �c′

4 · T d−2+4ε · log T/Dd−2.

By Chernoff’s and Markov’s inequalities, there exists a subhypergraph G∗ = (V ∗, E∗
2 ∪ E∗

3 ∪ E0∗
3 ) of G such that

|V ∗|�c′
1/2 · T d−1+ε/A(d−1)/2, (26)

|E∗
2 |�5 · c′

2 · T d−2+2ε · Dd/Ad−1, (27)
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|E∗
3 |�5 · c′

3 · T d−1+3ε/A(d−1)/2, (28)

|E0∗
3 |�5 · c′

3,0 · T 2d−3+3ε · log T/A3(d−1)/2, (29)

s2(G∗; E∗
3 )�5 · c′

4 · T d−2+4ε · log T/Dd−2. (30)

This probabilistic argument can be turned into a deterministic polynomial time algorithm as follows. We use the method
of conditional probabilities. Namely, let C be the set of all 4-element subsets E ∪ E′ of V such that E, E′ ∈ E3 and
|E ∩ E′| = 2. We enumerate the vertices of the T × · · · × T -grid by P1, . . . , PT d . To each vertex Pi we associate a
parameter pi ∈ [0, 1], i = 1, . . . , T d , and we define a potential function F(p1, . . . , pT d ) by

F(p1, . . . , pT d ) := 2p·T d/2 ·
T d∏
i=1

(
1 − pi

2

)
+

∑
{i,j}∈E2

pi · pj

5 · c′
2 · T d−2+2ε · Dd/Ad−1

+
∑

{i,j,k}∈E3
pi · pj · pk

5 · c′
3 · T d−1+3ε/A(d−1)/2

+
∑

{i,j,k}∈E0
3
pi · pj · pk

5 · c′
3,0 · T 2d−3+3ε · log T/A3(d−1)/2

+
∑

{i,j,k,l}∈C pi · pj · pk · pl

5 · c′
4 · T d−2+4ε · log T/Dd−2

.

With the initialization p1 := . . . := pT d := p := T ε/t0 and using 1 + x�ex for x ∈ R, we infer F(p, . . . , p) <

(2/e)pT d/2 + 4
5 , which is less than 1 for p · T d �12. Hence, in the beginning we have F(p1, . . . , pT d ) < 1. Using

the linearity of F(p1, . . . , pT d ) in each pi , we minimize F(p1, . . . , pT d ) successively with respect to each pi by
choosing one after the other pi := 0 or pi := 1 for i = 1, . . . , T d , and finally we obtain p1, . . . , pT d ∈ {0, 1} such that
F(p1, . . . , pT d ) < 1. The vertex-set V ∗ = {Pi ∈ V | pi = 1} yields an induced subhypergraph G∗ = (V ∗, E∗

2 ∪ E∗
3 ∪

E0∗
3 ) of G with E∗

2 := E2 ∩ [V ∗]2 and E∗
3 := E3 ∩ [V ∗]3 and E0∗

3 := E0
3 ∩ [V ∗]3, which fulfills (26)–(30). Namely, if

|V ∗| < p ·T d/2, then F(p1, . . . , pT d )�2p·T d/2 ·∏T d

i=1 (1−pi/2) > 1, but we have F(p1, . . . , pT d ) < 1. Similarly, if

say |E∗
2 | > 5·c′

2 ·T d−2+2ε ·Dd/Ad−1, then we have F(p1, . . . , pT d )�
∑

{i,j}∈E2
pi · pj/5 · c′

2 · T d−2+2ε · Dd/Ad−1 >

1, which again contradicts F(p1, . . . , pT d ) < 1. By (17), (19), (21), (22), (25), and using 1�D�T as well as T �n2/d ,
the time for this derandomization is given by

O(|V | + |E2| + |E3| + |E0
3 | + |C|)

= O
(
T d · Dd + Ad−1 · T d+2 + T 2d · log T + A2d−2 · T d+2 · log T/Dd−2

)

= O
(
Ad−1 · T d+2 + A2d−2 · T d+2 · log T/Dd−2

)

= O
(
A2d−2 · T d+2 · log T/Dd−2

)
. (31)

Lemma 12. For fixed �, ε > 0 with ε < d/2 − 1/�, it is

|E0∗
3 | = o(|V ∗|).

