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Science 92 (1992) 181-189. 

We present a linear algorithm for the minimisation of acyclic deterministic automata. This algo- 

rithm can be used, in particular, on automaton representing lexicons. 

1. Introduction 

An acyclic automaton is one such that the underlying graph is acyclic. Acyclic 

automata are used in practice on various problems, and are a very efficient data 

structure for lexicon representation, see [2,7, lo]. Access time is linear in the word size 

and compression results are excellent, minimisation being the best size saving opera- 

tion. Another field of application is boolean function manipulation; using minimal 

automata speeds up algorithms such as satisfiability test, equivalence test and func- 

tion composition, see [3]. For other related work we refer to [4-6,9]. 

The minimisation of an n-state deterministic automaton is known to be realisable in 

time O(nlogn) by an algorithm due to Hopcroft; see [l, 21 for a description. This 

algorithm is a refinement of the classical 0(n2) algorithm due to Moore [S]. 

Our algorithm uses the idea presented in [l, example 3.21 to test tree isomorphism 

using a renumbering scheme to minimise the time and place used by the lexicographic 

sort. 

A short sketch of the algorithm: Each state of the DAWG is labelled with a string 

describing the reduced automata starting at this state. Working up in increasing levels 

(level = longest distance to a terminal state) the algorithm spreads the labels, which are 

created from the labels of its following states. At each level a lexicographic sort is 

applied to the list of labels and all states with identical labels are merged (such states 
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are equivalent, whence a minimisation). The labelling is done once and only once on 

each state and the sorting is linear; so, the overall complexity is linear in the number of 

transitions. 

Some notions and notation are listed in the next section; Section 3 describes an 

acyclic automata minimisation algorithm with any independent sorting scheme, 

Section 4 is dedicated to sorting schemes and their adaptation to our specific case, and 

Section 5 gives the final algorithm. 

2. Notation 

Finite sequences of letters on C will be called words. A language is a subset of C*, 

the set of all words on C. If xy is a word then x is a prefix and y a suffix. If X is 

a sequence of words we call common prefix of X the set of words which are the longest 

prefix of at least one pair of words from X. 

Example. If X = {a, b,c,d}, then the common prefix of the sequence X is the set 

reduced to the empty word. If X = {ab, aba, abc, bat, cub} the total length of the 

common suffix is 1 ub I+ 1 ab I+ I ab I = 6. The total length of the words of this set will be 

useful to define the complexity of the sorting algorithm. 

A DAWG (directed acyclic word graph) or automaton d is defined by the following 

5-uple: 

d = (Q, C, F, T, a,), where 
~ Q is a set of states; 

- C is an alphabet of finite cardinal denoted by /Cl; 
_ q0 is the initial state; 
_ T is the subset of terminal states of Q; 
_ F is a function of Q x C into Q defining the transitions (arcs) of the automaton. 

The state reached by the transition of label a of the state q is denoted by 

q.a = F(q, a). The notation is transitive; if w is a word then q.w denote the state reached 

by using the transitions labelled by each letter wl, w2, , w, of w. A word w is 

accepted by the automaton if q,,.w is in T. 
We define the language L(.d) recognised by an automaton & as the set of words 

w such that qo.w is final. 

An automaton is acyclic if the underlying graph is acyclic. Acyclic automata have 

associated languages that are finite sets of finite words. 

Two automata are said to be equivalent if and only if they recognise the same 

language. Two states p and q in a given automaton are said to be equivalent if and 

only if the automaton defined with p and q as initial states are equivalent. Or similarly, 

if for every word w states p.w and q.w are final then the two states are equivalent. 

The dual notion: two states p and q are said to be distinguished if and only if there 

exists a word w such that p.w is final and q.w is not, or q.w is final and p.w is not. 
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If .d is an automaton there exists a unique automaton M minimal by the number of 

states, recognising the same language, i.e. L(d)=L(&). An automaton with no pair 

of equivalent states is minimal. The minimal automaton for a given language L is the 

unique automaton with the smallest number of states among those recognising L. 

An acyclic automaton d with L(d)= { aa, aaa, aaba, aabbb, abaa, ababb, abbab, 

baa, babb, abaa, bbbab, caaad, caac, cbaad, cbac, ebb}, state 1 is the initial state, states 

5,14,15 are the final states. States of same height are in the same letter style and 

connected with a small dotted line. This automaton is not minimal, states 6 and 7 of 

height 3 are equivalent, to merge states 6 and 7 the edge (2, b, 6) is changed to (2, b, 7). 

(See Fig. 1.) 

3. The minimisation algorithm 

We first need to define the heightfunction in an acyclic automata: For a state s in the 

automaton we put k(s) = max { 1 w 11 s.w is final >. The height of the state s is the length of 

the longest path starting at s and going to a final state. This height function gives 

a partition Zl of Q; L’i will denote the set of states of height i. We will say that the set IJli 

is distinguished if no pair of states in L’i are equivalent. 

