
Theoretical Computer Science 288 (2002) 181–193
www.elsevier.com/locate/tcs

On an optimal propositional proof system and the structure
of easy subsets of TAUT

Zenon Sadowski
Institute of Mathematics, University of Bia lystok, 15-267 Bia lystok, ul. Akademicka 2, Poland

Abstract

In this paper we develop a connection between optimal propositional proof systems and struc-
tural complexity theory—speci,cally, there exists an optimal propositional proof system if and
only if there is a suitable recursive presentation of the class of all easy (polynomial time recog-
nizable) subsets of TAUT . As a corollary we obtain the result that if there does not exist an
optimal propositional proof system, then for every theory T there exists an easy subset of TAUT
which is not T -provably easy. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Classical propositional logic; Complexity of proofs; Complexity classes; Complexity
of computation

1. Introduction

The ,rst classi,cation of propositional proof systems by their relative e4ciency was
done by Cook and Reckhow [4] in 1979. The key tool for comparing the relative
strength of proof systems is p-simulation. Intuitively, a proof system h p-simulates a
second one g if there is a polynomial time computable function translating proofs in
g into proofs in h. A propositional proof system is called p-optimal if it p-simulates
any propositional proof system. The question of the existence of a p-optimal proposi-
tional proof system and its nondeterministic counterpart, an optimal propositional proof
system, posed by Kraj=>?cek and Pudl=ak [9], is still open.

It is not known whether many-one complete languages for NP∩ co-NP and for UP
exist. For these and other promise classes no recursively enumerable representation of
appropriate sets of Turing machines is known. Moreover, Hartmanis and Hemachandra
[5] and Kowalczyk [7] pointed out that NP∩ co-NP and UP possess complete

E-mail address: sadowski@math.uwb.edu.pl (Z. Sadowski).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00155 -4

182 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

languages if and only if there are recursive enumerations of polynomial time clocked
Turing machines covering languages from these classes.

In this paper we show that the question of the existence of optimal (p-optimal)
propositional proof systems can be characterized in a similar manner. The main result
of our paper shows that optimal proof systems for TAUT (the set of all propositional
tautologies) exist if and only if there is a recursive enumeration of polynomial time
clocked Turing machines covering all easy (recognizable in polynomial time) subsets
of TAUT . This means that the problem of the existence of complete languages for
promise classes and the problem of the existence of optimal proof systems for TAUT ,
although distant at ,rst sight, are structurally similar. Since complete languages for
promise classes have been unsuccesfully searched for in the past our equivalence gives
some evidence of the fact that optimal propositional proof systems might not exist.

Our result can be related to the already existing line of research in computational
complexity. After the revelation of the connection between the existence of optimal
proof systems and the existence of many–one complete languages for promise classes
in [12, 15], this subject has been intensively investigated. KHobler and Messner [8]
formalized this relationship introducing the concept of test set, and showed that the
existence of p-optimal proof systems for TAUT and for SAT (the set of all satis,able
boolean formulas) su4ces to obtain a complete language for NP∩ co-NP. Messner
and Tor=an showed in [12] that a complete language for UP exists in case there is
a p-optimal proof system for TAUT . We believe that our results take the next step
towards deeper understanding of this link between optimal proof systems and complete
languages for promise classes.

The paper is organized as follows. In Section 2 we set down notation that will be
used throughout the paper. Background information about propositional proof systems
is presented in Section 3. The problems of the existence of complete languages for the
classes NP∩ co-NP and UP and their characterization in terms of polynomial time
clocked machines covering languages from these classes are presented in Section 4. In
Section 5 we give a precise de,nition of a family of propositional formulas which will
be used in the proofs of our main results. In Section 6 our main results are stated and
proved. In the last section we discuss corollaries arising from the main results of the
paper.

