
Theoretical Computer Science 92 (1992) 87-105

Elsevier
87

Optimal algorithms for computing
the canonical form of a circular
string*

W.F. Smyth

Ihopoulos, C.S. and W.F. Smyth, Optimal algorithm for computing the canonical form of a circular

string, Theoretical Computer Science 92 (1992) X7-105.

An O(logn) time CRCW PRAM algorithm for computing the least lexicographic rotation of

a circular string (of length n) over a fixed alphabet is presented here. The logarithmic running time is

achieved by using O(nilogn) processors and its space complexity is linear. A second algorithm for

unbounded alphabets requires O(log n log log n) units of time. also using O(n/log n) processors.

1. Introduction

Here we consider the question of determining the least lexicographic rotation (Ur) of

a circular string that yields the canonical,form of the string. Formally, the problem can

be stated as follows: given a circular string x = a, . . a, of length n over an alphabet I.

compute an index k in the range 1 < k<n which satisfies the condition

uk...unul...uk_l~ui...u,ul...ai-l ,for all 1 < i 6 n.

*This work was partially supported by grant GR/E 75752 of the Science and Engineering Research

Council of the UK. The authors were supported in part also by the UK SERC grant CR/F 00898 and

a Royal Society grant, and by grant A8180 of the Natural Sciences and Engineering Research Council of
Canada, respectively.

0304-3975/92/$05.00 (1992 --Elsevier Science Publishers B.V. All rights reserved

88 C.S. Iliopoulos, W.F. Smyth

The string on the left-hand side is the llr of x, i.e., the original string rotated to the left

by k- 1 positions. One can see that k is not unique in the case where x= y’ for some

integer I> 1, so that we have 1 possible starting points of the (always unique) llr.

The computational model used here is CRCW PRAM (Concurrent Read Concur-

rent Write Parallel RAM). The processors are unit-cost RAMS that can access

a common memory. Some processors can access the same memory location: in fact,

they can concurrently read and write; when two or more processors are attempting to

write in the same memory location one of them succeeds in a nondeterministic

fashion.

Let Seq(n) be the best worst-case time complexity bound achieved by a sequential

algorithm for the problem at hand, where n is the length of the input. Obviously, the

best upper bound on the parallel time achievable using p processors without improv-

ing the sequential result is (Seq(n)/p). A parallel algorithm that achieves this running

time is said to have optimal speed-up, or simply said to be optimal.

Booth [6] gave a linear algorithm for computing the canonical form of a circular

string by generalizing the Knuth-Morris-Pratt [lo] linear time pattern-matching

algorithm. Moreover, Shiloach [11] and Duval [7] gave another two linear algo-

rithms improving the constant factor of the running time of Booth’s algorithm

(together with improvements on space complexity). All the three algorithms seem to

be inherently sequential. In Booth’s algorithm, the computation of the “failure

function” is the main obstacle to parallelization, and in Shiloach’s algorithm the series

of comparisons is strictly sequential. Apostolic0 et al. [S] presented a prallel algo-

rithm for the llr problem that requires O(logn) units of time and O(n) processors to

compute the canonical form of a string of length n over an alphabet of size O(n). Given

the linearity of the sequential complexity, there is obviously room for improvement of

the parallel complexity bounds.

The algorithm for both the bounded and unbounded alphabets makes use of (i)

preprocessing and (ii) a procedure for duelling between “locally tested” possible

starting points of an llr.

(i) Preprocessing. This is necessary for reducing the problem to one of size n/log n.

In the constrained version of the problem, where the alphabet is fixed, we preprocess

the input string by dividing it into blocks of size log IZ and computing a local starting

point (by excluding points in the same block for which we have evidence that they are

not starting points of an llr). Then we compute the set of all prefixes and suffixes of the

substrings defined by two consecutive local starting points, each packed in a single

word. In the case of unbounded alphabets we make use of suffix/prefix trees in order

to speed up comparisons among the substrings involved.

(ii) Duel. The duel between two local starting points is dominated by the rule

provided by the following lemma.

Lemma 1.1 (Apostolic0 et al. [S], Iliopoulos and Smyth [9]). Let w =ai . . . aj and

z=a. , ...Q~+~ be substrings of a circulur string x. If w bz lexicographically, then aj is

a starting point of an llr if and only lf both ai and aj are starting points of an llr.

Algorithms for thr canonical form qf a circular string 89

In the case of bounded alphabets the comparison of the two substrings required by

Lemma 1.1 can be done in constant time using the packed words computed in

preprocessing. In the case of unbounded alphabets we need a factor of O(log logn)

time to do this; we also make use of a PRIORITY CRCW PRAM (stronger version of

the CRCW PRAM model which has all of its processors labeled with an integer so

that when two or more processors attempt to write in the same memory location the

one with the smallest label succeeds) in conjunction with the constant-time simulation

procedure of the two versions of the model given in [S].

