
Theoretical Computer Science 288 (2002) 3–19
www.elsevier.com/locate/tcs

Notations for exponentiation

Arnold Beckmanna;b;∗;1
aMathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford OX1 3LB, UK

bInstitut f&ur Mathematische Logik und Grundlagenforschung, Westf&alische Wilhelms-Universit&at
M&unster, Einsteinstr. 62, D-48149 M&unster, Germany

Abstract

We de(ne a coding of natural numbers—which we will call exponential notations—and in-
terpretations of the less-than-relation, the successor, addition and exponentiation function on ex-
ponential notations. We prove that all these interpretations are polynomial time computable. As
a corollary we obtain that feasible arithmetic can prove the consistency of the canonical equa-
tional theory for the language containing the successor, addition and exponentiation function.
c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 03D15; 68Q19; 03F25

Keywords: Exponentiation; Polynomial time computable; Course of value recursion;
Exponential notations; Weak arithmetic; Consistency

0. Introduction

A necessary condition for a function f to be feasibly computable is that it grows
at most polynomially (cf. [2], etc.) which means that there is a polynomial qf such
that (∀x)[logf(x)6qf(log x)]. This condition is satis(ed, e.g., by all functions from
the polynomial hierarchy, in particular by the polynomial time computable functions.
Therefore, exponentiation is not directly available in weak theories of arithmetic which
are related to low-complexity computability, like the bounded arithmetic theories Si2,
T i2, etc. (cf. [2] or [6] for a de(nition of these theories).

∗ Corresponding author. Institut f;ur Mathematische Logik und Grundlagenforschung, Westf;alische
Wilhelms-Universit;at M;unster, Einsteinstr. 62, D-48149 M;unster, Germany.
E-mail address: arnold.beckmann@math.uni-muenster.de (A. Beckmann).
1 Supported by the Deutschen Akademie der Naturforscher Leopoldina grant #BMBF-LPD 9801-7 with

funds from the Bundesministerium f;ur Bildung, Wissenschaft, Forschung und Technologie.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00143 -8

4 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

One possibility of dealing with exponentiation is given for example in [5]. There it
is shown that the graph of exponentiation can be de(ned by a bounded formula, i.e.
by a formula in which all quanti(ers are bounded.

In this article we will follow another path to handle exponentiation. Our idea is
inspired by the proof theoretic analysis of Peano arithmetic which relates Peano arith-
metic to the ordinal

�0 = limi !
.
.
.

! }
i-times:

Ordinals less than �0 can be represented by terms in the symbols 0, +, · , ��:!�, which
induces a canonical arithmetization �0 of �0 as a subset of the natural numbers. In fact,
�0 and the homomorphic translations of the functions 0;+; · ; ��:!� onto �0 are primitive
recursive, cf. e.g. [7], etc. We are going—more or less—to replace ! by 2 in this
coding obtaining exponential notations and homomorphic translations on exponential
notations of the constant 0, the unary functions successor S, doubling dbl(n) = 2 · n
and exponentiation exp(n) = 2n, and the binary function addition +. They all will be
polynomial time computable.

One application of exponential notations can be found in [1]. There they are used for
the proof theoretic analysis of weak fragments of arithmetic, called dynamic ordinal
analysis.

In the last section of this article we will outline another application. Buss has shown
in [2] that arithmetization of metamathematics can be done in bounded arithmetic.
But it is diJcult to prove consistency even of weak equational theories without the
presence of exponentiation. This is because values of closed terms often grow expo-
nentially in their G;odel numbers (cf. [3, p. 9]). In the present article we are going to
show that for a certain restriction of the language which does not infer the growth-rate
of the functions—for example exponentiation will be in the language—we can feasibly
calculate on exponential notations the values of closed terms. Therefore, feasible arith-
metic, i.e. Buss’ system S1

2 of bounded arithmetic, can prove the consistency of the
equational theory for the language {0;S;+; dbl; exp} involving only equations between
closed terms, which is axiomatized by the recursive de(nitions of the function symbols.

In the next section, we introduce the polynomial time computable (polytime) func-
tions and repeat a feasible G;odel-numbering from [2]. Furthermore, we need some more
closure properties of polytime functions, i.e. we will prove that the polytime functions
are closed under a limited course-of-values recursion. In Section 2 we de(ne the expo-
nential notations and functions manipulating them. Using the closure properties from
Section 1 we show that most of these functions and predicates are polytime. 2 Finally,
we show that there exists a polytime function on exponential notations which inter-
prets terms over the language {0;S;+; dbl; exp}. As a corollary we obtain the above
described consistency in Buss’ system S1

2 .

2 The results described in the (rst two sections are part of the author’s dissertation [1].

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 5

1. Limited course-of-values recursion

We start giving a brief review of the polytime functions and the polytime sequence
coding from [2]. We will end this section proving that the polytime functions are closed
under a certain (feasible) course-of-value recursion.

