
Theoretical Computer Science 288 (2002) 85–100
www.elsevier.com/locate/tcs

On the Hamming distance of
constraint satisfaction problems�

P. Crescenzi, G. Rossi ∗

Dipartimento di Sistemi e Informatica, Universit�a di Firenze, Via C. Lombroso 6=17,
50134 Firenze, Italy

Abstract

In this paper we consider a new optimization problem, called MAX HAMMINGDISTANCE(F)
where F is a family of Boolean constraints. This problem consists in 2nding two satisfying
assignments that di3er in the maximum number of variable values: in other words, the problem
looks for the maximum di3erence between two models of the constraints given in input. We
give a complete classi2cation of the approximability properties of MAX HAMMINGDISTANCE(F)
by using a specialization of the criteria introduced by Schaefer in order to classify constraint
satisfaction problems and subsequently used by Khanna, Sudan, Trevisan, and Williamson to
classify constraint satisfaction optimization problems. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Satis2ability; Computational complexity; Approximation algorithms

1. Introduction

Many researchers encounter problems which can be modelled as special cases of the
so-called constraint satisfaction problem (CSP). For example, the problems of schedul-
ing a collection of tasks, or laying out a silicon chip, or interpreting a visual image,
can all be seen in this way. In a CSP, we distinguish one or more variables, each vari-
able having a given (2nite or in2nite) set of possible values (domain of a variable),
and a 2nite set of constraints on these variables. The problem is to 2nd a feasible
variable-value assignment, for example, an assignment of each variable to exactly one
element from its domain, such that all constraints are satis2ed.

� Research partially supported by Italian MURST Project “Algoritmi per Grandi Insiemi di Dati: Scienza
ed Ingegneria”.

∗ Corresponding author.
E-mail addresses: piluc@dsi.uni2.it (P. Crescenzi), rossig@dsi.uni2.it (G. Rossi).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00146 -3

86 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

If both the number of variables and the variable domains are 2nite, then any CSP
can be solved in 2nite time. Thus the main area of concern when solving these types
of problems is doing so in a computationally eIcient manner. There are two main
families of algorithms used to solve CSPs [10]: backtrackers and constraint propaga-
tors. Backtracking involves instantiating each variable (that is, giving it a value from
its domain) sequentially, and checking to see if the set of instantiated variables satis-
2es all constraints involving the variables instantiated so far. Constraint propagation,
instead, involves propagating constraints between di3erent variables, to derive a sim-
pler problem: in some cases (depending on the problem and the degree of constraint
propagation applied), the resulting CSP is so simple that its solution can be found
without any search.
Although the performance of backtracking and constraint propagation can be im-

proved by means of several techniques, the running time of the resulting algorithms is
still exponential in the general case. This is due to the intrinsic computational com-
plexity of CSPs. Indeed, it is well-known that even 3-SATISFIABILITY, that is, the CSP
restricted to binary domains with constraints formed by the disjunction of at most three
(negated) variables, is NP-complete [4] and, hence, does not admit a polynomial-time
algorithm (unless P=NP).
There exist, however, special cases of the CSP which are eIciently solvable. For

example, if we consider binary domains and constraints formed by the disjunction of
at most two (negated) variables, then the corresponding CSP (called 2-SATISFIABILITY)
is solvable in polynomial time.
The need for a uni2ed study of the computational complexity of the CSP is then

quite natural. In this paper, we restrict ourselves to the so-called Boolean CSPs, that
is, CSPs in which each constraint belongs to a 2nite set F of Boolean functions and
an instance of the problem consists of a 2nite number of constraint applications. The
complete classi2cation of this kind of CSPs has been given by Schaefer [14] who
describes six classes of function families, such that if F is a subset of one of these
classes, then the corresponding CSP is solvable in polynomial time, otherwise it is
NP-complete: this classi2cation is presented in Section 2.
In several applications, not all solutions (that is, variable assignments) of an instance

of a CSP are equally good and an optimization function on the solutions is de2ned. In
these cases, the problem consists of 2nding the best solution among all feasible ones:
since this kind of problems is obtained by a CSP plus an optimization criterion, we
call it constraint satisfaction optimization problem (CSOP). The solution of a CSOP
may use techniques suitable for optimization problems, such as branch-and-bound or
genetic algorithms, but it should be clear that a CSOP cannot be easier to solve than the
underlying CSP. The advantage of de2ning an optimization function on the solutions,
however, is that in this case, whenever determining an optimal solution is extremely
time consuming due to the inherent complexity of the CSOP, we can restrict ourselves
to compute an approximate solution.
In this paper, we are interested in the so-called performance guarantee approximate

solutions, that is, solutions whose performance ratio with respect to the optimal solution