Proof. By (25), (26), (29) and using T = n� for a constant � > 0, we obtain

|E0∗
3 | = o(|V ∗|)

⇐� T 2d−3+3ε · log T/A3(d−1)/2 = o(T d−1+ε/A(d−1)/2)

⇐⇒ T d−2+2ε · log T

Ad−1
= o(1)
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⇐⇒ n2

T d−2ε
· log T

log n
= o(1)

⇐⇒ n2−�(d−2ε) = o(1)

⇐⇒ 2 − � · (d − 2 · ε) < 0,

which holds for ε < d/2 − 1/�. �

Lemma 13. For fixed �, �, ε > 0 with ε < 1/(3 · �) − (1 − �) · (d − 2)/3, it is

s2(G∗; E∗
3 ) = o(|V ∗|).

Proof. By (25), (26), (30) and T = n� and D = T � for constants �, � > 0 with � < 1, we infer that

s2(G∗; E∗
3 ) = o(|V ∗|)

⇐� T d−2+4ε · log T/Dd−2 = o(T d−1+ε/A(d−1)/2)

⇐⇒ A(d−1)/2

T 1−3ε · Dd−2
· log T = o(1)

⇐⇒ T (1−�)(d−2)+3ε

n
· log T · log1/2 n = o(1)

⇐⇒ n�((1−�)(d−2)+3ε)−1 · log3/2 n = o(1)

⇐� � · ((1 − �) · (d − 2) + 3 · ε) < 1,

which holds for 0 < ε < 1/(3 · �) − (1 − �) · (d − 2)/3. �

Lemma 14. For fixed �, �, ε > 0 with ε�(1 − �) · d − 1/�, it is

|E∗
2 | = o(|V ∗|).

Proof. Using (25)–(27) with T = n� and D = T � for constants �, � > 0 with � < 1, we infer

|E∗
2 | = o(|V ∗|)

⇐� T d−2+2ε · Dd/Ad−1 = o(T d−1+ε/A(d−1)/2)

⇐⇒ T −1+ε · Dd

A(d−1)/2
= o(1)

⇐⇒ T ε−(1−�)d · n

log1/2 n
= o(1)

⇐⇒ n1+�(ε−(1−�)d)

log1/2 n
= o(1)

⇐� � · (ε − (1 − �) · d)� − 1,

which holds for 0 < ε�(1 − �) · d − 1/�. �

Now we set � := 1
2 and � := 2/(d−1). For ε := 1

7 all assumptions in Lemmas 12–14 and p = T ε/t0 �1 are fulfilled.
From each 2-element edge E ∈ E∗

2 , each 3-element edge E ∈ E0∗
3 , and each unordered pair {E, E′} of distinct edges
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E, E′ ∈ E∗
3 with |E ∩ E′| = 2 in G∗ we delete one vertex. By Lemmas 12–14 the resulting-induced subhypergraph

G∗∗ = (V ∗∗, E∗∗
3 ) of G∗ with |V ∗∗| = (1 − o(1)) · |V ∗| contains only 3-element edges from E∗

3 but no other edges

from E∗
2 or E0∗

3 , and is linear. By (26) and (28) we have

|V ∗∗|�(c′
1/2 − o(1)) · T d−1+ε/A(d−1)/2,

|E∗∗
3 |�5 · c′

3 · T d−1+3ε/A(d−1)/2,

and the average degree t2 of the 3-uniform hypergraph G∗∗ = (V ∗∗, E∗∗
3 ) satisfies

t2 = 3 · |E∗∗
3 |

|V ∗∗| �
15 · c′

3 · T d−1+3ε/A(d−1)/2

(c′
1/2 − o(1)) · T d−1+ε/A(d−1)/2

= 30 · c′
3

c′
1 − o(1)

· T 2ε =: t2
1 .