Let S, +, · be the usual successor, addition and multiplication functions. Let S0

and S1 denote the binary successor functions given by Si(n) = 2 · n+ i with i∈{0; 1}.
The binary length function |n|, which computes the number of bits in the binary
representation of n, is given by |n|= �log2(n + 1)�. For real numbers r, �r� is the
least integer z which is bigger than or equal to r. The smash function # is given
by m # n= 2|m| · |n|. Let dbl and exp denote the doubling function dbl(n) = 2 · n= S0(n)
and, respectively, the exponentiation function exp(n) = 2n.

The polytime functions can be de(ned as the set of all functions f which can be
computed by a Turing machine Mf such that the runtime is bounded by a polynomial
p in the length of the input, i.e. Mf needs on input n at most p(|n|) steps to calculate
f(n).

There are also algebraic characterizations of the polytime functions. All polytime
functions are generated from basic functions 0, S, +, · , �n:|n|, # using composition
and one of the following rules of limited recursion on notations (cf. [4, p. 28]) or
limited recursion (cf. [2, p. 8]).

The function f is de(ned from functions g, h0, h1 and k by limited recursion on
notation if

f(̃x; 0) = g(̃x);

f(̃x;Si(y)) = hi (̃x; y; f(̃x; y)) (i = 0; 1; i 	= 0 if y = 0)

provided that f(̃x; y)6k(x̃; y) for all x̃; y. See Rose [8] for a proof that this rule again
de(nes polytime functions.

The function f is de(ned from functions g, h and polynomials p and q by limited
recursion if the following holds: Let the function � be de(ned as

�(̃x; 0) = g(̃x);

�(̃x;S(y)) = h(̃x; y; �(̃x; y)):

Then let

f(̃x) = �(̃x; p(|̃x|))

provided that |�(̃x; y)|6q(|̃x|) for all x̃ and y6p(|̃x|). See Buss [2] for a proof that
this rule again de(nes polytime functions.

6 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

We sometimes use a dyadic notation of the natural numbers: let ij ∈{0; 1} for j6k,
then we de(ne

(ik : : : i0)2 :=
k∑
j=0

ij · 2j:

We write (s:ik : : : i0)2 for s · 2k+1 + (ik : : : i0)2.
Let 〈: : :〉 be a feasible G;odel numbering of sequences as de(ned in [2, p. 8] with

the change that we do not reverse the order of the bits. The following equations de(ne
such a coding. First we de(ne a function s ∗ a for s; a∈! by limited recursion on the
notation of a. This function adds the value a to the sequence s.

s ∗ 0 = (s:0010)2 = 16 · s+ 2;

s ∗ 1 = (s:0011)2 = 16 · s+ 3;

s ∗ (a:i)2 = ((s ∗ a):1i)2 = 4 · (s ∗ a) + 2 + i (i = 0; 1 and a 	= 0):

The G;odel numbers are inductively given by

〈〉 = 0;

〈a1; : : : ; ak ; ak+1〉 = 〈a1; : : : ; ak〉 ∗ ak+1:

Let Seq be the polytime set of all G;odel numbers.
How does feasible G;odel numbering work? The G;odel number for the sequence
a1; : : : ; ak is constructed as follows. First we write the ai’s in binary notation so that
we obtain a string of 0’s, 1’s and commas. Then we replace each 0 by “10”, each
1 by “11” and each comma by “00”. The resulting string of zeros and ones is the
binary representation of the G;odel number 〈a1; : : : ; ak〉. For example the G;odel number
of 3; 4; 5 is (11110011101000111011)2 or 997:947. 〈〉 is de(ned to be 0.

In the following we introduce some polytime functions which manipulate G;odel
numbers (cf. [2]).

〈a1; : : : ; ak〉 ∗∗ 〈b1; : : : ; bl〉 = 〈a1; : : : ; ak ; b1; : : : ; bl〉;

�(0; 〈a1; : : : ; ak〉) = k;

lh(〈a1; : : : ; ak〉) = k;

�(i; 〈a1; : : : ; ak〉) = ai for 1 6 i 6 k;

SqBd(k; l) = (k # S1(S1(l)))2:

SqBd has the property

∀a1; : : : ; ak 6 l (〈a1; : : : ; ak〉6 SqBd(2k ; l)):

In the sequel we will use limited recursion (on notation) to de(ne polytime functions.
In doing so we often use lh(s) to bound recursion. This is allowed since lh(s)6|s|.

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 7

In the following sections we need—beside limited recursion (on notation)—a rule
which is similar to course-of-value recursion, and generates polytime functions. The
usual course-of-values recursion is equivalent to primitive recursion. Thus, in general,
polytime functions are not closed under this rule. Another, more technical, aspect is
that �n:〈0; 1; : : : ; n− 1〉 growths exponentially. Therefore, one requirement of limited
course-of-values recursion is that the course is given by a polytime function.

In the following let s❁ t mean that s; t are G;odel numbers and s is a subsequence
of t, i.e., if lh(s) = k and t= 〈t0; : : : ; tl−1〉 then k6l and

∃i0; : : : ; ik−1 (i0 ¡ · · ·¡ ik−1 ¡ l and s = 〈ti0 ; : : : ; tik−1〉):

De�nition 1.1. An unary function course is a course-function if it satis(es

course(s) ❁ 〈0; : : : ; s− 1〉

and

course(s) = 〈s0; : : : ; sk−1〉 ⇒ ∀i ¡ k (course(si) ❁ 〈s0; : : : ; si−1〉):

The course-of-values of a function f according to course is de(ned by

fcourse(s) := 〈f(s0); : : : ; f(sk−1)〉

provided that course(s) = 〈s0; : : : ; sk−1〉.