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 87

is guaranteed to be bounded by a function of the size of the instance of the problem
(see, for example, [1]). In particular, we will consider two CSOPs: the maximum ones
problem and the maximum Hamming distance problem.
The maximum ones problem consists in 2nding a satisfying assignment with the

maximum number of variables whose value has been set to 1. This problem has been
studied in [9] where a complete classi2cation of its approximability properties is given:
this classi2cation is presented in Section 3. It is interesting to observe that this result
is based on the same classes of function families introduced by Schaefer: indeed, the
only di3erence is that two of these classes have to be split into two subclasses. This
is a sign that Schaefer’s criteria are suIciently robust to classify CSOPs even though
they were originally introduced to classify CSPs.
In corrobation of the above statement, we consider in this paper a new optimization

problem, called MAX HAMMINGDISTANCE(F) where F is a constraint family. This prob-
lem consists in 2nding two satisfying assignments that di3er in the maximum number
of variable values (see Section 4): in other words, the problem looks for the maxi-
mum di3erence between two worlds consistent with the constraints given in input. In
Section 5 we give a complete classi2cation of the approximability properties of MAX

HAMMINGDISTANCE(F) by using, once again, a specialization of Schaefer’s criteria (see
also Fig. 2). In particular, even though this new problem is strictly related to the max-
imum ones problem, our classi2cation leads to the de2nition of three new criteria and
does not make use of three criteria that appear in the classi2cation of the maximum
ones problem.
Finally, we recall that in [7–9] classi2cation results based on similar criteria have

been obtained both for minimization CSPs (such as the minimum ones problem)
and for partial CSPs. These latter problems consist of 2nding an assignment that
maximizes (respectively, minimizes) the number of satis2ed (respectively, unsatis2ed)
constraints.

1.1. Preliminaries

We assume the reader to be familiar with basic notions of computational complexity
theory (see [2, 3, 12]). We now review some de2nitions related to CSPs and approxi-
mation theory.
Constraints, constraint families, and satis6ability: A (k-ary) Boolean constraint is

a function f : {0; 1}k →{0; 1}. A constraint f is satis6ed by an assignment �∈{0; 1}k

if f(�)= 1. A Boolean constraint family F is a 2nite collection of Boolean con-
straints. A constraint application of a Boolean constraint f on n Boolean variables
is a pair 〈f; 〈i1; : : : ; ik〉〉 where ij belongs to {1; : : : ; n} and indicates the variable that
is the jth input of f, for j=1; : : : ; k. A constraint application 〈f; 〈i1; : : : ; ik〉〉 on n
Boolean variables is satis2ed by an assignment �∈{0; 1}n if the restriction of � to the
indices i1; : : : ; ik satis2es f. A collection of constraint applications on the same set of
n variables is satis2ed by an assignment �∈{0; 1}n if each constraint application is
satis2ed by �.

88 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

Approximability, reductions and completeness: The basic ingredients of an NP opti-
mization problem are the set of instances, the set of feasible solutions associated to any
instance, and the integer measure m(x; y) de2ned for any instance x and for any feasi-
ble solution y. The problem is speci2ed as a maximization problem or a minimization
problem depending whether its goal is to 2nd a solution whose measure is maximum
or minimum (in the following opt will denote the function mapping an instance x to
the measure of an optimal solution). The class NPO is the set of all NP optimization
problems (for a formal de2nition of this class see [1, 3]). An NPO problem A belongs
to the class PO if there exists a polynomial-time algorithm T that, for any instance x
of A, returns an optimal solution for x.
Let A be an NPO problem. Given an instance x and a feasible solution y of x, we

de2ne the performance ratio of y with respect to x as

R(x; y) = max
{
m(x; y)
opt(x)

;
opt(x)
m(x; y)

}
:

Let T be an algorithm that, for any instance x of A, returns a feasible solution T (x).
Given an arbitrary function r :N → (1;∞), we say that T is an r(n)-approximate
algorithm for A if, for any instance x, the performance ratio of the feasible solution
T (x) with respect to x veri2es the following inequality:

R(x; T (x))6 r(|x|):

Given a class of functions F , an NPO problem A belongs to the class F-APX if there
exists an r(n)-approximate polynomial-time algorithm T for A, for some function r ∈F .
In particular, APX and POLYAPX will denote the classes F-APX with F equal to the set
of constant functions and to the set of polynomials, respectively.
An NPO problem A belongs to the class PTAS if there exists an algorithm T such

that, for any 2xed rational r¿1, T (·; r) is a polynomial-time r-approximate algorithm
for A.
Let A and B be two NPO problems. A is said to be L-reducible to B if there exist

two polynomial-time computable functions f and g and two positive constants � and
� such that
(i) For any instance x of A, f(x) is an instance of B such that

opt(f(x))6 �opt(x):

(ii) For any instance x of A and for any feasible solution y of f(x), g(x; y) is a
feasible solution of x such that

|opt(x)− m(x; g(x; y))|6 �|opt(f(x))− m(f(x); y)|:

The quadruple (f; g; �; �) is said to be an L-reduction from A to B. In [13] it is shown
that if A L-reduces to B and A �∈PTAS, then B �∈PTAS.

