
Theoretical Computer Science 92 (1992) 181-189

Elsevier

181

Minimisation of acyclic
deterministic automata
in linear time

Dominique Revuz
CERIL. 25 cows Blake Pascal, 91000 Eury, France

Abstrq.

Revuz, D., Minimisation of acyclic deterministic automata in linear time, Theoretical Computer

Science 92 (1992) 181-189.

We present a linear algorithm for the minimisation of acyclic deterministic automata. This algo-

rithm can be used, in particular, on automaton representing lexicons.

1. Introduction

An acyclic automaton is one such that the underlying graph is acyclic. Acyclic

automata are used in practice on various problems, and are a very efficient data

structure for lexicon representation, see [2,7, lo]. Access time is linear in the word size

and compression results are excellent, minimisation being the best size saving opera-

tion. Another field of application is boolean function manipulation; using minimal

automata speeds up algorithms such as satisfiability test, equivalence test and func-

tion composition, see [3]. For other related work we refer to [4-6,9].

The minimisation of an n-state deterministic automaton is known to be realisable in

time O(nlogn) by an algorithm due to Hopcroft; see [l, 21 for a description. This

algorithm is a refinement of the classical 0(n2) algorithm due to Moore [S].

Our algorithm uses the idea presented in [l, example 3.21 to test tree isomorphism

using a renumbering scheme to minimise the time and place used by the lexicographic

sort.

A short sketch of the algorithm: Each state of the DAWG is labelled with a string

describing the reduced automata starting at this state. Working up in increasing levels

(level = longest distance to a terminal state) the algorithm spreads the labels, which are

created from the labels of its following states. At each level a lexicographic sort is

applied to the list of labels and all states with identical labels are merged (such states

0304-3975/92/$05.00 c 1992-Elsevier Science Publishers B.V. All rights reserved

182 D. Revuz

are equivalent, whence a minimisation). The labelling is done once and only once on

each state and the sorting is linear; so, the overall complexity is linear in the number of

transitions.

Some notions and notation are listed in the next section; Section 3 describes an

acyclic automata minimisation algorithm with any independent sorting scheme,

Section 4 is dedicated to sorting schemes and their adaptation to our specific case, and

Section 5 gives the final algorithm.

2. Notation

Finite sequences of letters on C will be called words. A language is a subset of C*,

the set of all words on C. If xy is a word then x is a prefix and y a suffix. If X is

a sequence of words we call common prefix of X the set of words which are the longest

prefix of at least one pair of words from X.

Example. If X = {a, b,c,d}, then the common prefix of the sequence X is the set

reduced to the empty word. If X = {ab, aba, abc, bat, cub} the total length of the

common suffix is 1 ub I+ 1 ab I+ I ab I = 6. The total length of the words of this set will be

useful to define the complexity of the sorting algorithm.

A DAWG (directed acyclic word graph) or automaton d is defined by the following

5-uple:

d = (Q, C, F, T, a,), where
~ Q is a set of states;

- C is an alphabet of finite cardinal denoted by /Cl;
_ q0 is the initial state;
_ T is the subset of terminal states of Q;
_ F is a function of Q x C into Q defining the transitions (arcs) of the automaton.

The state reached by the transition of label a of the state q is denoted by

q.a = F(q, a). The notation is transitive; if w is a word then q.w denote the state reached

by using the transitions labelled by each letter wl, w2, , w, of w. A word w is

accepted by the automaton if q,,.w is in T.
We define the language L(.d) recognised by an automaton & as the set of words

w such that qo.w is final.

An automaton is acyclic if the underlying graph is acyclic. Acyclic automata have

associated languages that are finite sets of finite words.

Two automata are said to be equivalent if and only if they recognise the same

language. Two states p and q in a given automaton are said to be equivalent if and

only if the automaton defined with p and q as initial states are equivalent. Or similarly,

if for every word w states p.w and q.w are final then the two states are equivalent.

