
Theoretical Computer Science 288 (2002) 101–128
www.elsevier.com/locate/tcs

On the complexity of data disjunctions�

Thomas Eitera ; ∗, Helmut Veithb

aInstitut f�ur Informationssysteme, Abteilung f�ur Wissensbasierte Systeme, Technische Universit�at Wien,
Favoritenstra�e 9-11, A-1040 Wien, Austria

bInstitut f�ur Informationssysteme, Abteilung f�ur Datenbanken und AI, Technische Universit�at Wien,
Favoritenstra�e 9-11, A-1040 Wien, Austria

Abstract

We study the complexity of data disjunctions in disjunctive deductive databases (DDDBs).
A data disjunction is a disjunctive ground clause R(-c−1pt1) · · ·R(-ck), k ¿ 2, which is derived
from the database such that all atoms in the clause involve the same predicate R. We consider
the complexity of deciding existence and uniqueness of a minimal data disjunction, as well as
actually computing one, both for propositional (data) and nonground (program) complexity of the
database. Our results extend and complement previous results on the complexity of disjunctive
databases, and provide newly developed tools for the analysis of the complexity of function
computation. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Data disjunction; Deductive databases; Computational complexity; Complexity
upgrading; Conversion lemma

1. Introduction

During the past decades, a lot of research has been spent to overcome the limitations
of conventional relational database systems. The 0eld of deductive databases, which
has emerged from logic programming [30], uses logic as a tool for representing and
querying information from databases. Numerous logical query languages, which extend
Horn clause programming for dealing with aspects such as incomplete or inde0nite
information, have been proposed to date, cf. [1, 34].

� The results of this paper have been presented at the international workshop “Colloquium Logicum:
Complexity”, Vienna, October 9–10, 1998. This work was partially supported by the Austrian Science Fund
Project N Z29-INF.

∗ Corresponding author.
E-mail addresses: eiter@kr.tuwien.ac.at (T. Eiter); veith@dbai.tuwien.ac.at (H. Veith).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00147 -5

102 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

In particular, the use of disjunction in rule heads for expressing inde0nite information
was proposed in Minker’s seminal paper [33] which started interest in disjunctive logic
programming [31, 11]. For example, the rule

lives in(x; us) ∨ lives in(x; can) ∨ lives in(x; mex)← lives in(x; n america) (1)

informally states that a person living in North America lives in one of the three coun-
tries there. The semantical and computational aspects of disjunctive logic programming,
and in particular, disjunctive deductive databases, have been investigated in many pa-
pers (see [34] for an overview).

In this paper, we are interested in a restricted type of disjunction which has been
previously considered e.g. in [6, 5, 13, 20, 16]. A data disjunction [20] is a ground
clause R(-c1)∨ · · · ∨R(-ck), k¿2, in which all atoms are diHerent and involve the same
predicate R. For example, the head of the rule (1) for x= Joe, is a data disjunction,
as well as the disjunctive fact

loves(bill; monica) ∨ loves(bill; hillary):

A data disjunction expresses inde0nite information about the truth of a predicate on a
set of arguments; in database terminology, it expresses a null value on this predicate,
whose range is given by the arguments -c1; : : : ; -ck of its atoms. In the context of deduc-
tive databases, null values of this form in the extensional database and their complexity
have been considered e.g. in [21], and in many other papers.

If, in the above example, the fact lives in(joe; n america) is known, then the data
disjunction

� = lives in(joe; us) ∨ lives in(joe; can) ∨ lives in(joe; mex)

can be derived from rule (1). If a clause � is entailed from a database, then also any
clause �′ subsumed by � is entailed. For example, the clause �∨ lives in(joe; uzbekistan)
is entailed by virtue of � as well. We thus adopt the natural condition that a data
disjunction � must be minimal, i.e., no proper subclause of � is entailed.

The question we address in this paper is the complexity of data disjunctions in
a disjunctive deductive database (DDDB). Table 1 summarizes the problems stud-
ied (see Section 3 for precise de0nitions), and the main complexity results obtained.
They complement previous results on reasoning from DDDBs. Deciding whether an
arbitrary disjunction, rather than a data disjunction, follows from a DDDB has �P

2

data and propositional complexity, and exponentially higher expression and combined
complexity [15]; various syntactic restrictions lower the complexity to coNP or even
polynomial time [10]. On the other hand, evaluating a conjunctive query over a dis-
junctive extensional database is coNP-complete [21], and hence deciding entailment
of a single ground atom a has coNP data and propositional complexity. Thus, data
disjunctions have intermediate complexity between arbitrary clauses and single atoms.

Observe that Table 1 contains also results on actually computing a data disjunction
for a predicate (assuming at most one exists). While all the results in this table could

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 103

Table 1
Complexity of data disjunctions

Instance: A disjunctive deductive database DB= (�; E), where E is a collection of (possibly disjunctive)
ground facts, and � are the inference rules, plus a distinguished relation symbol R.

Problem:
∃DD: does DB have a data disjunction on R?
∃!DD: does DB have a unique data disjunction on R?
�DD: Computation of the unique data disjunction on R.
k-�DD: Computation of the unique data disjunction on R, if it has at most k disjuncts (k constant).
Complexity: propositional c. data c. expression c. combined c.

(� ground) (� 0xed) (E 0xed) (�; E vary)

∃DD: MP
2 MP

2 PSpaceNP PSpaceNP

∃!DD: MP
2 MP

2 PSpaceNP PSpaceNP

�DD: FPNP
‖ FPNP

‖ FPSpaceNP FPSpaceNP

k-�DD: FLNP
log[log] FLNP

log[log] FPSpaceNP[pol] FPSpaceNP[pol]

in principle be derived in the standard way, i.e., by proving membership in class C
and reducing a chosen C-hard problem to the problem in question, we pursue here
an “engineering” perspective of complexity analysis in databases, proposed e.g. in
[19], which utilizes tools from descriptive and succinct complexity theory and exploits
properties of the deductive database semantics. By means of these tools, hardness
results can be derived at an abstracted level of consideration, without the need for
choosing a 0xed C-hard problem. Such tools (in particular, complexity upgrading) have
been developed for decision problems, but are not available for function problems. We
overcome this by a suitable generalization of the tools to the case of function problems.

The main contributions of this paper can be thus summarized as follows:
• Firstly, we determine the complexity of data disjunctions. We obtain natural and

simple logical inference problems complete for the class MP
2 of the re0ned polyno-

mial hierarchy [46], and, in their computational variants, complete problems for the
function classes FPNP

‖ and FLNP
log[log] and their exponential analogs.

• Secondly, we provide upgrading techniques for determining the complexity of func-
tion computations. They generalize available tools for decision problems and may
be fruitfully applied in other contexts as well.

The rest of this paper is organized as follows. Section 2 states preliminaries, and
Section 3 formalizes the problems. In Section 4, the decision problems are considered,
while Section 5 is devoted to computing data disjunctions. Logical characterizations
of function computations are given through a generalization of the Stewart normal
form (SNF) [39, 40, 18], which has been introduced to characterize the class MP

2. For
deriving the expression and combined complexity of function computations, upgrading
results are developed in Section 6. Section 7 considers restricted data disjunctions and
applies the results to closed-world reasoning in databases. The 0nal Section 8 concludes
the paper.

104 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

2. Preliminaries

2.1. Deductive databases

For a background on disjunctive deductive databases, we refer to [31].

Syntax. A 0nite relational language is a tuple != (R1; : : : ; Rn; c1; : : : ; cm) where the Ri

are relation symbols (also called predicate symbols) with associated arities a1; : : : ; an,
and the ci are constant symbols. An atom is a formula of the form Ri(-v), where -v is
a tuple of 0rst-order variables and constant symbols.

A disjunctive datalog rule is a clause of the form

a1 ∨ · · · ∨ an ← b1; : : : ; bm; 1 6 n; 0 6 m;

over a 0nite relational language, where the ai’s are atoms forming the head of the
clause, and the bj’s are atoms or inequalities of the form u �= v (where u and v are
variables or constants) forming the body of the clause.

A disjunctive deductive program (short program) is a 0nite collection of disjunctive
datalog rules; it is ground, if no variables occur in the rules.

If a predicate symbol occurs only in rule bodies, it is called an input predicate,
otherwise it is called a derived predicate.

A disjunctive deductive program with input negation is a program where input
predicates are allowed to appear negated.

A ground fact is a clause of the form

a1

where a1 is a variable-free atom; a disjunctive ground fact is a clause of the form

a1 ∨ · · · ∨ an; n¿ 1;

where the ai’s are variable-free atoms. Note that, for our concerns, any ground fact
a1 is semantically equivalent to the disjunction a1 ∨ a1. We thus syntactically subsume
ground facts by disjunctive ground facts, and distinguish them from proper disjunctions
(n¿2) by referring to them as non-disjunctive ground facts.