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 89

Let A and B be two NPO problems. A is said to be A-reducible to B if there exist
two polynomial-time computable functions f and g and a positive constant � such that
(i) For any instance x of A, f(x) is an instance of B.
(ii) For any instance x of A and for any feasible solution y of f(x), g(x; y) is a

feasible solution of x.
(iii) For any rational r¿1, for any instance x of A, and for any feasible solution y of

f(x), R(f(x); y)6r implies R(x; g(x; y))6�r.
The triple (f; g; �) is said to be an A-reduction from A to B. In [5] it is shown that if
A A-reduces to B and A �∈APX, then B �∈APX.

An optimization problem A in APX is said to be APX-complete if, for any B∈APX, B
L-reduces to A. Finally, an optimization problem A in POLYAPX is said to be POLYAPX-
complete if, for any B∈POLYAPX, B A-reduces to A. Intuitively, the APX-complete
(respectively, POLYAPX-complete) problems are the hardest ones within the class APX

(respectively, POLYAPX).

2. The Schaefer’s theorem

The 2rst classi2cation result we present in this paper is due to Schaefer [14] and
deals with the following CSP (observe that the following de2nition depends on the
speci2c constraint family F).

De�nition 1 (SATISFIABILITY(F)). Let C be a collection of m constraint applications of
the form {〈fj; 〈i1(j); : : : ; ikj (j)〉〉: j=1; : : : ; m}, on Boolean variables X = {x1; : : : ; xn}
where fj ∈F and kj is the arity of fj. The SATISFIABILITY(F) problem with input C
consists in 2nding an assignment that satisfy all the constraint applications in C.

In order to classify the above problem, Schaefer introduces the following six criteria: 1

0-validity: A Boolean constraint f is 0-valid if f(0; : : : ; 0)=1.
1-validity: A Boolean constraint f is 1-valid if f(1; : : : ; 1)=1.
Weakly positivity: A Boolean constraint f is weakly positive if f can be expressed

as a CNF-formula with at most one negated variable in each clause.
Weakly negativity: A Boolean constraint f is weakly negative if f can be expressed

as a CNF-formula with at most one positive variable in each clause.
A=nity: A Boolean constraint f is a=ne if it can be expressed as a conjunction of

linear equalities in Z2.
2CNF: A Boolean constraint f is 2CNF if it can be expressed as a CNF-formula

with at most two literals per clause.

1 Recall that a Boolean formula is in conjunctive normal form (CNF) if it is the conjunction of a 2nite
set of clauses. A clause is the disjunction of a 2nite set of literals, where a literal is either a variable or
the negation of a variable.

90 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

A constraint family F is 0-valid (respectively, 1-valid, weakly positive, weakly
negative, aIne, and 2CNF) if all its constraints are 0-valid (respectively, 1-valid,
weakly positive, weakly negative, aIne, and 2CNF).
We are now ready to state Schaefer’s result.

Theorem 2 (SATISFIABILITY(F) classi2cation, Schaefer [14]). Given a constraint fam-
ily F; SATISFIABILITY(F) is either in P or NP-complete. In particular; if F is 0-valid;
1-valid; weakly positive; weakly negative; a=ne; or 2CNF; then SATISFIABILITY(F) is
in P. Otherwise; SATISFIABILITY(F) is NP-complete.

3. The KSW’s theorem

The next classi2cation result deals with a CSOP. In order to de2ne this problem,
we introduce the following notation: given an assignment �∈{0; 1}n, ones(�) denotes
the number of ones in �.

De�nition 3 (MAX ONES(F)). Let C be a collection of m constraint applications of
the form {〈fj; 〈i1(j); : : : ; ikj (j)〉〉: j=1; : : : ; m}, on Boolean variables X = {x1; : : : ; xn}
where fj ∈F and kj is the arity of fj. The MAX ONES(F) problem with input C
consists in 2nding an assignment � that satisfy all the constraint applications in C and
such that ones(�) is maximum.

In order to classify the above problem, Khanna, Sudan, and Williamson (KSW)
introduce the following two new criteria:
Strongly 0-validity: A Boolean constraint f is strongly 0-valid if it is satis2ed by

all assignments with at most one 1.
Width-2 a=nity: A Boolean constraint f is width-2 a=ne if it can be expressed as

a conjunction of linear equalities in Z2 with at most 2 terms.
A constraint family F is strongly 0-valid (respectively, width-2 aIne) if all its

constraints are strongly 0-valid (respectively, width-2 aIne).
We are now ready to state KSW’s result.