The dual notion: two states p and q are said to be distinguished if and only if there

exists a word w such that p.w is final and q.w is not, or q.w is final and p.w is not.

Minimisation of acyclic deterministic automata in linear time 183

If .d is an automaton there exists a unique automaton M minimal by the number of

states, recognising the same language, i.e. L(d)=L(&). An automaton with no pair

of equivalent states is minimal. The minimal automaton for a given language L is the

unique automaton with the smallest number of states among those recognising L.

An acyclic automaton d with L(d)= { aa, aaa, aaba, aabbb, abaa, ababb, abbab,

baa, babb, abaa, bbbab, caaad, caac, cbaad, cbac, ebb}, state 1 is the initial state, states

5,14,15 are the final states. States of same height are in the same letter style and

connected with a small dotted line. This automaton is not minimal, states 6 and 7 of

height 3 are equivalent, to merge states 6 and 7 the edge (2, b, 6) is changed to (2, b, 7).

(See Fig. 1.)

3. The minimisation algorithm

We first need to define the heightfunction in an acyclic automata: For a state s in the

automaton we put k(s) = max { 1 w 11 s.w is final >. The height of the state s is the length of

the longest path starting at s and going to a final state. This height function gives

a partition Zl of Q; L’i will denote the set of states of height i. We will say that the set IJli

is distinguished if no pair of states in L’i are equivalent.

Now we can state the height property.

184 D. Revuz

If every Ilj with j< i is distinguished then two states p and q in ni are equivalent ifand

only iffor any letter a in C the equality q.a=p.a holds.

Proof. Let p and q be two states in Iii. We have two possibilities:

- If p.a and q.a are in the same nj; since j<i (the automaton being acyclic) by

hypothesis the states in Hj are distinguished and, therefore, the states p and q are

distinguished.

- If p.a is in nj and q.a in Ilk, j#k. Suppose without loss of generality that k<j;

then by the definition of n there is a word of length j such that (p.a).w is final

and (q.a).w is not. So, the states p.a and q.a are distinguished and, hence, so are

p and q. 0

A simple minimisation algorithm follows from the height property. First we must

create the partition by height which is calculated by a standard traversal of the

automaton. Time complexity of the traversal function is O(e), where e is the number of

edges in our automaton. If the automaton is not a tree, some speedup can be realised

with a flag showing that the height of a state was already computed.

Remark. Useless states have no height and should be eliminated in the traversal

function.

Minimisation:

calculate Il

For i:=O to h(q,) do

begin

sort the states of 171 by their edges

merge all equivalent states.

end.

Theorem 1. Using a sorting scheme with a time complexity O(f(n)), the preceding

algorithm minimises an acyclic automaton in O(Cf(lIZl)). Overall complexity is

o(e+Cf(lnil)).

Proof. The correctness of the algorithm comes from the height property. The time

bound is obtained by straight computing, thanks to the assumption that merging is

integrated in the sorting method. 0

4. Lexicographic sort

The implementation of the lexicographic sort we will use is straightforward because

we do not need to sort but only to distinguish the states two by two. Lexicographic

sort is composed of repeated bucket sorts.

Minimisation of acyclic deterministic automata in linear time 185

Bucket sort

We sort a sequence a,, u2, . . , u, of integers I < Ui d m:

(1) Create an array of empty queues: Q [1.. m]

(2) Scan the sequence, a,, u2, . . , a,, placing the element Ui in Q [ai], the aith bucket.

(3) The concatenated queue of Q make up the sorted list.

The time complexity is O(n +m), the size needed is O(n+m).

Lexicographic sort

We sort a sequence A1,A2, . . . , A,, of k-uplets (ail, ui2, . . . , Q), where Uij is in the

range 1 to m. We first “bucket sort” the sequence by the kth integer of each k-uplet.

The new sequence, a permutation of the first, is ordered according to the kth integer.

The following bucket sort on the (k- 1)th integer keeps this ordering in the buckets.

So, by induction, the final sequence, after k bucket sort, is a sorted permutation of the

initial sequence.