The results of this paper can be summarized as follows:

Theorem 1.2.’ Given a circular string x over a jixed alphabet, one can compute the

canonical form of x in O(logn) units qf time on a CRC W PRAM, with O(n/logn)

processors requiring linear space.

Theorem 1.3. Given a circular string x of length n over an alphabet of size 0 (n), one can

compute the canonical,form of x in O(log n log log n) units of time on a CRC W PRAM

with O(n/log n) processors.

2. Preprocessing over bounded alphabets

Given a string x we split it into blocks xi, 1 < i<m- 1 of size k= r log n 1:

x=x1 . ..x._1x,, m = r n/k 1

with Ix,/ <k. Furthermore, we compute the local starting points (1s~); i.e., a, is said to

be the lop of xi=ai, . . . ,a, if and only if s is the smallest index such that

a,a,+l...aldaj...uj+,_, for all 1 6 j 6 t,

where

if s<j,

otherwise.

(The lsp of x, is defined as above using x m + I :=x1 wrapping around the cyclic string).

It is not difficult to see that the lsp of an Xi is just the starting point of the leftmost llr of

all the rotations of the circular string xixi+ 1 that start from a position within the block

xi. Now let sl, . . . , s, be the lsp’s of the blocks x1, . . ,x,, respectively. These are

O(n/log n) possible starting points of an llr of x; the rest of the symbols of each block

can be eliminated as candidates starting points of an llr by means of Lemma 1.1.

The s;s split the string x into m substrings, whose prefixes and suffixes we encode

(“pack”) into single words. This is done in order to take advantage of the unit cost of

our model of computation (e.g., a comparison of two strings packed into a word of

1 This theorem is a!so cited in [3], where a different construction can be found

90 C.S. Iliopoulos, W.F. Smyth

O(log n) bits requires 1 unit of time). Here pre$x,(z) (sL@x~(z)) denotes the prefix

(suffix) of the string z of length /. The pseudo-code given below gives a detailed account

of the preprocessing:

Procedure 2.1

begin

mt r n/log n 1;
forall 1~ i < m pardo

processor pi computes the lsp St of Xi;

comment Use one of the linear algorithms given in [6, 7, 9, 111.

WitSi~~~S(i+3)modm;

comment The string wi is defined to be the substring of the circular string x that

starts at the same position as si (denoted as pOS(Si)) and terminates at

P&(i+ 3)mod rn).

processor pi is assigned to the string wi;

processor pi “packs” prejixl(wi), SU#~X,(W~), I <l<lwil, 1 <r<lzil;
comment The number of prefixes (suffixes) of Wi is O(log n). The processor can

sequentially pack all of them into single words (of length at most O(log n) each) in

O(log n) units of time.

odpar

end

It is not difficult to see that the input string can be written as

,~=sz~~x~,(~,~~)pre~x~,(~,)prefix~~(w~) . . . pre$xl_(w,) with

m = r n/log n 1, (2.1)

where II =n-pos(s,)+pos(s,), Ii=pOS(Si)-pOS(Si_ 1), 2 bi<m. The following

theorem can be directly derived from the above remarks.

Theorem 2.2. Procedure 2.1 packs all pwjixes and &fixes of the substrings dclfined by

the lsp’s in O(log n) time using O(n/log n) processors and linear space.

3. The duel of two local starting points

Let si and Sj be local starting points of the blocks Xi and xi, respectively and w.1.o.g.

letj > i. We are in pursuit of evidence that one of the two lsp’s is not the starting point

of an llr (there is of course the case that both can be starting points of an llr, in which

case we keep the leftmost one). Lemma 1.1 provides the criterion that will aid us in

eliminating one of the indices i or j; it suffices to compare the strings

W = Si.. . Si + 1 . . . sj and z=sj...sj+l...S2j_i,

Algorithms Jbr the canonical form oJ‘a circular string 91

where w is the substring of the input string x starting at the pos(si) and z is the

substring of x starting at pos(sj), both of length k + 1. The comparison of w and z can

be performed by splitting them into substrings, which we already have in the library of

“packed” strings computed at the preprocessing stage. Formally, the splitting can be

done as follows: Let C= {c,, i<r< j}, where c, denotes the length of the string Si . ..s.

(prefix of WI) (here ci = 1). Similarly, let D= {11,, j<q<2j- i}, where d, denotes the

length of the string sj...s, (p re x fi of z) (here also dj= 1). Moreover, let

A=cc,,...,“2cj_i) denote the ascending sequence of the elements of the set CUD.

Elements of A which come from C (D) we refer to as c (d) elements. Then one can easily

prove the following lemma.

Lemma 3.1. Any four consecutive elements of the A sequence include at least one

member of C and at leasr one member of D.

