
Theoretical Computer Science 288 (2002) 153–180
www.elsevier.com/locate/tcs

Lower bounds for invariant queries in logics with counting

Leonid Libkina ; ∗, Limsoon Wongb

aDepartment of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 3H5, Canada
bKent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore

Abstract

We study the expressive power of counting logics in the presence of auxiliary relations such
as orders and preorders. The simplest such logic is the *rst-order logic with counting. This logic
captures the complexity class TC0 over ordered structures. We also consider *rst-order logic
with arbitrary unary quanti*ers and with in*nitary extensions.

We start by giving a simple direct proof that *rst-order logic with counting, in the presence
of pre-orders that are almost-everywhere linear orders, cannot express the transitive closure of
a binary relation. The proof is based on locality of formulae. We then show that the technique
cannot be extended to linear orders. We further show that this result does not say anything
about the power of invariant queries in *rst-order logic with counting vs. the class TC0, in the
presence of these preorders.

In the second part of the paper, we prove a separation result showing that, for all the counting
logics above, a linear order is more powerful than a preorder that is a linear order almost
everywhere. In fact, we prove that the expressive power of invariant queries in the presence of
such preorders can be characterized by a property normally associated with *rst-order de*nability
over unordered structures. We do this by using locality techniques from *nite-model theory.
However, as some standard notions of locality fail in this setting, we have to modify them to
prove the main result.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The development of descriptive complexity suggests a very close connection between
proving lower bounds in complexity theory and proving inexpressibility results in logic.
The latter are of the form “a property P cannot be expressed in a logic L over a class
of *nite models”. Developing tools for proving such expressivity bounds is one of the
central problems in *nite-model theory. In this paper we show how tools based on
locality of logics can be applied to the complexity class TC0 and how they allow us

∗ Corresponding author. Research a7liation: Bell Laboratories.
E-mail addresses: libkin@cs.toronto.edu (L. Libkin), limsoon@krdl.org.sg (L. Wong).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00152 -9

154 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

to derive new expressivity bounds of counting extensions of *rst-order logic in the
presence of complex auxiliary relations.
The class TC0 is an important complexity class. Problems such as integer multipli-

cation and division, and sorting belong to TC0. This class has also been studied in
connection with neural nets [29]. Despite serious eAorts and a number of proved lower
bounds [1], it is still not known if TC0$NP. In fact, the results in [30] show that
traditional approaches to circuit lower bounds are unlikely to succeed in proving this
separation.
A starting point for our study is a result by Barrington et al. [2] stating that

FO(C) +¡= uniform TC0:

Here, TC0 is the class of problems solvable by polynomial-size, constant-depth thresh-
old circuits, and uniform means DLOGTIME-uniform; see [2] for more details. From
now on, we write TC0 whenever we mean the uniform class. FO(C) is the extension
of *rst-order logic with counting quanti*ers ∃i, where ∃ix:’(x) means that there are
at least i elements x that satisfy ’. FO(C) +¡ is FO(C) in the presence of a built-
in order relation. We give full de*nitions later. At this point, we oAer an example:
∃i; j((j + j= i)∧∃!ix:’(x)), where ∃!i is a shorthand for “exists exactly i”. This for-
mula states that the number of x satisfying ’ is even; this property is known to be
inexpressible in *rst-order logic alone.
The problem of separation of uniform TC0 from classes such as DLOGSPACE,

NLOGSPACE, P, etc., is thus reduced to proving that their complete problems are
inexpressible in FO(C)+¡. However, it appears that the presence of an order relation
is a major obstacle to proving such expressivity bounds for FO(C). Several partial
results [8, 21] show that there are problems complete for DLOGSPACE that cannot be
de*ned by FO(C) in the presence of auxiliary relations whose degrees are bounded
by a *xed constant k. If we talk about directed graphs, by degrees we mean in- and
out-degrees of nodes. For example, in the graph of a successor relation, every node
has in- and out-degree either 0 or 1. In contrast, in a linear order on an n-element set,
all n diAerent (in- and out-) degrees from 0 to n − 1 are realized. Thus, in order to
move closer to proving expressivity bounds in the presence of an order relation, one
has to at least be able to lift the results from constant degrees to those that depend on
the size of the input.
A result in this direction was proved in [21] using a de*nition of moderate de-

gree by Fagin et al. [9]. We say that a class C of graphs (more generally, relational
structures) is of moderate degree, if degmaxC(n), the maximal in- or out-degree of an
n-element graph from C, is at most logo(1) n. That is, for some function �(n) such that
limn→∞ �(n)= 0, we have degmaxC(n)6 log�(n) n. Then Libkin [21] proved that there
is a DLOGSPACE-complete problem which is not de*nable in FO(C) in the presence
of auxiliary relations of moderate degree.
In [9], auxiliary relations of moderate degree were shown to be of no help for

expressing connectivity of graphs in monadic �1
1 . Starting from their result, Schwentick

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 155

Fig. 1. A relation from ¡�g .

extended it to degrees no(1) [31] and to a linear order [32]. So one may wonder if a
similar program can be carried out for FO(C).
The intuition behind the introduction of a linear order is that it allows us to simulate

encodings of structures on the tape of a Turing machine (or the order of inputs of a
circuit). While for order-invariant properties it does not matter in which order elements
appear on the tape (indeed, properties like connectivity of graphs do not depend on how
graphs are represented), they do appear in some order, and one must be able to use this
order in logical formulae. Even though the particular ordering does not change the truth
value of an order-invariant formula, the mere presence of an order gives many logics
extra power. For example, while FO + LFP and FO+PFP capture PTIME and PSPACE
over ordered structures [15, 33], they possess the 0–1 law over unordered structures
[19], meaning that such a simple PTIME property as parity cannot be expressed. The
lower bound of Cai et al. [4] shows that there are PTIME properties of unordered
structures not de*nable even in FO + LFP extended with counting quanti*ers. A similar
phenomenon is observed for other logics, e.g., FO and FO(C) [3, 28].
Our main goal is to study the impact of auxiliary relations, such as orderings, on

the expressive power of logics with counting. Our results apply to a variety of logics,
starting with FO and FO(C), and ending with a logic L∗

∞!(C) proposed in [22]. This
logic subsumes FO(C) and all other known pure counting extensions of FO. Note that
when we speak of counting extensions of FO, we mean extensions that only add a
counting mechanism, as opposed to those extensively studied in the literature [27] that
add both counting and *xpoint.
We consider a class of relations which are extremely close to linear orderings. These

are preorders, with equivalence classes of size at most 2, that coincide with linear
orders almost everywhere. See Section 2 for precise de*nition, and Fig. 1 for a pic-
ture. We *rst prove, by a simple direct argument, that there are DLOGSPACE and
NLOGSPACE-complete problems not de*nable in all the counting logics above, in the
presence of such relations. This immediately leads to a question whether the expressiv-
ity of, say, FO(C) in the presence of such relations is the same as that of FO(C)+¡.
In the second part of the paper, we prove a more involved result showing that this is
not the case. In particular, logics such as FO(C) and L∗

∞!(C), in the presence of pre-
orders that are almost everywhere linear orders, exhibit very tame behavior, normally
associated with *rst-order de*nable properties. To prove the main result, we exploit
the locality techniques in *nite-model theory.

156 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

The idea of locality in *nite-model theory was *rst introduced by Gaifman [10].
Informally, a logic is local if the result of any query or property de*nable in it can
be determined by examining a “small neighborhoods” of its arguments. An interesting
consequence of locality is the “bounded number of degrees property”. Informally, a
logic has the bounded number of degrees property if any graph de*nable in it in terms
of a second graph has a small number of distinct in- and out-degrees that depends
only on the de*ning formula and the maximum in- and out-degree of the second
graph. These properties make it straightforward to infer many inexpressibility results.
For example, if a logic is known to be local and thus has the bounded number of
degrees property, then we can immediately conclude that it cannot de*ne the transitive
closure of a chain graph, as the number of distinct degrees in the transitive closure
obviously depends on the length of the chain.

1.1. Organization

In Section 2, we give formal de*nitions of various counting extensions of FO, notions
of locality, and de*nability with auxiliary relations. We also give an example that shows
how the presence of auxiliary relations aAects expressiveness.
In Section 3, we give a direct proof that the transitive closure query is not expressible

in FO(C) in the presence of almost-everywhere linear orders. We also explain that
the technique of the proof does not straightforwardly generalize to proving separation
results in the ordered case.
In Section 4, we address the question of whether it is possible to use the almost-

everywhere linear orders to prove separation results in the ordered case. We give a
negative answer. Indeed, for all counting logics we consider here, adding a linear order
is strictly more expressive than adding a preorder, however close to a linear order that
preorder might be. We state the result and some of its corollaries. In Section 5, we
give the proof, where we *rst describe notions of weak locality and then combine them
with bijective Ehrenfeucht–FraMNssOe games.
Two extended abstracts with the results of this paper appeared in the Proceedings of

15th Symposium on Theoretical Aspects of Computer Science [25], and the Proceedings
of the 14th IEEE Symposium on Logic in Computer Science [23].

2. Notations

2.1. Finite structures and logics

All structures are assumed to be 6nite. A relational signature � is a set of relation
symbols {R1; : : : ; Rl}, with associated arities pi¿0. For directed graphs, the signature
consists of one binary predicate. A �-structure is A= 〈A; RA

1 ; : : : ; RA
l 〉, where A is a

*nite set, and RA
i ⊆Api interprets Ri. We also allow some constants into a �-structure

where needed. The class of *nite �-structures is denoted by STRUCT[�]. When there

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 157

is no confusion, we write Ri in place of RA
i . Isomorphism is denoted by ∼=. The carrier

of a structure A is always denoted by A.
We abbreviate *rst-order logic by FO and omit the standard de*nitions. FO with

counting, denoted by FO(C), is a two-sorted logic with second sort being interpreted
as an initial segment of natural numbers. Here, a structure A is of the form

〈{v1; : : : ; vn}; {1; : : : ; n};¡;BIT; 1;max; RA
1 ; : : : ; RA

l 〉:
The relations RA

i are de*ned on the domain {v1; : : : ; vn}. The constants 1 and max are
de*ned on the numerical domain {1; : : : ; n} and are interpreted as 1 and n, respectively.
On the numerical domain the logic also has a linear order ¡ and the BIT predicate
available, where BIT(i; j) iA the ith bit in the binary representation of j is one. This
logic also has counting quanti6ers ∃ix:’(x), meaning that there are at least i elements x
that satisfy ’(x); here i refers to the numerical domain and x to the domain {v1; : : : ; vn}.
These quanti*ers bind x but not i. Ternary predicates + and ∗ are de*nable on the
numerical domain [8]. The quanti*er ∃!ix meaning the existence of exactly i elements
satisfying a formula is also de*nable. For example, ∃i∃j [(j+ j)= i∧∃!ix:’(x)] tests
if the number of x satisfying ’ is even. Note that this example property is not de*nable
in FO alone. We separate *rst-sort variables from second-sort variables by semicolon:
’(̃x; —̃).