A disjunctive deductive database (DDDB) is a tuple DB= (�; E) where � is a pro-
gram and E is a 0nite set of disjunctive ground facts. Here, E represents the input
database, also called the extensional part, and � are inference rules, called the inten-
sional part of the database DB.

Remark 2.1. Note that �; E, and �∪E are all disjunctive deductive programs, i.e.,
ground facts can be included into the programs, and in fact we shall do this for de0ning
the semantics. However, for methodological and complexity issues, it is important to
distinguish the input data from the inference rules. For example, the complexity of
evaluating DB is exponentially lower when � is 0xed. In Section 3, we shall de0ne
data and expression complexity to give a formal meaning to this intuition.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 105

Semantics. The semantics of DDDBs has been de0ned in terms of their minimal mod-
els [33, 31]. For a DDDB DB= (�; E), we denote by HUDB its Herbrand universe, i.e.,
the set of all constants occurring in DB. 1 The Herbrand base HBDB (resp., disjunc-
tive Herbrand base DHBDB) is the set of all ground atoms (resp., disjunctive ground
facts) of predicates in DB over HUDB. The ground instantiation of a program � over
a set of constants C is denoted by ground(�; C); the ground instance of DB, denoted
ground(DB), is ground(�;HBDB)∪E.

An (Herbrand) interpretation of DB is a subset H ⊆HBDB. An interpretation H of
DB is a model of DB, if it satis0es each rule in ground(DB) in the standard sense.
A model H of DB is minimal, if it does not contain any other model of DB properly;
by MM(DB) we denote the set of all minimal models of DB. We write DB |=MM ’ if
a formula ’ is true in every M ∈ MM(DB), and say that ’ is entailed from DB.

Example 2.2. Let DB= (�; E), where � is the rule q(x)←p(x) and E contains the
single disjunctive fact p(a)∨ q(b). Then M = {p(a); q(a)}, M ′ = {p(a); q(a); q(b)} are
among the models of DB; M is minimal, while M ′ is not. The minimal models of DB
are MM(DB) = {{p(a); q(a)}; {q(b)}}.

Remark 2.3. It is easy to see [33] that for each positive clause C, DB |=MM C if and
only iH DB |=C, where |= denotes satisfaction in all models of DB. We will repeatedly
use this fact.

The set of minimal models of DB has been characterized in terms of a unique
least model-state MS (see [31]), i.e., a subset of DHBDB, which can be computed by
least 0xpoint iteration of an operator TS

P generalizing the standard TP operator of logic
programming [30]. In general, the computation of MS takes exponential space and
time, even if the program � of DB is 0xed.

2.1.1. Negation
Introducing negation in disjunctive deductive databases is not straightforward, and

gave rise to diHerent semantics, cf. [34]. In this paper, we restrict negation to input
negation, i.e., the use of negated atoms ¬R(-t) in rule bodies where R is an extensional
predicate, and adopt a closed-world assumption (CWA) on models by imposing the
following condition: any accepted model M of DB= (�; E), restricted to the extensional
part, must be a minimal model of E. Unless stated otherwise, a model of a DDDB
must satisfy this kind of closed-world assumption.

Observe that this condition is satis0ed by each M ∈MM(DB) if � is negation-
free; furthermore, if E contains no disjunctive facts, then ¬R(-c) is true in every
M ∈MM(DB) iH R(-c) =∈E.

1 As usual, if no constant occurs in DB, we set HUDB := {c} for an arbitrary constant c.

106 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

As for complexity, it is easy to see that checking whether the restriction of M to its
extensional part is a minimal model of E is possible in polynomial time. Hence, the
complexity of model checking and of deciding DB |=MM ’ is not increased by imposing
the CWA on models. Furthermore, if E is restricted to disjunction-free ground facts,
input negation can be eliminated in computation as follows.

De�nition 2.4. Let ! be a 0nite relational language, and let !′ = !∪{R′ |R∈ !}. Then
NEG!′ denotes the class of all 0nite !′ structures A where for all relations R in !,
R′A is the complement of RA.

Proposition 2.5. Extending a given !-structure to its corresponding NEG!′ structure
and replacing literals ¬R(-t) in a program � by R′(-t) is possible in LOGSPACE.

In the derivation of hardness results, we shall consider DDDBs DB= (�; E) using
input negation but where E is disjunction-free. Hence, all hardness results in this paper
hold for DDDBs without negation and non-disjunctive (i.e., relational) facts as well.

2.2. Complexity

In this section, we introduce some of the more speci0c complexity classes and
notions employed in the paper; we assume however some familiarity with basic notions
of complexity theory such as oracle computations, NP, PSpace, L etc.

The class MP
2 contains the languages which are polynomial-time truth-table reducible

to sets in NP. It has a wide range of diHerent characterizations [46, 22]. In particular,
the following classes coincide with MP

2:
• PNP

‖[k]: polynomial time computation with k rounds of parallel queries to an NP oracle
[28, 9].
• PNP

log : polynomial time computation where the number of queries to an NP oracle is
at most logarithmic in the input size [26].
• LNP

log: logarithmic space computation where the number of queries to an NP oracle
is at most logarithmic in the input size [27]. 2

For an overview of diHerent characterizations and their history, consult [46, 22]. It is
shown in [22, 4, 38, 41] that this picture changes when we turn to function computation.
The above-mentioned list gives rise to at most three presumably diHerent complexity
classes FPNP

‖ ;FPNP
log , and FLNP

log, which are shown in Fig. 1. Here, for any function class
FC, we denote by FC[log] the restriction of FC to functions with logarithmic output
size. Moreover, ‖[k] denotes k rounds of parallel queries, where k is a constant.

The relationships between the complexity classes in Fig. 1 have been attracting quite
some research eHorts which led to a number of interesting results.
• II = III is equivalent to P = L [22].

2 Observe that the space for the oracle tape is not bounded. Unbounded oracle space is also assumed for
all other classes using an oracle in this paper.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 107

Fig. 1. Function classes corresponding to MP
2 .

• I = II is equivalent to the property that SAT is O(log n) approximable. This was
shown in [2], after I⇒ II was proved in [8]. Here f-approximability of a set A
means that there is a function g such that for all x1; : : : ; xm where m¿f(maxi |xi|)
it holds that g(x1; : : : ; xm)∈Pm and g(x1; : : : ; xm) �= ,A(x1; : : : ; xm), where by abuse of
notation ,A(x1; : : : ; xm) denotes the function which maps the list of strings x1; : : : ; xm
to the m-bit vector whose ith bit is ,A(xi).
• Furthermore, if I = II, then (1SAT,SAT), i.e., promise SAT, is in P [4, 41]; FewP = P;

NP = R [38]; coNP = US; SAT∈NP(n= logk n); and, furthermore, NP⊆DTIME
(2nO(1=log log n)

) [22].
To compare the complexity of functions, and to obtain a notion of completeness in
function classes, we use Krentel’s notion of metric reducibility [26]:

De�nition 2.6. A function f is metric reducible (6mr-reducible) to a function g (in
symbols, f6mrg), if there is a pair (h1; h2) of polynomial-time computable functions
h1 and h2 such that for every x, f(x) = h2(x; g(h1(x))).

Proviso 1. Let C be a complexity class. Unless stated otherwise, we use the following
convention: C-completeness is de0ned with respect to LOGSPACE reductions, if C is
a class of decision problems, and with respect to metric reductions, if C is a class of
function problems.

Some complete problems for function classes are shown in Fig. 1. The canonical
FPNP

‖ -complete problem is QUERY, i.e., computing the string ,(I1),(I2) · · · ,(In) of
given SAT instances I1; : : : ; In; SUPREMUM is computing, given a Boolean formula
F(x1; : : : ; xn), the string s1 : : : sn where si = 1 if there is a satisfying assignment to the
variables of F such that xi = 1, and si = 0 otherwise; CLIQUE SIZE is computing the
size of a maximum clique in a given graph. Note that this problem is also complete for
FPNP

log . All these problems, turned into proper decision problems, are MP
2 -complete. In

108 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

particular, deciding whether the maximum clique size in a graph is even and deciding
whether the answer string to QUERY contains an even number of 1’s are MP

2 -complete,
cf. [46].

2.3. Queries and descriptive complexity

De�nition 2.7. Let ! be a 0nite relational language, and let /= {R} be a language con-
taining a single relational symbol R. A query Q is a function which maps !-structures
to /-structures over the same domain, such that Q(A) and Q(B) are isomorphic, if
A and B are isomorphic. If R is nullary, then Q is a Boolean query.

A Boolean query Q is regarded as a mapping from !-structures to {0; 1} such that
for isomorphic A;B; Q(A) =Q(B). If Q(A) = 1, we also write A |=Q.

Remark 2.8. (1) If we disregard queries of non-elementary complexity, we can identify
queries with higher order de0nable relations. (2) Note that “query” is also used for
oracle calls. (3) Since queries are functions, we shall also write them as sets of pairs
(A; Q(A)).

