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Abstract. It is widely yxlievk Lhat showing a pro”jlem to be NP-completc is tantamount to proving 
its computational intractability. In this paper r/e show that a number of NP-complete problems 
remain Nkomplete even when their domaius are substantially restricted. First we show the 
completeness of Simple Max Cut (Max Cut with edge weights restricted to value l), and, as a co- 
rollary, the completeness af the Optimal Linear Arrangement problem. We then show that even 
if the domains of the Node Cover and Directed Hamiltonian Path problems :are restricted tc 
planar graphs, the two problems remain N&complete, and that these and other graph problems 
remain NBcompHete even when their domains are restricted to graphs with low node degrees. 
For Graph 3=Colorability, Node Cover, and Undirected Wamiltonian Circui t, we determine 
essentially the lowest possible upper bounds on node degree for which the problems remsin 
NBcomplete. 
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is ftnown to have a polynonnial time algorithm, but such that if my one oft 
does have such an algorithm, then they all do. 

These results have stimulated many researchers to examine other combinatorial 
problems for which no polynomiaPl time algorit 
they too are NF-complete, and their efforts h 
members of this class [lS, 17, NJ. Such results have consideral& practica 
significance. If one knows that the problem he wishes to solve is NPcomplete, a 
thus is unlikely to have any p omial time algorithm, he may feel justified in con- 
centrating in more hopefu.1 ive approaches. 

He can look for algorithms which, a bough admittedly exponential in the worst 
case, seem to work quickly on most ctieal problems (engo, the simplex method), 
or even which are just “less exponential” than previous algorithms, and hence extend 
somewhat the maximum size problem which can be solved within actical time 
limits [16], Alternatively, he can look for fast algorithms which, although they 
do not actually find optimal solutions for the problem, are guarmtaxl to yield so- 
lutioris which are “close” to optimal [6, 9, 11, 121. 

AS important motivation for this paper is that in many real-world applications 
the standard problem does not occur with full generality, but rather in a restricted 
form, due to additional constraints imposed on the inyut domain by the practical 
situation at hand. In some cases, such constraints may make the problem mo 
amenable to efficient algorithmic solution, whereas, in other cases, the restkte 
problem may be essentially as difkult to solve as the original problem. In this paper 
we examine certain natural restrktions on the domains of a number of known 
NZkomplete problems, to determine whether the resultant subproblems are still 
NP-complete, or if they do have polynomial time algorithms. 

UT results show that many known N.-complete problems remain N&complete, 
mains are subsl:antially restrkted. In addition to the 
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e summarize he g the reader to [l?_J for a more 
note ihe set of all finite strings 

* is called a langtqe. Let :rt be the class of 
putable in polynomial ime by one-tape de-. 

are languages, we say that L is polynom 
a function f e nz such that f(x) E 

omplete if ME NP (the class of languages recog- 
terministic Turing machines) and every 
In fact, if L is NP-complete and La 

finitions, the ““problems” we shall consider in this 
paper, although many are timization problems, 
shall be presented as ret rward details of the 
encoding of entities such as graphs and integers into strin f O’s and l’s omitted). 

ofs can then consist showing that known IVP-complete languages reduce 
s we are considerin (A list of the known NP-complete languages we shall 

use, together with their definiaions, is given in the -Appendix). In general, we leave 
t:, the reader the straightforward verification that (a) the language is in NP and (b) the 
described mapping can be pe rmed in polynomial time. 

L Simple Proble 

In [ 133, the following problem was shown to be NP-complete: 

ax 

haput: Graph% = 
positive integer 

), weighting function w: A -) (the non-negative integers),, 

Property : is a set S z N such that 

s can be represente 
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become easy. As added S;upport for this view, notice that if tlv = !A[, then this 
problem simply asks whether G is bipartite, which can be determined quite easily. 

In fact, however, Simple Max Cut is NP-complete, as we show using a two-step 
reduction from Satisfiability With At Most 3 Literals Per Clause (Sat3 - for formal 
definition, see the Appendix). We first consider the following restricted version of 
the Maximum Satisfiability problem of [12]: 

atimun ~ati~ab~~ty With At Most 2 Literals Per Clause 

Inprrt : Disjunctive clauses C’l, Cz, .-, CD, each containing at most two literals, po- 
sitive integer k. 

Property: There is a truth assignmen: io the variables which satisfies k or more 
clauses. 