If f and course are polytime then also fcourse is polytime. This can be seen, using
limited recursion, by a similar argument as in the following theorem.

Theorem 1.2 (Limited course-of-values recursion). Let course be a course-function.
Given a function g there exists a uniquely de;ned function f solving

f(s) = g(s; fcourse(s)):

If in addition course and g are polytime and there exists another polytime function
h satisfying

f(s) 6 h(s);

then this f is polytime; too.

Proof. Existence and uniqueness are proved as usual. For the second part of the the-
orem we de(ne the function

select(〈a0; : : : ; ak−1〉; 〈ai1 ; : : : ; air 〉; 〈b0; : : : ; bl−1〉) := 〈bi1 ; : : : ; bir 〉

8 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

for an increasing sequence 〈a0; : : : ; ak−1〉, i1¡ · · ·¡ir¡min(k; l). Using functions

b(x) :=


〈�; �; !; " ∗ c〉 if x = 〈� ∗ a; � ∗ a; ! ∗ c; "〉;
〈�; � ∗ b; !; "〉 if x = 〈� ∗ a; � ∗ b; ! ∗ c; "〉 and a 	= b;
x otherwise

and

r(〈a1; : : : ; ak〉) := 〈ak ; : : : ; a1〉;
select(�; �; s) := �(4; b(lh(�))(〈r(�); r(�); r(s); 〈〉〉)) 6 s;

we observe that select is polytime by limited recursion. Here b(x)(a) is the x-fold
iteration of �n:b(n) applied to a.

In order to prove the assertion it suJces to show that fcourse is polytime. Let
t= course(s) = 〈b0; : : : ; bl−1〉. We de(ne a polytime function $̃(t; i) = 〈f(b0); : : : ;
f(bi−1)〉. To this end we observe for i¡l

f(bi) = g(bi; fcourse(bi)) = g(bi; select(t; course(bi); $̃(t; i))):

So we de(ne

$̃(t; 0) := 〈〉;

$̃(t; i + 1) := $̃(t; i) ∗ g(�(i + 1; t); select(t; course(�(i + 1; t)); $̃(t; i)));

$(t) := $̃(t; lh(t)) 6 hcourse(t);

fcourse(s) := $(course(s)):

By limited recursion fcourse is polytime.

2. Exponential notations for natural numbers

We start this section by coding natural numbers as formal trees over the alphabet
consisting only of the two bracket symbols [;], and predicates and functions on them.
We discuss how these formal predicates and functions can be seen as “real” predicates
and functions, i.e. predicates and functions on the natural numbers. Finally we apply the
closure properties from the previous section showing that most of the “real” predicates
and functions are polytime.

We de(ne

0̂ := [];

S2
�1 S+ · · · S+ S2

�k := [�1; : : : ; �k]:

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 9

The intended meaning of these terms becomes clear from the evaluation function which
is given by

%(S0) = 0;

%(S2
�1 S+ · · · S+ S2

�k) = 2%(�1) + · · · + 2%(�k):

Now we de(ne the predicates E, ≺ and the functions %E, TE by the following:

� ∈ E ⇔ � = 0̂ or there are �1; : : : ; �k ∈ E

with � = S2
�1 S+ · · · S+ S2

�k and %(�k)¡ · · ·¡ %(�1);

� ≺ � ⇔ �; � ∈ E and %(�)¡ %(�);

%E := % � E; the restriction of % to E;

TE := %−1
E ; the inverse function to %:

E will be called the set of exponential notations. In the sequel we use small Greek
letters representing exponential notations.

We de(ne the functions +̂, d̂bl and êxp on E by

� +̂ � := TE(%E(�) + %E(�));

d̂bl(�) := TE(2 · %E(�));

êxp(�) := TE(2%E(�)):

We observe that the desired exponentiation function on E, êxp, can be written simply
as ��:[�].

There are several possibilities of coding syntax. Of course one has to use a feasible
sequence coding in order to obtain E, ≺, +̂, d̂bl, êxp, TE as polytime predicates and
functions. But even if we (x such one, as we did in the last section, we still have
the choice between a Tat or unTat coding of trees. On the one hand a Tat coding cf

would look like

cf ([a1; : : : ; ak]) := 〈[〉 ∗∗ cf (a1) ∗∗ · · · ∗∗ cf (ak) ∗∗ 〈]〉;
where brackets [;] on the right side of the equation sign are identi(ed with suitable
G;odel numbers. On the other hand an unTat coding cuf is obtained by

cuf ([a1; : : : ; ak]) := 〈cuf (a1); : : : ; cuf (ak)〉:
The unTat coding usually is less eJcient than the Tat one, but more feasible, as for
example the depth of the tree t is bounded by ‖t‖ in case of the unTat coding. This
is not true in case of the Tat coding.