The time complexity is O(k(n + m)), the size needed is O(n + m).

The generalisation to sequences of varying size uplets in the range 1 to L,,, is done

by bucket sorting the uplet by their length and then executing a lexicographic sort as

described, with the additional action of concatenating the uplets of length L, to the

beginning of the sequence before the (L,,,- L)th bucket sort, those strings are sorted

by the inexistence of a (L+ 1)th letter.

A complete description of this algorithm is given in Cl]. This algorithm can

be speeded up with an application of bucket sorts from left to right but it needs

an intricate management of nonempty buckets to keep the sequence ordered; we

will not go into the details here, but we will use the left-right paradigm in the following

distinguishing algorithm:

Input: the sequence Al, AZ, . . . , A, of strings (al, a,, . . . , uki, $), where ki is positive and

Uj is in the range 1 to m.

Output: LEQUAL is a list of equal strings.

(In the minimisation algorithm, equal strings will mean equivalent states.)

place A,, A,, . . . , A, into LIST

place LIST into QUEUE2

i:= 0;

1 repeat

2 move QUEUE2 to QUEUEl; i:= i + 1;

3 while QUEUE1 not empty do

begin

4 Let L be the first list in QUEUE1

5 while L not empty do

6 begin

Let A be the first uplet in L

if Q[aJ is empty add Ui to NONEMPTY

186 D. Reruz

7 move A to bucket Q[aJ

end

8 for every bucket in NONEMPTY with more than one element

add the bucket as a list to QUEUE2

9 remove buckets with only one string.

10 add Q[$] to LEQUAL

11 end.

until QUEUE2 not empty

Theorem 2. The preceding algorithm distinguishes a sequence of n, uplets of varying
lengths where each component of an uplet is an integer between 1 and m, in time O(n’),

where n’ is the total length of the common prefix of the sequence. An additional memory
of size O(n + m) is needed.

Proof. The proof that the algorithm works correctly is by induction on the number of

executions of the outer loop. The induction hypothesis is that after r executions of the

outer loop, each list in QUEUE2 is made only of uplets with a common prefix of

length r.
In the inner loop a list L is split by the ith integer of each uplet, thus creating one or

more list in which the ith integer is a constant. So, after the inner loop has been gone

through, the lists added to QUEUE2 have the induction property. This inner loop is

executed on every list in QUEUEl; so, the induction property holds.

The program terminates because the length of the longest common suffix is less

than or equal to the maximal length of the words of the sequence.

Step 8 takes at most the same number of steps as the inner loop (in the worst case

a list is created with every element of L); so, our time complexity is bounded by the

number of times step 7 is executed and this is exactly n’, namely, the total length of

the words in the common prefix of the sequence. From this follows the O(n’) time

bound. 0

The additional memory is for list pointers used in QUEUES and the bucket array.

5. The final algorithm

We now try to merge the two preceding algorithms to obtain a linear algorithm: we

first must see the states as uplets or strings. Thus, we label each state s with the

following:

label(s) =(F or NF, 11, nl,, 12, n12, . . . , lk, nlk),

where F or NF tells whether the state s is final and where for each of the edges of state

s in lexicographic order, li is the letter on the ith edge and nli the name of the state

pointed by the ith edge.

Minimisation of acyclic deterministic automata in linear time 187

With this labelling scheme we obtain a time complexity of O(CIIil +e), where 1; is

the total length of the common prefix of the labels of height i. We must bound those

I; which depends on the range of the nli whose values are state numbers, the length of

which is bounded by log(IQI) (representation with digits).

In the lexicographic sort, the state numbers can be seen as letters or as strings:

- in the first case the buckets will have to be of size 1 Q I

~ in the second case the length of the label is enlarged by a log(lQI) factor; the time

bound will not be linear.

We lower the two bounds with the following renumbering:

To renumber the states we label them with a pair (current_height, number). When

a state number is needed by the sorting algorithm, i.e. a split is done on a nli. A new

name is used in the place of nli computed in the following way.