Theorem 4 (MAX ONES(F) classi2cation, Khanna et al. [9]). Given a constraint fam-
ily F; MAX ONES(F) is either in PO or APX-complete or POLYAPX-complete or in NPO

but not approximable to within any factor. In particular; the following hold:
(i) If F is 1-valid or weakly positive or width-2 a=ne; then MAX ONES(F) is in

PO.
(ii) Else if F is a=ne; then MAX ONES(F) is APX-complete.
(iii) Else if F is strongly 0-valid or weakly negative or 2CNF; then MAX ONES(F)

is POLYAPX-complete.
(iv) Else if F 0-valid; then 6nding a solution of MAX ONES(F) with positive measure

is NP-hard.
(v) Else 6nding a feasible solution of MAX ONES(F) is NP-hard.

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 91

4. The maximum Hamming distance problem

Boolean constraint families are often intended to tell us things about the world. These
things can be either objects or properties of objects. For instance, let us consider
an instance of the blocks world problem that is a standard problem in knowledge
representation [6]. Assume that the only knowledge we have of the instance is that
there are three blocks a, b, and c and that block a is above block c. Clearly, if a block
is on another block then it cannot be on the table and at least one block must be on
the table. This knowledge can be modelled as follows.
We introduce three Boolean variables xa, xb, and xc that specify whether the block

a, b, and c, respectively, is on the table and three Boolean variable xab, xac, and xbc

that specify whether the 2rst block is on the second one. Then, we de2ne the following
collection C of 2ve constraint applications on these six Boolean variables:
• f1(xab; xac; xbc)= xac ∨ (xab ∧ xbc). This constraint states that block a is above block

c: indeed, either a is on c or a is on b that, in turn, is on c.
• f2(xa; xb; xc)= xa ∨ xb ∨ xc. This constraint states that at least one block must be on
the table.

• f3(xa; xab; xac)= (xab ∨ xac)→¬xa. This constraint states that if block a is on another
block, then it cannot be on the table. Constraints f4 and f5 are similarly de2ned for
blocks b and c, respectively.

It is easy to see that any assignment to the variables xa, xb, xc, xab, xac, and xbc that
satis2es C must assign the value 0 to variable xa. Indeed, as a consequence of our
knowledge (that is, block a is above block c), we can infer that block a is not on the
table. However, there exist several distinct assignments that satisfy C which correspond
to distinct con2gurations of our blocks world (see Fig. 1).
The question we address in this paper is how we can measure the di3erence between

any pair of these four alternative worlds. In a certain sense, we would like to de2ne a
measure of ignorance in order to quantify how much we do not know about the real
world. In the case of the blocks world, a natural distance between two con2gurations
that are consistent with our knowledge can be de2ned as the number of legal move
actions necessary to transform one con2guration into the other (observe that a move
action is legal only if both the block being moved and the target location are clear
when the action is attempted). Referring to the previous example, the distances between

Fig. 1. Four di3erent blocks worlds.

92 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

each pair of the four worlds are shown in the following table:

World 2World 3World 4
World 1 3 1 3
World 2 4 4
World 3 4

The move action distance, however, is strictly dependent on the fact that we are dealing
with the blocks world, that is, on the semantic of the collection C of constraint appli-
cations. The following de2nition introduces a measure of ignorance that, instead, can
be used for any collection of constraint applications, independently of the interpretation
of its satisfying assignments.

De�nition 5 (Hamming distance between assignments). Given a set of Boolean vari-
ables X , the Hamming distance of two assignment �1 and �2 to X (in symbols,
dH (�1; �2)) is de2ned as the number of positions on which �1 and �2 disagree.

According to the above de2nition, we can de2ne the Hamming distance of a col-
lection of constraint applications as the maximum Hamming distance between any two
satisfying assignments. In the case of the previous example, we have four satisfying
assignments to {xa; xb; xc; xab; xac; xbc}, that is, �1 = (0; 1; 1; 0; 1; 0), �2 = (0; 1; 0; 0; 1; 0),
�3 = (0; 0; 1; 0; 1; 0), and �4 = (0; 0; 1; 1; 0; 1). The following table shows the hamming
distance between these assignments:

�2 �3 �4
�1 1 1 4
�2 2 5
�3 3

Observe that, in this case, the maximum Hamming distance is reached by two assign-
ments (that is, �2 and �4) that correspond to two blocks worlds (that is, world 2 and
4) that have maximum move action distance. This is not true in general: indeed, it is
easy to 2nd examples in which the maximum Hamming distance is reached by two
assignments that correspond to two blocks worlds whose move action distance is not
maximum.
We are now ready to de2ne the optimization problems that are the subject of our

study.

De�nition 6 (MAX HAMMINGDISTANCE(F)). Let C be a collection of m constraint ap-
plications of the form {〈fj; 〈i1(j); : : : ; ikj (j)〉〉: j=1; : : : ; m}, on Boolean variables X =
{x1; : : : ; xn} where fj ∈F and kj is the arity of fj. The MAX HAMMINGDISTANCE(F)
problem with input C consists in 2nding two assignments that satisfy all the constraint
applications in C and have maximum Hamming distance.