Comparing diUerent kinds of codings one gets the impression that one should con-
sider under all possible feasible codings the most uneUective one which is still good

10 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

enough for one’s purpose, e.g. proving G;odel’s incompleteness results for weak theo-
ries of arithmetic. Here in this article we will therefore restrict ourselves to the unTat
coding of syntax. The author conjectures that the same G;odel’s incompleteness results
as in [2] can also be achieved with this kind of unTat coding.

Using cuf we can view E, ≺, +̂, d̂bl, êxp, %E and TE as predicates and functions on
natural numbers. We are going to show that all of them but %E are polytime. This is
easy for êxp, which can be written as ��:〈�〉. The reason why %E cannot be polytime
is simply the following: Let

fi(n) := êxp(: : : êxp︸ ︷︷ ︸
i-times

(TE(n)) : : :);

then we compute

%E(fi(n)) = 2
.
.
.

2n
}
i-times:

After having seen that TE is polytime this shows that %E cannot be polytime.
We need some special course functions which compute certain subsequences of ex-

ponential notations. They are needed in the de(nition of E, ≺, +̂, d̂bl, êxp and TE.
We start de(ning

sort(〈a1; : : : ; ak〉) := 〈b1; : : : ; bl〉;
where {a1; : : : ; ak}= {b1; : : : ; bl} and b1¡ · · ·¡bl. sort can be computed using one of
the commonly known sorting algorithms, e.g., one which runs in time O(n2) sorting n
objects. Thus, sort(s) is computable in time O(|s|2), hence polytime.

Now we de(ne

U (〈〈a1 1; : : : ; a1 i1〉; : : : ; 〈ak 1; : : : ; ak ik 〉〉) := 〈b1; : : : ; bl〉;
where b1¡ · · ·¡bl and

{b1; : : : ; bl} = {a1 1; : : : ; a1 i1 ; : : : ; ak 1; : : : ; ak ik}:
The following equations may be used to observe that U is polytime. Let s=
〈s0; : : : ; sk−1〉.

f(〈s0; : : : ; sk−1) := s0 ∗∗ · · · ∗∗ sk−1 6 SqBd(s; s);

U(s) := sort(f(s)):

By limited recursion f is polytime, thus also U. We use these functions to see that
the transitive closure 3 of a sequence can be computed by a polytime function. To this
end, we observe that U|s|(s) = 〈〉, and we de(ne

g(s) := s ∗∗ U(s) ∗∗ U(U(s)) ∗∗ · · · ∗∗ U|s|(s) 6 SqBd(s # s; s);

3 The transitive closure is generated using the obvious element relation on sequences which is given by
ai is an element of 〈a1; : : : ; ak〉, 0¡i6k.

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 11

then g is polytime by limited recursion. Hence

tc(s) := sort(g(s))

is polytime and computes the transitive closure of s. By construction tc is a course
function.

We need a similar course-function for pairs of sequences. Let tc2(〈s; t〉) = 〈c1; : : : ; ck〉
with c1¡ · · ·¡ck and

{c1; : : : ; ck} = {〈di; ej〉: 1 6 i 6 m; 1 6 j 6 n};

where tc(s) = 〈d1; : : : ; dm〉 and tc(t) = 〈e1; : : : ; en〉. The following equations are used to
observe that tc2 is polytime. Let s= 〈s0; : : : ; sk−1〉 and let t= 〈t0; : : : ; tl−1〉.

f(〈s0; : : : ; sk−1〉; a) := 〈〈s0; a〉; : : : ; 〈sk−1; a〉〉6 SqBd(s; s ∗ a);

X (s; 〈t0; : : : ; tl−1〉) := f(s; t0) ∗∗ · · · ∗∗ f(s; tl−1) 6 SqBd(s # t; s ∗∗ t)

tc2(〈s; t〉) := sort(X (tc(s); tc(t))):

By limited recursion both f and X are polytime. Thus, also tc2 is polytime. By con-
struction tc2 is a course function.

We use tc2 to show that E and ≺ are polytime.

� ∈ E ⇔ � = S2
�1 S+ · · · S+ S2

�k with �1; : : : ; �k ∈ E and �k ≺ · · · ≺ �1:
� ≺ � ⇔ �; � ∈ E; � = S2

�1 S+ · · · S+ S2
�k ; � = S2

�1 S+ · · · S+ S2
�l

and ∃i¡l (i 6 k; �1 = �1; : : : ; �i = �i and (i = k or �i+1 ≺ �i+1)):

We cannot apply Theorem 1.2 directly to this simultaneous de(nition because if we try
to compute 0̂≺ S2�1 S+ S2�2 =: � we need �∈E and for this �2 ≺ �1. But 〈�2; �1〉 does not
occur in tc2(〈0̂; �〉). Surely it is possible to change the de(nition of tc2 to overcome
this lack, as 〈�2; �1〉¡〈0̂; �〉. But there is another possibility to show that E and ≺
are polytime which uses Theorem 1.2 and tc2. We de(ne a more general relation ≺ ′.
We obtain ≺ ′ by replacing E by Seq (the set of all G;odel numbers) in the de(nition
of ≺. Let *≺ ′ be the characteristic function of ≺ ′, i.e.,