There are several counting extensions of FO that are more powerful than FO(C).
Amongst them is FO(Qu). This logic is FO extended with all unary quanti*ers. We
refer the reader to [12, 18] for the de*nition of FO(Qu) and its properties. Here, we
mostly work with an even more powerful logic that is de*ned below.
We denote the in*nitary logic by L∞!. It extends FO by allowing in*nite con-

junctions ∧ and disjunctions ∨. Then L∞!(C) is a two-sorted logic that extends the
in*nitary logic L∞!. Its structures are of the form (A;N), where A is a *nite re-
lational structure and N is a copy of natural numbers. Assume that every constant
n∈N is a second-sort term. To L∞!, add counting quanti*ers ∃ix for every i∈N,
and counting terms: If ’ is a formula and x̃ is a tuple of free *rst-sort variables in ’,
then #̃x:’ is a term of the second sort, and its free variables are those in ’ except x̃.
Its interpretation is the number of tuples ã over the *nite *rst-sort universe that satisfy
’. That is, given a structure A, a formula ’(̃x; ỹ; —̃), b̃⊆A, and —̃0⊂N, the value of
the term #̃x:’(̃x; b̃; —̃0) is the cardinality of the *nite set {̃a⊆A |A |=’(̃a; b̃; —̃0)}. For
example, the interpretation of #x:E(x; y) is the in-degree of node y in a graph with
the edge-relation E.
As this logic expresses every property of *nite structures, it is too powerful. We

restrict it by means of the rank of formulae and terms, denoted by rk. It is de-
*ned as quanti*er rank. That is, it is 0 for atomic formulae; rk(

∨
i ’i)= maxi rk(’i);

rk(¬’)= rk(’); and rk(∃x’)= rk(∃ix’)= rk(’)+1 as usual. But it does not take into
account quanti*cation over N: rk(∃i’)= rk(’). Furthermore, rk(#̃x:)= rk() + |̃x|.

De�nition 1 (Libkin [22]). The logic L∗
∞!(C) is de*ned to be the restriction of

L∞!(C) to terms and formulae of *nite rank.

158 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

It is known [22] that L∗
∞!(C) formulae are closed under Boolean connectives and

all quanti*cation, and that every predicate on N× · · · ×N is de*nable by a L∗
∞!(C)

formula of rank 0. Thus, we assume that +; ∗;−;6, and in fact every predicate on
natural numbers is available. Known counting expansions of FO are contained in
L∗

∞!(C). That is, for every FO, FO(C), or FO(Qu) formula, there exists an
equivalent L∗

∞!(C) formula of the same rank. A counting logic of [3] can also be
embedded into L∗

∞!(C).

2.2. De6nability with auxiliary relations

An m-ary query on �-structures, Q, is a mapping that associates to each A∈
STRUCT[�] a structure 〈A; S〉, where S ⊆Am. We write ã∈Q(A) if ã∈ S, where
〈A; S〉=Q(A). A query Q is de*nable in a logic L if there exists an L formula

’(x1; : : : ; xm) such that Q(A)=’[A] def= 〈A; {̃a |A |=’(̃a)}〉.
Let �′ be a relational signature disjoint from �. If A is a �-structure on a universe A,

and A′ is a �′-structure on A, we use the notation (A;A′) for the �∪ �′-structure on A
which inherits the interpretation of � relational symbols from A, and the interpretation
of �′ symbols from A′.
Let C be a class of �′-structures, with � and �′ being disjoint. Let A∈STRUCT[�].

A formula ’(̃x) in the language of �∪ �′ is called C-invariant on A if for any two C

structures A′ and A′′ on A we have ’[(A;A′)]=’[(A;A′′)]. Associated with such
a formula is the following m-ary query (where m= |̃x|):

Qw
’(A) =

{
’[(A;A′)] ’ is C-invariant on A;
∅ otherwise;

where A′ is any structure from C on A. We use the notation (L+C)w to denote all
queries de*ned in such a way when ’ ranges over formulae of L.
A formula ’ is C-invariant if it is C-invariant on every structure. With such a ’,

we associate a query Q’ given by Q’(A)=’[(A;A′)] where A′ is a structure from
C on A. The class of all such queries is denoted by L+ C. Clearly,

L+ C ⊆ (L+ C)w:

We thus shall aim to establish expressivity bounds for (L+ C)w.
When C is the class of order relations, we shall write ¡ instead of C. The capture

results for complexity classes deal with the classes of queries of the form L+¡. For
example, uniform TC0 equals FO(C)+¡ [2]. While queries in L+¡ are independent
of any particular order relation used, the mere presence of such a relation can have an
impact on the expressivity of a logic.
We give an example for FO(C). Assume that � has one binary and one unary

relation, i.e. its structures are graphs with a selected subset of nodes. Let Q0 be the
following Boolean query [3]: given a structure 〈A; E; X 〉, where A �= ∅, E⊆A2 and
X ⊆A, return true iA E is an equivalence relation, and the number of distinct sizes of
E-classes equals |X |. It is known that Q0 is not expressible in FO(C) [3]. However, it

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 159

is expressible in FO(C)+¡. Indeed, the equivalence relation x#y iA the E-equivalence
classes of x and y have the same cardinality is de*nable in FO(C). Thus, in FO(C) one
de*nes the set of smallest (wrt ¡) elements of each such class, and then compares,
in FO(C), the size of this set to X . The two are the same iA the value of Q0 is true.
Note that any linear order su7ces to express this query.
Thus, FO(C)$FO(C) +¡. Since the latter captures uniform TC0, this means that

there are problems in TC0 not de*nable in FO(C) over unordered structures. It is also
known that FO$FO +¡. We shall see later that this continues to be true for other
counting logics.

2.3. Bounded number of degrees property (BNDP)

If A∈STRUCT[�] and Ri is of arity pi, then degreej(R
A
i ; a), for 16 j 6 pi, is the

number of tuples ã in RA
i having a in the jth position. In the case of directed graphs,

this gives us the usual notions of in- and out-degree. By deg set(A) we mean the set
of all degreej(R

A
i ; a) realized in A, and deg count(A) stands for the cardinality of

deg set(A). We use the notation STRUCTk [�] for {A∈STRUCT[�] | deg set(A)⊆
{0; 1; : : : ; k}}.

De�nition 2 (Libkin and Wong [24]; Dong et al. [5]; Libkin [21]). An m-ary
query Q, m¿ 1, is said to have the bounded number of degrees property, 1 or BNDP,
if there exists a function fQ :N→N such that deg count(Q(A))6fQ(k) for every A∈
STRUCTk [�].

The BNDP is very easy to use for proving expressivity bounds [24]. For example,
it is very easy to verify that (deterministic) transitive closure violates the BNDP.

2.4. Locality

All existing proofs of the BNDP establish *rst that a logic is local. We now de*ne
this concept. Given a structure A, its Gaifman graph [7, 10, 9] G(A) is de*ned as
〈A; E〉 where (a; b) is in E iA there is a tuple c̃∈RA

i for some i such that both a
and b are in c̃. The distance d(a; b) is de*ned as the length of the shortest path from
a to b in G(A); we assume d(a; a)= 0. If ã=(a1; : : : ; an) and b̃=(b1; : : : ; bm), then
d(̃a; b̃)= minij d(ai; bj). Given ã over A, its r-sphere SA

r (̃a) is {b∈A |d(̃a; b) 6 r}.
Its r-neighborhood NA

r (̃a) is de*ned as a structure NA
r (̃a)

〈SA
r (̃a); RA

1 ∩ SA
r (̃a)p1 ; : : : ; RA

k ∩ SA
r (̃a)pl ; a1; : : : ; an〉

1 This property was formerly known as the bounded degree property, or the BDP (see [5, 13, 22, 24, 25]
etc.). However, many found the name confusing, as the property refers to the number of degrees in the
output being bounded, rather than the degrees themselves. Following a suggestion by Neil Immerman, we
decided to change the name from BDP to BNDP.

160 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

in the signature that extends � with n constant symbols. That is, the carrier of NA
r (̃a)

is SA
r (̃a), the interpretation of the �-relations is inherited from A, and the n extra

constants are the elements of ã. If A is understood, we write Sr (̃a) and Nr (̃a).
If A;B∈STRUCT[�] and there is an isomorphism NA

r (̃a)→NB
r (̃b) that sends ã to

b̃, we write ã≈A;B
r b̃. If A=B, we write ã≈A

r b̃.
Given tuples ã=(a1; : : : ; an) and b̃=(b1; : : : ; bm) and an element c, we write ã̃b for

the tuple (a1; : : : ; an; b1; : : : ; bm), and ãc for (a1; : : : ; an; c).

De�nition 3 (Zibkin [21]). An m-ary query Q is called local if there exists a number
r ¿ 0 such that, for any structure A and any ã; b̃∈Am

ã ≈A
r b̃ implies ã ∈ Q(A) iA b̃ ∈ Q(A):

The minimum such r is called the locality rank of Q, and is denoted by lr(Q).

It follows from Gaifman’s theorem [10] that every FO-de*nable query is local.
Moreover, if Q is de*nable by a formula ’(̃x), then lr(Q) 6 (7qr(’) − 1)=2. It was
shown in [21, 22] that every FO(Qu), FO(C), and L∗

∞!(C)-de*nable query is local.
Furthermore, lr(Q)6 2rk(’) [22].

Fact 1 (Dong et al. [5]). Every local query has the bounded number of degrees
property.

Thus, without auxiliary relations, queries such as transitive closure cannot be ex-
pressed in FO(C) and even in L∗

∞!(C).
Proviso: When we deal with queries in L+C and (L+C)w, which are de*ned on

structures (A;A′), A′ ∈C, all locality concepts (neighborhoods, degrees, etc.) refer
only to the �-structure A, and not to the auxiliary structure A′ from C.

2.5. Almost-linear-orders

We next de*ne the class of relations that we view as “almost linear orders”. First,
let -k stand for the class of preorders R (reTexive transitive relations) in which every
equivalence class of R∩R−1 (that is, x≡y iA xRy and yRx) has size at most k. Note
that -1 is the class of linear orders.
Let g :N→R be a nondecreasing function. 2 De*ne ¡�g as the class of binary

relations (A; R) such that there exists a partition A=B∪C with the following properties:

(1) The cardinality of B is at least n− g(n).
(2) R restricted to B is a linear order.

2 One can deal with functions g :N→N as well; however, as in many examples we use log2, we prefer
to have R as the range.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 161

(3) R restricted to C is a relation from -2, that is, a preorder where every equivalence
class has at most two elements.