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 93

5. The main result

The rest of the paper is devoted to give a complete classi2cation of the approxima-
bility properties of MAX HAMMINGDISTANCE(F). To this aim, we 2rst need to add two
new classi2cation criteria to those introduced in Sections 2 and 3.

De�nition 7 (01-valid constraint). A constraint f is 01-valid if it is both 0-valid and
1-valid.

De�nition 8 (Strongly 1-valid constraint). A constraint f is strongly 1-valid if it is
satis2ed by all assignments with at most one 0.

De�nition 9 (Even-a=ne constraint). A constraint f is even-a=ne if it can be ex-
pressed as a conjunction of linear equalities in Z2 with an even number of terms.

A constraint family F is 01-valid (respectively, strongly 1-valid and even-aIne) if
all its constraints are 01-valid (respectively, strongly 1-valid and even-aIne).
We are now ready to state our main theorem (see also Fig. 2).

Theorem 10 (MAX HAMMINGDISTANCE(F) classi2cation). Given a constraint family
F; MAX HAMMINGDISTANCE(F) is either in PO or APX-complete or POLYAPX

-complete or in NPO but not approximable to within any factor. In particular; the
following hold:

Fig. 2. The complexity of the maximum Hamming distance problem.

94 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

(i) If F is 01-valid or even-a=ne; then MAX HAMMINGDISTANCE(F) is in PO.
(ii) Else if F is a=ne; then MAX HAMMINGDISTANCE(F) is APX-complete.
(iii) Else if F is weakly positive or weakly negative or 2CNF or strongly 0-valid or

strongly 1-valid; then MAX HAMMINGDISTANCE(F) is POLYAPX-complete.
(iv) Else 6nding a feasible solution of MAX HAMMINGDISTANCE(F) is NP-hard.

The proof of the above theorem is split into two parts. In the next section, we give the
algorithms proving the upper bounds (e.g., we prove that MAX HAMMINGDISTANCE(F)
is in APX whenever F is aIne), while in Section 5.2 we provide the reductions
showing the lower bounds (e.g., we prove that MAX HAMMINGDISTANCE(F) is not in
PTAS whenever F is aIne).

5.1. Positive results

The 2rst result of this section shows that 01-validity or even-aInity is suIcient to
optimally solve the maximum Hamming distance problem in polynomial time.

Lemma 11 (Optimal algorithms). Given a constraint family F; if F is 01-valid or
even-a=ne; then MAX HAMMINGDISTANCE(F) is in PO.

Proof. If F is 01-valid, then the solution formed by the two satisfying assignments
(0; : : : ; 0) and (1; : : : ; 1) is, clearly, an optimal solution.
If F is even-aIne, the, for any collection C of m constraint applications from

F on n Boolean variables, we can 2nd an assignment �∈{0; 1}n that satis2es C in
polynomial time by simply resolving the linear system corresponding to C. Observe
now that, since F is even-aIne, the assignment �c obtained from � by complementing
all its components, is still a satisfying assignment (indeed, this is due to the fact that,
for any x; y∈Z2, x+y ≡ (1− x)+ (1−y)mod 2). Hence, the solution formed by the
two satisfying assignments � and �c is an optimal solution for C.

The next result shows that aInity is suIcient to solve the maximum Hamming
distance problem in polynomial time within a constant factor of the optimal measure.

Lemma 12 (Approximation algorithm). Given a constraint family F; if F is a=ne;
then MAX HAMMINGDISTANCE(F) is in APX.

Proof. Let C be a collection of constraint applications from F on n Boolean vari-
ables. We will now compute two assignments �′; �′′ ∈Zn

2 that satisfy the linear system
Ax= b corresponding to C, where A∈Zm;n

2 , x∈Zn
2 , and b∈Zm

2 , and we will show
that dH (�′; �′′) is at least half of the maximum Hamming distance between any two
assignments satisfying C.
Assume without loss of generality, that n¿m and that the rows of A are independent.

It is then easy to 2nd in polynomial time a matrix A′ ∈Zm;n−m
2 , a vector b′ ∈Zm

2 ,

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 95

and an ordering x1; : : : ; xn of the n Boolean variables such that x′′ =A′x′ + b′, where
x′′ =(x1; : : : ; xm) and x′ =(xm+1; : : : ; xn).
The construction of �′ and �′′ is then obtained by the following randomized algo-

rithm. For each variable xi in x′ with m + 16i6n, we de2ne �′i =0 with probability
1 and �′′i =1 with probability 1=2. This, clearly, implies that, for each variable xi in
x′′ with 16i6m, �′i = b′i with probability 1 and �′′i = b′i with probability 1=2. In sum-
mary, the expected number of variables on which �′ and �′′ di3er is one half of the
total number n of variables. Since n is an upper bound on the measure of an optimal
solution, the expected performance ratio of the above algorithm is at most 2. The algo-
rithm can be derandomized by means of the method of conditional probabilities (see,
for example, [1, 11]).