De�nition 2.9. Let ! be a 0nite relational language with a distinguished binary relation
succ and two constant symbols min, max. Then SUCC! is the set of all 0nite structures
A with at least two distinct elements where succA is a successor relation on |A|,
and minA;maxA are the 0rst and last element with respect to the successor relation,
respectively.

Note that queries are not de0ned over SUCC!, but over arbitrary !-structures; this
is called “order independence” of queries. Many query languages however seem to
require a built-in order for capturing complexity classes, i.e., capturing requires that
the !-structures are extended by an arbitrary contingent ordering to structures from
SUCC!. Thus, when we talk about ordered structures=databases, or SUCC!, we mean
that the queries are computed on !-structures which are extended to SUCC! structures.

The following lemmata provide examples of this phenomenon.

De�nition 2.10. An SNF formula (Stewart normal form) is a second-order formula ’
of the form

∃ -x:1(-x; -y) ∧ ¬2(-x; -y) (2)

where 1 and 2 are �1
1 second-order formulas with equality having the free 0rst-order

variables -y. An SNF sentence is an SNF formula without free variables.

We call the standard Skolem functions for the variables -x in formula (2) the SNF
witnesses of ’.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 109

Lemma 2.11 (Stewart [39, 40]; Gottlob [18]). Every MP
2 -decidable property on SUCC!

is expressible as

{A ∈ SUCC!: A |= 3}
where 3 is an SNF sentence.

This result, in equivalent terms of 0rst-order logic with NP-computable generalized
quanti0ers, is contained for particular cases of generalized quanti0ers in [39, 40], and
was shown for broad classes of generalized quanti0ers in [18].

On a structure A, a formula ’(-x) with free variables -x de0nes the relation ’A

by ’A = { -c |A |=’(-c)}. A program � de0nes a relation R on A, if (�;A) |=MM R(-c)
iH -c∈R, for every -c on A. In particular, if R is nullary, ’ (resp., �) de0nes a property
on A.

Lemma 2.12 (Immediate from Eiter et al. [14, 15]). Every �1
1 de=nable property ’

on SUCC! is expressible by a disjunctive datalog program �’ using input negation.

Remark 2.13. Note that Lemma 2.12 does not require inequalities in rule bodies, since
inequality is de0nable in the presence of order, cf. [15].

3. Data disjunctions

De�nition 3.1. Given a DDDB DB, a disjunctive ground fact /=R -c1∨· · ·∨R -cn; n¿2,
is called a data disjunction, if
(1) DB |=MM R -c1 ∨ · · · ∨R -cn, and
(2) for all S ⊂ {1; : : : ; n}; DB �|=MM

∨
i∈S R -ci.

We say that DB has a data disjunction on R, if any such ground fact / exists.

A data disjunction can be seen as a kind of null value in a data base.

Example 3.2. The DDDB DB= (�; E)

� : Pc ∨ Qx; Pa ∨ Py←Qy; Rxy; E : Rab; Sa ∨ Rbc

has a data disjunction Pa ∨ Pb ∨ Pc.

De�nition 3.3. Given a DDDB DB, the maximal disjunction on R (in symbols, md(DB;
R)) is the disjunctive ground fact∨

{R -c ∈ HBDB: DB �|=MM R -c}:

Lemma 3.4. DB has a data disjunction on R if and only if DB |=MM md(DB; R).

Proof. If DB has a data disjunction / on R, then no atom R -c of / is implied by
DB. Therefore, / is a subclause of md(DB; R), and thus DB |= md(DB; R). Since / is

110 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

a positive clause, this implies DB |=MM md(DB; R). Conversely, if DB |=MM md(DB; R),
then clearly md(DB; R) is not empty. Either md(DB; R) is a data disjunction itself, or
atoms of md(DB; R) can be removed until a minimal disjunction /∗ is reached such
that DB |=MM /∗. Since by de0nition no atomic subformula of md(DB; R) is implied by
DB; /∗ must contain at least two diHerent atoms.

In measuring the complexity of data disjunctions, we distinguish several cases fol-
lowing Vardi’s [42] distinction between data complexity, expression complexity (alias
program complexity), and combined complexity.

De�nition 3.5. The problems ∃DD; ∃!DD; �DD, and k-�DD are de0ned as follows:
Instance: A DDDB DB= (�; E), and a relation symbol R.
Question: ∃DD: Does DB have a data disjunction on R?

∃!DD: Does DB have a unique data disjunction on R?
�DD: Compute the unique data disjunction on R if it exists,

and # otherwise.
k-�DD: Compute the unique data disjunction on R, if it exists

and has at most k disjuncts, and # otherwise.

Observe that ∃DD, called ignorance test in [5], has been used in [5, 6] to discriminate
the expressive power of diHerent query languages based on nonmonotonic logics over
sets of disjunctive ground facts. Problem ∃!DD corresponds to the unique satis0ability
problem. Note that the complexity of the uniqueness variant of a problem is often
diHerent. For example, in the case of the satis0ability problem, it is not known whether
deciding unique satis0ability is in NP; this would clearly imply NP = coNP.

De�nition 3.6. Let � be any of the problems ∃DD; ∃!DD; �DD, or k-�DD.
• The data complexity of � is the complexity of � with parameter � 0xed.
• The expression complexity of � is the complexity of � with parameter E 0xed.
• The propositional complexity of � is the complexity of � where � is ground.
• The (unconstrained) complexity of � is also called the combined complexity of �.

Problem � has combined (or propositional) complexity C, if � is C-complete with
respect to combined (resp. propositional) complexity. � has data (or expression) com-
plexity C, if � is in C with respect to data (resp. expression) complexity for all
choices of the parameter, and � is C-complete with respect to data (resp. expression)
complexity for a particular choice of the parameter.

4. Existence of data disjunctions

Our 0rst result shows that deciding the existence of a data disjunction, considered
as a Boolean query, is equivalent to evaluating a second-order sentence in SNF. Fur-
thermore, the same is true for deciding the existence of a unique data disjunction.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 111

Table 2

Algorithm DDExistence(DB; R)
Input: Disjunctive deductive database DB, relation symbol R;
Output: ‘‘true’’ if DB has a data disjunction on R,

‘‘false’’, otherwise.
1: M := ∅;
2: for all R -c∈HBDB do
3: if not (DB |=MM R -c) then M := M ∪ {R -c};
4: ’ :=

∨
R -c∈M R -c

5: if DB |=MM ’ then output true else output false;

Theorem 4.1. Let Q be a =xed Boolean query. Over ordered databases; the following
are equivalent:
(1) Q is MP

2 -computable.
(2) Q is de=nable by an SNF sentence.
(3) There exist a program � and a relation symbol R such that (�;A) has a data

disjunction over R iAA |=Q.
(4) Q is equivalent to an SNF sentence whose SNF witnesses are uniquely de=ned.
(5) There exist a program � and a relation symbol R such that (�;A) has a unique

data disjunction over R iAA |=Q.

Proof. The equivalence of (1) and (2) is stated in [18]. A close inspection of the
proof in [18] shows that in fact (1) is also equivalent to (4).

(3)→ (1): By Lemma 3.4, algorithm DDExistence in Table 2 determines if DB has
a data disjunction on R:

Note that in line 4, ’ equals md(DB; R). The algorithm DDExistence works in
polynomial time and makes two rounds of parallel queries to an NP oracle, and thus
the problem is in PNP

‖[2] = MP
2 .

(5)⇒ (1): Consider the algorithm DDUniqueness in Table 3, which is an extension
of DDExistence. Note that lines 1 to 4 coincide with DDExistence.

On line 5, the algorithm terminates if no data disjunction exists. Otherwise, all
possible data disjunctions are subclauses of ’= md(DB; R). Lines 6 to 9 construct a
subclause ; it contains all those literals R -c of md(DB; R) in N which cannot be re-
moved from md(DB; R) without destroying the data disjunction, i.e., it contains those
literals which necessarily appear in every data disjunction. Thus, if ’ is a data dis-
junction, it is the unique one. On the other hand, if a unique data disjunction exists,
it is by construction equal to ’.