2. Preliminaries

We assume some familiarity with basic complexity theory, see [1]. The symbol �
denotes, throughout the paper, a certain ,xed ,nite alphabet. The set of all strings over
� is denoted by �?. For a string x, |x| denotes the length of x. For a language A ⊂ �?

the complement of A is the set of all strings that are not in A.
We use Turing machines (acceptors and transducers) as our basic computational

model. We will not distinguish between a machine and its code. For a deterministic
Turing machine M and an input w; TIME(M ;w) denotes the computing time of M on

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 183

w. When M is a nondeterministic Turing machine TIME(M ;w) is de,ned only for w’s
accepted by M and denotes the number of steps in the shortest accepting computation
of M on w. For a Turing machine M the symbol L(M) denotes the language accepted
by M . The output of a Turing transducer M on input w∈�? is denoted by M (w).

We consider deterministic and nondeterministic polynomial time clocked Turing ma-
chines with uniformly attached standard nk + k clocks which stop their computations
in polynomial time (see [1]). We impose some restrictions on our encoding of these
machines. From the code of any polynomial time clocked Turing machine we can de-
tect easily (in polynomial time) the natural k such that nk + k is its polynomial time
bound. Let D1; D2; D3; : : : and N1; N2; N3; : : : be, respectively, standard enumerations of
all deterministic and nondeterministic polynomial time clocked Turing machines.

Recall that the classes P, NP, co-NP are, respectively, the class of all languages
recognized by deterministic Turing machines working in polynomial time, the class
of all languages accepted by nondeterministic Turing machines working in polynomial
time and the class of complements of all languages from NP. The symbol TAUT
denotes the set (of encodings) of all propositional tautologies over a ,xed adequate set
of connectives, SAT denotes the set of all satis,able boolean formulas.

Finally, 〈:; : : : ; :〉 denotes some standard polynomial time computable tupling function.

3. Propositional proof systems

The abstract notion of a propositional proof system was introduced by Cook and
Reckhow [4] in the following way:

De�nition 3.1. A propositional proof system is a function f :�? onto−→TAUT computable
by a deterministic Turing machine in time bounded by a polynomial in the length of
the input.

A string w such that f(w) = � we call a proof of a formula �.
A propositional proof system that allows short proofs to all tautologies is called a

polynomially bounded propositional proof system.

De�nition 3.2 (Cook and Reckhow). A propositional proof system is polynomially
bounded if and only if there exists a polynomial p(n) such that every tautology �
has a proof of length no more than p(|�|) in this system.

The existence of a polynomially bounded propositional proof system is equivalent
to one of the most fundamental problems in complexity theory.

Fact 3.3 (Cook and Reckhow). NP= co-NP if and only if there exists a polynomially
bounded propositional proof system.

184 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

Cook and Reckhow were the ,rst to propose a program of research aimed at attacking
the NP versus co-NP problem by classifying propositional proof systems by their
relative e4ciency and then systematically studying more and more powerful concrete
proof systems (see [2]). A natural way for such a classi,cation is to introduce a partial
order reOecting the relative strength of propositional proof systems. This was done in
two diPerent manners.

De�nition 3.4 (Cook and Reckhow). Propositional proof system P polynomially sim-
ulates (p-simulates) propositional proof system Q if there exists a polynomial time
computable function f :�?→�? such that for every w, if w is a proof of � in Q,
then f(w) is a proof of � in P.

De�nition 3.5 (Kraj789cek and Pudl7ak). Propositional proof system P simulates propo-
sitional proof system Q if there exists a polynomial p such that for every tautology �,
if � has a proof of length n in Q, then � has a proof of length 6 p(n) in P.

Obviously, p-simulation is a stronger notion than simulation. We would like to pay
attention to the fact that the simulation between proof systems may be treated as a
counterpart of the complexity-theoretic notion of reducibility between problems. Anal-
ogously, the notion of a complete problem (a complete language) would correspond to
the notion of an optimal proof system. The notion of an optimal propositional proof
system was introduced by Kraj=>?cek and Pudl=ak [9] in two diPerent versions.