Now we can state the height property. 
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If every Ilj with j< i is distinguished then two states p and q in ni are equivalent ifand 

only iffor any letter a in C the equality q.a=p.a holds. 

Proof. Let p and q be two states in Iii. We have two possibilities: 

- If p.a and q.a are in the same nj; since j<i (the automaton being acyclic) by 

hypothesis the states in Hj are distinguished and, therefore, the states p and q are 

distinguished. 

- If p.a is in nj and q.a in Ilk, j#k. Suppose without loss of generality that k<j; 

then by the definition of n there is a word of length j such that (p.a).w is final 

and (q.a).w is not. So, the states p.a and q.a are distinguished and, hence, so are 

p and q. 0 

A simple minimisation algorithm follows from the height property. First we must 

create the partition by height which is calculated by a standard traversal of the 

automaton. Time complexity of the traversal function is O(e), where e is the number of 

edges in our automaton. If the automaton is not a tree, some speedup can be realised 

with a flag showing that the height of a state was already computed. 

Remark. Useless states have no height and should be eliminated in the traversal 

function. 

Minimisation: 

calculate Il 

For i:=O to h(q,) do 

begin 

sort the states of 171 by their edges 

merge all equivalent states. 

end. 

Theorem 1. Using a sorting scheme with a time complexity O(f(n)), the preceding 

algorithm minimises an acyclic automaton in O(Cf(lIZl)). Overall complexity is 

o(e+Cf(lnil)). 

Proof. The correctness of the algorithm comes from the height property. The time 

bound is obtained by straight computing, thanks to the assumption that merging is 

integrated in the sorting method. 0 

4. Lexicographic sort 

The implementation of the lexicographic sort we will use is straightforward because 

we do not need to sort but only to distinguish the states two by two. Lexicographic 

sort is composed of repeated bucket sorts. 
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Bucket sort 

We sort a sequence a,, u2, . . , u, of integers I < Ui d m: 

(1) Create an array of empty queues: Q [ 1.. m] 

(2) Scan the sequence, a,, u2, . . , a,, placing the element Ui in Q [ai], the aith bucket. 

(3) The concatenated queue of Q make up the sorted list. 

The time complexity is O(n +m), the size needed is O(n+m). 

Lexicographic sort 

We sort a sequence A1,A2, . . . , A,, of k-uplets (ail, ui2, . . . , Q), where Uij is in the 

range 1 to m. We first “bucket sort” the sequence by the kth integer of each k-uplet. 

The new sequence, a permutation of the first, is ordered according to the kth integer. 

The following bucket sort on the (k- 1)th integer keeps this ordering in the buckets. 

So, by induction, the final sequence, after k bucket sort, is a sorted permutation of the 

initial sequence. 

The time complexity is O(k(n + m)), the size needed is O(n + m). 

The generalisation to sequences of varying size uplets in the range 1 to L,,, is done 

by bucket sorting the uplet by their length and then executing a lexicographic sort as 

described, with the additional action of concatenating the uplets of length L, to the 

beginning of the sequence before the (L,,,- L)th bucket sort, those strings are sorted 

by the inexistence of a (L+ 1)th letter. 

A complete description of this algorithm is given in Cl]. This algorithm can 

be speeded up with an application of bucket sorts from left to right but it needs 

an intricate management of nonempty buckets to keep the sequence ordered; we 

will not go into the details here, but we will use the left-right paradigm in the following 

distinguishing algorithm: 

Input: the sequence Al, AZ, . . . , A, of strings (al, a,, . . . , uki, $), where ki is positive and 

Uj is in the range 1 to m. 

Output: LEQUAL is a list of equal strings. 

(In the minimisation algorithm, equal strings will mean equivalent states.) 

place A,, A,, . . . , A, into LIST 

place LIST into QUEUE2 

i:= 0; 

1 repeat 

2 move QUEUE2 to QUEUEl; i:= i + 1; 

3 while QUEUE1 not empty do 

begin 

4 Let L be the first list in QUEUE1 

5 while L not empty do 

6 begin 

Let A be the first uplet in L 

if Q[aJ is empty add Ui to NONEMPTY 
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7 move A to bucket Q[aJ 

end 

8 for every bucket in NONEMPTY with more than one element 

add the bucket as a list to QUEUE2 

9 remove buckets with only one string. 

10 add Q[$] to LEQUAL 

11 end. 

until QUEUE2 not empty 

Theorem 2. The preceding algorithm distinguishes a sequence of n, uplets of varying 
lengths where each component of an uplet is an integer between 1 and m, in time O(n’), 

where n’ is the total length of the common prefix of the sequence. An additional memory 
of size O(n + m) is needed. 