(4) For any b∈B and c∈C, (b; c)∈R, and (c; b) =∈R.

See Fig. 1 for a preorder from ¡�g . Actually, we show the associated successor relation
in the *gure. A relation from ¡�g is really the transitive closure of the one shown in
Fig. 1. Intuitively, if g is very small (e.g., log log : : : log n), then this can be viewed as
the least possible “damage” that can be done to a linear ordering: We make a small
subset at the end into a preorder, with its classes having no more than 2 elements.

3. Expressivity bounds for FO(C) and FO(Qu) in the presence of relations of large
degree

We start by giving a general technique for proving expressivity bounds for local
logics. Then we apply it to FO(C) to prove our main result that DLOGSPACE-complete
problems, such as deterministic transitive closure, cannot be expressed in it in the
presence of relations that are very close to linear orderings. In particular, it will follow
that DLOGSPACE*FO(C)+-k for any k¿1.

3.1. Proving expressivity bounds in local logics

Let Q be a query that takes structures from STRUCT[�] as inputs and returns m-ary
relations; e.g., transitive closure takes graphs from STRUCT[�gr] as inputs and returns
graphs. Let R be a class of relations, and L a logic. Suppose we want to prove that
Q =∈ (L+R)w. For that purpose, we introduce two conditions.

DefL[�][R;C]: Assume C⊆STRUCT[�]. Then there exists a number n and an L

formula ’ in the vocabulary � such that ’[A]∈R for every A∈C with |A|¿n.
That is, relations from R are de*nable by �-formulae of L on large enough struc-

tures from C.
SepL[�][Q;C]: For any two numbers r; n¿0, there exists A∈C with |A|¿n and

two m-ary vectors ã, b̃ of elements of A such that ã ≈A
r b̃, ã∈Q(A) and b̃ =∈Q(A).

That is, Q separates similarly looking (in a local neighborhood) tuples on arbitrarily
large structures from C.

Theorem 1. Assume that L is FO; FO(C); FO(Qu); or L∗
∞!(C). Suppose for a given

query Q on �-structures; one can 6nd C⊆STRUCT[�] such that both DefL[�][R;C]
and SepL[�][Q;C] hold. Then Q =∈ (L+R)w.

Proof. Assume that Q is in (L+R)w. Since SepL[�][Q;C] holds, Q returns nonempty
results for arbitrarily large structures. Thus, we assume that it is de*nable by a formula
 in the vocabulary that includes � and a symbol R for the relation from R. Let ′ be
obtained from by replacing each occurrence of R(· · ·) by ’(· · ·), where ’ is given
by DefL[�][R;C]. Note that ′ is a L-formula in the vocabulary �. By [21, 22], ′

is local. Let r= lr(′). For an arbitrary N¿n, we *nd a structure A of cardinality at

162 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

least N and ã ≈A
r b̃ such that ã∈Q(A) and b̃ =∈Q(A). Since Q∈ (L+R)w, we know

that is invariant on A. Thus, Q(A)= [(A; R)] where R is any interpretation of a
relation from R on A. From the invariance we obtain ′[A] =Q(A). Thus, for ã; b̃,
we have A |= ¬(′(̃a)↔ ′(̃b)), which contradicts the locality of ′. This proves the
theorem.

Note that this theorem can be straightforwardly extended to the case of several built-
in relations of possibly diAerent arities by considering R̃ instead of R, where R̃ is a
tuple of classes of auxiliary relations. Then DefL[�][R̃;C] says that relations from each
component of R̃ can be de*ned by a �-formula of L on su7ciently large structures
from C.

3.2. Lower bounds for transitive closure

Recall [16] that deterministic transitive closure of a graph is obtained by closing
its deterministic paths. That is, if G= 〈V; E〉 is a directed graph, then dtc(G)= 〈V; E′〉
where (a; b)∈E′ iA either (a; b)∈E or there exists a path (a; a1); (a1; a2); : : : ; (an−1; an);
(an; b)∈E such that a and each ai, i=1; : : : ; n have outdegree 1. That is, the edge
(a; a1) is the only outgoing edge from a, etc.
We shall use tc to denote the transitive closure of a graph. According to [16],

FO+ dtc +¡ captures DLOGSPACE and FO+ tc +¡ captures NLOGSPACE. Note
that ¡ can be replaced by a successor relation, since its (deterministic) transitive
closure is a linear order.

Theorem 2. Let g :N→R be a nondecreasing function that is not bounded by a
constant. Then (deterministic) transitive closure is not in (L + ¡�g)w; where L is
FO(C); FO(Qu); or L∗

∞!(C). In particular; DLOGSPACE*FO(C) +¡�g .

This can be compared with the results of [4] where it was shown that *rst-order
logic with *xpoint and counting fails to express some polynomial-time problems even
in the presence of relations from -4. Of course, *rst-order logic with *xpoint captures
polynomial time in the presence of an order relation, cf. [7].
In view of Theorem 1, to establish Theorem 2, it is enough to prove the following:

Proposition 1. Let q be (deterministic) transitive closure; and L be FO(C) or FO
(Qu). Assume that g :N→R is a nondecreasing function that is not bounded by a
constant. Then there exists a class C of graphs such that both DefL[�gr](¡�g ;C) and
SepL[�gr](q;C) hold.

3.3. Bushy trees

In what follows, trees are directed graphs with edges oriented from the root to the
leaves.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 163

Fig. 2. Canonical k-bushy tree.

A tree is called bushy if, for any two nonleaf nodes x �=y, out-deg(x) �=
out-deg(y). A k-bushy tree is a bushy tree in which every path from the root to
a leaf has the same length k. A canonical k-bushy tree is obtained as follows. We
start with the root of out-degree 2. Its *rst child has 3 children, the second child has
4 children. This completes level 2, and we now have 7 elements at level 3. They will
have 5, 6, 7, 8, 9, 10 and 11 children respectively. This gives us 56 nodes at level 4,
which will have 12(= 11+1); 13; : : : ; 67(= 11+56) children respectively. We continue
until we have fully *lled all k levels. See the picture in Fig. 2. We use Bk to denote
the canonical k-bushy tree.

Proof of Proposition 1. We start by de*ning a family of graphs G0
d; k , d; k ∈N+, d¿k+

1. Let sk be the total number of nodes in the canonical k-bushy tree. The root of G0
d; k

has sk + 1 children. Two of them are roots of two copies of a canonical k-bushy
tree, denoted here by B1

k and B2
k . The other sk − 1 nodes at the second level, we give

sk +2; sk +3; : : : ; sk + sk =2sk children respectively. Now, to those nodes at the second
level that do not belong to the two canonical k-bushy trees, we give 2sk +1, 2sk +2; : : :
children, as before, increasing the number by one. We continue this process until we
fully *ll the (k + 1)th level.
Now that the (k +1)th level is *lled (i.e. we have a graph with all paths from root

to leaves being of length k+1), we look at the node at the level k with most children,
say M of them, and start giving nodes at the (k + 1)th level M + 1; M + 2; M + 3; : : :
children. We stop the process when we completely *ll the dth level.
This is the graph G0

d; k . Note that every two nonleaf nodes x �=y have diAerent out-
degrees, unless one of them is in B1

k and the other is in B2
k . We now de*ne Gd;k by

adding an arbitrary linear ordering on the leaves. That is, if Z is the set of leaves of
G0

d; k , and LZ is a linear order on Z , then the set of edges of Gd;k is that of G0
d; k plus

LZ . When we speak of “leaf nodes” of Gd;k , we actually mean the leaf nodes of G0
d; k .

Let B◦
1 and B◦

2 be the sets of nonleaf nodes in B1
k and B2

k . Then, for any two
distinct nodes x; y =∈B◦

1 ∪B◦
2 , it is the case that (in-deg(x); out-deg(x)) �=(in-deg(y);

out-deg(y)). Indeed, out-degrees are diAerent for nonleaf nodes of G0
d; k , except for

those in B◦
1 ∪B◦

2); all in-degrees are diAerent for the leaf nodes; and all in-degrees
for the leaf nodes, except one, are diAerent from those of the nonleaf nodes. The

164 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

exceptional leaf node is the one with in-degree one; it is thus the smallest one in the
linear order, and thus has an out-degree that exceeds that of all the internal nodes.
De*ne two binary relations on the set of nodes: x ≺0 y iA in-deg(x)¡in-deg(y) or

in-deg(x)= in-deg(y) and out-deg(x)¡out-deg(y). Let B◦ be B◦
1 ∪B◦

2 . De*ne

x ≺ y iA




x =∈ B◦; y ∈ B◦; or
x; y ∈ B◦ and x≺ 0y; or
x; y =∈ B◦ and x≺ 0y

From this description, it is clear that ≺ is de*nable in FO(C) and thus in FO(Qu)
and L∗

∞!(C), because these logics can de*ne the set B◦ as the set of nodes for which
there exists another node with the same in- and out-degree). Let 3≺ denote a formula
de*ning ≺.
Now, given k, let dk be the smallest number d¿k + 1 such that 2sk¡g(n) for all

n ¿ Nd; k , where Nd; k is the total number of nodes in Gd;k . Since for every *xed
k, Nd; k grows with d, and g is nondecreasing, dk is well-de*ned and indeed depends
only on k. Let Cg = {Gd;k |d; k ∈N+; d¿dk}. From the construction above, it follows
that, for a nondecreasing g, 3≺ de*nes an element of ¡�g on every Gd;k ∈Cg. Thus,
DefL[�gr][¡�g ;Cg] holds.
We now show that SepL[�gr][tc;Cg] holds. Fix two numbers r; n¿0. We must show

that there exist a graph Gd;k ∈Cg such that, for two pairs of nodes (a; b) and (a′; b′)
with (a; b) ≈r (a′; b′), there is a path from a to b, but there is no path from a′ to b′.
Let k =2r + 2, and let d¿4r + 6 be such that Gd;k ∈Cg. Let a be a node at the

middle ((r+1)th) level of B1
k , and a′ a node in B2

k with the same out-degree as a. Then
a ≈r a′. We now consider a path from a to a leaf, say l, and choose a node b on this
path such that d(b; a)¿2r+1 and d(b; l)¿r; this is possible since d¿4r+6. It is clear
that d(b; a′)¿2r+1; hence we have (a; b)≈r (a′; b). Furthermore, (a; b)∈ tc(Gd;k), but
(a′; b) =∈ tc(Gd;k), since G0

d; k is a tree. This proves SepL[�gr][tc;Cg].
To complete the proof for deterministic transitive closure, we just reverse all the

edges of Gd;k . Since all paths not involving leaves now become deterministic, the
above proof works for the deterministic case.

Corollary 1. (Deterministic) transitive closure is not de6nable in FO(C) or FO(Qu)
in the presence of relations from -k (preorders of width at most k) for any k¿1.
In particular; DLOGSPACE*FO(C)+-k .