De�nition 3.6. A propositional proof system is optimal if it simulates every other
propositional proof system.

A propositional proof system is p-optimal if it p-simulates every other propositional
proof system.

The following open problem, posed by Kraj=>?cek and Pudl=ak, will be studied in our
paper.

Problem 3.7. (1) Does there exist an optimal propositional proof system?
(2) Does there exist a p-optimal propositional proof system?

The importance of these questions and their connection with the NP versus co-NP
problem is described by the following fact.

Fact 3.8. If an optimal (p-optimal) propositional proof system exists; then NP=
co-NP if and only if this system is polynomially bounded.

4. Complete languages for NP ∩ co-NP and for UP

The classes NP∩ co-NP and UP are called promise classes because they are de,ned
using nondeterministic polynomial time clocked Turing machines which obey special

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 185

conditions (promises). The problem whether a given nondeterministic polynomial time
clocked Turing machine indeed de,nes a language in any of these classes is undecid-
able and because of this complete languages for these classes are not known. Since
there exist relativizations for which these two classes have complete languages as well
as relativizations for which they do not the problems of the existence of complete
languages for NP∩ co-NP and UP seem to be very di4cult.

It turns out that the existence of complete languages for these classes depends on
a certain structural condition on the set of machines de,ning languages from these
classes. Since this condition is the chief motivation for our main theorems, we survey
known results in this direction.

The class NP∩ co-NP is most often de,ned using complementary pairs of non-
deterministic Turing machines. We will use strong nondeterministic Turing machines
to de,ne this class. A strong nondeterministic Turing machine is one that has three
possible outcomes: “yes”, “no” and “maybe”. We say that such a machine accepts a
language L if the following is true: if x∈L, then all computations end up with “yes”
or “maybe” and at least one with “yes”, if x =∈L, then all computations end up with
“no” or “maybe” and at least one with “no”.

If N1; N2; N3; : : : is a standard enumeration of all nondeterministic polynomial time
clocked Turing machines then

NP∩ co-NP = {L(Ni): Ni is strong nondeterministic}:
The following theorem links the question of the existence of a complete language for

NP∩ co-NP with the existence of a recursively enumerable list of machines covering
languages from NP∩ co-NP. In [7] this list of machines is called a “nice” presentation
of NP∩ co-NP.

Theorem 4.1 (Kowalczyk). There exists a complete language for NP∩ co-NP if and
only if there exists a recursively enumerable list of strong nondeterministic polynomial
time clocked Turing machines Ni1 ; Ni2 ; Ni3 ; : : : such that {L(Nik): k ¿ 1}=NP∩ co-NP.

This theorem can be exploited to obtain the following independence result. Let T
be any formal theory whose language contains the language of arithmetic, i.e. the
language {0; 1;6;=;+; ·}. We will not specify T in detail but only assume that T is
sound (that is, in T we can prove only true theorems) and the set of all theorems of
T is recursively enumerable.

Theorem 4.2 (Kowalczyk). If NP∩ co-NP has no complete languages; then for any
theory T there exists L∈NP∩ co-NP such that for no nondeterministic polynomial
time clocked Ni with L(Ni) =L can it be proven in T that Ni is strong nondeterministic.

The class UP is closely related to a one-way function, the notion central to public-
key cryptography (see [13]). This class can be de,ned using categorical (unambiguous)
Turing machines. We call a nondeterministic Turing machine categorical or unambigu-

186 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

ous if it has the following property: for any input x there is at most one accepting
computation. We de,ne UP= {L(Ni): Ni is categorical}. As we can see from the fol-
lowing theorems the problem of the existence of a complete language for UP is similar
to its NP∩ co-NP counterpart.