Like the algorithm DDExistence, this algorithm also works in polynomial time mak-
ing a constant number of rounds of parallel queries to an NP oracle. Hence, the problem
is in MP

2 .
(2)⇒ (3): Let ’ be a second-order sentence of the form

∃ -x:1(-x) ∧ ¬2(-x):

112 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

Table 3

Algorithm DDUniqueness(DB,R)
Input: Disjunctive deductive database DB, relation symbol R;
Output: “#” (resp., ‘‘true’’, ‘‘false’’) if DB has no

(resp., a unique, more than one) data disjunction on R.
01: M := ∅;
02: for all R -c∈HBDB
03: if not (DB |=MM R -c) then M := M ∪ {R -c};
04: ’ :=

∨
R -c∈M R -c;

05: if not (DB |=MM ’) then output # and halt;
06: N := ∅;
07: for all R -c∈M
08: if not (DB |=MM ’ ∧ ¬R -c) then N := N ∪ {R -c};
09: :=

∨
R -c∈N R -c;

10: if DB |=MM then output true else output false;

By Lemma 2.12 there exist programs �A and �B containing predicate symbols A and
B, respectively, such that for all A(-c)∈HB�A and B(-c)∈HB�B ,

(�A;A) |=MM A(-c) iH A |= 1(-c) and (�B;A) |=MM B(-c) iH A |= 2(-c):

Let � be the program �A ∪ �B augmented with the rules

P(-x;min) ∨ P(-x;max) ← A(-x);

P(-x;min) ← B(-x):

Observe that P does not occur in �A ∪ �B. Thus, by well-known modularity properties
[15, Section 5], the minimal models of � on A are obtained by extending the minimal
models of �A ∪ �B on A.

It is easy to see that DB= (A; �) has a data disjunction on P if and only if there
exists a tuple -c on A such that A |= 1(-c)∧¬2(-c). Thus, � indeed computes property
’ on SUCC!.

(4)⇒ (5): From the equivalence of (2) and (4), it follows that the data disjunction
of program � in the proof of (2)⇒ (3) is unique.

Corollary 4.2. The propositional and data complexity of ∃DD and ∃!DD are in MP
2 .

The expression and combined complexity of ∃DD and ∃!DD are in PSpaceNP.

Proof. It remains to consider expression and combined complexity. When the program
is not 0xed, the size of HBDB is single exponential in the input, and thus the algorithm
DDExistence takes exponentially many steps. The problem is thus in EXPTIMENP

‖[2],
i.e., exponential time with two rounds of parallel NP oracles. This class coincides with
EXPTIMENP

‖ , i.e., exponential time with a single round of parallel NP queries, which
coincides with PSpaceNP [19].

Since MP
2 has complete problems, we obtain from Theorem 4.1 the following.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 113

Corollary 4.3. There is a program � for which ∃DD and ∃!DD are MP
2 -hard.

Hence, we obtain the announced result on the data and propositional complexity of
data disjunctions.

Theorem 4.4. The data complexity and propositional complexity of ∃DD and ∃!DD
is MP

2 .

Note that the propositional complexity of ∃DD has been stated in [13]. The hardness
proof there, given by a standard reduction, is far more involved; this indicates the
elegance of using the descriptional complexity approach.

Since the data complexity of a query language is uniquely determined by its expres-
sive power, two languages with the same expressive power will always have the same
data complexity. Hence, data complexity is a property of semantics. Expression and
combined complexity, however, depend on the syntax of the language. It is thus, in
general, not possible to determine the expression complexity of a query language L

from its expressive power. Indeed, both the syntax and the semantics of L impact on
its expression complexity. In spite of these principal obstacles, the typical behavior of
expression complexity was often found to respect the following pattern: If L captures
C, then the expression complexity of L is hard for a complexity class exponentially
harder than C.

The query language of data disjunctions is an instance of this pattern, too:

Theorem 4.5. The expression complexity and the combined complexity of ∃DD and
∃!DD is PSpaceNP.

In the rest of this section, we give a proof of this result, which uses a general result
linking the expressiveness of a query language to its expression complexity.

The main result of [19] shows that all query languages satisfying simple closure
properties match indeed the above observation on expression complexity. Suppose that
in a database domain elements are replaced by tuples of domain elements. This oper-
ation is natural when a database is redesigned; for instance, entries like “John Smith”
in a database A can be replaced by tuples (“John”,“Smith”) in a database B. It is
natural to expect that a query QA over B can be easily rewritten into an equivalent
query QB over B. We call QB a vectorized variant of QA. This is the essence of the
following closure property.
Vector closure: A query language is uniformly vector closed, if the vectorized vari-

ants of query expressions can be computed in LOGSPACE.
Suppose again that a database A is replaced by a database B in such a way that

all relations of A can be de0ned by views which use only unions and intersections of
relations in B. Then, it is again natural to expect that a query QA over A can be trans-
lated into an equivalent query QB over B. In this case, we call QB an interpretational
variant of QA. We thus can formulate another closure property as follows.

114 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

Interpretation closure: A query language is uniformly interpretation closed, if the
interpretational variants of queries can be computed from the database schemata in
LOGSPACE.

In combination, we have the following closure condition (see [19] for a formal
de0nition).

De�nition 4.6. A query language is uniformly closed, if it is uniformly vector closed
and uniformly interpretation closed.

This property, together with expressive capability of MP
2 , allows one to conclude the

following lower bound on expression and combined complexity of a query language.

Lemma 4.7 (Gottlob et al. [19]). If a query language is uniformly closed and ex-
presses all MP

2 properties of SUCC!; then its expression complexity and combined
complexity are at least PSpaceNP.

As for disjunctive deductive databases, the following has been shown.

Lemma 4.8 (Gottlob et al. [19]). The language of DDDBs is uniformly closed.

Thus, Theorem 4.5 follows by combining Corollary 4.2, Lemma 4.7, and Lemma 4.8.

5. Computation of data disjunctions

In this section, we consider computing a data disjunction rather than deciding the
existence.

5.1. Data complexity and propositional complexity

The following result is a functional analog to Theorem 4.1 for decision problems. It
shows that the Stewart normal form also applies to non-Boolean queries over ordered
databases.

Theorem 5.1. Let Q be a =xed query. Then; over ordered databases the following
are equivalent.
(1) Q is FPNP

‖ computable.
(2) Q is de=nable by an SNF formula.
(3) There exist a program � and a relation symbol R such that Q(A) is computable

in time polynomial from the unique data disjunction of (A; �) on R.

Proof. (1)⇒ (2): The problem of deciding whether a given tuple -c on A ful0lls
-c∈Q(A) is easily seen to be in MP

2 . Thus, Lemma 2.11 implies that there is an SNF
sentence 3 such that A; -c |= 3 iH -c∈Q(A) (provide -c through a designated singleton

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 115

Table 4

DDDB program for FPNP
‖ queries.

T (min) (1)
S(-u) ∨ T (-v)←T (-u) ∧ succ(-u; -v) (2)

S(max)←T (max) (3)
R(-x; -y;min;min) ∨ R(-x; -y;min;max) ∨ R(-x; -y;max;max)←S(-x -y) (4)

R(-x; -y;min;min) ∨ R(-x; -y;min;max)←S(-x -y) ∧ A(-x -y) (5)
R(-x; -y;min;min)←S(-x -y) ∧ B(-x -y) (6)

relation R -c, and use ∃ -yR -c(-y) to access -c). Hence, there is an open SNF formula ’(-y)
such that A; -c |= ’(-y) iH -c∈ �(A).

(2)⇒ (3): Similarly as in the proof of Theorem 4.1, let ’ be the SNF formula

∃ -x:1(-x; -y) ∧ ¬2(-x; -y)

having the free variables -y. By Lemma 2.12, there exist programs �A and �B con-
taining predicate symbols A and B, respectively, such that for all A(-c; -d)∈HB�A and
B(-c; -d)∈HB�B it holds that

(A; �A) |=MM A(-c; -d) iH A |= 1(-c; -d)

and (A; �B) |=MM B(-c; -d) iH A |= 2(-c; -d):

We have to construct a program � whose unique data disjunction on input A over
relation R contains the information about all tuples in ’A. To this end, consider the
program in Table 4. Let a be the arity of A and B there. Then the new relation
symbols T and S also have arity a, and R has arity a + 2.

The program requires that a successor relation over tuples is available. The lexico-
graphical successor relation can be easily de0ned using datalog rules. Then, lines 1 to
3 enforce that S(-c) holds for at least one -c. Consequently, the unique data disjunction
on -c is the positive clause containing all possible S(-c) on A.

Consider lines 1 to 4 now. If the program would contain only these rules, then line
4 would enforce that the unique data disjunction on R would be the clause

� =
∨

-c; -d on A

R(-c; -d;min;min) ∨ R(-c; -d;min;max) ∨ R(-c; -d;max;max):

Lines 5 and 6, however, remove certain literals from clause �. In particular, it holds
that A |=’(-d) iH there is a -c on A such that A |= 1(-c; -d) ∧ ¬2(-c; -d) iH there is a
-c on A such that the (unique) data disjunction of (�;A) on R contains the clause
R(-c; -d;min;min)∨R(-c; -d;min;max) but not R(-c; -d;max;max). Therefore, ’A is poly-
nomial time computable from the unique data disjunction on R.

(3)⇒ (1): Algorithm DDUniqueness in the proof of Theorem 4.1 will compute the
unique data disjunction of (�;A) in its variable , provided it exists, in polynomial
time with two rounds of parallel NP oracle access for 0xed �, from which the result

116 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

of the query Q(A) is, by the hypothesis, computed in polynomial time. Since
FPNP

‖[2] = FPNP
‖ , the result follows.