Proof. Assume that xp, LX,,+~, J~+~, !zQ,+~ are all members of C-say cr, c~+~, c,+~,

c,+~. Let c[*, for some O<i.<p and c(~, for some 0 > p > p + 3 be such that

M~ED and al+,$D for all O<v<p-j.

and

X,ED and x,-~,$D for all O<v<p-p-3.

Moreover, let x2 = d, and c(, = dl + 1 . (This follows from the fact that aA‘ is a member of

D, say d,, and d, is the nearest “d” to the left of c, in A and d,, 1 is the nearest “d” to the

right of c,+~ in A and there are no other “d”‘s between them.) From the fact that

M, < up <up + 3 < x,, it follows that

~~-c(,>!Xp+~-clP. (3.1)

Moreover, the string Si...sr+3 (its length is CX~+~) has the blocks x,+~ and x,+~ as

proper substrings but that is not the case for the string Si.. . s, (its length is Q). Thus,

Inequalities (3.1) and (3.2) imply that

d r+,-dl=cc,-%A>2 rlognl.

(3.2)

(3.3)

Inequality (3.3) implies that the distance of s[and s I+ 1 IS greater than the size of two

blocks, a contradiction since sI and s,+ 1 belong to consecutive blocks.

The case of four consecutive elements being members of D is shown similarly. 0

Let B be the sequence formed from A by removing all but the first c of every

subsequence of consecutive c’s and all but the first d of every subsequence of

consecutive d’s. Now consider splitting the strings wand z into the substrings defined

92 C.S. Iliopoulos, W.F. Smyth

&+I ii _____-___________-___
4

‘i+* 0 _____-_______________

4

S 1+3 4 _____________________

4

S lt‘l 0 _-----____--____--___

s ’ _____________________
,+5

de

C5

c6

sj+5

The string w The list B

Fig. 1.

The string z

by the positions of the B sequence. One can see that all such substrings can be found

“packed” among the prefixes and suffixes in the preprocessing stage (see Fig. 1).

A detailed account of the duel between two adjacent strings is given below in

pseudo-code:

Procedure 3.2 DUEL (w, z)

begin

forall i < m < 2j - 1 pardo

Processor P,,, is assigned to the point s,;

if i<m<j then

Processor pm writes c, = 1 Si . s, 1 into a doubly linked list C;

else

Processor pm writes the position d, = Isj...s,I into a doubly linked list D;
Processor pm computes its position in the doubly linked list A (as defined above);

Algorithms for the canonical ,form of a circular string 93

comment Processor pr, id r 6 j inserts c, into the D list; it is not difficult to see that

c, has to be inserted in one of the positions between dr-2 and dr+* and, thus, that

it is sufficient for processor pI to check whether c,-~ or c,+~ must be linked

with c,.

Then all processors can calculate their ranking in the list A (see Fig. 1).

Let A={~l,...,t(2(j_i) } and let processor pm be attached to a,;

if x, and c(,,_ 1 are both in C or D then

Processor pm deletes x, and marks itself idle;

comment The new list is the doubly linked list B defined above.

if (w,_, w,,,~~(~,,,)) f k,, z,,,~ (bLm) 1 then (3.4)

comment (w,,,~, ~,,,rh~) is the substring of w that starts at position M, and

terminates at position next(z,) (that is the adjacent element of a, in B).

The string (zo,, z,,~~~(~,,,)) is defined similarly.

Processor pm is marked “winner”;

comment All comparisons can be done in constant time by processor pm since

all strings involved have been packed into single words at the preprocessing

stage.

if no processor is marked “winner” then return W;

Compute the smallest u such that pV is marked winner;

comment This can be done in constant time, see Lemma 3.3.

if (wol,, ~~~~~~~~~~~~ <((in,, z,,,,(,~~)) then
Processor pI, returns w

else

(3.5)

(3.6)

Processor pL. returns z

odpar

end

Lemma 3.3 (Galil [S]). The computation ofthe smallest indexed processor at step (3.5)

above can be done in constant time using O(j-i) processors.

The procedure DUEL makes use of the “library” of strings computed at the

preprocessing stage; all steps require constant time and at any time DUEL uses at

most 2(j- i) processors. Thus, we have the following lemma.

Lemma 3.4. Procedure (3.2) requires O(1) units of time and O(j-i) processors for
executing the duel between w and z.

4. Computing the Ilr over fixed alphabets

The main algorithm for computing the canonical structure of a circular string falls

within the following framework. First preprocessing reduces the problem from size

O(n) to one of size O(n/log n). From (2.1) and Procedure 2.1 one can see that the input

94 C.S. Iliapouhs, W.F. Smq~rh

string can be expressed as a string of length O(n/log n) over the alphabet defined by

the set C’ = { prejix,(wi), sujix,(wi), 1 dr < rlog rrl and 1~ ib m/log nl }, with wi as

in Procedure 2.1. Thus, the size of the problem has been reduced to O(n/log n).