3.4. Limitations of the technique

To summarize what has been achieved so far, we know that FO(C)+¡=TC0, and
the above results show that for any k¿1, DLOGSPACE*FO(C)+-k . Furthermore,
DLOGSPACE*FO(C) + ¡�g for any nondecreasing function g that is not bounded
by a constant. Thus, one may ask if the techniques can be pushed further to prove
expressivity bounds for FO(C) + ¡. A possible avenue for attacking the problem of
expressivity with linear order seems to be the following: try to *nd a class of structures

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 165

C so that both DefL[¡;C] and SepL[Q;C] would hold, where Q is tc, or dtc, or any
other query we want to show to be outside of FO(C) + ¡. If we were able to *nd
such a class C, it would show that Q =∈FO(C) + ¡. Unfortunately, as the following
proposition shows, no such class exists.

Proposition 2. Let Q be a query invariant under isomorphisms. Let L be FO(C);
FO(Qu); or L∗

∞!(C). Then there does not exist a class C of structures such that
both DefL[¡;C] and SepL[Q;C] hold.

Proof. Assume that a class C of structures satisfying both DefL[¡;C] and SepL
[Q;C] exists. That is, a linear order is de*nable by an L formula 3(x; y) on large
enough structures (cardinality ¿n) in C. Since every query de*nable in FO(C), FO
(Qu), or L∗

∞!(C) are local, we know that 3 is local. Let r= lr(3), and let d=3r +1.
Now apply SepL[Q;C] to d and n to *nd a structure A of cardinality at least n such
that for some ã; b̃, we have ã≈d b̃. Let a0 be the *rst component of ã and b0 be the
*rst component of b̃. We then have a0≈d b0.
Assume without loss of generality that a0≺ b0 but b0� a0 in the linear order ≺

de*ned by 3 on A. It follows from [5, 21] that there is a permutation 4 on S2r+1(a0; b0)
such that Nr(a0; x) ∼= Nr(b0; 4(x)) for every x∈ S2r+1(a0; b0). From the locality of 3 and
r= lr(3), we get that for every x∈ S2r+1(a0; b0), a0≺ x iA b0≺ 4(x). That is, 4 maps
{x∈ S2r+1(a0; b0) | a0≺ x} into {x∈ S2r+1(a0; b0) | b0≺ x}. But we know that the latter
has fewer elements than the former (since a0≺ b0 but b0� a0), so we have an injective
map from a bigger *nite set to a smaller *nite set. This contradiction completes the
proof.

4. Expressive power with preorders

While we showed that the technique of Theorem 2 cannot be straightforwardly ex-
tended to deal with linear orders, we have not answered the following question: Is
FO(C) +¡�g properly contained in FO(C) +¡? If the two were shown to be equal,
the bounds of Theorem 2 would apply to prove that the transitive closure is not in
TC0. However, we will show that there is an enormous gap between L + ¡�g and
L+¡, where L is one of the counting logics we consider here, and g is very small.
Namely, our main result is the following.

Theorem 3. Let g :N→R be a nondecreasing function that is not bounded by a
constant. Then every query in (L∗

∞!(C)+¡�g)w has the bounded number of degrees
property.

That is, with auxiliary structures arbitrarily close to linear orders, the most powerful
of counting logics, L∗

∞!(C), still exhibits the very tame behavior typical for FO queries
over unordered structures.

166 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

The proof of this result is somewhat involved, and will be given in the next section.
Here we state some corollaries.

4.1. Corollaries

With g as above, the (deterministic) transitive closure, and, more generally, problems
complete for classes DLOGSPACE and above it under *rst-order reductions, are not
de*nable in any of the counting logics we consider, even in the presence of relations
from ¡�g . That is,

Corollary 2. Let g :N→R be a nondecreasing function that is not bounded by a
constant. Then every query in (FO(Qu) + ¡�g)w; (FO(C) + ¡�g)w; L

∗
∞!(C) + ¡�g ;

FOQU +¡�g ; or FO(C) +¡�g has the BNDP.

The following corollaries demonstrate the enormous gain in expressiveness by going
from “almost orders” to orders. By a colored graph we mean a structure of the signature
(E;U1; : : : ; Um) where E is binary, and Ui’s are unary. That is, it is a graph with a
few selected subsets of nodes. A colored graph query is a binary query Q on colored
graphs, that is, it returns graphs. The hardness of such a query is de*ned as the function
HQ :N→N where HQ(n) is max{deg count(Q(A))} with A ranging over structures
with |A|= n and E being a successor relation.
Recall that deg count(·) is the cardinality of the set of all degrees realized in a

structure. That is, the hardness shows how complex the output might look like if the
input is a successor relation with a few colored subsets. Note that 06HQ(n)6 n+1.
Since every property of ordered structures is de*nable in L∗

∞!(C) [22], we obtain the
following dichotomy result:

Corollary 3. (i) Let g :N→R be any nondecreasing function that is not bounded by
a constant. Let Q be a colored graph query in L∗

∞!(C) +¡�g . Then there exists a
constant C such that HQ(n)¡C for all n.
(ii) For any function f :N→N such that 06 f(n)6 n+1; there exists a colored

graph query Q in L∗
∞!(C) +¡ such that HQ =f.

Thus, dropping a tiny portion of linear order (e.g., log log : : : log n elements) accounts
for the increase in hardness from constant to arbitrary one!
FO(C) also admits this kind of dichotomy, as there exists a colored graph query Q

de*nable in FO(C) +¡ such that HQ(n)¿ log n [13]. We thus obtain:

Corollary 4. There are problems in uniform TC0 that cannot be expressed in FO(C)
+¡�g .

Moreover, it is known that there are uniform AC0 (equivalently, *rst order logic
with the BIT predict and a linear order, FO(BIT)+¡) queries that violate the BNDP
[6, 11]. Hence, we obtain:

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 167

Corollary 5. AC0* (L∗
∞!(C) +¡�g)w.

We thus can *nally compare the expressive power of counting logics with linear
orders vs. their expressiveness with preorders:

Corollary 6. Let g :N→R be as in Theorem 3; and L be FO(C); or FO(Qu); or
L∗

∞!(C). Then L+¡�g �=L+¡. Furthermore; FO(C)$ FO(C) +¡�g .

Note that the presence of some form of counting is essential in these results. It was
shown recently [11] that every invariant query in FO+¡ has the BNDP. That is, HQ

is bounded by a constant for colored graph queries in FO +¡.

5. Proof of the main theorem: failure of locality, weak locality, and bijective games

5.1. Failure of locality

All proofs of the BNDP that are currently known derive it from locality of queries.
Unfortunately, we cannot use this method as queries in (L∗

∞!(C)+ ¡�g)w need not
be local.

Proposition 3. Let g(n)¡ log n= log log n be nondecreasing; and not bounded by a con-
stant. Then there exist nonlocal queries in (L∗

∞!(C)+ ¡�g)w.

Proof. We construct a query Q de*nable by a formula ’(x) and a sequence of struc-
tures An, n∈N, with an n-element universe, so that for each n large enough and
for any P ∈¡�g , there are two points a; b in An with isomorphic r-neighborhoods,
and (An; P) |= ’(a)∧¬’(b), where r=O(log log n). This will prove that (L∗

∞!(C)+
¡�g)w is not local. By log n we mean �log2(n+ 1)�.
The signature � consists of three unary relations U1; U2 and C, and one binary

relation E. We use P for the auxiliary relation from ¡�g . Let l(n)= �log(n − log n)=
g(n) + 1�. This function is not bounded by a constant as n grows. In An, whose
universe is denoted by A, U1 has cardinality Mn = l(n)(g(n) + 1)6 log(n− log n), and
U2 is interpreted as A − UAn

1 . The unary relation C is interpreted as a two-element
subset of U2. Let E′ be de*ned on U1 to be a disjoint union of g(n) + 1 successor
relations of length l(n) each. For each such successor relation E′

i , i=1; : : : ; g(n) + 1,
let ci be the node at the distance �l(n)=3� from the start node, and di be the node at
the distance �2 · l(n)=3� from the start node. Let CAn = {a; b}. We then de*ne

EAn = E′ ∪
g(n)+1⋃
i=1

{(a; ci); (b; di)}:

Next, de*ne 3(x) ≡ ∀y:(P(x; y)∧P(y; x)→y= x) saying that x is in the linear order
part of P, which we shall denote by P3. From the above, we obtain Mn6 log(|P3|). We
now show that there exists a formula 8(x; y) in FO(C) such that 8(x; y) implies x; y∈C

168 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

and (An; P) |= 8(a; b) and (An; P) |=¬ 8(b; a) for any interpretation of P as a relation
from ¡�g on A. This will clearly su7ce to conclude the proof, since one then de*nes
’(x) ≡ C(x)∧∃y:(C(y)∧ 8(x; y)∧¬(x=y)) and notices (An; P) |= ’(a)∧¬’(b)
while a and b have isomorphic neighborhoods of radius O(l(n)).
The formula 8(x; y) is de*ned as C(x)∧C(y)∧∃u; v:(E(x; u)∧E(y; v)∧ 9(u; v))

where 9(u; v) holds iA there is an E-path from u to v all of whose nodes are in
P3. Since the number of successor relations in E is g(n) + 1, at least one of them is
totally contained in P3, which shows that (An; P) |= 8(a; b). Since there is no path
between di and ci for every i, we have (An; P) |= ¬8(a; b). Thus, we must show how
to express 9 in L∗

∞!(C) (in fact, one can express it in FO(C)).
To express 9, we follow the proof of the failure of the BNDP for FO(C) + ¡

given in [13]. Let P1
3 =U1 ∩P3. Since |P1

3 |6|U1|=Mn6 log(|P3|), subsets of P1
3 can

be coded by the elements of P3: a set S ⊆ P1
3 is coded by cS ∈P3 such that

{x |BIT(m1; m2); where m1 = |{y |y ¡ x}|; m2 = |{y |y ¡ cS}|} = S:

With this coding, we can simulate monadic second-order on P1
3 in FO(C), which

su7ces to express 9. This concludes the proof.

Proposition 3 provides the *rst nontrivial example that separates the notion of lo-
cality from the BNDP. Now one needs a diAerent technique to prove Theorem 3. We
introduce this technique in two steps. In the next subsection, we consider two ways of
weakening the notion of locality, and we show that one of them, weak semi-locality,
implies the BNDP. In Section 5.3, we show how the bijective games [12] can be used
to prove weak semi-locality of (L∗

∞!(C)+ ¡�g)w queries.

5.2. Weak locality

To de*ne locality of a query, we considered the equivalence relation ã≈A
r b̃ iA

NA
r (̃a)∼=NA

r (̃b). We now consider two re*nements that lead to weaker notions of
locality. For the *rst re*nement, we write ã!!A

r b̃ if ã≈A
r b̃ and SA

r (̃a)∩ SA
r (̃b)= ∅.