Theorem 4.3 (Hartmanis and Hemachandra). There exists a complete language for
UP if and only if there exists a recursively enumerable list of categorical nondeter-
ministic polynomial time clocked Turing machines Ni1 ; Ni2 ; Ni3 ; : : : such that
{L(Nik): k ¿ 1}=UP.

Theorem 4.4 (Hartmanis and Hemachandra). If UP has no complete languages; then
for any theory T there exists L∈UP such that for no nondeterministic polynomial
time clocked Ni with L(Ni) =L can it be proven in T that Ni is categorical.

In Sections 6 and 7 we will show that the similarity between the problems of the
existence of complete languages for NP∩ co-NP and for UP is also shared by the
problem of the existence of an optimal propositional proof system.

5. Formulas expressing the soundness of Turing machines

In this section we construct boolean formulas which will be used to verify for a
given deterministic polynomial time clocked transducer M and integer n that M on
any input of length n produces propositional tautologies. We use these formulas in the
proofs of Theorems 6.3 and 6.6.

For any transducer N we will denote by fN the function computed by N
(fN :�?→�?).

De�nition 5.1. A Turing transducer N is called sound if fN maps �? into TAUT
(fN :�?→TAUT).

To any polynomial time clocked transducer M we will assign the set AM =
{Sound1

M ; Sound
2
M ; Sound

3
M ; : : :} of propositional formulas such that: SoundnM is a propo-

sitional tautology if and only if for every input of length n, the machine M outputs a
propositional tautology.

So, for any polynomial time clocked transducer M , it holds: M is sound if and only
if AM ⊂TAUT .

Let N be a ,xed nondeterministic Turing machine working in polynomial time which
accepts a string w if and only if w is not a propositional tautology. For any ,xed
polynomial time clocked transducer M , let us consider the set BM = {〈M; 0n〉: There
exists a string x of length n such that M (x) =∈TAUT}. Using the machines M and
N we construct the nondeterministic Turing machine M ′ which guesses a string x of
length n, runs M on input x and then runs N on output produced by M .

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 187

Clearly M ′ works in polynomial time and accepts BM . Let FM;n be Cook’s Theorem
formula (see [3]) for the machine M ′ and the input 〈M; 0n〉. We de,ne SoundnM as
¬FM;n and then the formula SoundnM is a tautology if and only if for every input of
length n; M outputs a tautology. From the structure of Cook’s reduction (as FM;n
clearly displays M and n) it follows that for any ,xed M , the set AM is in P.

Moreover, the formulas describing the soundness of Turing machines possess the
following properties:
(1) Global uniformity property: There exists a polynomial time computable function

f such that for any polynomial time clocked transducer N with time bound nk +k
and for any w∈�?

f(〈N; w; 0|w|k+k〉) = Sound|w|N :

(2) Local uniformity property: Let M be any ,xed polynomial time clocked trans-
ducer. There exists a polynomial time computable function fM such that for any
w∈�?

fM (w) = Sound|w|M :

6. Main results

A class of sets is recursively presentable if there exists an ePective enumeration
of devices for recognizing all and only members of this class [10]. In this paper we
use the notions of recursive P-presentation and recursive NP-presentation which are
mutations of the notion of recursive presentability.

De�nition 6.1. By an easy subset of TAUT we mean a set A such that A⊂TAUT and
A∈P (A is polynomial time recognizable).

De�nition 6.2. An optimal nondeterministic algorithm for TAUT is a nondeterministic
Turing machine M which accepts TAUT and such that for every nondeterministic
Turing machine M ′ which accepts TAUT there exists a polynomial p such that for
every tautology �

TIME(M ; �) 6 p(|�|; TIME(M ′; �)):

Let A be any easy subset of TAUT . We say that nondeterministic polynomial time
clocked Turing machine M names the set A if L(M) =A. Obviously, A may possess
many names. The following theorem states that an optimal propositional proof system
exists if and only if there exists a recursively enumerable list of names for all easy
subsets of TAUT . We would like to pay attention to the similarity between the next
theorem and Theorems 4.1 and 4.3 from Section 4.