*≺′(�; �) =

{
1 if � ≺′ �;

0 otherwise

and let h(〈�; �〉) := *≺ ′(�; �). Rewriting the de(nition of ≺ ′ we obtain a polytime
function g satisfying

h(〈�; �〉) = g(〈�; �〉; htc2 (〈�; �〉)) 6 1;

12 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

therefore, Theorem 1.2 yields that h is polytime, thus also *≺ ′ and hence ≺ ′ are
polytime. Now we de(ne

� ∈ E ⇔ Seq(�) and

∀i ¡ lh(�)[�(i + 1; �) ∈ E and (i ¿ 0 → �(i + 1; �) ≺′ �(i; �))];

� ≺ � ⇔ � ∈ E and � ∈ E and � ≺′ �:

Using Theorem 1.2 with tc we obtain that E is polytime. Therefore, also ≺ is polytime.
Before we can de(ne +̂ on the exponential notations we need a successor

function Ŝ on them. To compute the successor of an exponential notation we need an
auxiliary function F to manage carries. Therefore, we simultaneously de(ne for �=
S2�1 S+ · · · S+ S2�k ∈E

F(�) := -i 6 k:(i ¿ 0 and ∀j ¡ k (j ¿ i → �j = SS(�j+1)));

SS(�) :=


S2
�1 S+ · · · S+ S2

�i−1 S+ S2
Ŝ �i if �k = S0 and i := F(�);

S2
�1 S+ · · · S+ S2

�k S+ S2
0̂

otherwise:

Clearly F(�)6k = lh(�) and after proving |Ŝ(�)|6|� ∗ 0̂| we can use Theorem 1.2
together with tc to see that both functions are polytime.

Lemma 2.1. |Ŝ(�)|6|� ∗ 0̂|6|�| + 4.

Proof. Remember the de(nition

s ∗ 0 = (s:0010)2 = 16 · s+ 2;

s ∗ 1 = (s:0011)2 = 16 · s+ 3;

s ∗ (a:i)2 = ((s ∗ a):1i)2 = 4 · (s ∗ a) + 2 + i; (i = 0; 1 and a 	= 0)

and

〈a1; : : : ; ak ; ak+1〉 = 〈a1; : : : ; ak〉 ∗ ak+1:

First we compute some constant notations and some binary lengths. Let a= (a1 : : : ak)2.

0̂ = (0)2 = 0;

Ŝ(0̂) = (10)2 = 2;

s 	= 0 ⇒ |s ∗ 0| = |(s:0010)2| = |s| + 4;

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 13

a 	= 0⇒ |s ∗ a| = |(s:001a11a2 : : : 1ak)2| = |(s:00)2| + 2 · |a|

=

{
2 · |a| if s = 0;

|s| + 2 + 2 · |a| if s 	= 0:

We prove the assertion by induction on �= S2�1 S+ · · · S+ S2�k = 〈�1; : : : ; �k〉. If k = 0, then
�= 0̂, hence Ŝ(0̂) = S20̂ = 0̂ ∗ 0̂. If k¿0 and �k 	= 0̂, then Ŝ(�) = 〈�1; : : : ; �k ; 0̂〉= � ∗ 0̂. If
k¿0 and �k = 0̂, then let i :=F(�). We have to distinguish the following cases. Let
� := 〈�1; : : : ; �i−1〉.

If i= k then we observe �= � ∗ 0̂ and

Ŝ(�) = � ∗ Ŝ(0̂) = � ∗ (10)2 = (�:001110)2:

On the other hand, we see

� ∗ 0̂ = (� ∗ 0̂) ∗ 0̂ = (�:00100010)2 ¿ Ŝ(�):

If i¡k then we (nd �= � ∗∗ 〈�i; : : : ; �k〉. Observe that %E(�j) = k − j for j= i; : : : ; k,
hence �i 	= 0. Now the induction hypothesis produces

|Ŝ(�i)|6 |�i ∗ 0̂|: (1)

This leads to

|Ŝ(�)|= |� ∗ Ŝ(�i)| = |(�:00)2| + 2 · |Ŝ(�i)|
(1)
6 |(�:00)2| + 2 · |�i ∗ 0̂|

= |(�:00)2| + 2 · (|�i| + 4) = |(�:00)2| + 2 · |�i| + 8

and

|� ∗ 0̂|= |(� ∗∗ 〈�i; : : : ; �k〉) ∗ 0̂|¿ |� ∗∗ 〈�i; 0̂; 0̂〉| = |((� ∗ �i) ∗ 0̂) ∗ 0̂|

= |� ∗ �i| + 8 = |(�:00)2| + 2 · |�i| + 8:

These two estimations together show |Ŝ(�)|6|� ∗ 0̂|.