For the other re*nement, consider a partition I=(I1; I2) of the set {1; : : : ; n}. Given
x̃=(x1; : : : ; xn), we denote by x̃I1 and x̃I2 the subtuples of x̃ that consist of those
components whose indices belong to I1 or I2, respectively. For example, if n=4 and
I=({1; 3}; {2; 4}), then x̃I1 = (x1; x3) and x̃I2 = (x2; x4). We then write ã !A

r b̃, for
ã; b̃∈An, if there exists a partition I=(I1; I2) of {1; : : : ; n} such that

• ãI
1 ≈A

r b̃
I

1 ;

• ãI2 = b̃
I

2 ;

• SA
r (̃aI

1); S
A
r (̃aI2); S

A
r (̃b

I

1) are disjoint.

Clearly, ã!!A
r b̃ implies ã!A

r b̃ (by taking I2 to be empty), and ã!A
r+1 b̃ implies

ã≈A
r b̃.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 169

De�nition 4. An m-ary query Q on �-structures is called weakly local if there exists
a number r ∈N such that for any A∈STRUCT[�] and any ã; b̃∈Am, ã!!A

r b̃ implies
ã∈Q(A) iA b̃∈Q(A).
A query Q is said to be weakly semi-local if there exists a number r ∈N such that

for any A∈STRUCT[�] and any ã; b̃∈Am, ã!A
r b̃ implies ã∈Q(A) iA b̃∈Q(A).

Proposition 4. Every local query is weakly semi-local; and every weakly semi-local
query is weakly local. There exist queries that are weakly local but not weakly
semi-local; and there exist queries that are weakly semi-local but not local. That is;

LOCAL $WEAKLY SEMI-LOCAL $WEAKLY LOCAL:

Proof. The chain of implications local ⇒ weakly semi-local ⇒ weakly local is obvi-
ous. Next, consider the following query Q0 on graphs. If for the input graph 〈V; E〉, with
vertices V and edges E, E= {(x1; x2); (x2; x3); : : : ; (xn−1; xn)}∪ {(xi; xi); (xj; xj)} with
i¡j, where V = {x1; : : : ; xn}, then the output of Q0 is a graph 〈V; {(xi; xj)}〉. Other-
wise, the output has no edges. Clearly, this query is not local: For any r, we consider
a graph as above with i¿r, j¡n − r and j − i¿2r + 1; then Nr(xi; xj)∼=Nr(xj; xi),
showing that lr(Q0) cannot equal r. At the same time, Q0 is weakly semi-local,
with r=1 witnessing weak semi-locality. Indeed, assume that in a graph G as above
(xk ; xl)!G

1 (xi; xj), with (xk ; xl) �=(xi; xj). Since there are only two nodes xi and xj with
loops, we get that k = j and l= i, but this contradicts (xk ; xl)!G

1 (xi; xj). Thus, when-
ever we have (xk ; xl)!G

1 (xs; xt) with (xk ; xl) �=(xs; xt), none of the pairs is (xi; xj) and
hence (xk ; xl) =∈Q0(G) and (xs; xt) =∈Q0(G), proving weak semi-locality.
To separate weak locality from weak semi-locality, consider another graph query

Q1. If its input G= 〈V; E〉 is of the form E= {(x1; x2); (x2; x3); : : : ; (xn−1; xn)}∪ {(xi; xi);
(xj; xj); (xk ; xk)} with i¡j¡k, where V = {x1; : : : ; xn}, then the output of Q1 is the graph
〈V; {(xi; xj)}〉. Otherwise, the output has no edges. To show that it is not weakly semi-
local, let G be as above, r¿0, and let i; j; k be such that i¿r; j¿i+2r+1; k¿j+2r+
1; n − k¿2r + 1. Then (xi; xj) !G

r (xi; xk) but (xi; xj)∈Q1(G) while (xi; xk) =∈Q1(G),
and r cannot witness weak semi-locality. To show that Q1 is weakly local, consider
again G as above, and let (xi; xj)!!G

1 (xs; xt). Since xs and xt must then be distinct
and have loops, it is impossible that SG

1 (xi; xj)∩ SG
1 (xs; xt)= ∅. Thus, whenever we

have (xs; xt)!!G
1 (xp; xq), none of the pairs is (xi; xj) and hence (xs; xt) =∈Q1(G) and

(xp; xq) =∈Q1(G). Therefore, Q1 is weakly local.

We study these notions because they are easier to prove than the BNDP, and we
will see that the BNDP can be derived from them. The notion of weak locality is
particularly simple: the only diAerence between it and locality is the disjointness of
neighborhoods. However, it only gives us a partial result:

Proposition 5. (a) Let Q be a binary weakly local query (i.e.; the output is a graph).
Then Q has the bounded number of degrees property.

170 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

(b) For every m¿2; there exists an m-ary weakly local query that does not have
the bounded number of degrees property.

Proof. We *rst prove (a). Fix the relational signature �, and let F0(d; k) be an up-
per bound on the size of a d-neighborhood of a point in A where degrees are
bounded by k, and F1(d; k) be an upper bound on the number of isomorphism types of
d-neighborhoods of points in such structures; such bounds do exist and depend on �; d
and k only [21].
Let Q be a binary weakly local query, with d witnessing weak locality. We now

calculate the number of diAerent out-degrees in the graph Q(A), where all degrees in
the structure A are at most k. Whenever we say out-deg(x), we mean out-degree in
Q(A).

Claim 2. There is a number Md;k that depends on d and k only; such that

|out-deg(a)− out-deg(b)|6 Md; k :

whenever a!! 2d+1 b.

Proof. We call an isomorphism type > of a d-neighborhood of a point (a; b)-good
if there exist three points, c1; c2; c3 ∈A − S2d+1(a; b) such that c1; c2; c3 realize > and
d(ci; cj)¿4d; i; j=1; 2; 3; i �= j. We call > (a; b)-bad otherwise.
Let c be a point of a (a; b)-good type >. Let c1; c2; c3 witness the goodness of the >.

Then at most one of them can belong to S2d(c) (otherwise the distance would be below
4d). Thus, there are two points c′; c′′ of type > such that d(c; c′); d(c; c′′); d(c′; c′′)¿2d;
that is, their d-neighborhoods are disjoint. We now obtain

(a; c) ∈ Q(A) ⇔ (b; c′) ∈ Q(A) ⇔ (a; c′′) ∈ Q(A) ⇔ (b; c) ∈ Q(A)

by weak locality.
Now, letting M0 be the number of points realizing (a; b)-bad types, we see that the

diAerence between out-deg(a) and out-deg(b) cannot exceed the size of S2d+1(a; b)
+M0; that is,

|out-deg(a)− out-deg(b)|6 M0 + 2F0(2d+ 1; k):

It thus remains to show that M0 is determined by d and k.
Fix an (a; b)-bad type >, and let x =∈ S2d+1(a; b) realize >. Suppose y =∈ S2d+1(a; b)∪

S4d(x) realizes >. Then every other point z realizing > must be either in S2d+1(a; b) or
in S4d(x; y), for otherwise x; y; z would witness (a; b)-goodness of >. Thus, the number
of points realizing > is at most 2F0(2d+ 1; k) + 2F0(4d; k), and hence M0 is bounded
above by

F1(d; k)(2F0(2d+ 1; k) + 2F0(4d; k))

*nishing the proof of the claim.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 171

Using this, we show the following.

Claim 3. Let m0 =F0(8d + 4; k) + 1. Suppose a≈2d+1 b; and suppose that there are
at least m0 realizers of the isomorphism type of the 2d+ 1-neighborhood of a. Then

|out-deg(a)− out-deg(b)|6 2Md;k :

Proof. If S2d+1(a)∩ S2d+1(b)= ∅, this follows from the previous claim. Assume then
S2d+1(a)∩ S2d+1(b) �= ∅. We have S2d+1(a; b) ⊆ S6d+3(a)=C, and from the assump-
tions, we obtain there exists an element c =∈ S2d+1(C) such that a≈2d+1 c. In particular,
in this case S2d+1(a)∩ S2d+1(c)= ∅ and S2d+1(b)∩ S2d+1(c)= ∅. Then by the previ-
ous claim we have |out-deg(a) − out-deg(c)|6Md;k and |out-deg(b) − out-deg(c)|6
Md;k , which proves the claim.

Let now m0 be as in Claim 3. Suppose > is an isomorphism type of a (2d + 1)-
neighborhood that has fewer than m0 realizers. The total number of points of such
types is at most M1 =F1(2d + 1; k)m0, and thus they give rise to at most M1 diAer-
ent out-degrees in the output. For any point a of a type > (of 2d + 1-neighborhood)
that is realized at least m0 times, the possible out-degrees belong to a 2(2Mdk) + 1
element interval, by Claim 3. Thus, the total number of out-degrees in Q(A) is
at most

M1 + F1(2d+ 1; k)(4Md; k + 1)

and thus depends on the signature, d and k only. The proof for a bound on the num-
ber of in-degrees is identical. This completes the proof of the BNDP for weakly local
graph queries.
To show (b), we consider graphs as inputs, and let m=3; extension to m¿3 is

straightforward. For a graph G= 〈V; E〉, with vertices V and edges E, (a; b; c)∈Q(G)
iA the following two conditions hold. First, the graph G is of the special form: there is
an element v∈V such that (v; v)∈E, (v; v′); (v′; v) =∈E for any v′ �= v, and G restricted
to V − {v} is a chain (i.e., the graph of a successor relation). Second, c= v, a; b �= v,
and (a; b) is in the transitive closure of G.
Clearly, Q violates the BNDP: for every a∈V − {v}, there are ka tuples (a; b; c) in

Q(G), where ka is the number of nodes reachable from a. Thus, deg count(Q(G))=
O(|V |). On the other hand, Q is weakly local (in fact, r=1). Indeed, suppose (a; b; c)∈
Q(G) and (a′; b′; c′) =∈Q(G). Then c= v, and since there is only one loop in G, for
(a; b; c)≈1 (a′; b′; c′) to hold we must have c= c′ = v. However, in this case Sr(a; b; c)
∩ Sr(a′; b′; c′) �= ∅, which shows that (a; b; c)!! 1 (a′; b′; c′) does not hold, and thus
proves the weak locality of Q. This completes the proof.
Combined with the results of Section 5.3, that would be su7cient to derive

Theorem 3 for queries that return graphs. However, for arbitrary queries, we need
the more involved notion of weak semi-locality:

172 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

Theorem 4. Every weakly semi-local query has the bounded number of degrees
property.