All symbols (over C’ as in (2.1)) of the input string x are paired with a processor and

they are attached as leaves to a full binary tree (w.1.o.g. we assume that the number of

symbols is a power of 2). Initially, every symbol is considered to be a candidate for the

starting point of the llr. Every pair of siblings duels for the occupation of the parent

node. The duel is executed by means of Procedure 3.2. The winner moves to the parent

node and prepares for a new duel with its new sibling; the loser teams up with the

winner for the new duel. The index of the processor that conquers the root is the

required starting point of the least lexicographic rotation of the input string.

Initially, O(n/log n) processors are attached to the leaves. Each duel at the ith level

involves strings of length 2’ and there are as many processors available to perform it;

this can be done in constant time by means of Procedure 3.2 (see Lemma 3.4). Since

the height of the tree is at most log n, the overall time required is O(log n) and no more

than O(n/log n) processors are needed at any time; this together with Theorem 2.2

leads us to the proof of Theorem 1.1. The correctness of the algorithm is a direct

application of Lemma 1.1.

A simpler version of the algorithm given above is possible (e.g., [3]), which bypasses

the rather lengthy procedure DUEL (improving the running time by a constant

factor). Here we present this version due to its direct adaptation to general alphabets,

which is the main goal of this paper; thus, we avoid unnecessary duplication of the

results.

5. Preprocessing over general alphabets

The preprocessing procedure of Section 2, when applied to a string over a general

alphabet (of size 1 C I) will not necessarily lead to a space reduction, since the packing

into single words will take O(log IZ log ICI) bits of space and, therefore, a comparison

of two prefixes or suffixes would cost O(log I.Zl).

One can see from the main algorithm of Section 4 that it suffices to have efficient

procedures which execute the DUEL; in particular, we draw attention to the

following:

(i) In order to execute the string comparison at step (3.4), we only need evidence

that the two strings involved are different.

(ii) At step (3.6) we compare two strings of length O(log n).

Both (3.4) and (3.6) require constant time in the case of fixed alphabets. Here we shall

employ data structures for all prefixes and suffixes-as defined in Section 2-that

allow the issue of certificates of difference in constant time, except in the case of

comparing a suffix versus a prefix where the cost is O(log log n) units of time. The

overall preprocessing for unbounded alphabets is subdivided into the following tasks:

Algorithms fix the canonical form of a circular string 95

(1) We merge all prefixes into a data structure (defined below) called a merged

prefix tree, that will provide answers for comparisons between prefixes.

(2) We merge all suffixes into a merged suffix tree, that will provide answers for

comparisons between suffixes.

(3) We check all prefixes for membership in the merged suffix tree.

5.1. Computing the merged prejx tree

Given a set of strings { Wi }, 1~ i < n/log n (as they are defined in Procedure 2. I), we

will construct a data structure-the merged prefix tree-that will contain all informa-

tion about all the prefixes of Wit 1 <i ,< n/log n. The merged prefix tree (or prejx tree of

a dictionary) is defined as follows (see Fig. 2):

(i) The merged prefix tree is a rooted tree.

(ii) Each edge (x, y) is labeled with (j, wi), the jth symbol of wi for some

1 didn/log n, where j is the length of the path from the root to y, and x is the node

closer to the root.

(iii) The concatenation of the symbols represented by the labels on the edges on

a path from the root to a node is equal to prejixj(wi), where j is the length of the path.

Fig. 2. The merged prefix tree for the dictionary d= (aaaa, baba, aaba, babb, bbab, bbbb}.

96 C.S. Iliopoulos, W.F. Smyth

(iv) No two sibling edges may have the same label.

(v) Every prefix of every wi appears in the tree.

The construction of the merged prefix tree is done by assigning a processor to every

wi, which starts building the merged prefix tree from the root towards the leaves and

labeling the edges sequentially; the computation of the different labels of the edges

descending from a node at each level is done my means of concurrent writes to

Bulletin Boards (BB or NBB) held in the common memory. The pseudo-code below

gives a detailed account of the method:

Procedure 5.1

begin

Processor pi, 1~ i<n/logn, is assigned to the string Wi;

forj=l tologndo

Let BB be an 1 x IX/ matrix and let (j, wi) denote the jth symbol of wi;

Processor pi, t/l < i<n/log n, writes i in BB((j, Wi));

Processor pi, t/l < i<n/log n, stores ID(j, Wi)cBB((j, wi)) in its own memory;

comment Here we assign a unique (to all jth symbols) integer from the set of

processor indices. This is done in order to reduce the domain (the range of

symbols is 1 Cl and the range of indices in O(n/log n)) of the Bulletin Board NBB

at the jth level (see below).

od

All processors are attached to the root (marked “fresh”);

forj=l tologndo

forall processors attached to node marked “fresh” pardo

An 1 x n/log n bulletin board NBB is attached to each node marked “fresh”;

comment The matrix NBB is held in the common memory and its domain is the

set of processor indices.