The data and propositional complexity of �DD is an easy corollary to this result.

Corollary 5.2. Problem �DD has data complexity and propositional complexity FPNP
‖ .

As we have discussed in Section 2.2, the size of the output may matter in the world
of function computations, as far as the hardness of solving a problem is concerned. In
the context of query languages, functions with small (logarithmic) output size may be
related to the following special class of queries.

De�nition 5.3. A domain element query (DEQ) is a query whose answer relation is a
singleton, i.e., a query Q such that for all A, it holds that |Q(A)|= 1.

For this class of queries, we obtain an analog to Theorem 5.1 which shows that
again a variant of the Stewart normal form as well as computing data disjunctions may
be used for its characterization.

Theorem 5.4. Let Q be a =xed DEQ. Then; over ordered databases the following are
equivalent:
(1) Q is FPNP

‖ [log] computable.
(2) Q(A) is a tuple of SNF witnesses to an SNF sentence.
(3) There exist a program � and a relation symbol R such that Q(A) is de=nable

as a projection of the unique data disjunction over R; where the data disjunction
contains at most two atoms.

(4) There exist a program � and a relation symbol R such that Q(A) is computable
in polynomial time from the unique data disjunction over R where the data dis-
junction contains at most two atoms.

Proof. (2)⇒ (1): Let ’(-x) be the open SNF formula. It follows from Theorem that
for constant -c;A |=’(-c) can be decided in MP

2 by a Turing machine M . Thus, we
construct an FPNP

‖ algorithm which loops over all polynomially many -c, simulates M
on -c, and returns the unique answer. It is easy to see that the queries are non-adaptive.

(1)⇒ (2): For constant -c, the problem of deciding whether -c∈ �(A) is easily seen
to be in MP

2. Thus, there is an SNF formula ’(-x) having the free variables -x for the
constants such that A; -c |=’(-x) iH -c∈ �(A). By Theorem 4.1 we may w.l.o.g. suppose
that the SNF witnesses in ’ are unique.

(2)⇒ (3): Let ’ be an SNF sentence

∃ -x:1(-x) ∧ ¬2(-x)

which has unique SNF witnesses. Then, the program for ’ in part (2)⇒ (3) of the proof
of Theorem 4.1 has a unique data disjunction of the form P(-c; -d;min)∨P(-c; -d;max).
From this data disjunction, the projection on the -d tuple yields the desired result.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 117

(3)⇒ (4): Trivial.
(4)⇒ (1): Let M be the polynomial time Turing Machine which computes the answer

from the unique data disjunction. Then, we use the algorithm DDUniqueness in the
proof of Theorem 4.1 which computes the unique data disjunction in its variable . It
remains to check if the data disjunction is small, and to simulate M . By assumption,
the result has logarithmic size.

The data and propositional complexity of k-�DD is an immediate corollary to this
result.

Corollary 5.5. The data complexity and propositional complexity of k-�DD are
FLNP

log[log].

At this point, the question arises whether we could not have surpassed the reduction
in the proof of (2)⇒ (3) in Theorem 5.1, by exploiting the completeness result on
k-�DD. The next result tells us that this is (presumably) not possible, and that, in
general, disjunctions are needed which are not bounded by a constant in order to have
hardness for FPNP

‖ .

Proposition 5.6. Problem �DD is metric reducible to k-�DD with respect to data
complexity; for some k ¿ 2; if and only if FPNP

‖ = FPNP
log .

Proof. In what follows, we denote for any class C of functions by 6mr(C) the closure
of C under metric reductions.

(⇒) Suppose �DD is metric reducible to k-�DD. Then, Corollary 5.2 implies that
k-�DD is 6mr-complete for FPNP

‖ . Since FLNP
log[log]⊆FPNP

log , this implies FPNP
‖ ⊆ 6mr

(FPNP
log). Clearly, 6mr(FPNP

log)=FPNP
log , and thus FPNP

‖ ⊆FPNP
log . Combined with FPNP

log

⊆FPNP
‖ (cf. Fig. 1), it follows FPNP

‖ = FPNP
log .

(⇐) Suppose that FPNP
log = FPNP

‖ . Let f be any function complete for FPNP
log (such an

f exists). Then, �DD6mrf by hypothesis. We use the following fact.

Fact 5.7. Every function f in FPNP
log is 6mr-reducible to some function g in FLNP

log

[log].

Indeed, Krentel showed that his class OptP[O(log n)] satis0es FPNP
log ⊆ 6mr

(OptP[O(log n)]), and that CLIQUE SIZE (cf. Section 2.2) is OptP[O(log n)]-complete
[26]. Since CLIQUE SIZE is clearly in FPNP

‖ [log] = FLNP
log[log], Fact 5.7 follows by

transitivity of 6mr.
Now Fact 5.7 and Corollary 5.2, together with the hypothesis FPNP

log = FPNP
‖ imply

that

�DD 6mr f 6mr g6mr k-�DD:

By transitivity of 6mr, we obtain �DD 6mr k-�DD.

118 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

5.2. Expression and combined complexity

Finally, we determine the expression complexity of computing the unique data
disjunction.

Theorem 5.8. The expression and combined complexity of �DD is FPSpaceNP; and
the expression and combined complexity of k-�DD is FPSpaceNP[pol].

The proof of the theorem uses succinct upgrade techniques for function problems
whose inputs are given in succinct circuit description. These techniques are described
in detail in the following section.

6. Problems with succinct inputs

6.1. Previous work and methodology

A problem is succinct, if its input is not given by a string as usual, but by a Boolean
circuit which computes the bits of this string. For example, a graph can be represented
by a circuit with 2n input gates, such that on input of two binary numbers v; w of
length n, the circuit outputs true if there is an edge from vertex v to vertex w. In
this way, a circuit of size O(n) can represent a graph with 2n vertices. Suppose that a
graph algorithm runs in time polynomial in the number of vertices. Then the natural
algorithm on the succinctly represented graph runs in exponential time. Similarly, upper
bounds for other time and space measures can be obtained.

The question of lower bounds for succinct problems has been studied in a series of
papers about circuits, including [36, 23, 32, 25, 3, 7, 45], and also about other forms of
succinctness such as representation by Boolean formulas or OBDDs [43, 44]. The 0rst
crucial step in these results is a so-called conversion lemma. It states that reductions
between ordinary problems can be lifted to reductions between succinct problems:

Conversion Lemma. If A6X B; then s(A) 6Y s(B).

Here, s(A) denotes the succinct version of A, while X and Y denote suitable notions
of reducibility where 6Y is transitive.

For the second step, an operator ‘long’ is introduced which is antagonistic to s in
the sense that it reduces the complexity of its arguments. For a binary language A,
long(A) can be taken as the set of strings w whose size |w| written in binary is in A.
Contrary to s, long contains instances which are exponentially larger than the input to
A. For a complexity class C, long(C) is the set of languages long(A) for all A∈C. It
remains to show a second lemma:

Compensation Lemma. A6Y s(long(A)).

Then the following theorem can be derived:

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 119

Theorem 6.1. Let C1; C2 be complexity classes such that long(C1)⊆C2; and let A be
C2-hard under 6X reductions. Suppose that the Conversion Lemma and the Com-
pensation Lemma hold. Then s(A) is C1-hard under 6Y reductions.

Proof. To show C1-hardness, let B be an arbitrary problem in C1. By assumption,
long(B)∈C2, and therefore, long(B) 6X A. By the Compensation Lemma, B 6Y s
(long(B)), and by the Conversion Lemma, we obtain s(long(B)) 6Y s(A). Since 6Y

is transitive, s(A) is C1-hard.

6.2. Queries on succinct inputs

For any !-structure A, let enc(A) denote the encoding of A by a binary string.
The standard way to encode A is to 0x an order on the domain elements, and to
concatenate the characteristic sequences of all relations in A. 3 All Turing machine
based algorithms (and in particular, all reductions) in fact work on enc(A). Therefore,
we shall usually identify A and enc(A) without further notice. We use the further
notation:
• enc(!)⊆{0; 1}∗ denotes the language of all encodings of 0nite !-structures.
• char(A) is the value of the binary number obtained by concatenating a leading 1

with enc(A).
Given a Boolean circuit C with k input gates, gen(C) denotes the binary string of size
2k obtained by evaluating the circuit for all possible assignments in lexicographical
order.

The idea of succinct representation is to represent enc(A) in the form gen(C).
To overcome the mismatch between the fact that the size of enc(A) can be almost
arbitrary, while the size of gen(C) has always the form 2k , we use self-delimiting
encodings:

De�nition 6.2. Let w= (x1; : : : ; xn)∈{0; 1}+. The self-delimiting encoding of w is de-
0ned as sd(w) = (x1; 0; x2; 0; : : : ; xn−1; 0; xn; 1). For a number n, sd(n) = sd(-n), where -n
denotes the binary representation of the number n.