188 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

Theorem 6.3. Statements (i)–(iii) are equivalent:
(i) There exists an optimal propositional proof system.
(ii) There exists an optimal nondeterministic algorithm for TAUT .
(iii) The class of all easy subsets of TAUT possesses a recursive NP-presentation.

By statement (iii) we mean: there exists a recursively enumerable list of nondeter-
ministic polynomial time clocked Turing machines Ni1 ; Ni2 ; Ni3 ; : : : such that
(1) L(Nij) ⊂ TAUT for every j;
(2) for every A ⊂ TAUT such that A∈P there exists j such that A=L(Nij).

Proof. (i)→ (ii): With every propositional proof system we can associate a nondeter-
ministic “guess and verify” algorithm for TAUT. On an input � this algorithm guesses
a string w and then checks in polynomial time whether w is a proof of �. If successful,
the algorithm halts in an accepting state.

Symmetrically, any nondeterministic algorithm for TAUT can be transformed to a
propositional proof system. The proof of a formula � in this system is a computation
of M accepting �.

Let Opt denote an optimal propositional proof system and let M denote a nondeter-
ministic Turing machine associated with Opt (a “guess and verify” algorithm associated
with Opt). It can be easily checked that M accepts TAUT and for any nondetermin-
istic Turing machine M ′ accepting TAUT there exists a polynomial p such that for
every tautology � it holds:

TIME(M ; �) 6 p(|�|; TIME(M ′; �)):

(ii)→ (iii): Let M be an optimal nondeterministic algorithm for TAUT. A recursive
NP-presentation of all easy subsets of TAUT we will de,ne in two steps. In the
,rst step we de,ne a recursively enumerable list of nondeterministic Turing machines
F1; F2; F3; : : : : The machine Fk is obtained by attaching the shut-oP clock nk+k to the
machine M . On any input w, the machine Fk accepts w if and only if M accepts w in no
more than nk+k steps, where n= |w|. The sequence F1; F2; F3; F4; : : : of nondeterministic
Turing machines possesses properties (1) and (2):
(1) for every i it holds L(Fi)⊂TAUT ;
(2) for every A which is an easy subset of TAUT there exists j such that A⊂L(Fj).
To prove (2) let us consider A, an easy subset of TAUT recognized by a Turing
machine M ′′ working in polynomial time. Combining this machine with the “brute
force” algorithm for TAUT we obtain a deterministic (therefore also nondeterministic)
Turing machine M ′ accepting TAUT. From the de,nition of M ′ it follows that there
exists a polynomial p such that for any �∈A, TIME(M ′; �)6p(|�|). Since M is an
optimal nondeterministic algorithm for TAUT there exists a polynomial q such that
for any �∈A,
TIME(M ; �)6q(|�|). From this we conclude that for a su4ciently large j,
TIME(M ; �)6|�|j + j for any �∈A, hence A⊂L(Fj).

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 189

In the second step we de,ne the new recursively enumerable list of nondeterministic
polynomial time clocked Turing machines K1; K2; K3; : : : : We de,ne Kn, n= 〈i; j〉, as
the machine which simulates ni + i steps of Fi and nj + j steps of Nj (see Section 2
for de,nition of Nj) and accepts w if and only if both Fi and Nj accept w.

Let A be any ,xed easy subset of TAUT. There exist k and m such that A=L(Nk)
and A⊂L(Fm). It follows from the de,nition of the sequence K1; K2; K3; : : : that A is
accepted by the machine K〈m; k〉, so K1; K2; K3; : : : provides a recursive NP-presentation
of all easy subsets of TAUT.