Processor pi writes its index i in NBB(ID((j, wi)));

Processor pi with if NBB(ID((j, wi))) is marked “loser”;

Processor PNBB(ID((j, wqJ)J is marked as “winner”;

comment The “winners” are processors handling distinct symbols. A loser

handles a symbol that is already handled by a winner.

The “winner” creates a new node as child of its associated node marked “fresh”;

The “winner” marks the new node as “fresh” and its parent “old”;

comment The new node is marked for tree expansion at the next iteration.

The “winner” labels the new edge with (j, w,);

The “winner” gets attached to the “fresh” node;

The “losers” get attached to the “fresh” node created by the “winner”

processor ~Y~B(ID((j. w,)));

odpar

od

end

Algorithms fir the canonical Jbrm of a circular string 97

In fact, in Procedure 5.1 we need to name the nodes created by the processors;

a node is named (j, d) if it is created by processor pj at depth d (note thatj=O(n/log n)

and d = (O(log n)). Also, whenever a processor creates a new node, say node, it creates

a labeled edge (with label I) connecting it with the parentnode; let LZNK(parent-
node, 1) = node denote the connection. The list LINK is used without initialization

since its size is O(n’) and also it might contain false information. But whenever

a processor creates a new node-say node, it updates the list VALIDITY (node)=
(purentnode, luhel, node), where label is the label of the edge connecting parentnode and

node. The list VALID1 TY has been initialized to empty in O(log n) units of time using

O(n/log n) processors and the updating of VALIDITY takes constant time. Also the

size of VALIDITY is O(n). This will allow us to answer queries such as:

Given a node, say n, and a symbol 1, we want to find whether there exists a child

c such that the edge (n,c) is labeled with 1. A child c is given by LINK(n,l), but it

might not be a true one since LINK has not been initialized. Then by checking the

contents of VALIDITY(LINK(n, 1)) one can decide whether LZNK(n, 1) is a valid

one.

Lemma 5.2. The procedure above correctly constructs the merged prefix tree in O(log n)

units of time, using O(n/log n) processors and 0(n2/log2 n + 1 Cl) space.

Proof. At the initialization stage we assign integers to each symbol. It is possible that

two different symbols are assigned the same integer; one can see that

ID(j, WC) = ID(j’, wiS) only for some j #j’, since a processor assigns its index only once

at each iteration. This will not cause problems in the identification of different labels

assigned via concurrent writes in NBB since, for each j, different symbols have

different IDS and identical symbols have the same ID. In other words

ID(j, wi)=ID(j, Wi,) o (j, wi)=(j, Wi’).

Otherwise, the construction of the merged suffix tree is a straightforward applica-

tion of the definition, together with the “competitions” on the Bulletin Board NBB in

order to establish the different labels descending from each node.

The time analysis follows immediately. The bulletin board BB requies O(ICl) units

of memory and, furthermore, at each iteration we require at most O(n/log n) Bulletin

Boards, one for each node marked “fresh”; the size of each NBB is bounded by

O(n/log n). G

5.2. Computing the merged st@x tree

Here we compute a data structure Td on the set of strings d = (wl,. , w,,,,,~ .}, called

the merged suffix tree. We assume, w.1.o.g. that each string of d terminates with

a special symbol $ which is not in the alphabet and which is used as an endmarker. Td
is defined as follows (see Fig. 3):

(i) The merged suffix tree is a rooted tree with labeled edges.

98 C.S. lliopoulos, W.F. Smyth

Fig. 3. The merged suffix tree r, for the dictionary d= {aaau, baba, uaba, babb, bbab, bbbb}.
If two or more suffixes are equal, only one is represented on the tree. Here we use strings as labels for

exposition purposes only. Also a leaf is marked (s, t). representing the suffix starting at the sth position of the
tth word of the dictionary.

(ii) Each edge is labeled with an identifier ID(Wi, ij, l), which represents the sub-

string of wi that starts at position ij and has length 1 (this is a prefix of the suffix of Wi

that starts at position ij).

(iii) No two sibling edges have the same (nonempty) prefix.

(iv) Each leaf is labeled with [ij, wi], where ij is a distinct position of Wi.

(v) The concatenation of the strings represented by the labels of the edges on

a path from the root to leaf [ij, wi] equals the suffix of wi starting at position ij.

The construction of the merged suffix tree is done in two stages:

(I) We construct an approximate version of the suffix tree of Wi for all

1 G i d r n/log n 1 -this is called the merged skeleton tree.

(2) We refine the merged skeleton tree where necessary. Here processor allocation

plays a key role in the construction.

5.2.1. The merged skeleton tree

An approximate version of the suffix tree is computed first. The merged skeleton

tree Sd with d = {wl, . , , , w,,,~~ ,,} (see Fig. 4) is defined as follows:

Algorithms for the canonical form of a circular string

b

\

99

Fig. 4. The merged skeleton tree S, for the dictionary d = (aahabaaa, aaaaabab, aaaaaaaa, bbababab).