Thus, from a string sd(w)v, where v is an arbitrary string, the bits of w can be
easily retrieved as those on odd positions before the 0rst 1 at an even position in the
string.

De�nition 6.3 (Veith [43]). For a language L⊆{0; 1}∗; let sd(L) be de0ned as the
language

sd(L) = {sd(|w|)wv :w ∈ L and |sd(|w|)wv| = 2r for some r ¿ 1}:

3 The characteristic sequence of a relation R is the binary string ,R(-c1) · · · ,R(-cm) where ,R(x) is the
characteristic function of R and -c1; : : : ; -cm is the lexicographic enumeration of all tuples of the arity of R.
For a graph, it is the concatenation of the rows of its adjacency matrix.

120 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

That is, sd(L) is the language obtained from L by adding to every word in L the
length descriptor and padding the string length to a power of 2.

De�nition 6.4. A function f is computable in polylogarithmic time, if there are two
polylogarithmic time bounded deterministic Turing machines N and M such that on
input x, N computes the size of the output |f(x)|, and on input x and i, M computes
the ith bit of f(x). The class of all functions computable in polylogarithmic time is
denoted by FPLT.

We call any reduction computed by an FPLT function a PLT reduction.

Modulo PLT reductions, self-delimiting encoding is equivalent to standard encoding:

Lemma 6.5 (Veith [43]). Let L⊆{0; 1}∗ be any nonempty language. Then L≡PLT

sd(L).

In particular, this means that there exists an FPLT function ‘extract’, which extracts
a word from its self-delimiting encoding.

De�nition 6.6. Let ! be a relational signature. Associate with every Boolean circuit C
a ! structure gen!(C) as follows:

gen!(C) =

{
extract(gen(C)) if gen(C) ∈ sd(enc(!));

A0; otherwise;

where A0 is some default !-structure. Let Q be any query on !-structures. The succinct
version of Q, denoted s(Q), is given by

s(Q) = {(C; Q(A)): A = gen!(A)}:

A suitable instance of 6Y reducibility as in the conversion lemma is given by a
restriction of metric reductions which we call forgetful. In such reductions, the com-
plexity of the inner function is restricted to FPLT and the outer “forgetful” function
may not access the original problem input.

De�nition 6.7. A function f is forgetfully metric reducible to a function g (in symbols,
f 6mr

f g), if there exist a FPLT function h1 and a polynomial time computable function
h2 such that f(x) = h2(g(h1(x))) for every string x.

It is not hard to see that 6mr
f is transitive. The crucial observation needed to gener-

alize the results about succinct decision problems to succinct function problems is that
the succinct representation aHects only the inner computation in the metric reduction
(i.e., h1), because the result of the succinct function s(F) is not succinct. Thus, if we
are able to lift the inner reductions from ordinary instances to succinct instances, then
we can leave the outer computation (i.e., h2) unchanged. This lifting is achieved by
the following lemma:

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 121

Lemma 6.8 (Immediate from Veith [45]). Let f be a FPLT function which maps
!-structures to 3-structures. Then there exists an FPLT function F such that for
every circuit C it holds that f(gen!(C)) = gen3(F(C)).

A conversion lemma for query computations can now be shown as follows.

Lemma 6.9 (Conversion lemma for queries). Let F be a query over !-structures; and
G be a query over 3-structures. If F 6mr

f G then s(F) 6mr
f s(G).

Proof. By assumption we have F(A) = h2(G(h1(A))). We have to show that there
exist an FPLT function H1 and a polynomial time function H2 such that

[(s(F)](C) = H2([s(G)](H1(C))):

By Lemma 6.8, there is an H1 such that h1(gen!(C)) = gen3(H1(C)), and thus,

[s(G)](H1(C)) = G(h1(gen!(C))):

Then we can set H2 = h2, and the lemma is proved.

It remains to de0ne a suitable ‘long’ operator. Recall that it has to simplify the
complexity of its argument. Following [43], we de0ne long on queries as follows:

De�nition 6.10. Let /= (R1) be a signature with a single unary relation symbol, and
let Q be a query over signature !. Then the query long(Q) is de0ned as follows:

long(Q) = {(B; Q(A)): B is a /-structure; char(A) = |RB|};

where char(A) is the value of the binary number obtained by concatenating a leading
1 with the characteristic sequence of the tuples in A in lexicographical order.

We now obtain a compensation lemma for query computations.

Lemma 6.11 (Compensation lemma for queries). Let F be a query. Then F6mr
f

s(long(F)).

Proof. As in Lemma 6.9, it is suZcient to show that every input A of F can be trans-
lated into a circuit C such that |Rgen/(C)|= char(A). This was shown (using somewhat
diHerent terminology) in [43, Lemma 6].

We thus obtain the following upgrading theorem for query computations.

Theorem 6.12. Let F1;F2 be two classes of functions; such that long(F1)⊆F2.
If a query F is hard for F2 under 6mr

f -reductions, then s(F) is hard for F1 under
6mr

f -reductions.

122 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

6.3. Succinctness and expression complexity

Succinct problems and expression complexity are related by the following method,
which was used in [24, 15] and generalized in [19]. Suppose that a query language L
can express some C2-complete property A. Then, the data complexity of L is trivially
at least C2. If the language is rich enough to simulate a Boolean circuit by a program
of roughly the same size, then it is possible to combine a program for A with a
program for circuit simulation, thus obtaining a program for s(A). Consequently, there
is a reduction from s(A) to the problem of expression complexity for L.

In [15], it was shown how a negation-free DDDB can simulate a Boolean circuit C,
which is represented as collection of its gates. Each gate g is identi0ed by an integer
and described by a unique tuple (a; j; l) where a∈{in; and; or; not} is the type of the
gate and j; l are the identi0ers of the gates resp. bits supplying input to g, where for
a= in, j is the number of the bit in the input string accessed, and for a∈{in; not}, l is
a dummy value. Let C = {gi = (ai; ji; ll); 1 6 i 6 t} be a Boolean circuit that decides
a k-ary predicate R over {0; 1}, i.e., for any tuple -t ∈{0; 1}k supplied to C as input, a
designated output gate of C, which we assume is gt , has value 1 iH -t ∈R.

We describe a program �circuit that simulates C using the universe {0; 1}. For each
gate gi, �C uses a k-ary predicate Gi, where Gi(-x) informally states that on input of
tuple -x to C, the circuit computation sets the output of gi to 1. Moreover, it uses a
nullary predicate False, which is true in those models in which the Gi do not have the
intended interpretation; none of these models will be minimal.

The clauses of �C are the following ones. For each gate gi = (ai; ji; li) of C, it
contains the clause

(00) Gi(-x)← False:

Depending on the type ai; �C contains for gi additional clauses:

ai = in: (01) Gi(x1; : : : ; xji−1; 1; xji+1; : : : ; xk)← :
(02) False ← Gi(x1; : : : ; xji−1; 0; xji+1; : : : ; xk):

ai = not: (03) Gi(-x)∨Gji(-x) ← :
(04) False ← Gji(-x); Gi(-x):

ai = and: (05) Gi(-x) ← Gji(-x); Gli(-x):
(06) Gji(-x) ← Gi(-x):
(07) Gli(-x) ← Gi(-x):

ai = or: (08) Gi(-x) ← Gji(-x):
(09) Gi(-x) ← Gli(-x):
(10) Gji(-x)∨Gli(-x) ← Gi(-x):

The clauses (00) ensure that if a model of ground(�C; {0; 1}) contains False, then it
is the maximal interpretation possible in which all facts are true (which is

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 123

clearly a model of �C). In fact, this is the only model of �C that contains False. Let MC

denote the interpretation given by MC = {Gi(-t) | gi ∈C; -t ∈{0; 1}k ; and gi takes value
1 on input -t to C}.

Lemma 6.13 (Eiter et al. [15]). For any Boolean circuit C; MC is the unique minimal
model of �C.

Armed with these results, we now prove the result stated in Section 5.2.

Proof of Theorem 5.8. Membership of �DD in FPSpaceNP and k-�DD in FPSpaceNP

[pol], respectively, follows from the usual increase of the data complexity by a single
exponential. We thus concentrate on the hardness parts.

�DD: circuit solved. It is not hard to see that FPNP
‖ contains some query Q which

is complete under 6mr
f -reductions. For example, QUERY from Section 2.2 is such a

problem: the function h1 in any metric reduction (h1; h2) of a function g to QUERY
can be shifted inside the oracle queries in polylogarithmic time, and the bits of the
input string x can be provided to h2 through dummy oracle queries. Furthermore,
long(FLinSpaceNP)⊆FPNP

‖ holds. Thus, by Theorem 6:12, s(Q) is complete for

FLinSpaceNP. By standard padding arguments, completeness for FLinSpaceNP implies
completeness for FPSpaceNP. Thus, it remains to reduce s(Q) to �DD.