(iii)→ (i): Let G be the machine generating the codes of the machines from the
sequence Ni1 ; Ni2 ; Ni3 ; : : : forming a recursive NP-presentation of all easy subsets of
TAUT. We say that a string v∈�? is in good form if

v = 〈M;w;Comp-G;Comp-Sound|w|M ; 0|w|
k+k〉;

where M is a polynomial time clocked Turing transducer with nk + k time bound,
w∈�?, Comp-G is a computation of the machine G. This computation produces a
code of a certain machine Nij , Comp-Sound |w|

M is a computation of the machine Nij
accepting the formula Sound |w|

M , 0|w|
k+k is the sequence of zeros (padding).

We call a Turing transducer n-sound if and only if on any input of length n it
produces a propositional tautology.

Let us notice, that if v is in good form then Sound |w|
M as a formula accepted by a

certain machine from NP-presentation is a propositional tautology. This clearly forces
M to be n-sound, where n= |w|, so M on input w produces a propositional tautology.

Let �0 be a certain ,xed propositional tautology. We de,ne Opt :�?→�? in the
following way: Opt(v) = � if v is in good form

(v = 〈M;w;Comp-G;Comp-Sound|w|M ; 0|w|
k+k〉)

and � is a propositional tautology produced by M on input w, otherwise Opt(v) = �0.
Clearly, Opt :�? onto→ TAUT .

In order to prove that Opt is polynomial time computable it is su4cient to notice
that using global uniformity property we can check in polynomial time whether v is
in good form. Hence Opt is a propositional proof system.

It remains to prove that Opt simulates any propositional proof system. Let h be a
propositional proof system computed by the polynomial time clocked transducer K with
time bound nl + l. Since the set AK = {Sound 1

K ;Sound 2
K ;Sound3

K ; : : :} is an easy subset
of TAUT, there exists the machine Nij from the NP-presentation such that AK =L(Nij).

Let � be any propositional tautology and let x be its proof in h. Then � possesses
a proof in Opt of the form:

〈K; x;Comp-G;Comp-Sound|x|K ; 0
|x|l+l〉:

The word Comp-G is the computation of G producing the code of Nij , Comp-Sound |x|
K

is a computation of Nij accepting Sound |x|
K . Let us notice that |Comp-G|= c1, where c1

is a constant. Because Nij is polynomial time clocked there exists a polynomial p such

190 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

that |Comp-Sound |x|
K |6p(|x|). The constants c1, l and the polynomial p depend only

on Nij which is ,xed and connected with K . This proves that Opt simulates h.

The following de,nition is a nondeterministic counterpart of De,nition 6.1.

De�nition 6.4. By an NP-easy subset of TAUT we mean a set A such that A⊂TAUT
and A∈NP.

A slight change in the previous proof shows that also the second version of
Theorem 6:3 is valid. In this version condition (iii) is replaced by the following one:

(iv) The class of all NP-easy subsets of TAUT possesses a recursive NP-
presentation.

Now we will translate the previous result to the deterministic case.

De�nition 6.5. An almost optimal deterministic algorithm for TAUT is a deterministic
Turing machine M which accepts TAUT and such that for every deterministic Turing
machine M ′ which accepts TAUT there exists a polynomial p such, that for every
tautology �

TIME(M ; �) 6 p(|�|; TIME(M ′; �)):

We name such an algorithm as an almost optimal deterministic algorithm for TAUT
because the optimality property is stated for any input string x which belongs to TAUT
and nothing is claimed for other x’s (compare the de,nition of an optimal acceptor for
TAUT in [11]).

Equivalence (i)↔ (ii) in the next theorem is restated from [9] in order to emphasize
the symmetry between Theorems 6.3 and 6.6.

Theorem 6.6. Statements (i)–(iii) are equivalent:
(i) There exists a p-optimal propositional proof system.
(ii) There exists an almost optimal deterministic algorithm for TAUT.
(iii) The class of all easy subsets of TAUT possesses a recursive P-presentation.