Here we use strings as labels for exposition purposes only.

(i) It is a rooted tree.

(ii) Each edge is labeled with an identifier ZD(wi, ij, 2’), where 1 is the length of the

path from the root to the node (nearest to the root) attached to the edge; the identifier

represents the substring of Wi that starts a position ij and has length 2’.

(iii) No two sibling edges may have identical labels.

(iv) Each leaf is labeled with (ij, wi), where ij is a distinct position of the string t\ii.

(v) The concatenation of the strings represented by the labels of the edges on

a path from the root to leaf (ij, Wi) is the suffix of wi starting at position ij.
Processors handling suffixes match identical prefixes via their IDS which are

uniquely defined by virtue of the write conflict rule of CRCW PRAMS. Furthermore,

the ID of a long string is initially combined from the pair of IDS of the two substrings

created when we split the string in half; then using the concurrent write conflict

mechanism, we replace the pair with a new unique value. (This is done in order to keep

the length of the IDS constant.) The method is outlined as follows:

Procedure 5.3

begin

Let BB be a 1 x JC(Bulletin Board;

Processor Pij is associated with the jth symbol of wi, 1 <i<~/log n, 1 < j<log n

forall i, j pardo

100 C.S. zliopoulos, WI. Smyth

processor pij writes its index in BB((j, wi));

~~(wi,j, l)+W(j, wi));

comment The creation of each ID is followed by the creation of a new node

linked with the root as a child; the linking edge is labeled with the ID.

for k=l torloglognldo

Let NBB be an n x n Bulletin Board.

processor Pij writes its index in NBB(ID(wi, ij, 2kp1), ID(w,, ij+2k-‘, 2k-‘));

ID(Wi, j, 2k)tNBB(ID(M’i, j, 2k-‘), ID(Wi, j+2k-‘, 2k-‘));

comment The above statement is executed by processor pij; the same processor

creates a new node and links it to the lower node of the edge labeled with

ZD(wi, j, Zk-‘). The new edge is labeled with ID(wi, j, 2k).

od

odpar

end

Theorem 5.4. Procedure 5.3 correctly computes the merged skeleton tree in O(log log n)
units of time using O(n) processors and 0(n2 + 1 Cl) space.

Proof. The construction is a straightforward application of the definition. The initia-

lization requires at most O(1) units of time and O(n) processors. Furthermore, the

number of repetitions is O(log log n), each of them costing O(1) units of time. 0

Corollary 5.5. The computation of the merged skeleton tree can be done in
O(log n log log n) units of time using O(n/log n) processors.

5.2.3. Refining the merged skeleton tree

The refinement of the merged suffix tree will be done in two stages. First the

processors are distributed on the merged skeleton tree, and then the set of processors

attached to the children of a node perform a local refinement. We will see that these

refinements suffice to refine the whole tree.

The processor allocation method is called the migration oforphans. We use n proces-

sors, all initially attached to the leaves of the merged skeleton tree (there are exactly

n leaves as many as suffixes). Now the processors “compete” for the occupation of the

parent node (of the set of siblings that they are attached to); only one processor

succeeds and moves to the parent node. The competition is repeated in the next level

up until the root is reached. The result is that every set of k sibling nodes has k- 1

processors attached to them; the one child without a processor is called an orphan.
The k- 1 processors attached to the children of every node “elect” one processor (by

concurrently writing in the same common memory location) to simulate the orphan

node; this will introduce a factor of 2 in the time complexity, but the processor

allocation is simple and recursive calls can be done during the refinement process (see

Procedure 5.6) without major processor reallocation.

Algoriihms.for the canonical,form oj’a circular string 101

The merged skeleton tree needs to be refined in every node (except the root) that has

two or more children; the labels of their outgoing edges are different but they might

have a common prefix. The refinement at each node can be done independently;

therefore, we are presenting the refinement of just a portion of the merged skeleton

tree consisting of a node and its children, i.e., a local rejinement. The local refinement is

done by means of binary search. Let ~1~ be a node of the merged skeleton tree and let cj,

1 d j 6 m be the children of n,. Moreover, let Zj, 1 <j < m. be the set of strings (all of the

same length) that are represented by the labels of the edges (y1,, cj), 1 djdm. All but

one (say c,-orphan) nodes have one processor attached to them-a processor

allocation produced by the migration of the orphans. Let ZD(Wij, qj, JZjl) be the

already computed labels of these edges. The pseudo-code below outlines the method

for refining this part of the tree.

Procedure 5.6

begin

forall 1 < j d m - 1 pardo

ljtlzj); nj+nz;

comment Node nj is used as a reference point of the processor allocation.

Processor pj writes its index in AliX(nj);

comment AUX is a common memory array.