We de(ne the preaddition pa which computes � +̂ S2� by

pa(�; �) :=


S2
�1 S+ · · · S+ S2

�k S+ S2
�

if k = 0 or � ≺ �k ;
S2
�1 S+ · · · S+ S2

�i−1 S+ S2
Ŝ(�i) if �k = � and i := F(�);

pa(S2
�1 S+ · · · S+ S2

�k−1 ; �) ∗ �k if �k ≺ �;

where �= S2�1 S+ · · · S+ S2�k . In the next lemma we will see that pa is polynomially
bounded. Therefore, we can apply Theorem 1.2 together with the following polytime
course function initseq to observe that pa is polytime.

initseq(〈a1; : : : ; ak〉) := 〈〈〉; 〈a1〉; : : : ; 〈a1; : : : ; ak−1〉〉:

14 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

Lemma 2.2. |pa(�; �)|6|�| + 2 · |�| + 8.

Proof. We use induction on �= S2�1 S+ · · · S+ S2�k . If k = 0 or �≺ �k , then

|pa(�; �)| = |� ∗ �|6 |�| + 2 + 2 · |�|:

If �k = � then let i :=F(�) and observe using ! := S2�1 S+ · · · S+ S2�i−1

|pa(�; �)|= |! ∗ Ŝ(�i)|6 |(!:00)2| + 2 · (|�i| + 4)

= |(!:00)2| + 2 · |�i| + 8 = |! ∗ �i| + 8 6 |�| + 8:

Otherwise, the induction hypothesis (i.h.) shows

|pa(�; �)| = |pa(S2
�1 S+ · · · S+ S2

�k−1 ; �) ∗ �k |

= |pa(S2
�1 S+ · · · S+ S2

�k−1 ; �)| + 2 + 2 · max(|�k |; 1)

i:h:
6 |S2�1 S+ · · · S+ S2

�k−1 | + 2 · |�| + 8 + 2 + 2 · max(|�k |; 1)

= |�| + 2 · |�| + 8:

Now we are able to de(ne by limited recursion

� +̂ (S2
�1 S+ · · · S+ S2

�l) := pa(: : : pa(�; �1) : : : ; �l);

which is limited because

|� +̂ �| = |pa(: : : pa(�; �1) : : : ; �l)|6 |�| + 2 · |�1| + 8 + · · · + 2 · |�l| + 8

6 |�| + |�| + 8 · l6 |�| + 9 · |�|:

Therefore, +̂ is polytime.
Now we show that d̂bl is polytime. We de(ne by limited recursion on �=

S2�1 S+ · · · S+ S2�k

d̂bl(�) := S2
Ŝ(�1) S+ · · · S+ S2

Ŝ(�k)

and compute

|d̂bl(�)| = 2 · |Ŝ(�1)| + 2 + · · · + 2 + 2 · |Ŝ(�k)|

6 2 · (|�1| + 4) + 2 + · · · + 2 + 2 · (|�k | + 4)

= |�| + 8 · k 6 9 · |�|:

Hence d̂bl is polytime.

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 15

Finally, we want to observe that

TE(n) = %−1
E (n) = “the unique � ∈ E with %E(�) = n”

is polytime. Using d̂bl we de(ne, this time by limited recursion on notation,

TE(0) := 0̂

TE((n:i)2) :=

 d̂bl(TE(n)) if i = 0;

Ŝ(d̂bl(TE(n))) if i = 1:

With the next lemma we obtain that TE is polytime.

Lemma 2.3. |TE(n)|68 · |n|2.

Proof. We use induction on n. If n= 0, then |TE(0)|= |0̂|= 0 = 8 · |0|2. If n= 1, then
|TE(1)|= |Ŝ(0̂)|= |2|= 268 · |1|2. For the induction step we consider (n:i)2 with i= 0; 1
and n¿1. In general we have lh(�)6|%E(�)|, hence lh(TE(n))6|n|. Now we estimate

|TE((n:i)2)|6 |Ŝ(d̂bl(TE(n)))|6 |d̂bl(TE(n))| + 4

6 |TE(n)| + 8 · lh(TE(n)) + 4 6 |TE(n)| + 8 · |n| + 4

i:h:
6 8 · |n|2 + 8 · |n| + 4 6 8 · (|n| + 1)2 = 8 · |(n:i)2|2:

Altogether we have seen that the predicates E; ≺ and the functions +̂, d̂bl, êxp and
TE are polytime.

We close this section by proving that the predecessor function on the exponential
notations

P̂(�) :=

{
0̂ if � = 0̂;

� for that � with � +̂ Ŝ(0̂) = �

is not a polytime function.

Proposition 2.4. P̂ is not polynomially bounded.

Proof. Obviously |êxp(TE(n))|¿1 for n¿0, hence

|P̂(êxp(TE(n)))| = |TE(2n − 1)| = |TE(2n−1 + · · · + 20)|¿ 2 · n¿ 2|n|:

Thus P̂ cannot be polynomially bounded, because êxp and TE are so as polytime
functions.

16 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

3. A polytime valuation function

In the previous section we de(ned interpretations f̂ for f∈{0;S;+; dbl; exp} as
functions on exponential notations. This can be extended inductively in the obvious
way to arbitrary terms in the language {0;S;+; dbl; exp}:

t = ft1 : : : tk ⇒ t̂ = f̂t̂1 : : : t̂k :

In the following we identify formal terms and their G;odelizations. Thus �t:t̂ can be
seen as a function going from G;odel numbers of terms onto exponential notations.
We will show that �t: t̂ is a polytime function. As a corollary we obtain that feasible
arithmetic, i.e. Buss’ system S1

2 of bounded arithmetic, can prove the consistency of the
equational theory for the language {0;S;+; dbl; exp} involving only equations between
closed terms, which is axiomatized by the recursive de(nitions of the function symbols.