By Lemma 6.13, a circuit C with k input gates can be converted into a disjunc-
tive program �C whose k-ary output relation R describes the string gen(C). Consider
the query Q′(A) =Q(extract(A)), where A is an ordered input structure which de-
scribes a string by a unary relation. Clearly, Q′(A) is in FPNP

‖ . Theorem 5.1 thus
implies that there exist a program � and a relation symbol S such that the unique
data disjunction of (A; �) on S describes the result of Q′(A). Since DDDBs are
uniformly closed (Lemma 4.8), � can be rewritten into a program �′ whose in-
put relation R has arity k. As in the proof of Theorem 5.1, we can assume that
there is a lexicographical successor relation on k-tuples computed by �′. By well-
known modularity properties of DDDBs [15, Section 5], the program �′ ∪ �C in-
deed computes Q on s(A). Since �′ ∪ �C can be constructed in polynomial time, it
follows s(Q) 6mr �DD.

k-�DD: Like FLNP, also FLNP
log contains 6mr

f -complete queries. For example, a vari-
ant of CLIQUE SIZE in which circuits C1; C2 computing the functions h1; h2 in a
metric reduction of a function g to CLIQUE SIZE are part of the problem instance, is
6mr

f -complete for FLNP
log. The proof is then similar to the one for �DD.

7. Further results

In this section, we consider a restricted form of data disjunction and apply our results
to closed-world reasoning in databases.

124 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

7.1. Restricted data disjunctions

In [16], a stronger notion of data disjunction R(-c1)∨· · ·∨R(-cm) is considered, which
requests in addition that all disjuncts R(-ci) are identical up to one argument of the list
of constants -ci; that is, if -ci = ci;1; : : : ; ci; k for i∈{1; : : : ; m}, then ci; j = ci′ ; j holds for
all i; i′ ∈{1; : : : ; m} and j∈{1; : : : ; k}\{j′}, where j′ is the argument on which the
tuples -ci may disagree. We call any such data disjunction restricted. Note that all data
disjunctions considered in Section 1 are restricted.

For the problems reformulated to restricted data disjunctions, Table 1 in Section 1
is the same except that the expression and combined complexity of �DD is FPSpaceNP

[pol]. Indeed, a restricted data disjunction C has at most m disjuncts where m= |HUDB|
is the number of constants, and thus �DD has O(n2 log n) many output bits in the com-
bined complexity case, where n is the size of DB. The number of maximal disjunctions
md(DB; R), adapted to restricted data disjunctions, is polynomial in the data size, and
thus the same upper bounds can be easily derived as for unrestricted data disjunctions.
All hardness results are immediate from the proofs except for propositional and data
complexity of �DD; here, mapping tuples -c of elements to newly introduced (polyno-
mially many) domain elements is a suitable technique for adapting the construction in
Table 4 in the proof of Theorem 5.1.

Finally, we remark that Lemma 2.12 remains true even if all disjunctions in the
program �’ describe restricted data disjunctions. Thus, by a slight adaptation of the
programs in proofs and exploiting the fact that disjunction-free datalog with input
negation is suZcient for upgrading purposes [15], the complexity results for restricted
data disjunction remain true even if all disjunctions in DB must be restricted data
disjunctions.

7.2. Closed world reasoning

The results on data disjunctions that we have derived above have an immediate
application to related problems in closed world reasoning in databases.

Reiter [37] has introduced the closed-world assumption (CWA) as a principle for
inferring negative information from a logical database. Formally,

CWA(DB) = ground(DB) ∪ {¬A |A ∈ HBDB and DB �|= A}:

For example, CWA({P(a); Q(b)}) = {P(a); Q(b);¬P(b);¬Q(a)}. It follows from re-
sults in [12] that computing CWA(DB) has propositional complexity FPNP

‖ .
Observe that CWA(DB) may not be classically consistent (under Herbrand inter-

pretations); for example, CWA({P ∨Q}) = {P ∨Q;¬P;¬Q} which has no model. As
shown in [12], deciding whether CWA(DB) is consistent is in MP

2 and coNP-hard in
the propositional case; the precise complexity of this problem is open.

In a re0ned notion of partial CWA (cf. [17]), which is in the spirit of protected
circumscription [35], only atoms A involving a particular predicate P or, more gen-
eral, predicates Pi from a list of predicates P=P1; : : : ; Pn may be negatively concluded

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 125

from DB:

PCWA(DB;P) = ground(DB) ∪ {¬Pi(-c) |Pi ∈ P; Pi(-c) ∈ HBDB; DB �|= Pi(-c)}:

E.g.,

CWA({P(a); Q(b)};P) = {P(a); Q(b);¬P(b)}:

Semantically, the partial closed world assumption can be characterized in terms of
minimal models.

De�nition 7.1 (P-minimal model). Let P=P1; : : : ; Pn be a list of predicates and DB
a DDDB. For any model M of DB, let M [P] = {Pi(-c)∈M : Pi ∈P} be the restric-
tion of M to P. Then, de0ne the preorder 4P on the models of a DB by M 4P M ′

⇔ M [P]⊆M ′[P]; as usual, M ′≺M denotes M ′ 4P M ∧M �4P M ′. A model M is P-
minimal for DB, if there exists no model M ′ such that M ′≺ M .

We remark that a P-minimal model is a special case of the notion of P;Z minimal
model [29], given by an empty list of 0xed predicates in a circumscription.

The following proposition characterizes consistency of PCWA in terms of data dis-
junctions and P-minimal models, respectively.

Proposition 7.2. Let DB be a DDDB and P a predicate. Then; the following state-
ments are equivalent:
(1) DB has a data disjunction on P.
(2) PCWA(DB;P) is not consistent.
(3) DB does not have a single P-minimal model M .

Proof. (1)⇒ (2): Suppose �=P(-c1) ∨ · · · ∨ P(-cn), n¿2, is a data disjunction of DB.
Then, DB �|=P(-ci), which means ¬P(-ci)∈PCWA(DB;P), for every i= 1; : : : ; n. Since
ground(DB)⊆PCWA(DB;P), DB |= � implies that PCWA(DB;P) |= �. Consequently,
PCWA(DB;P) is not consistent.
¬(3) ⇒ ¬(2): Suppose DB has a single P-minimal model M . Then, for each atom

P(-c)∈HBDB it holds that DB �|=P(-c) iH M �|=P(-c), since M has the unique small-
est P-part over all models of DB. Hence, M is model of PCWA(DB;P), and thus
PCWA(DB;P) is consistent.

(3) ⇒ (1): Suppose DB has not a single P-minimal model. Let M1; : : : ; Mn be the
collection of all P-minimal models M of DB, where w.l.o.g. M1 �4P M2 and M2 �4P M1.
Let X =M1[P]∪M2[P], and let P(-c1)∈M1\M2 and P(-c2)∈M2\M1 be arbitrary atoms.
Then, Mi |= � where �=

∨{P(-c): P(-c) ∈ (HBDB\X)∪{P(-c1); P(-c2)}} holds for ev-
ery i= 1; : : : ; n. Indeed, clearly M1 |= � and M2 |= �; if, for some i ¿ 2, Mi �|= �, then
Mi[P]⊆X ⊂M1[P] would hold, which contradicts the P-minimality of M1. It follows
DB |=MM �. Obviously, DB �|=MM �\P(-c1) and DB �|=MM �\P(-c2). It follows that � con-
tains a data disjunction on predicate P (which contains P(-c1) ∨ P(-c2)).

126 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

As for P-minimality, the predicates in a list P of predicates can, by simple coding,
be replaced with a single predicate P: replace atoms P1(x; y) and P2(z), etc. with
P(1; x; y); P(2; z), etc. where the 0rst argument in P codes the predicate. This coding
is compatible with P-minimality, i.e., P-minimal and P-minimal models correspond as
obvious. From Proposition 7.2 and the results of the previous sections, we thus obtain
the following result.

Theorem 7.3. Deciding consistency of PCWA(DB;P) and existence of a single
P-minimal model of DB have both MP

2 propositional and data complexity; and
PSpaceNP program and expression complexity.

By the same coding technique, the result in Theorem 7.3 holds even if the language
has only two predicates and P contains a single predicate. On the other hand, if the
language has a only one predicate P, then the existence of a data disjunction on P is
equivalent to the consistency of CWA(DB).

8. Conclusion

In this paper, we have considered the complexity of some problems concerning data
disjunctions in deductive databases. In our analysis, we have taken an “engineering
perspective” on deriving complexity results using tools from descriptive complexity
theory, and combined them with techniques for upgrading existing complexity results
on ordinary instances to succinct representations of the problem input. In particular,
we have also investigated the complexity of actually computing data disjunctions as a
function, rather than only the associated decision problem. This led us to generalize
upgrading techniques developed for decision problems to computations of functions.
These upgrading results, in particular Theorem 6:12, may be conveniently used in
other contexts.