Processor PAUX~,) is elected to simulate the “missing” processor pm;

comment In the sequel we assume the existence of pm for exposition purposes.

while lj# 1 do

ljclj/2;

processor pj writes j in BB(ZD(Wi,, qj, lj), FZj);
comment This competition establishes whether there are any common prefixes

of size lj among the strings represented by the labels.

if pj is a “loser” (j#BB(ZD(wij, 4j, lj), nj)) then

Processor pj writes j in AUX(BB(ZD(W,,, qj, lj), nj));

ljCAUX(BB(zD(wi,,qj,lj), nj));

comment Processor pj is a “loser”; this implies that at least another edge has

a label with the same ID; pl, is elected as the leader of all the losers with the

same ID. Note that several leaders may be elected concurrently.

njcn,U.(BB(,,(,,,,,,,,,j.,J));

4jt4j+lj;

comment Processor pl creates a new node nj as the child of

~~B(ID(,,,~,, 4,, I,), “,, and labels the edge between nj and Cj with ZD(Wi,, qj, lj).
All edges with the same common prefix of length lj have been replaced by

one edge connecting the original parent node (of cj) and the new node

nj (named by the leader of the “losers”).

Processor pl, creates a new node ci, as a child of nj;

Processor pl, labels the new edge with ZD(Wi,, qj, 1,);

102 C.S. Iliopoulos, W.F. Smyth

comment The node cl, is going to be an orphan at the next iteration. Now the

leader and its associated “losers” have the task of refining the labels of all the

edges descending from nj.

else

comment Processor pj is a “winner” if it succeeds in writing its index in BB.

CjtnAUX(BB(ID(w,,,q,. I,),~,));

Processor pj labels the edge (nj, Cj) with ID(w,,, 4j, I,);

comment Now all “winners” have the task of refining all the labels of the

edges descending from nj. The node c, is an orphan node.

od

odpar

end

Theorem 5.1. Procedure 5.6 correctly rejines the input subtree of the merged skeleton

tree in O(log log n) units qj’ time and uses O(m) processors.

Proof. The refinement method is a straightforward parallel application of binary

search. The processors compute all labels representing strings with the same common

prefix of a certain length (using concurrent writes in the common memory); then they

replace these edges with one edge labeled with the common ID. They repeat the

procedure searching for common prefixes of half the length until the tree is fully

refined; in fact, the next iteration is a new set of local refinements involving labels

representing strings of half the length.

Moreover, one can see from the comments of Procedure 5.6 that the “orphan rule”

is preserved from one iteration to the next one, when the original problem has been

split up into two or more subproblems.

The length of the strings represented by the labels is at most O(log n) and perform-

ing a binary search on them takes O(log log n) units of time. 0

Using the migration of orphans we can allocate the processors on the merged

skeleton tree in O(log n) units of time and by using the procedure given above we can

refine it in O(log log n) units of time using n processors, which implies the following

corollary.

Corollary 5.8. The construction of the merged s@ix tree can be done in

O(log n log log n) unis of time using O(n/log n) processors.

5.3. Membership in the merged sujix tree

We shall make use of a list (called INFO) that will enable us to check all prefixes of

a string Wi for membership in the merged suffix tree; the output will be a table

containing all such memberships.

Algorithms for the canonical form qf a circular string 103

It is not difficult to modify the construction procedure of the merged suffix tree in

order to accommodate the list INFO at every internal node. The variable ZNFO(node,

symbol) is assigned the value (nextnode, string), where node is the node to which the list

relates, symbol is any given symbol of the alphabet and the edge between node and

nextnode is labeled with a label that represents a string whose first symbol is symbol.

The list INFO is used without initialization but one can validate its contents by using

a function similar to VALIDITY used in the case of merged prefix tree.

The procedure below makes use of only one processor which checks prejixj(wi),

1 ,<j<) w(, for membership in TtI sequentially (testing for membership of pre$xj+ 1 (Wi)

is done after checking prejxj(wi) and involves only the (j+ 1)th symbol). Testing is

done by following the path from the root to the leaves and simultaneously matching

the symbols of the prefixes with the strings represented by the labels in Td; whenever

a choice is possible (nodes with two or more children) the processor uses the list INFO

which guides the choices of descent. The endmarker $ (strings represented by labels on

leaf edges in Td, as shown in Fig. 3) signals a successful match. This will allow efficient

testing for membership as follows:

Procedure CHECK (wi, T,)

begin

tcl;

(NODE, STRING)+INFO(ROOT, (j, Wi))

forj=l to rlognl do

if (t, STRING) = $ then

return pre$xj_ ~(w~)=sz@x~_ 1 (NODE);

comment Here NODE is a leaf of Td.

else

if (t, STRING) # (j, Wi) then exit;

if JSTRINGI = t then

if INFO(NODE, $) # f+J then pre$xj(wi) =st&fixj(LEAF);

comment The LEAF is defined by lNFO(NODE, $).