We assume the same kind of unTat coding of syntax as in the de(nition of the
exponential notations. With tdp(t) we indicate the term depth of t, which is inductively
given for t=ft1 : : : tk by tdp(t) = 0 if k = 0, and tdp(t) = 1 + maxi tdp(ti) otherwise.

Lemma 3.1. tdp(t)6‖t‖.

Proof. Let t=ft1 : : : tk . If k = 0 the assertion is obvious. Otherwise |t|= |〈f; t1; : : : ; tk〉|
¿2 ·maxi |ti| as |〈a1; : : : ; ak〉|¿2 · |aj| for all j= 1; : : : ; k. Hence ‖t‖¿1 + maxi ‖ti‖

i:h:
¿

1 + maxi tdp(ti) = tdp(t).

In the previous section, we have computed

|0̂| = 0; |Ŝ(�)|6 |�| + 4; |d̂bl(�)|6 9 · |�|;

|� +̂ �|6 |�| + 9 · |�|; |êxp(�)|6 2 · |�|;

hence |f̂(̃�)|6c · max1 |̃� | with c= 10 and max1(̃a) = max{̃a; 1}.

Lemma 3.2. |t̂ |6ctdp(t).

Proof. Let t=ft1 : : : tk . If k = 0 the assertion is obvious. Otherwise

|t̂|6 c · max
i

1 |t̂i|
i:h:
6 c · max

i

1 ctdp(ti) 6 c1+maxi tdp(ti) = ctdp(t):

Using the last two Lemmas we obtain (for t¿1)

|t̂|6 ctdp(t) 6 c‖t‖ 6 |t|2·|c| ¡ |t|21+‖c‖
6 |T1+‖c‖(t)|;

where T0(x) = x, Tc+1(x) =Tc(x) # Tc(x), thus |Tc(x)|¿|x|2c . As ‖10‖= 3 we have t̂¡
T4(t). Thus �t:t̂ is polytime by course-of-value recursion (Theorem 1.2) using the
course function tc from the previous section.

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 17

The canonical equational theory EqT for {0;S;+; dbl; exp} consists of equations
between closed terms, which are inductively de(ned by instances of the recursive
de(nition of +, dbl, exp given by

x + 0 = x; x + Sy = S(x + y);

dbl(0) = 0; dbl(S x) = S S dbl(x);

exp(0) = S 0; exp(S x) = dbl(exp(x));

the de(nition of equality as an equivalence relation, and the compatibility of equality
with the function symbols.

Given an EqT proof P of some (closed) equation s= t we will show by induction
on the length of the proof P that the interpretation ˆ makes every equation in P valid,
hence ŝ= t̂. Hence EqT is consistent in the sense that 0 = S 0 is not derivable in EqT ,
as 0̂ 	= Ŝ 0̂.

If an arbitrary equational theory EqT ′ for our language for exponentiation is true
in the standard model then all instances of axioms from EqT ′ remain valid under the
interpretation .̂ But we need in addition that this can also be seen inside S1

2 . We will
sketch below that this is indeed the case for our canonical axiomatization EqT—any
non-pathological axiomatization would have this property, too, but would require a
new proof inside S1

2 . From this the induction step for proving the validity under the
interpretation ˆ is obviously as also the “real” equality on the exponential notations
(inside S1

2) is an equivalence relation and compatible with the function symbols. This
proof formalizes in S1

2 , because t �→ t̂ is polynomially bounded.
We now sketch how to prove the validity of the axioms of EqT inside S1

2 . We start
by stating some properties. Let n̂ be the exponential notation TE(n) for the natural
number n, hence Ŝ 0̂ = S20̂ = 1̂ is provable in S1

2 .

Proposition 3.3 (S1
2).

(1) ≺ ful;lls trichotomy.

(2) ! +̂ 1̂ = Ŝ !.

(3) (! +̂ S2n̂) +̂ S2n̂= ! +̂ S2[n+1

(4) Ŝ(! +̂ (S2[n−1 S+ · · · S+ S20̂)) = ! +̂ S2n̂.

Now it is easy to show the validity of the addition axioms.

Lemma 3.4 (S1
2). � +̂ 0̂ = � and � +̂ Ŝ �= Ŝ(� +̂ �).

Proof. The (rst equality is immediately from the de(nition of +̂ and 0̂. For the second
one let � be of the form S2�1 S+ · · · S+ S2�k .

If k = 0 or �k 	= 0̂ then Ŝ �= S2�1 S+ · · · S+ S2�k S+ S20̂ and

� +̂ Ŝ �
(∗)
= (� +̂ �)+̂ 1̂ 3:3:2= Ŝ(� +̂ �);

where (∗) simply uses the de(nition of +̂.