It, 2nally, remains to prove that if a constraint family F is strongly 0-valid
or strongly 1-valid or weakly positive or weakly negative or 2CNF then MAX

HAMMINGDISTANCE(F) is in POLYAPX. To this aim, let us 2rst introduce the follow-
ing property of a constraint family.

De�nition 13 (Strongly decidability). A constraint family F is strongly decidable if,
given a collection C of constraint applications from F on n Boolean variables, an in-
dex i∈{1; : : : ; n}, and a value b∈{0; 1}, it is possible to compute in polynomial time
an assignment �∈{0; 1}n satisfying C and such that �i = b (if one such assignment
exists).

The following result states that all the cases that remain to be dealt with satisfy the
strongly decidability property.

Lemma 14 (Khanna et al. [9]). Given a constraint family F; if F is strongly 0-valid
or strongly 1-valid or weakly positive or weakly negative or 2CNF; then F is strongly
decidable.

An immediate consequence of being strongly decidable is the fact that the corre-
sponding satis2ability problem is solvable in polynomial time, as stated by the follow-
ing lemma.

Lemma 15. Given a constraint family F; if F is strongly decidable; then
SATISFIABILITY(F) is in PO.

Proof. Let C be a collection of constraint applications from F on n Boolean vari-
ables. Since F is strongly decidable, we compute in polynomial time an assignment �
satisfying C and such that �1 = 0, if one such assignment exists. Otherwise, we com-
pute in polynomial time an assignment � satisfying C and such that �1 = 1, if one such
assignment exists. Otherwise, C is not satis2able.

96 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

We are now ready to show that the above stronger form of decidability leads to
a polynomial-time poly-approximation algorithm for the maximum hamming distance
problem.

Lemma 16 (Poly-approximation algorithm). Given a constraint family F; if F is
strongly decidable; then MAX HAMMINGDISTANCE(F) is in POLYAPX.

Proof. Let C be a collection of constraint applications from F on n Boolean variables
{x1; : : : ; xn}. From Lemma 15, it follows that we can compute in polynomial time
an assignment �′ satisfying C, if one such assignment exists (otherwise, C is not
satis2able). We can then compute another assignment �′′ as follows. For any variable
xi with 16i6n, check whether there exists an assignment �′′[i]∈{0; 1}n satisfying C
and such that �′′[i]i �= �′i (this can be done in polynomial time because F is strongly
decidable). If �′′[i] does not exists for any index i, then �′ is the only satisfying
assignment and, hence, we have optimally solved the problem. Otherwise, let �′′ = �′′[j]
where j is the 2rst index for which �′′[j] exists. Clearly, dH (�′; �′′)¿1. Since the
optimal measure is at most n, we thus have that the performance ratio of the solution
formed by �′ and �′′ is at most n. In conclusion, the above algorithm proves that MAX

HAMMINGDISTANCE(F) is in POLYAPX.

From Lemmas 14 and 16, it follows the last result of this section.

Corollary 17. Given a constraint family F; if F is strongly 0-valid or strongly 1-valid
or weakly positive or weakly negative or 2CNF; then MAX HAMMINGDISTANCE(F) is
in POLYAPX.

5.2. Negative results

In order to complete the proof of our main theorem, we now prove in this sec-
tion three hardness results. To this aim, we make use of both Theorem 4 and of an
immediate corollary of that theorem. This corollary deals with the following CSOP.

De�nition 18 (MAX ZEROS(F)). Let C be a collection of m constraint applications of
the form {〈fj; 〈i1(j); : : : ; ikj (j)〉〉: j=1; : : : ; m}, on Boolean variables X = {x1; : : : ; xn}
where fj ∈F and kj is the arity of fj. The MAX ZEROS(F) problem with input C
consists in 2nding an assignment � that satisfy all the constraint applications in C and
such that zeros(�) is maximum, where zeros(�)= n − ones(�).

Corollary 19 (MAX ZEROS(F) classi2cation). Given a constraint family F; MAX

ZEROS(F) is either in PO or APX-complete or POLYAPX-complete or in NPO but not
approximable to within any factor. In particular; the following hold:
(i) If F is 0-valid or weakly negative or width-2 a=ne; then MAX ZEROS(F) is in

PO.
(ii) Else if F is a=ne; then MAX ZEROS(F) is APX-complete.

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 97

(iii) Else if F is strongly 1-valid or weakly positive or 2CNF; then MAX ZEROS(F)
is POLYAPX-complete.

(iv) Else if F 1-valid; then 6nding a solution of MAX ZEROS(F) with positive measure
is NP-hard.

(v) Else 6nding a feasible solution of MAX ZEROS(F) is NP-hard.