(NODE, STRING)+-lNFO(NODE,(j, wi));

ttl;

ttt+l;

od

end

It is not difficult to show the following lemma.

Lemma 5.9. Procedure CHECK correctly checks all prejixes of Wi for membership in Td

in O(log n) units of time.

Theorem 5.10. One can check all prejxes of the dictionary {wl, . . . , Wr,,/lognl } in

O(log n) units of time using O(n/log n) processors.

104 C.S. Iliopoulos, W.F. Smyth

6. Duel of strings and computing the Ilr over general alphabets

The procedure DUEL for fixed alphabets will be used for unbounded alphabets

with two modifications for the actions taken at (3.4) and at (3.6).

At step (3.4) of the procedure DUEL we need to know whether two prefixes

(suffixes) are different. If both are suffixes then the merged suffix tree provides the

answer in constant time; if both are prefixes then the merged prefix tree provides the

answer, and if one is a suffix and the other is a prefix then the table constructed by

procedure CHECK can provide the answer also in constant time. Thus, the time

requirements of step (3.4) remain the same as in Theorem 3.4 using the information

computed at the preprocessing stage.

At step (3.6) of procedure DUEL we have to compare two prefixes (suffixes) and one

processor is provided. If both are prefixes (suffixes), then one can compare them in

O(log log n) units of time using the merged prefix tree (merged suffix tree) by comput-

ing their common ancestor. If one of the strings is a suffix (say sufJ;xl(wk)) and the

other is a prefix (say prefixl(wi)), then the comparison is done as follows:

(i) It is not difficult to modify procedure CHECK in order to provide the

following function:

e(PKl%(wi))=
j if procedure CHECK(wi, Td) exited at level j,

l otherwise

This function will enable us to calculate the node, say n,, of the skeleton tree such that

the string represented by the label of the path from the root to n, equals the longest

common prefix prejxl(wi), whose length is a power of two.

(ii) Now we compute the common ancestor of the n, and the parent node of the

leaf of the skeleton tree that represents the SU@X~(W,) tree. If the suffix node is different

from the prefix node then they both “move” to their parent node on the skeleton tree.

This step is repeated until they are in the same node (common ancestor), say n,. Let np

and n, be the nodes visited by the prefix and suffix at the previous step; both are

children of n,. This computation requires in the worst case O(loglogn) units of

time-the height of the tree.

(iii) When the common ancestor is found, the comparison of pre$xl(wi) and

sufJixl(wk) is reduced to comparing the strings represented by the labels of the edges

between n, and the two children np and n,; their length is at most O(log log n).

Therefore, one processor can complete the comparison in O(loglogn) units of

time.

The time requirement of the step above is O(loglogn) units of time, which is also

the bottleneck of the procedure DUEL for unbounded alphabets. This implies that the

main algorithm of Section 4-which remains the same for the case of unbounded

alphabets-has its time complexity increased by a factor of O(loglog n) and, thus,

leads us to Theorem 1.3.

Algorithms for the canonical form of a circular string 105

Note. Recently, Apostolico and Crochemore [2] also gave a CRCW PRAM algo-

rithm for Lyndon factorization with applications to the canonization of circular

strings; it requires O(log n) units of time using 12 processors.

References

[l] A.G. Akl and G.T. Toussaint, An improved algorithmic check for polygon similarity, Inform. Process.
Left. 7 (3) (1978) 127-128.

[Z] A. Apostolico and M. Crochemore, Fast parallel Lyndon factorization with applications, CSD-

TR-931, Purdue University, 1989; revised 1990.

[3] A. Apostolico and C. Iliopoulos, Unpublished manuscript.

[4] A. Apostolico, C. Iliopoulos, G.M. Landau, B. Schieber, and U. Vishkin. Parallel construction of

a suffix tree with applications, Acta Algorithmica 3 (1988) 347-365.
[5] A. Apostolico, C.S. Iliopoulos and R. Paige, An O(n log n) cost parallel algorithm for the one function

partitioning problem, in: Jung and Mehlhorn, eds, Proc. Int. Conf on Parallel architectures,
(Akademie-Verlag, Berlin, GDR, 1987) 70-76.

[6] KS. Booth, Lexicographically least circular substrings, I@rm. Process. Lett. 10 (4) (1980) 240-242.

[7] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363-381.
[8] Z. Galil, Optimal parallel algorithms for string matching, in: Proc. 16th ACM symp. on 7’heory of

Computing (I 984) 240-248.
[9] C.S. Iliopoulos and W.F. Smyth, A new sequential algorithm for canonization of circular strings,

submitted.

[lo] D. Knuth, J. Morris and V. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977)

323-350.

[l l] Y. Shiloach, Fast canonization of circular strings, J. Algorithms 2 (1981) 107-121.