18 A. Beckmann / Theoretical Computer Science 288 (2002) 3–19

Otherwise �k = 0̂. Let i :=F(�), then � has the form

S2
�1 S+ · · · S+ S2

�i−1 S+ S2
n̂ S+ · · · S+ S2

0̂

for n := k − i, and [n+ 1 = Ŝ n̂≺ �i−1 if i¿1. Thus

Ŝ � = S2
�1 S+ · · · S+ S2

�i−1 S+ S2
[n+1
:

On the other hand, we compute

Ŝ(� +̂ �)
(∗)
= Ŝ((� +̂ (S2

�1 S+ · · · S+ S2
�i−1)) +̂ (S2

n̂ S+ · · · S+ S2
0̂
))

3:3:4= (� +̂ (S2
�1 S+ · · · S+ S2

�i−1)) +̂ S2
[n+1

(∗)
= � +̂ (S2

�1 S+ · · · S+ S2
�i−1 S+ S2

[n+1
) = � +̂ Ŝ �;

where (∗) again uses the de(nition of +̂.

The validity of dbl and exp under the interpretation ˆ is more or less straightforward.

Lemma 3.5 (S1
2). d̂bl(0̂) = 0̂ and d̂bl(Ŝ �) = Ŝ Ŝ d̂bl(�).

Proof. The (rst equation is again immediately from the de(nitions. For the second
one let � be of the form S2�1 S+ · · · S+ S2�k .

If k = 0 or �k 	= 0̂ then Ŝ �= S2�1 S+ · · · S+ S2�k S+ S20̂, hence

d̂bl(Ŝ �) = S2
Ŝ �1 S+ · · · S+ S2

Ŝ �k S+ S2
1̂
:

On the other hand d̂bl(�) = S2Ŝ �1 S+ · · · S+ S2Ŝ �k with 1̂≺ Ŝ �k if k¿0, hence

Ŝ Ŝ d̂bl(�) = Ŝ(S2
Ŝ �1 S+ · · · S+ S2

Ŝ �k S+ S2
0̂
) = d̂bl(Ŝ �):

Otherwise �k = 0̂. Let i be F(�), hence Ŝ �= S2�1 S+ · · · S+ S2�i−1 S+ S2Ŝ �i . Now we compute
d̂bl(Ŝ �) = S2Ŝ �1 S+ · · · S+ S2Ŝ �i−1 S+ S2Ŝ Ŝ �i . On the other hand dbl(�) = S2Ŝ �1 S+ · · · S+ S2Ŝ �i−1

S+ · · · S+ S2Ŝ 0̂, hence

Ŝ d̂bl(�) = S2
Ŝ �1 S+ · · · S+ S2

Ŝ �i−1 S+ S2
Ŝ �i S+ · · · S+ S2

Ŝ 0̂ S+ S2
0̂

and F(Ŝ d̂bl(�)) = i. Thus Ŝ Ŝ d̂bl(�) = S2Ŝ �1 S+ · · · S+ S2Ŝ �i−1 S+ S2Ŝ Ŝ �i = d̂bl(Ŝ �).

Lemma 3.6 (S1
2). êxp(0̂) = 1̂ and êxp(Ŝ �) = d̂bl(êxp(�)).

Proof. Let us remind êxp(�) = 〈�〉= S2�. We compute êxp(0̂) = S20̂ = 1̂ and êxp(Ŝ �) =
S2Ŝ �= d̂bl(S2�) = d̂bl(êxp(�)).

A. Beckmann / Theoretical Computer Science 288 (2002) 3–19 19

Altogether we have shown the following

Corollary 3.7. S1
2 proves the consistency of the canonical equational theory EqT for

the language {0;S;+; dbl; exp}.

References

[1] A. Beckmann, Separating fragments of bounded arithmetic, Ph.D. Thesis, WWU M;unster, 1996.
[2] S. Buss, Bounded arithmetic, Studies in Proof Theory, Lecture Notes, Vol. 3, Bibliopolis, Naples, 1986.
[3] P. Clote, J. KrajYZScek, Open problems, in: P. Clote, J. KrajYZScek (Eds.), Arithmetic, Proof Theory, and

Computational Complexity, Papers from the Conference held in Prague, July 2–5, 1991, Oxford Logic
Guides 23, New York, 1993, pp. 1–9.

[4] A. Cobham, The intrinsic computational diJculty of functions, in: Y. Bar-Hillel (Ed.), Logic,
Methodology and Philosophy of Science, North-Holland, Amsterdam, 1965, pp. 24–30.

[5] P. Hajek, P. PudlYak, Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic,
Springer, Berlin, 1993.

[6] J. KrajYZScek, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cambridge University
Press, Heidelberg, 1995.

[7] W. Pohlers, Proof Theory: An Introduction, Lecture Notes in Mathematics, Vol. 1407, Springer, Berlin,
1989.

[8] H.E. Rose, Subrecursion: functions and hierarchies, Oxford Logic Guides, Oxford, 1984.
[9] G. Takeuti, Sharply bounded arithmetic and the function a−1, in: W. Sieg (Ed.), Logic and Computation,

Contemporary Mathematics, Vol. 106, American Mathematical Society, Providence, RI, 1990,
pp. 281–288.