The 2rst hardness result on the maximum Hamming distance problem states that
01-validity and even-aInity are necessary conditions in order to make the aIne prob-
lem solvable in polynomial time (in the following, 〈�1; �2〉 will denote the solution
formed by the two satisfying assignments �1 and �2).

Lemma 20 (APX-completeness). Let F be a constraint family. If F is a=ne but not
01-valid and not even-a=ne; then MAX HAMMINGDISTANCE(F) is APX-complete.

Proof. Let F be the family consisting of the ternary constraint that can be written as
x+y+ z ≡ 0mod 2 (that is, the Boolean ternary function that assume the value 1 only
if an even number of its arguments is equal to 1). We now L-reduce MAX ONES(F)
to MAX HAMMINGDISTANCE(F). Since MAX ONES(F) is APX-complete [9], the lemma
will follow.
Given an instance of MAX ONES(F), that is, a collection C = {c1; : : : ; cn} of constraint

applications from F on n Boolean variables, we de2ne f(C)=C. Observe that, given
a solution of C (that is, an assignment � satisfying C), the pair 〈(0; : : : ; 0); �〉 is a
solution of f(C) such that ones(�)=dH ((0; : : : ; 0); �). Hence, opt(C)6opt(f(C)).
Moreover, given a solution 〈�′; �′′〉 of f(C), we de2ne a solution �= g(C; 〈�′; �′′〉)

of C as

�i =

{
1 if �′i �= �′′i ;

0 otherwise:

The assignment � satis2es C. On the contrary, assume that there exists a constraint
application cj such that � assigns the value 1 to an odd number of variables in cj. From
the de2nition of �, it follows that either �′ or �′′ assigns the value 1 to an odd number
of variables in cj which contradicts the fact that both �′ and �′′ satisfy cj.
Clearly, ones(�)=dH (�′; �′′). Hence,

opt(f(C)) = opt(C)

and

opt(C)− m(C; �) = opt(f(C))− m(f(C); 〈�′; �′′〉):
In conclusion, (f; g; 1; 1) is an L-reduction from MAX ONES(F) to MAX HAMMING

DISTANCE(F).

The second hardness result states that all the poly-approximable cases shown in the
previous section cannot be better approximated.

98 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

Lemma 21 (POLYAPX-completeness). Given a constraint family F; if F is strongly
0-valid or strongly 1-valid or weakly positive or weakly negative or 2CNF but not
01-valid and not a=ne; then MAX HAMMINGDISTANCE(F) is POLYAPX-complete.

Proof. Let F be a strongly 0-valid constraint family. We now A-reduce MAX ONES(F)
to MAX HAMMINGDISTANCE(F). For any instance C of MAX ONES(F), let f(C)=C
be the corresponding instance of MAX HAMMINGDISTANCE(F). Given a solution 〈�′; �′′〉
of f(C), let �= g(C; 〈�′; �′′〉) be the assignment with the greatest number of ones
between �′ and �′′. Clearly, ones(�)¿dH (�′; �′′)=2. Moreover, given an assignment �
satisfying C, the pair 〈(0; : : : ; 0); �〉 is a solution of f(C) whose measure is equal to
ones(�). It thus follows that opt(C)6opt(f(C)). Hence, (f; g; 2) is an A-reduction
from MAX ONES(F) to MAX HAMMINGDISTANCE(F). Since MAX ONES(F) is POLYAPX-
complete [9], this part of the lemma follows.
The above reduction can also be used to prove that if F is weakly negative, then

MAX HAMMINGDISTANCE(F) is POLYAPX-complete. To this aim, it suIces to observe
that, without loss of generality, we may assume that the arity of every constraint in F

is at least 2 (indeed, any unary constraint application forces the value of its variable
to be the same in any satisfying assignment). Since any weakly negative constraint
whose arity is at least 2 is 0-valid, the above reduction is an A-reduction from MAX

ONES(F) to MAX HAMMINGDISTANCE(F), where F is weakly negative.
A similar argument (starting from MAX ZEROS(F)) can be used to prove that if F

is strongly 1-valid or weakly positive, then MAX HAMMINGDISTANCE(F) is POLYAPX-
complete.
Finally, let F be 2CNF. We now A-reduce MAX ONES(F) to MAX HAMMING

DISTANCE(F). Given an instance of MAX ONES(F), that is, a collection C of constraint
applications from F on n Boolean variables {x1; : : : ; xn}, the corresponding instance
f(C) of MAX HAMMINGDISTANCE(F) is de2ned as f(C)=C ∪{x1 ∨ xn+1; : : : ; xn ∨ x2n},
where {xn+1; : : : ; x2n} are n new Boolean variables. Given an assignment � satisfying C,
let �′ and �′′ be two assignments for f(C) de2ned as

�′i =
{

�i if i 6 n;
1 otherwise:

and as

�′′i =




�i if i 6 n;
0 if n + 16 i 6 2n and �i−n = 1;
1 otherwise:

Clearly, 〈�′; �′′〉 is a solution of f(C) and ones(�)=dH (�′; �′′). Hence,

opt(C)6 opt(f(C)):

Moreover, given a solution 〈�′; �′′〉 of f(C), let dl
H (�

′; �′′) (respectively, dr
H (�

′; �′′)) the
Hamming distance between the leftmost (respectively, rightmost) n positions of �′ and
�′′. Observe that we may always restrict ourselves to solutions such that dl

H (�
′; �′′)6

P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100 99

dr
H (�

′; �′′). Indeed, if this is not the case, then there exists i with 16i6n such that
�′i �= �′′i and �′n+i = �′′n+i. Assume that �′i =0 and �′′i =1 (the other case is symmetric).
This implies that �′n+i = �′′n+i =1. If we set �′′n+i =0, then we obtain a new solution with
a greater Hamming distance.
Since �′n+i �= �′′n+i implies (�′i =1∨ �′′i =1), we have that

|{i: 16 i 6 n ∧ (�′i = 1 ∨ �′′i = 1)}|¿ dr
H (�

′; �′′):

Assume that the number of ones in the 2rst n positions of �′ is greater than or equal
to the number of ones in the 2rst n positions of �′′ (we can prove the other case in a
similar way). Let us then de2ne �= g(C; 〈�′; �′′〉) as the 2rst n positions of �′. Since

ones(�) = |{i: 16 i 6 n ∧ �′i = 1}|
¿ 1

2 |{i: 16 i 6 n ∧ (�′i = 1 ∨ �′′i = 1)}|;
we have that

ones(�)¿
dr

H (�
′; �′′)
2

:

Finally, from the fact that

dH (�′; �′′) = dl
H (�

′; �′′) + dr
H (�

′; �′′)6 2dr
H (�

′; �′′)

it follows that

ones(�)¿
dH (�′; �′′)

4
:

We have thus described an A-reduction from MAX ONES(F) to MAX HAMMING

DISTANCE(F) with �=4. Since MAX ONES(F) is POLYAPX-complete if F is 2CNF
[9], the last part of the lemma follows.

Lemma 22 (The remaining cases). If F is not 01-valid; not a=ne; not strongly
0-valid; not strongly 1-valid; not weakly positive; not weakly negative; and not 2CNF;
then it is NP-hard to 6nd a solution for MAX HAMMINGDISTANCE(F).

Proof. From Theorem 4 we have that if F is not 1-valid, not 0-valid, not strongly
0-valid, not 2CNF, not aIne, not weakly positive, and not weakly negative then 2nd-
ing a feasible solution for MAX ONES(F) (and, hence, for MAX HAMMINGDISTANCE

(F)) is NP-hard. Observe that if F is not 0-valid and 1-valid, then F is neither
01-valid nor strongly 1-valid. Hence, the theorem follows.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and
Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer,
Berlin, 1999.

100 P. Crescenzi, G. Rossi / Theoretical Computer Science 288 (2002) 85–100

[2] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity I, Springer, Berlin, 1988.
[3] D.P. Bovet, P. Crescenzi, Introduction to the theory of complexity, Prentice-Hall, Englewood Cli3s, NJ,

1993.
[4] S.A. Cook, The complexity of theorem-proving procedures, Proc. 3rd ACM Symp. on Theory of

Computing, 1971, pp. 151–158.
[5] P. Crescenzi, A. Panconesi, Completeness in approximation classes, Informat. and Comput. 93 (1991)

241–262.
[6] M.R. Genesereth, N.J. Nilsson, Logical Foundations of Arti2cial Intelligence, Morgan Kaufmann, Los

Altos, CA, 1987.
[7] S. Khanna, M. Sudan, L. Trevisan, Constraint satisfaction: the approximability of minimization problems.

Proc. 12th IEEE Conf. on Computational Complexity, 1997, pp. 282–296.
[8] S. Khanna, M. Sudan, L. Trevisan, D.P. Williamson. The approximability of constraint satisfaction

problems, SIAM J. Comput. 30 (2001) 1863–1920.
[9] S. Khanna, M. Sudan, D.P. Williamson, A complete classi2cation of the approximability of maximization

problems derived from Boolean constraint satisfaction, Proc. 29th Annual ACM Symp. on Theory of
Computing, 1997, pp. 11–20.

[10] V. Kumar, Algorithms for constraint-satisfaction problems: a survey, AI Mag. 13 (4) (1992) 32–44.
[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, MA, 1995.
[12] C.H. Papadimitriou, Computational complexity, Addison-Wesley, Reading, MA, 1993.
[13] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput.

System Sci. 43 (1991) 425–440.
[14] T. Schaefer, The complexity of satis2ability problems, Proc. 10th Annu. ACM Symp. on Theory of

Computing, 1978, pp. 216–226.