Since G∗∗ is linear we can apply Theorem 7 and, using (28), we find for t �2 and for any � with 0 < � < 3 in time

O

(
|E∗∗

3 | + |V ∗∗|3
t3−�

)
= O

(
n3 · T 3ε

log3/2 n

)
= O

(
n3+6/(7(d−1))

log3/2 n

)
(32)

an independent set I of size

|I | = �

( |V ∗∗|
t

· log1/2 t

)
= �

( |V ∗∗|
t1

· log1/2 t1

)

= �

(
T d−1+ε/A(d−1)/2

T ε
· log1/2 T ε

)

= �

(
n

log1/2 n
· log1/2 n�ε

)
= �(n),

since T = n� and �, ε > 0 are constants. By choosing the constant c > 0 in (25) sufficiently small, we obtain an
independent set of size at least n. For t < 2 we have |E∗∗

3 |�4 · |V ∗∗|/3, hence

�(G)��(G∗)�2 · |V ∗∗|/9 = �(T ε · n/ log1/2 n) = �(n)

since T = n2/(d−1) and ε > 0. Such an independent set can be found easily in time O(|V ∗∗|+|E∗∗
3 |) = O(n1+6/(7(d−1))/

log1/2 n). After rescaling, an independent set I ⊆ V ∗∗ with |V | = n yields a desired set of n points in [0, 1]d such that
the area of each triangle arising from these n points is �((log n)1/(d−1)/n2/(d−1)).

For � = 2/(d − 1) and � = 1
2 and ε = 1

7 , the running times in (31) and (32) yield the time bound O(n5+7/(d−1) ·
log3 n+n3+6/(7(d−1))/ log3/2 n) = O(n5+7/(d−1) · log3 n). Indeed, by choosing � = 1

2 and � = 2/(d −�) for constants
0 < ε < �/2� 1

10 , we obtain the time bound O(n5−2/d+�∗
) for any fixed �∗ > 0 with small enough �, � > 0, which

finishes the proof of Theorem 2. �

3. The on-line case

In this section we consider the on-line situation and we show the lower bound in (2) from Theorem 1, namely that
for fixed integers d �2 and for some constant c2 = c2(d) > 0:

�on-line
d (n)� c2

n2/(d−1)
. (33)

Proof. Successively we construct an arbitrary long sequence P1, P2, . . . of points in the d-dimensional unit cube
[0, 1]d for fixed integers d �2 such that for suitable constants b, c, �, � > 0, which will be fixed later, for every n the
set Sn = {P1, . . . , Pn} has the following properties:
(i) dist(Pi, Pj ) > b/n� for all 1� i < j �n and

(ii) area(Pi, Pj , Pk) > c/n� for all 1� i < j < k�n.
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Assume that already a set Sn−1 = {P1, P2, . . . , Pn−1} ⊂ [0, 1]d of n − 1 points with (i′) dist(Pi, Pj ) > b/(n − 1)�

for all 1� i < j �n − 1 and (ii′) area(Pi, Pj , Pk) > c/(n − 1)� for all 1� i < j < k�n − 1 has been constructed.
To have available some space in [0, 1]d for choosing a new point Pn ∈ [0, 1]d such that (i) is fulfilled, this new point

Pn must not lie within any of the d-dimensional balls Br(Pi) of radius r := b/n� with center Pi , i = 1, . . . , n − 1.
Adding the volumes of these balls yields

n−1∑
i=1

vol(Br(Pi)) < n · Cd · rd = bd · Cd · n1−�d .

For � := 1/d and bd · Cd < 1
2 we have

∑n−1
i=1 vol(Br(Pi)) < 1

2 .
We prove next that those regions within [0, 1]d , where condition (ii) is violated, altogether have volume less than 1

2 .
The regions, where condition (ii) is violated by points P ∈ [0, 1]d , are given by sets Ci,j ∩ [0, 1]d , 1� i < j �n − 1,

where Ci,j is a d-dimensional cylinder centered at the line PiPj . These sets Ci,j ∩ [0, 1]d are contained in cylinders of

height
√

d and radius 2 · c/(n� · dist(Pi, Pj )). Summing up their volumes yields

∑
1� i<j �n−1

vol(Ci,j ∩ [0, 1]d)�
∑

1� i<j �n−1

√
d · Cd−1 ·

(
2 · c

n� · dist(Pi, Pj )

)d−1

= (2 · c)d−1 · √
d · Cd−1

2 · n�(d−1)
·
n−1∑
i=1

n−1∑
j=1;j �=i

(
1

dist(Pi, Pj )

)d−1

. (34)

We fix some point Pi , i = 1, . . . , n − 1. To give an upper bound on the last sum in (34), we use a packing argument,
similar to an argument of Barequet [2]. Consider the balls Brt (Pi) with center Pi and radius rt := b · t/n�, t = 0, 1, . . .