Suppose we are sorting current_height level states, then two cases arise when a state

number is needed in the bucket sort:

In the pair (ch, num) in state nli the ch value is different from the current-height, then

the pair (ch, num) is an old pair we must put in its place the new pair (current-height,

new_num).

In the case where ch equal current-height the part num of the pair is directly used.

function renumber(s, h, n)

begin

if (s+ch! = h) {s-+ch:= h; s+num:= n; n:= n + I;}

return (s+num);

end ;

Now our bucket array is bounded by the maximum of ICI and Ei, where Ei is the total

number of edges of ZIi-states.

This renumbering technique permits to apply any lexicographic sorting algorithm

and obtain a linear complexity of the label length of the order of IEi(and not

I Ei / log (Q 1. In our case the renumeration technique only reduces the bucket array size.

Final algorithm:

Compute h for every state with the traversal function and create the sets IZi

Merge all n, states (they are all equivalent).

For i:= 1 to h(qO)- 1 do

begin

put Hi as a list into QUEUE2
i:=fJ

d?

(1)

move QUEUE2 to QUEUEl; i: = i + 1;

while QUEUE1 not empty do

begin

Let L be the first list in QUEUE1

188 D. Revuz

while L not empty do

begin

S be the first state in L

move S to bucket number (Q[aJ)

end

for every bucket with more than one element

add the bucket as a list to QUEUE2

remove buckets with only one string.

merge all states of Q [S]

end.

while QUEUE2 not empty

end.

6. Some implementation remark

To obtain a faster algorithm the labels can be extended to

label(s) = (F or NF, nbe, II, nil, 12, nlz, . . . , lk, n&J,

where nbe is the number of edges and the traversal function can split Iii in FZIi and

Nfli, where F and N means final and nonfinal states. The program is changed at line

(1) where it becomes

put Fni and NLri as two lists in QUEUE2.

7. Conclusion

In practice, for small automata the sorting scheme to use is the easiest to program;

when working on huge automata (we work on a 550000 words dictionary and are

looking forward to work on 1 Million states automaton) where the minimisation

algorithm must be repeatedly used to compress the automaton (so as to keep it in

memory), the distinguishing algorithm is a must.

The representation of finite sets by acyclic deterministic automaton is a good

general purpose data structure, the member function is linear in the word length and

independent of the dictionary size, the insert and delete functions are linear in length

of the inserted or deleted word (but the automaton is not always minimal after such

functions and a minimisation can be called as needed).

The most interesting aspect of automaton representation is the size-saving prop-

erty. For example a 300 000 words dictionary taking 5.2 M bytes in text format was

compacted to 0.3 M bytes in automaton format, a 0.06 compression ratio.

Minimisation of acyclic deterministic automata in linear time 189

References

Cl1

PI

c31

241

c51

C61
171
PI

191

Cl01

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison-

Wesley, Reading, MA, 1974).

A.V. Aho, R. Sethi and J.D. Ullman, Compilers, Principles, Techniques and Tools (Addison-Wesley,

Reading, MA, 1986).

R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. on Computers,
C-35, (5) 677-691.
A. Cardon and M. Crochemore, Partitioning a graph in 0(1 Allog,] F’l), Theoret. Comput. Sci. 19
(1982) 85-98.
J.E. Hopcroft and R.M. Karp, An algorithm for testing equivalence of finite automata, TR-71-114,

Dept. of Computer Science, Cornell Univ. 1971; see [l] 143-145 for a description.

D.A. Huffman, The synthesis of sequential switching machines, J. Franklin Inst. 257 (1954) 275-303.
M. Minsky, Compilation, Finite and Infinite Machines (Prentice Hall, Englewood Cliffs, NJ, 1967).

E.F. Moore, Gedanken Experiments on Sequential Machines: Automata studies (Princeton University

Press, Princeton, NJ, 1956) 1299153.

R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (6) (1987)
973-989.
M.O. Rabin and D. Scott, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959)

114-125.