By statement (iii) we mean: there exists a recursively enumerable list of deterministic
polynomial time clocked Turing machines Di1 ; Di2 ; Di3 ; : : : such that
(1) L(Dij)⊂TAUT for every j;
(2) for every A⊂TAUT such that A∈P there exists j such that A=L(Dij).

Proof. (i)→ (ii): See [9].
(ii)→ (iii): This follows by the same arguments as in the proof of (ii)→ (iii) from

Theorem 6:3. The only change is the use of deterministic Turing machines instead of
the nondeterministic ones.

(ii)→ (iii): A string v∈�? is in good form if

v = 〈M;w;Comp-G;Comp-Sound|w|M ; 0|w|
k+k〉;

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 191

where the appropriate symbols mean the same as before. We de,ne Opt :�?→�?

analogously as in the proof of Theorem 6.3: Opt(v) = � if v is in good form

(v = 〈M;w;Comp-G;Comp-Sound|w|M ; 0|w|
k+k〉)

and � is a propositional tautology produced by M on input w, otherwise Opt(v) = �0,
where �0 is a certain ,xed propositional tautology.

It remains to prove that Opt p-simulates any propositional proof system. Let h be a
propositional proof system computed by a polynomial time clocked transducer K with
time bound nl + l. Since the set AK = {Sound 1

K ;Sound 2
K ;Sound 3

K ; : : :} is an easy subset
of TAUT, there exists the machine Dij from the P-presentation such that AK =L(Dij).
The function t :�?→�?

t(x) = 〈K; x;Comp-G;Comp-Sound|x|K ; 0
|x|l+l〉:

translates proofs in h into proofs in Opt. The word Comp-G in the de,nition of t is
the computation of G producing the code of Dij , Comp-Sound |x|

K is a computation of

Dij accepting Sound |x|
K .

From the fact that Dij is deterministic and works in polynomial time and from local

uniformity property (see Section 5) it follows that Comp-Sound |x|
K can be constructed

in polynomial time. This proves that t is polynomial time computable.

De�nition 6.7. A Turing machine acceptor M is called sound if and only if L(M)⊂
TAUT .

The question, whether the set of all sound deterministic (nondeterministic) polyno-
mial time clocked Turing machines yields the desired P-presentation (NP-presentation)
(that is, whether this set is recursively enumerable) occurs naturally in connection with
Theorems 6.3 and 6.6. The negative answer to this question is provided by the next
theorem.

Theorem 6.8. The set of all sound deterministic (nondeterministic) polynomial time
clocked Turing acceptors is not recursively enumerable.

This follows immediately from Rice’s Theorem (see [14]).

7. Independence results

Let T be any formal theory satisfying the assumptions from Section 4. The notation
T � * means that a ,rst order formula * is provable in T .

Let M be a Turing machine.
By “L(M)⊂TAUT” we denote the ,rst order formula which expresses the soundness
of M , i.e. ∀w∈L(M) [w is a propositional tautology].

192 Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193

De�nition 7.1. A deterministic (nondeterministic) Turing machine M is T -sound if
T � “L(M)⊂TAUT”.

De�nition 7.2. A set A⊂TAUT is T -provably NP-easy if there exists a nondetermin-
istic polynomial time clocked Turing machine M ful,lling (1)–(2):
(1) M is T -sound;
(2) L(M) =A.

As in the case of the classes NP∩ co-NP and UP we can obtain the following
independence result.

Theorem 7.3. If there does not exist an optimal propositional proof system; then
for every theory T there exists an easy subset of TAUT which is not T -provably
NP-easy.

Proof. Suppose, on the contrary, that there exists a theory T such that all easy subsets
of TAUT are T -provably NP-easy. Then the following recursively enumerable set of
machines +T = {M : M is a nondeterministic polynomial time clocked Turing machine
which is T -sound} creates a recursive NP-presentation of the class of all easy subsets
of TAUT. By Theorem 6.3, this implies that there exists an optimal propositional proof
system, giving a contradiction.