with t �
√

d · n�/b. Clearly vol(Br0(Pi)) = 0, and for some constant c1 > 0 and t = 1, 2, . . . we have

vol(Brt (Pi) \ Brt−1(Pi))�c1 · td−1

n�d
. (35)

Notice that for every ball Br(Pj ) with radius r = �(n−�) and center Pj ∈ Brt (Pi) \ Brt−1(Pi) with i �= j we have
vol(Br(Pj )∩ (Brt (Pi) \Brt−1(Pi))) = �(n−�d). Set nt := |Sn−1 ∩ (Brt (Pi) \Brt−1(Pi))|. By inequalities (i′) we have

n1 = 1 and by (35) each shell Brt (Pi) \ Brt−1(Pi), t = 2, 3, . . ., contains nt �c2 · td−1 points from the set Sn−1, where
c2 > 0 is a constant. We obtain for some constant c3 > 0:

n−1∑
j=1;j �=i

(
1

dist(Pi, Pj )

)d−1

�
�√d·n�/b�∑

t=2
nt ·

(
1

b · (t − 1)/n�

)d−1

�
�√d·n�/b�∑

t=2
c2 · td−1 ·

(
1

b · (t − 1)/n�

)d−1

�
�√d·n�/b�∑

t=2

c2

bd−1
· 2d−1 · n�(d−1) �c3 · n�d . (36)

We set � := 2/(d − 1) and, using � = 1/d and (36), inequality (34) becomes for a sufficiently small constant c > 0:

∑
1� i<j �n−1

vol(Ci,j ∩ [0, 1]d)� (2 · c)d−1 · √
d · Cd−1

2 · n�(d−1)
·
n−1∑
i=1

n−1∑
j=1;j �=i

(
1

dist(Pi, Pj )

)d−1

� (2 · c)d−1 · √
d · Cd−1

2 · n�(d−1)
·
n−1∑
i=1

c3 · n�d �1/2 · (2 · c)d−1 · √
d · Cd−1 · c3 · n1+�d−�(d−1) < 1/2.

Together all forbidden regions have volume less than 1, hence there exists a point Pn ∈ [0, 1]d such that (i) and (ii) are
satisfied. Thus we have �on-line

d (n) = �(1/n2/(d−1)), which proves (33). �



98 H. Lefmann / Theoretical Computer Science 363 (2006) 85 –98

4. An upper bound

Here we show with a simple argument the upper bounds from Theorem 1 on the smallest area of a triangle arising
from any n points in the d-dimensional unit cube [0, 1]d , namely that for fixed d �2 and for some constant c′

1 > 0:

�on-line
d (n)��off-line

d (n)�
c′

1

n2/d
. (37)

Proof. It is obvious that �on-line
d (n)��off-line

d (n), hence it suffices to prove �off-line
d (n)�c′

1/n2/d . Given any n points

P1, . . . , Pn ∈ [0, 1]d , for D := c/n1/d , where c > (2d+1/Cd)1/d is a constant, we consider the balls BD(Pj ) with
center Pj and radius D, j = 1, . . . , n.

If there exist distinct i, j, k such that BD(Pi) ∩ BD(Pj ) �= ∅ and BD(Pi) ∩ BD(Pk) �= ∅, then dist(Pi, Pj )�2 · D

and dist(Pi, Pk)�2 · D. Thus, the Euclidean distance of the point Pk from the line PiPj is at most 2 · D, hence
area(Pi, Pj , Pk)�2 · D2 = O(1/n2/d).

Otherwise, each ball BD(Pi) has with at most one other ball BD(Pj ), j �= i, a nonempty intersection. Each ball
BD(Pi) with center Pi ∈ [0, 1]d and radius D�1 satisfies vol(BD(Pi) ∩ [0, 1]d)�vol(BD(Pi))/2d . Thus,

n/2 · Cd · Dd/2d �1

and we infer D�(2d+1/Cd)1/d/n1/d , which contradicts our choice of D. Hence �off-line
d (n) = O(1/n2/d), which

proves (37) and hence Theorem 1. �

5. Concluding remarks

Certainly, it is of interest to narrow the gap between the lower and upper bounds given in this paper, in particular
improving the existing upper bounds. It might be also of interest to investigate the minimum areas or volumes of more
complex geometrical structures than triangles for distributions of n points in [0, 1]d .
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