Proof. Let x̃=(x1; : : : ; xn) and let I= {I1; I2; I3} be a partition of {1; : : : ; n}. Then by
x̃Ij , j=1; 2; 3, we denote the subtuple of x̃ which consists of the components of x̃
whose indices are in Ij, appearing in the same order as in x̃.
Given a �-structure A, two positive integers d; r¿0 and a!!A

d b, we de*ne a binary
relation ��(A; a; b)

r; l on Al as follows. Given x̃; ỹ∈Al, ãx��(A; a; b)
r; l bỹ iA there exists an

isomorphism h :NA
d (a)→NA

d (b) and a partition I of {1; : : : ; l} such that

• SA
r (̃xI1) ⊆ SA

d (a) and ỹI
1 = h(̃xI1);

• SA
r (̃xI2) ⊆ SA

d (b) and ỹI
2 = h−1(̃xI2);

• x̃I3 = ỹI
3 and SA

r (̃xI3)∩ (SA
r (a; b)∪ SA

r (̃xI1 x̃I2 ỹI
1 ỹI

2))= ∅.
Note that these conditions imply SA

r (ỹI
1)⊆ SA

d (b) and SA
r (ỹI

2) ⊆ SA
d (a).

We now need the following lemma.

Lemma 1. For any positive integers r and l; there exists a positive integer d such
that for any relational vocabulary �; any �-structure A and a!!A

d b; there exists a
permutation A :Al→Al such that

ãx��(A; a; b)
r; l bA(̃x)

for every x̃∈Al.

Proof. Let d0 = r; d1 = 3d0 + 1; : : : ; dl =3dl−1 + 1. We claim that d=dl. The proof is
by induction on l. Below h stands for the isomorphism given by a!!A

d b. If l=1, we
de*ne A :A→A as follows:

A(x) =




h(x) if x ∈ SA
2r+1(a);

h−1(x) if x ∈ SA
2r+1(b);

x otherwise:

The partition of the set {1} containing the unique index is determined as follows:

I =




({1}; ∅; ∅) if x ∈ SA
2r+1(a);

(∅; {1}; ∅) if x ∈ SA
2r+1(b);

(∅; ∅; {1}) otherwise:

It is routine to verify that A is a permutation and x��(A; a; b)
(r;1) A(x).

Now assume a!!A
d b, where d=dl, l¿1. By the hypothesis for l − 1, we *nd a

permutation 4 :Al−1→Al−1 such that for any x̃∈Al−1, ãx��(A; a; b)
(d1 ; l−1)b4(̃x); that is,

ãx��(A; a; b)
(3r+1;l−1)b4(̃x):

We now show that for every x̃∈Al−1, there exists a permutation Bx̃ :A→A such that
ãxz��(A; a; b)

(r; l) b4(̃x)Bx̃(z); this will su7ce to conclude the proof as the function given
by (x1; : : : ; xl−1; xl) !→ 4((x1; : : : ; xl−1))B(x1 ;:::; xl−1)(xl) is a permutation.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 173

Fix an isomorphism h :NA
d (a)→NA

d (b) and a partition I=(I1; I2; I3) witnessing
ãx��(A; a; b)

(3r+1; l−1)b4(̃x). That is, S
A
3r+1(̃x

I
1) ⊆ SA

d (a), SA
3r+1(̃x

I
2) ⊆ SA

d (b), 4(̃x)I1 = h(̃xI1),

4(̃x)I1 = h−1(̃xI1), and SA
3r+1(̃x

I
3) does not intersect the 3r + 1-spheres of a; b; x̃I1 ; x̃I2 ; 4

(̃x)I1 , and 4(̃x)I2 . Below we show how to de*ne Bx̃ and a new partition I′ that will
witness ãxz��(A; a; b)

(r; l) b4(̃x)Bx̃(z); I′ is obtained from I by adding the last index l to
one of its blocks. The isomorphism h remains the same:

Bx̃(z)=




h(z) if z ∈ SA
2r+1(a) ∪ S2r+1(̃xI1) ∪ SA

2r+1(4(̃x)
I
2); (I ′1 := I1 ∪ {l});

h−1(z) if z ∈ SA
2r+1(b) ∪ S2r+1(4(̃x)I1) ∪ SA

2r+1(̃x
I
2); (I ′2 := I2 ∪ {l});

z otherwise; (I ′3:=I3 ∪ {l}):

Consider the *rst case. Let z′ = Bx̃(z). Since C = SA
2r+1(a)∪ S2r+1(̃x

I
1)∪ SA

2r+1(4(̃x)
I
2)

has the property that SA
r (C)⊆ SA

d (a), we have SA
r (̃xI

′
1)⊆ SA

d (a), and since z′ = h(z),
we obtain SA

r (4(̃x)I
′

1)⊆ SA
d (b). Furthermore, from SA

r (z)⊆ SA
3r+1(a)∪ S3r+1(̃x

I
1)∪

SA
3r+1(4(̃x)

I
2), we obtain SA

r (z)∩ SA
3r+1(̃x

I
3)= ∅ and thus SA

r (z)∩ SA
r (̃xI3)= ∅. Simi-

larly, SA
r (z′)∩ SA

r (̃xI3)= ∅. The proof of correctness in the second case is identical. For
the third case, as z =∈ SA

2r+1(a; b)∪ SA
2r+1(̃x

I
1 x̃I2 4(̃x)I1 4(̃x)I2), we obtain SA

r (z)∩ (SA
r (a; b)

∪ SA
r (̃xI1 x̃I2 4(̃x)I1 4(̃x)I2))= ∅, completing the proof that ãxz��(A; a; b)

(r; l) b4(̃x)Bx̃(z). The
lemma is proved.

We now prove the theorem using the lemma. Let Q be an m-ary weakly semi-
local query, m¿1. Let r witness weak semi-locality; ie., ã!A

r b̃ implies ã∈Q(A) iA
b̃∈Q(A). Let d be the positive integer given by Lemma 1 for r and l=m − 1. We
now *x k¿0 and let A∈STRUCTk [�]. As before, let F0(d; k) be the maximum size
of a d-neighborhood around a point in a �-structure whose degrees do not exceed k;
such a bound exists and is determined by d, k and � [21, 13]. Let > be an isomorphism
type of a d-neighborhood of a point in a �-structure. We call it A-good if there are
more than (m + 1)F0(2d + 1; k) realizers of > in A, and A-bad if there are at most
(m+ 1)F0(2d+ 1; k) realizers.
In what follows, the structure A∈STRUCTk [�] is *xed, and degree refers to the

degree in the output Q(A).

Claim 4. Let a!! d b; and assume that the isomorphism type of the d-neighborhood
of a is A-good. Then degree1(a)= degree1(b).

Proof. Assume that ãx��(A; a; b)
(r;m−1)bỹ. Let I=(I1; I2; I3) be a partition of

{1; : : : ; m − 1} and h :Nd(a)→Nd(b) an isomorphism witnessing that. Assume that
ãx∈Q(A). Let C = S2d+1(a; b)∪ S2d+1(̃x

I
3). Since x̃I3 has at most m − 1 elements,

|C|6(m + 1)F0(2d + 1; k); and thus there exists c =∈C such that c≈d a≈d b, since
the type of a is A-good. Note that a!! d c, b!! d c and Sd(c)∩ Sd(̃x

I
3)= ∅. Let

ha :Nd(a)→Nd(c) be an isomorphism. Let z̃1 = ha(̃x
I
1). Note that Sr(c̃z1)⊆ Sd(c).

We then obtain ãxI1 x̃I2 x̃I3 !r c̃z1̃x2̃x
I
3 . By weak semi-locality of Q, we obtain

174 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

c̃z1̃x
I
2 x̃I3 ∈Q(A). Since Sr (̃x

I
2)∩Sr(ỹ

I
2)= ∅, we obtain c̃z1̃x

I
2 x̃I3 !r c̃z1ỹ

I
2 ỹI

3 , and
thus c̃z1ỹ

I
2 ỹI

3 ∈Q(A). Next, notice that h ◦ h−1
a maps Nr(c̃z1) isomorphically onto

Nr(bỹ
I
1), which is disjoint from Sr(ỹ

I
2 ỹI

3); we thus conclude that c̃z1ỹ
I
2 ỹI

3 !r bỹ
I
1 ỹI

2

ỹI
3 = bỹ, and bỹ∈Q(A) by weak semi-locality of Q.
An identical proof shows that bỹ∈Q(A) implies ãx∈Q(A). Thus, by Lemma 1,

we have a permutation A on Am−1 such that ãx∈Q(A) iA bA(̃x)∈Q(A), which proves
degree1(a)= degree1(b).

Using this claim, we show that if a≈A
d b, and the isomorphism type > of NA

d (b)
is A-good, then degree1(a)=degree1(b). Indeed, if SA

d (a)∩ SA
d (b)= ∅, then a!!A

d b,
and we are done by Claim 4. If SA

d (a)∩ SA
d (b) �= ∅, then, as the cardinality of SA

2d+1
(a; b) is at most 2F0(2d + 1; k), there is a point c =∈ SA

2d+1(a; b) realizing >. We have
now a!!A

d c and b!!A
d c, and thus degree1(a)=degree1(c), and degree1(b)=degree1

(c); hence degree1(a)=degree1(b).
We now calculate the number of diAerent values of degree1(·). The cardinality of
{degree1(a) | type of NA

d (a) is A-good} is at most F1(d; k), the maximum possi-
ble number of diAerent isomorphism types of d-neighborhoods in a structure from
STRUCTk [�]. This number depends on d; k and � only. The cardinality of {degree1(a) |
type of NA

d (a) is A-bad} is at most the number of points realizing A-bad types. As
each A-bad type has at most (m + 1)F0(2d + 1; k) realizers, the number of realizers
of A-bad types is at most (m+ 1)F0(2d+ 1; k)F1(d; k). We thus obtain that

|{degree1(a) | a ∈ A} | 6 F1(d; k) + (m+ 1)F0(2d+ 1; k)F1(d; k)

and thus depends only on d; k and �. As analogous proofs work for all degreei, we
get deg count(Q(A))6mF1(d; k)((m + 1)F0(2d + 1; k) + 1), which *nishes the proof
of the BNDP.

To incorporate the information about the function g, we modify the de*nition as
follows: ã!A

g; r b̃ if ã!A
r b̃ and |SA

r (̃a)∪ Sr (̃b)|6g(|A|). Then a query Q is g-weakly
semi-local if there exists an r ∈N such that ã!A

g; r b̃ implies ã∈Q(A) iA b̃∈Q(A).
The following is easily derived from Theorem 4.

Corollary 7. Let g :N→R be nondecreasing and not bounded by a constant. Then
every g-weakly semi-local query has the BNDP.