The tools as used and provided in this paper allow for a high-level analysis of the
complexity of problems, in the sense that establishing certain properties and schematic
reductions are suZcient in order to derive intricate complexity results in a clean and
transparent way, without the need to deal with particular problems in reductions. This is
exempli0ed by our analysis of data disjunctions. While this high-level approach relieves
us from spelling out detailed technical constructions, the understanding of what makes
the problem computationally hard may be blurred. In particular, syntactical restrictions
under which the complexity remains the same or is lowered can not be immediately
inferred. We leave such considerations for further work. Another interesting issue for
future work is the consideration of computing data disjunctions viewed as a multi-
valued function, which we have not done here.

Acknowledgements

We are grateful to Iain Stewart and Georg Gottlob for discussions and remarks.

T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128 127

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.
[2] V. Arvind, J. Tor[an, Sparse sets, approximable sets, and parallel queries to NP, in: C. Meinel, S.

Tison (Eds.), Proc. 16th Symp. on Theoretical Aspects of Computing (STACS ’99), Lecture Notes in
Computer Science, Vol, 1563, Trier, March 1999, Springer, Berlin, pp. 281–290.

[3] J. Balc[azar, A. Lozano, J. Tor[an, The complexity of algorithmic problems on succinct instances, in: R.
Baeta-Yates, U. Manber (Eds.), Computer Science, Plenum Press, New York, 1992, pp. 351–377.

[4] R. Beigel, NP-hard sets are P-superterse unless R=NP, Tech. Report TR4, CS Dept., Johns Hopkins
University, 1988.

[5] P. Bonatti, Autoepistemic logics as a unifying framework for the semantics of logic programs, J. Logic
Program. 22 (1995) 91–149.

[6] P.A. Bonatti, T. Eiter, Querying disjunctive databases through nonmonotonic logics, Theoret. Comput.
Sci. 160 (1996) 321–363.

[7] B. Borchert, A. Lozano, Succinct circuit representations and leaf languages are basically the same
concept, Inform. Process. Lett. 58 (1996) 211–215.

[8] H. Buhrmann, L. Fortnow, L. Torenvliet, Six hypotheses in search of a theorem, in: Proc. 12th IEEE
Internat. Conf. on Computational Complexity (CCC ’97), 1997, pp. 2–12.

[9] S. Buss, L. Hay, On truth-table reducibility to SAT, Inform. Comput. 91 (1991) 86–102.
[10] M. Cadoli, M. Lenzerini, The complexity of propositional closed world reasoning and circumscription,

J. Comput. System Sci. 43 (1994) 165–211.
[11] J. Dix, Semantics of logic programs: their intuitions and formal properties. An overview, in: Fuhrmann,

H. Rott (Ed.), Logic, Action and Information. Proc. Konstanz Coll. in Logic and Information (LogIn’92),
DeGruyter, Berlin, 1995, pp. 241–329.

[12] T. Eiter, G. Gottlob, Propositional circumscription and extended closed world reasoning are
�P

2 -complete, Theoret. Comput. Sci. 114(2) (1993) 231–245, Addendum 118, 315.
[13] T. Eiter, G. Gottlob, The complexity class AP

2: recent results and applications in AI and modal logic,
in: B. Chlebus, L. Czaja (Eds.), Proc. 11th Internat. Symp. on Fundamentals of Computation Theory
(FCT ’97), Lecture Notes in Computer Science, Vol. 1279, Springer, Berlin, 1997, pp. 1–18.

[14] T. Eiter, G. Gottlob, Y. Gurevich, Normal forms for second-order logic over 0nite structures, and
classi0cation of NP optimization problems, Ann. Pure Appl. Logic 78 (1996) 111–125.

[15] T. Eiter, G. Gottlob, H. Mannila, Disjunctive datalog, ACM Trans. Database Systems 22 (3) (1997)
(364–417).

[16] Z.K.J. Fern[andez, J. Minker, A tractable class of disjunctive deductive databases, in: Proc. Workshop
on Deductive Databases, JICSLP-92, Washington, DC, 1992. Tech. Report CITRI=TR-92-65, CS Dept,
Univ. Melbourne, pp. 11–20.

[17] M. Genesereth, N. Nilsson, Logical Foundations of Arti0cial Intelligence, Morgan Kaufmann, Los Altos,
CA, 1987.

[18] G. Gottlob, Relativized logspace and generalized quanti0ers over ordered 0nite structures, J. Symbolic
Logic 62 (2) (1997) 545–574.

[19] G. Gottlob, N. Leone, H. Veith, Succinctness as a source of complexity in logical formalisms, Ann.
Pure Appl. Logic 97 (1999) 231–260.

[20] H. Hwang, A. Fu, H.-F. Leung, Data-disjunctive deductive databases, manuscript, 1997.
[21] T. Imielinski, K. Vadaparty, Complexity of query processing in databases with OR-objects, in:

Proc. 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1989,
pp. 51–65.

[22] B. Jenner, J. Toran, Computing functions with parallel queries to NP, Theoret. Comput. Sci. 141 (1995)
175–193.

[23] M. Karpinski, K. Wagner, The computational complexity of graph problems with succinct multigraph
representation, Z. Oper. Res. (ZOR) 32 (1998) 201–211.

[24] P. Kolaitis, C.H. Papadimitriou, Why not negation by 0xpoint? J. Comput. System Sci. 43 (1991)
125–144.

[25] M. Kowaluk, K. Wagner, Vector language: simple descriptions of hard instances, in: Mathematical
Foundations of Computer Science (MFCS), Lecture Notes in Computer Science, Vol. 452, Springer,
Berlin, 1992, pp. 378–384.

128 T. Eiter, H. Veith / Theoretical Computer Science 288 (2002) 101–128

[26] M. Krentel, The complexity of optimization problems, J. Computer System Sci. 36 (1988) 490–509.
[27] R. Ladner, N. Lynch, Relativization questions about logspace computability, Math. Systems Theory 10

(1976) 19–32.
[28] R. Ladner, N. Lynch, A. Selman, Comparison of polynomial-time reducibilities, Theoret. Computer Sci.

1 (1975) 103–123.
[29] V. Lifschitz, Computing circumscription, in: Proc. Internat. Joint Conf. on Arti0cial Intelligence

(IJCAI-85) 1985, pp. 121–127.
[30] J. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1984, 1987.
[31] J. Lobo, J. Minker, A. Rajasekar, Foundations of Disjunctive Logic Programming, MIT Press,

Cambridge, MA, 1992.
[32] A. Lozano, J. Balc[azar, The complexity of graph problems for succinctly represented graphs, in: Proc.

15th Internat. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer
Science, Vol. 411 Castle Rolduc, The Netherlands, 1989, pp. 277–286.

[33] J. Minker, On inde0nite data bases and the closed world assumption, in: D. Loveland (Ed.), Proc. 6th
Conf. on Automated Deduction (CADE ’82), Lecture Notes in Computer Science, Vol. 138, New York,
Springer, Berlin, 1982, pp. 292–308.

[34] J. Minker, Logic and databases: a 20 year retrospective, in: Proc. Internat. Workshop on Logic in
Databases (LID ’96), Lecture Notes in Computer Science, Vol. 1154 Springer, Berlin, 1996, pp. 3–57.

[35] J. Minker, D. Perlis, Computing protected circumscription, J. Logic Program. 2 (4) (1985) 235–249.
[36] C. Papadimitriou, M. Yannakakis, A note on succinct representations of graphs, Inform. Comput. 71

(1985) 181–185.
[37] R. Reiter, On closed-world databases, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum

Press, New York, 1978, pp. 55–76.
[38] A. Selman, A taxonomy of complexity classes of functions, J. Comput. System Sci. 48 (1994) 357–381.
[39] I. Stewart, Logical characterizations of bounded query classes I: logspace oracle machines, Fund. Inform.

18 (1993) 65–92.
[40] I. Stewart, Logical characterizations of bounded query classes II: polynomial-time oracle machines,

Fund. Inform. 18 (1993) 93–105.
[41] S. Toda, On polynomial-time truth-reducibilities of intractable sets to P-selective sets, Math. Systems

Theory 24 (1991) 69–82.
[42] M. Vardi, Complexity of relational query languages, in: Proc. 14th STOC, San Francisco, 1982, pp.

137–146.
[43] H. Veith, Languages represented by Boolean formulas, Inform. Process. Lett. 63 (1997) 251–256.
[44] H. Veith, How to encode a logical structure by an OBDD, in: 13th Ann. IEEE Conf. on Computational

Complexity (CCC), 1998, pp. 122–131.
[45] H. Veith, Succinct representation, leaf languages, and projection reductions, Inform. Comput. 142 (2)

(1998) 207–236.
[46] K. Wagner, Bounded query classes, SIAM J. Comput. 19 (5) (1990) 833–846.