Proof. The proof that the algorithm works correctly is by induction on the number of 

executions of the outer loop. The induction hypothesis is that after r executions of the 

outer loop, each list in QUEUE2 is made only of uplets with a common prefix of 

length r. 
In the inner loop a list L is split by the ith integer of each uplet, thus creating one or 

more list in which the ith integer is a constant. So, after the inner loop has been gone 

through, the lists added to QUEUE2 have the induction property. This inner loop is 

executed on every list in QUEUEl; so, the induction property holds. 

The program terminates because the length of the longest common suffix is less 

than or equal to the maximal length of the words of the sequence. 

Step 8 takes at most the same number of steps as the inner loop (in the worst case 

a list is created with every element of L); so, our time complexity is bounded by the 

number of times step 7 is executed and this is exactly n’, namely, the total length of 

the words in the common prefix of the sequence. From this follows the O(n’) time 

bound. 0 

The additional memory is for list pointers used in QUEUES and the bucket array. 

5. The final algorithm 

We now try to merge the two preceding algorithms to obtain a linear algorithm: we 

first must see the states as uplets or strings. Thus, we label each state s with the 

following: 

label(s) =(F or NF, 11, nl,, 12, n12, . . . , lk, nlk), 

where F or NF tells whether the state s is final and where for each of the edges of state 

s in lexicographic order, li is the letter on the ith edge and nli the name of the state 

pointed by the ith edge. 
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With this labelling scheme we obtain a time complexity of O(CIIil +e), where 1; is 

the total length of the common prefix of the labels of height i. We must bound those 

I; which depends on the range of the nli whose values are state numbers, the length of 

which is bounded by log( IQI) (representation with digits). 

In the lexicographic sort, the state numbers can be seen as letters or as strings: 

- in the first case the buckets will have to be of size 1 Q I 

~ in the second case the length of the label is enlarged by a log(lQI) factor; the time 

bound will not be linear. 

We lower the two bounds with the following renumbering: 

To renumber the states we label them with a pair (current_height, number). When 

a state number is needed by the sorting algorithm, i.e. a split is done on a nli. A new 

name is used in the place of nli computed in the following way. 

Suppose we are sorting current_height level states, then two cases arise when a state 

number is needed in the bucket sort: 

In the pair (ch, num) in state nli the ch value is different from the current-height, then 

the pair (ch, num) is an old pair we must put in its place the new pair (current-height, 

new_num). 

In the case where ch equal current-height the part num of the pair is directly used. 

function renumber(s, h, n) 

begin 

if (s+ch! = h) {s-+ch:= h; s+num:= n; n:= n + I;} 

return (s+num); 

end ; 

Now our bucket array is bounded by the maximum of ICI and Ei, where Ei is the total 

number of edges of ZIi-states. 

This renumbering technique permits to apply any lexicographic sorting algorithm 

and obtain a linear complexity of the label length of the order of IEi( and not 

I Ei / log (Q 1. In our case the renumeration technique only reduces the bucket array size. 

Final algorithm: 

Compute h for every state with the traversal function and create the sets IZi 

Merge all n, states (they are all equivalent). 

For i:= 1 to h(qO)- 1 do 

begin 

put Hi as a list into QUEUE2 
i:=fJ 

d? 

(1) 

move QUEUE2 to QUEUEl; i: = i + 1; 

while QUEUE1 not empty do 

begin 

Let L be the first list in QUEUE1 
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while L not empty do 

begin 

S be the first state in L 

move S to bucket number (Q[aJ) 

end 

for every bucket with more than one element 

add the bucket as a list to QUEUE2 

remove buckets with only one string. 

merge all states of Q [S] 

end. 

while QUEUE2 not empty 

end. 

6. Some implementation remark 

To obtain a faster algorithm the labels can be extended to 

label(s) = (F or NF, nbe, II, nil, 12, nlz, . . . , lk, n&J, 

where nbe is the number of edges and the traversal function can split Iii in FZIi and 

Nfli, where F and N means final and nonfinal states. The program is changed at line 

(1) where it becomes 

put Fni and NLri as two lists in QUEUE2. 

7. Conclusion 

In practice, for small automata the sorting scheme to use is the easiest to program; 

when working on huge automata (we work on a 550000 words dictionary and are 

looking forward to work on 1 Million states automaton) where the minimisation 

algorithm must be repeatedly used to compress the automaton (so as to keep it in 

memory), the distinguishing algorithm is a must. 

The representation of finite sets by acyclic deterministic automaton is a good 

general purpose data structure, the member function is linear in the word length and 

independent of the dictionary size, the insert and delete functions are linear in length 

of the inserted or deleted word (but the automaton is not always minimal after such 

functions and a minimisation can be called as needed). 

The most interesting aspect of automaton representation is the size-saving prop- 

erty. For example a 300 000 words dictionary taking 5.2 M bytes in text format was 

compacted to 0.3 M bytes in automaton format, a 0.06 compression ratio. 
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