Proof. Let Q be g-weakly local m-ary query, with d witnessing weak locality. Let
Nd; k be the smallest number such that g(N)¿2mF0(d; k) for any N¿Nd;k . Then, if
A∈STRUCTk [�] and |A|¿Nd;k , for ã; b̃∈Am, ã!A

g; r b̃ implies ã!r b̃, since Sd(̃a) ∪
Sr (̃b) has fewer than g(|A|) elements. Then the proof of Theorem 4 applies ver-
batim to show that for some function f0 :N→N, deg count(Q(A))6f0(k). Since
deg count(Q(A))6Nd; k + 1 if |A|6Nd; k , we obtain that deg count(Q(A))6max
{Nm−1

d; k + 1; f0(k)}, thus proving the BNDP.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 175

5.3. Games and weak semi-locality

The goal of this section is to prove the g-weak semi-locality of queries in (L∗
∞!(C)+

¡�g)w. We do this by using bijective games of [12].
The game is played by two players, called the spoiler and the duplicator, on two

structures A;B∈STRUCT[�]. For the n-round game, in each round i=1; : : : ; n, the
duplicator selects a bijection fi :A→B, where B is the carrier of B, and the spoiler
selects a point ai ∈A. If |A| �= |B|, then the spoiler immediately wins. The duplica-
tor wins after n rounds if the relation {(ai; fi(ai)) | 16i6n} is an isomorphism from
A∩ (⋃16i6n ai)→B∩ (⋃16i6n fi(ai)). Otherwise the spoiler wins. If the duplicator
has a winning strategy in the n-move bijective game on A and B, we write A≡bij

n B.
We write (A; ã)≡bij

n (B; b̃) if the duplicator has a winning strategy in the n-move bijec-
tive game that starts with the position (̃a; b̃), i.e., each fi sends ã to b̃. This condition
implies that for a FO (or FO(Qu)) formula ’(̃x) of quanti*er rank n, A |=’(̃a) iA
B |=’(̃b) [12]. We extend this to L∗

∞!(C). Note that the lemma below follows from
a slightly more general result of [14].

Lemma 2. Let ’(x1; : : : ; xm) be a L∗
∞!(C) formula in the language of �; with all

free variables of the 6rst sort. Let (A; ã)≡bij
rk(’)

(B; b̃); where ã∈Am; b̃∈Bm. Then

A |=’(̃a) iE B |=’(̃b).

The following is the key lemma, which is proved by a technique reminiscent of that
in [32], extended to deal with bijective games.

Lemma 3. Let g :N→R be nondecreasing and not bounded by a constant. For any
A; m¿0; ã; b̃∈Am; and n¿0; if ã!A

g;2n b̃; then there exists a preorder P on A such
that P ∈¡�g and

(A; P; ã) ≡bij
n (A; P; b̃):

Proof. Let r=2n and ã!A
g; r b̃. Let I=(I1; I2) be a partition witnessing that. We

assume without loss of generality that I1 is nonempty and equals {1; : : : ; l}, l6m. Let
ã′ =(a1; : : : ; al), b̃′=(b1; : : : ; bl), and c̃=(al+1; : : : ; am)=(bl+1; : : : ; bm). Then ã′ !!A

r b̃′,
SA
r (̃a ′̃b′)∩ SA

r (̃c)= ∅, and |SA
r (̃a ′̃b ′̃c)|6g(|A|).

We now construct P. Let A0 be SA
r (̃a′) − {a1; : : : ; al}. Pick any ordering ≺1 on

SA
r (̃a′) such that a1≺1 a2≺1 · · · ≺1 al and further, for any a∈A0 we have ai≺1 a, for
each i=1; : : : ; l, and for any a′; a′′ ∈A0,

d(a′; ã′) ¡ d(a′′; ã′)⇒ a′ ≺1 a′′:

Let h be an isomorphism of NA
r (̃a) onto NA

r (̃b). De*ne on SA
r (̃b′) an ordering ≺2 by

letting b′≺2 b′′ iA h−1(b′)≺1 h−1(b′′). Clearly, the initial fragment of ≺2 is (b1; : : : ; bl),
and it respects the distance to b̃′: d(b′; b̃′)¡d(b′′; b̃′) implies b′≺2 b′′.

176 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

Let P0 be an arbitrary linear ordering on A− SA
r (̃a ′̃b′). Intuitively, P is P0 followed

by a preorder obtained by putting together ≺1 and ≺2, and tying them by h. Formally,

(x; y) ∈ P iA




x; y =∈ SA
r (̃a′b̃′) and (x; y) ∈ P0; or

x =∈ SA
r (̃a′b̃′) and y ∈ SA

r (̃a′b̃′); or
x ∈ SA

r (̃a′); y ∈ SA
r (̃a′) and x ≺1 y; or

x ∈ SA
r (̃b′); y ∈ SA

r (̃b′) and x ≺2 y; or
x ∈ SA

r (̃a′); y ∈ SA
r (̃b′) and h(x) ≺2 y; or

x ∈ SA
r (̃b′); y ∈ SA

r (̃a′) and x ≺2 h(y)

:

It easily follows from ã′ !!A
g; r b̃

′ that P ∈¡�g .
Our next claims give a winning strategy for the duplicator in the bijective game

on Aã =(A; P; ã) and Ãb =(A; P; b̃). Note that the universe of both structures is the
same, A, and in the game the spoiler selects points in A, and the duplicator select
bijections f :A→A.

De*ne a binary relation H on SA
r (̃a ′̃b′) by letting (x; y)∈H iA x= h(y) or y= h(x).

We will show that the duplicator can play in such a way that, if x̃=(x1; : : : ; xn) and
ỹ=(y1; : : : ; yn) are points played on Aã and Ãb respectively after n rounds, then there
exists a set J ⊆{1; : : : ; n} with the following properties. (1) If j∈ J , then (xj; yj)∈H .
(2) If j =∈ J , then xj =yj. (3) ã ′̃xJ ≈A

0 b̃′ỹJ , where x̃J is the subtuple of x̃ that consists
of the component of x̃ whose indices are in J , and likewise for ỹJ . (4) dA(̃a ′̃xJ ; x̃ WJ)¿1,
and dA(̃b′ỹJ ; x̃ WJ)¿1, where dA is the distance in G(A), the Gaifman graph of A,
and x̃ WJ consists of the components of x̃ whose indices are not in J .
We *rst prove that this su7ces to show that the duplicator wins. For this we need

to establish ã ′̃cx̃≈A
0 b̃ ′̃cỹ, and furthermore, show that the mapping F induced by these

two tuples preserves P. The latter is clear though as for any v=F(u), either u= v or
(u; v)∈H , by construction, and thus P is preserved. To see that ã ′̃cx̃≈A

0 b̃ ′̃cỹ, notice
that ã ′̃xJ ≈0 b̃′ỹJ by (3), and by (4) and the de*nition of c̃, dA(̃a ′̃xJ ; c̃x̃ WJ)¿1, and
dA(̃b′ỹJ ; c̃x̃ WJ)¿1. Thus no �-relation can have a tuple containing an element of ã ′̃xJ

and an element of c̃x̃ WJ , or an element of b̃′ỹJ and an element of c̃x̃ WJ . This su7ces to
conclude that ã ′̃cx̃≈A

0 b̃ ′̃cỹ, and thus the duplicator wins the n-round game, provided
(1)–(4) hold.
To prove that the duplicator can play as required, we show, by induction on the

number of moves, that the duplicator can maintain these four conditions. The play
is somewhat similar to the one used in [32] for ordinary (not bijective) games. We
shall classify all moves into two types, type 1 moves and type 2 moves. We use the
following notation. Let x̃=(x1; : : : ; xi) and ỹ=(y1; : : : ; yi) be points played on Aã and
Ãb after i rounds. That is, in the jth round, j6i, xj is played in Aã, and yj =fj(xj)
is the duplicator’s response, where fj is the bijection chosen by the duplicator for this
round. By x̃ 1 and ỹ1 we denote subtuples consisting of points played in type 1 moves,
and by x̃ 2 and ỹ2 we denote subtuples of points played in type 2 moves.
Let di =2m−i. The *rst two conditions are as follows:

(1) If jth move is a type 2 move, then xj =yj; that is, x̃ 2 = ỹ2.

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 177

(2) if jth move is a type 1 move, then SA
di
(xj; yj)⊆ SA

r (̃a ′̃b′), and (xj; yj)∈H . Sup-
pose that these conditions hold, and j is a type 1 move. Since SA

r (̃a)∩ SA
r (̃b)= ∅,

if xj ∈ SA
r (̃a′), then yj ∈ SA

r (̃b′), and vice versa. We use the notation x̃ 1
a for the

subtuple of x̃ 1 whose components are in SA
r (̃a′), and x̃ 1

b for the remaining com-
ponents, that is, those in SA

r (̃b′). We similarly de*ne ỹ1
a and ỹ1

b . Notice that
ỹ1
b = h(̃x 1

a) and x̃ 1
b = h(ỹ1

a).

We can now formulate the next two requirements:
(3) h :NA

di
(̃a ′̃x 1

a ỹ
1
a) ∼= NA

di
(̃b′ỹ1

b x̃
1
b) (that is, h is an isomorphism between these neigh-

borhoods).
(4) dA(̃a ′̃x 1

a ỹ
1
a ; x̃

2)¿di and dA(̃b ′̃x 1
b ỹ

1
b ; x̃

2)¿di.

Proving these four conditions indeed su7ces to conclude that the duplicator wins
after n rounds, as then the conditions (1)–(4) are easily veri*ed: we take J to be the
set of type 1 moves. Note that permuting indices of moves has no eAect on whether
the resulting map is a partial isomorphism; thus we normally put subtuples of x̃ and
ỹ in an order that keeps notation simple.
We prove, by induction on i, that the duplicator can maintain conditions (1)–(4).

For the *rst move, the duplicator’s bijection f is taken to be f(x)= h(x) if x∈ SA
d1 (̃a),

f(x)= h−1(x) if x∈ SA
d1 (̃b), and f(x)= x in other cases. If the spoiler’s move is in

SA
d1 (̃a; b̃), then it is a type 1 move, otherwise it is a type 2 move. It is routine to verify
that conditions (1)–(4) are satis*ed.
For the inductive step, assume that i rounds have been played, and conditions

(1)–(4) are satis*ed. As di =2di+1, we de*ne fi+1, duplicator’s bijection for the round
i + 1, as follows:

fi+1(x) =




h(x) if x ∈ SA
di+1

(̃a′̃x1
aỹ

1
a);

h−1(x) if x ∈ SA
di+1

(̃b′ỹ1
bx̃

1
b);

x otherwise:

If a move is made according to the *rst or the second clause (that is, if the spoiler
plays in SA

di+1
(̃a ′̃b ′̃x 1ỹ1)), then the move is a type 1 move; otherwise it is a type 2

move. Let xi+1; yi+1 be the (i + 1)th move. It remains to verify conditions (1)–(4).
Condition (1) is obvious, and so is the second part of condition (2) ((xi+1; yi+1)∈

H). If xi+1 ∈ SA
di+1

(̃a ′̃x 1
a ỹ

1
a), then SA

di+1
(xi+1)⊆ SA

di
(̃a ′̃x 1

a ỹ
1
a), as di =2di+1. Hence

SA
di+1

(xi+1)⊆ SA
r (̃a′), and SA

di+1
(yi+1)⊆ SA

r (̃b′), proving the second part of condition

(2). The proof for the case xi+1 ∈ SA
di+1

(̃b′ỹ1
b x̃

1
b) is similar.