The following result can be obtained from the second version of Theorem 6.3.

Theorem 7.4. If there does not exist an optimal propositional proof system; then for
every theory T there exists an NP-easy subset of TAUT which is not T -provably
NP-easy.

The translation of this result to the deterministic case goes along the following lines.

De�nition 7.5. A set A⊂TAUT is T -provably easy if there exists a deterministic
polynomial time clocked Turing machine M ful,lling (1)–(2):
(1) M is T -sound;
(2) L(M) =A.

Theorem 7.6. If there does not exist a p-optimal propositional proof system; then for
every theory T there exists an easy subset of TAUT which is not T -provably easy.

8. Conclusion

In this paper we related the question of the existence of an optimal propositional
proof system to the recursive presentability of the family of all easy subsets of TAUT
by means of polynomial time clocked Turing machines. The problems of the exis-

Z. Sadowski / Theoretical Computer Science 288 (2002) 181–193 193

tence of complete languages for the classes NP∩ co-NP and for UP have a similar
characterization. From this characterization a variety of interesting results about the
promise classes NP∩ co-NP and UP were derived by recursion-theoretic techniques
(see [5, 7]). Although recursion-theoretic methods seem unable to solve the problem
of the existence of an optimal propositional proof system, we believe that our main
results from Section 6 allow the application of these methods (as it was in case of
promise classes, see [5, 6]) to further study of this problem.

References

[1] J. Balcazar, J. D=>az, J. Gabarr=o, Structural Complexity I, Springer, Berlin, 1995.
[2] S. Buss, Lectures on proof theory. Tech. Report No. SOCS-96.1, McGill University, 1966.
[3] S. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symp. on Theory of

Computing, 1971, pp. 151–158.
[4] S. Cook, R. Reckhow, The relative e4ciency of propositional proof systems, J. Symbolic Logic 44

(1979) 36–50.
[5] J. Hartmanis, L. Hemachandra, Complexity classes without machines: on complete languages for UP,

Theoret. Comput. Sci. 58 (1988) 129–142.
[6] J. Hartmanis, N. Immerman, On complete problems for NP ∩ co-NP, in: Proc. 12th Internat. Colloq.

on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 194, Springer,
Berlin, 1985, pp. 250–259.

[7] W. Kowalczyk, Some connections between presentability of complexity classes and the power of formal
systems of reasoning, in: Proc. Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, vol. 176, Springer, Berlin, 1988, pp. 364–369.

[8] J. KHobler, J. Messner, Complete problems for promise classes by optimal proof systems for test sets, in:
Proc. 13th Ann. IEEE Conf. on Computational Complexity, IEEE Computer Soc. Press, Silver Spring,
MD, 1998, pp. 132–140.

[9] J. Kraj=>?cek, P. Pudl=ak, Propositional proof systems, the consistency of ,rst order theories and the
complexity of computations, J. Symbolic Logic 54 (1989) 1063–1079.

[10] L. Landweber, R. Lipton, E. Robertson, On the structure of sets in NP and other complexity classes,
Theoret. Comput. Sci. 15 (1981) 181–200.

[11] J. Messner, On optimal algoritms and optimal proof systems, in: Proc. 16th Symp. on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1563, Springer, Berlin, 1999.

[12] J. Messner, J. Tor=an, Optimal proof systems for propositional logic and complete sets, in: Proc. 15th
Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1373,
Springer, Berlin, 1998, pp. 477–487.

[13] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[14] H. Rice, Classes of recursively enumerable sets and their decision problems, Trans. Amer. Math. Soc.

74 (1953) 358–366.
[15] Z. Sadowski, On an optimal quanti,ed propositional proof system and a complete language for

NP ∩ co-NP, in: Proc. 11th Internat. Symp. on Fundamentals of Computing Theory, Lecture Notes
in Computer Science, vol. 1279, Springer, Berlin, 1997, pp. 423–428.