For a type 2 move, conditions (3) and (4) follow immediately from the de*nition
of fi+1 and the hypothesis. Assume that xi+1 ∈ SA

di+1
(̃a ′̃x 1

a ỹ
1
a) (the case of xi+1 ∈ SA

di+1

(̃b′ỹ1
b x̃

1
b) is symmetric). As h :NA

2di+1
(̃a ′̃x 1

a ỹ
1
a)→NA

2di+1
(̃b′ỹ1

b x̃
1
b) is an isomorphism, we

obtain that h maps NA
di+1

(̃a ′̃x 1
a ỹ

1
a xi+1) isomorphically onto NA

2di+1
(̃b′ỹ1

b x̃
1
b yi+1), and thus

condition (3) holds. Furthermore, any component of x̃ 2 is outside of SA
2di+1

(̃a ′̃x 1
a ỹ

1
a)

by the hypothesis, and hence outside SA
di+1

(xi+1). Thus, dA(xi+1; x̃ 2)¿di+1. As yi+1 = h

(xi+1)∈SA
di+1

(̃b′ỹ1
b x̃

1
b), and every element of x̃ 2 is at a distance exceeding 2di+1 from

178 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

b̃′ỹ1
b x̃

1
b , we obtain dA(yi+1; x̃ 2)¿di+1, thus proving condition (4). This completes the

proof that the duplicator can play to maintain conditions (1)–(4). The lemma is
proved.

We now put these two lemmas together to show

Theorem 5. Let g be nondecreasing and not bounded by a constant; and let Q be an
m-ary query in (L∗

∞!(C) +¡�g)w. Then Q is g-weakly semi-local.

Proof. Let Q be de*nable by ’(x1; : : : ; xm), where ’ is a L∗
∞!(C) formula in

the language of � and an extra symbol S for the auxiliary preorder. Let A be a �-
structure, with ã; b̃∈Am and ã!A

g;2n b̃, where n= rk(’). Assume that ’ is ¡�g -invariant
on A. Let P0 be a preorder on A, such that P0 ∈¡�g . Let ã∈Q(A)=’[(A; P0)].
Choose P to be the preorder given by Lemma 3. Due to the invariance of ’,
ã∈’[(A; P)]; that is, (A; P) |=’(̃a). By Lemmas 3 and 2, (A; P) |=’(̃b), and again
by invariance (A; P0) |=’(̃b). Thus, b̃∈’[(A; P0)]=Q(A). This proves g-weak semi-
locality of Q.

If g= id , we obtain

Corollary 8. Let -2 be the class of preorders in which every equivalence class has
size at most 2. Then every query de6nable in L∗

∞!(C)+ -2 is weakly semi-local;
and has the BNDP.

Proof of Theorem 3. Let Q be in (L∗
∞!(C)+ ¡�g)w. By Theorem 5, it is g-weakly

semi-local. By Corollary 7, it has the BNDP.

6. Conclusion

We have shown that queries de*nable in counting logics FO(C), FO(Qu) and
L∗

∞!(C), in the presence of relations from the class ¡�g have the bounded num-
ber of degrees property. In other words, even extremely powerful counting logics in
the presence of relations which are almost-everywhere linear orders have a very tame
behavior. The situation changes drastically when ¡�g is replaced by a linear order. For
example, L∗

∞!(C) + ¡ expresses every query on ordered structures. A similar phe-
nomenon is observed for other logics, most notably, FO(C) which captures uniform
TC0 on ordered structures.
The techniques of this paper cannot be straightforwardly extended to prove separation

results in the ordered case. The logic L∗
∞!(C) is very powerful, as it expresses every

property of natural numbers, and all other known counting extensions of FO can be
embedded into it. We also relied on bijective games to prove the main result. However,
bijective games characterize expressiveness of a logic which de*nes all queries on

L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180 179

ordered *nite structures. Thus, in the ordered case one cannot use the generic techniques
from [12, 21, 22, 26] that apply to a variety of counting logics.
It was shown in [8] that if there is a proof of inexpressibility of some property in

FO(C) +¡, then there must be a proof of that based on the counting games of [17].
The counting game is weaker than the bijective game; on the other hand, it does not
have the inherent limitations of the latter in the ordered case. Thus, a possible way of
proving a separation result may be to modify the locality techniques to work with the
counting, rather than bijective, games.
Another approach would be to modify the ordered conjecture of [20] to include

counting. Namely, such a modi*ed conjecture would say that there is no unbounded
class of ordered structures on which FO(C) captures polynomial time. One reason to
consider this is that there are strong indications that for FO the conjecture holds [20].
With counting, however, one has to be careful: by considering the class of linear orders
and adding unary quanti*ers which test for polynomial time properties of cardinalities,
one obtains a counting logic for which the conjecture fails. However, FO(C) has
rather limited arithmetic, and perhaps an attempt to understand why it fails to capture
polynomial time on various classes of structures may lead to a better understanding of
its structural properties which are not shared by other counting logics.

Acknowledgements

We thank Martin Grohe, Lauri Hella, Moshe Vardi, and Mihalis Yannakakis for their
comments on earlier drafts of this paper.

References

[1] E. Allender, Circuit complexity before the dawn of the new millennium, in: Proc. 16th Conf. on
Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, Vol. 1180, Springer, Berlin, 1996, pp. 1–18.

[2] D.A. Barrington, N. Immerman, H. Straubing, On uniformity within NC1, J. Comput. System Sci. 41
(1990) 274–306.

[3] M. Benedikt, H.J. Keisler, Expressive power of unary counters, in: Proc. Int. Conf. on Database Theory
(ICDT’97), Lecture Notes in Computer Science, Vol. 1186, Springer, Berlin, January 1997.

[4] J. Cai, M. FMurer, N. Immerman, On optimal lower bound on the number of variables for graph
identi*cation, Combinatorica 12 (1992) 389–410.

[5] G. Dong, L. Libkin, L. Wong, Local properties of query languages, Theoret. Comput. Sci. 239 (2000)
277–308.

[6] A. Durand, C. Lautemann, M. More, Counting results in weak formalisms, manuscript, 1998.
[7] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, Berlin, 1995.
[8] K. Etessami, Counting quanti*ers, successor relations, and logarithmic space, J. Comput. System Sci.

54 (1997) 400–411.
[9] R. Fagin, L. Stockmeyer, M. Vardi, On monadic NP vs monadic co-NP Inform. Comput. (120) 1995.
[10] H. Gaifman, On local and non-local properties, in: Proc. Herbrand Symp. Logic Colloquium’81,

North-Holland, Amsterdam, 1982.
[11] M. Grohe, T. Schwentick, Locality of order-invariant *rst-order formulas. in: MFCS’98, pp. 437–445.
[12] L. Hella, Logical hierarchies in PTIME, Informat. Comput. 129 (1996) 1–19.

180 L. Libkin, L. Wong / Theoretical Computer Science 288 (2002) 153–180

[13] L. Hella, L. Libkin, J. Nurmonen, Notions of locality and their logical characterizations over *nite
models, J. Symbolic Logic 64 (1999) 1751–1773.

[14] L. Hella, L. Libkin, J. Nurmonen, L. Wong, Logics with aggregate operators, in: LICS’99, pp. 35–44.
Full version to appear in J. ACM.

[15] N. Immerman, Relational queries computable in polynomial time, Informat. and Control 68 (1986)
86–104.

[16] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (1987) 760–778.
[17] N. Immerman, E. Lander, Describing graphs: a *rst order approach to graph canonization, in:

“Complexity Theory Retrospective”, Springer, Berlin, 1990.
[18] Ph. Kolaitis, J. VMaManManen, Generalized quanti*ers and pebble games on *nite structures, Ann. Pure

Appl. Logic 74 (1995) 23–75.
[19] Ph. Kolaitis, M. Vardi, In*nitary logic and 0–1 laws, Inform. Comput. 98 (1992) 258–294.
[20] Ph. Kolaitis, M. Vardi, Fixpoint logic vs. in*nitary logic in *nite-model theory, in: LICS’92, pp. 46

–57.
[21] L. Libkin, On the forms of locality over *nite models, in: Proc. 12th IEEE Symp. on Logic in Computer

Science (LICS’97), Warsaw, Poland, June–July 1996, pp. 204–215.
[22] L. Libkin, On counting logics and local properties, in: Proc. 12th IEEE Symp. on Logic in Computer

Science (LICS’97), Warsaw, Poland, June–July 1996, pp. 204–215.
[23] L. Libkin, Logics with counting, auxiliary relations, and lower bounds for invariant queries, in: LICS’99,

pp. 316–325.
[24] L. Libkin, L. Wong, Query languages for bags and aggregate functions, J. Comput System Sci. 55

(1997) 241–272.
[25] L. Libkin, L. Wong, Unary quanti*ers, transitive closure, and relations of large degree, in: Proc. 15th

Symp. on Theoretical Aspects of Computer Science (STACS’98), Lecture Notes in Computer Science,
Vol. 1373, Springer, Berlin, 1998, pp. 183–193.

[26] J. Nurmonen, On winning strategies with unary quanti*ers, J. Logic Comput. 6 (1996) 779–798.
[27] M. Otto, Bounded Variable Logics and Counting: A Study in Finite Models., Springer, Berlin, 1997.
[28] M. Otto, E-Logic is more expressive than *rst-order on *nite structures, J. Symbolic Logic 65 (2000)

1749–1757.
[29] I. Parberry, G. Schnitger, Parallel computation and threshold functions, J. Comput System Sci. 36 (1988)

278–302.
[30] A. Razborov, S. Rudich, Natural proofs, J. Comput. System Sci. 55 (1997) 24–35.
[31] T. Schwentick, Graph connectivity, monadic NP and built-in relations of moderate degree, in: Proc.

22nd Internat. Collq. on Automata, Languages, and Programming, Lecture Notes in Computer Science,
Vol. 944, Springer, Berlin, 1995, pp. 405–416.

[32] T. Schwentick, On winning Ehrenfeucht games and monadic NP, Ann. Pure Appl. Logic 79 (1996)
61–92.

[33] M. Vardi, The complexity of relational query languages, in: Proc. 14th ACM Symp. on Theory of
Computing, 1982, pp. 137–146.