We use the abbreviation Max Sat2 to denote this problem. Observe that, when k = p’ 
this problem can be solved in polynomial time [3]. However, we now show that 
Sat3 can be reduced to &lax Sat2, proving that Max Sat2 is N&complete. 

of. Suppose we are given. an input for SaL3, that is, a set s of disjunctive clauses, 
each containing at most 3 literals. If any clause has fewer tban 3 liter&, we may re- 
place it by an equivalem clause which has exactly 3 liter&, merely by repeating one 
of the litcrals which it contains. Hence, we may assume that each clause in S con- 
tains exactly 3 literals, and we label them (a, v bl v c,) through (a,,, v b, v c,,,), where 
each ad, bl, and ctr represents either a varia’ble or its negation. The corresponding 
set S’ of clauses and value k far Max Sat2 are given by: 

k = 7m. 

7m or more of the clauses in S’ can be satistied simultaneously if and only if the 
original set S’ is satisfiable. For note that, if we have any satisfying assignment for ,Y, 
then either one, two, or three of a 1, b t, c”~ must be set “true” for each S: 
may verify that, in all three cases, there is a truth setting 
seven of the clauses in 5”’ arising from clause i to be satisfied. 
of & will permit more than seven of the ten clauses to be sati 
of the clauses can be satisfied if all of al, f, and ci are ““false’“. 

pleteness of Simple 0 it. 
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Let clauses Cl, , . . . . Cp and integer k be given as input for Max 
1.1, we may assume t . at each clause contains 
inct, andJabe1 them as W9 (a, v b&9 l **9 

t no iwo clauses are tical since, giwen 
Ci and integer k’, an equivalent problem 

ained by replacing each clause Cl = (u, v 0,) with the 
ses (u, v cJ and (ivt v E;,) (where q is’ a new variable) and setting integer .k = 

%‘+q. 
rresponding to this input for ax Sat2, we shall co ct a ‘graph as isaput 

pie Max Cut in two steps, rsit giving the nodes alI basic framewoik of 
-edges, and then adding in some additional probIem-specific edges. Let x1, x2, . . . . A-, 

the variables occurring (either comDlemented or uncomp’lemented) in the p clauses. 
The set N of nodes for the graph G is 

The basic framework A, of e 

IFqr any given pXtition N E= SI CJ 4vA, S1 n S2 = a, we will say that edge (N, v$ 
is “ba<* if both u and u belong to the San- .z sS ia the partition and is Ccg0c~Q9’ other- 
wise. Notice that all edges in Al will be good for any partition N = S1 u Sz which 
obeys (a) all Ti belong to the saYme set in the partition. and ali F’* belong to the other 
set, and (b) for each i, x[ and all tiJ beto g to the same set in t partition and Xi 

and all& belong ttJ the other set. Furth,enlmore, if any pai,r &, Fi belong to different 
sets in the partitio;r, the + 1 edges from Al will be bad, since each such 
pair of nodes are Jnutually acija(c to 3p+ 1 other rrcrdes. Similarly, if any pair q, 
?i belong to the s&me set iam the tition, then at least 3p+ 1 edges from A, will 
b 



is$3p}u{x+c4 is fake, I <i<n}. . 

j:xJ is false, 3 <i <n, 

u {& : xi is true, 

ents, every edge in 

artitioq fl= S1 w S2 for which 

our previous discussion, this implies that air1 the 8) must belong to the same set, 
r the same reason, exactly one of each pair xi, & must belong to S1. 
sisi?tnt truth assignment is obtained by setting x8 “true” if and only if x1 

bel~pgs to S2. For this truth assiement, cIause i is satisfied whenever a4 or bI or 
both belong to S2- However, it is not difficult to see that, of the’edges in AZ arising 
from clause i, exactly two are good if one or both of ai a d bl belong to S2 and none 
are good if ai and bl both belong is S1. Therefore, since at least 2% edges from A2 
must be good, this truth assignment must satisfy at least k clauses. c] 

n easy corollary to the comp’Ltcness 
problem : 

of Simple ax Cut concerns the following 

G = (l& A), two distinguished nodes s and t, positive 

Property : ere is a partition N = S1 u Sz with S1 n S2 = f& ISI1 = 
tcS& and I{{u,Z/T)EA:UES1,2)ESi}l <W. 

Observe that this roblem can be solved in polynomial time if no restric 

integer K 

IS2L 3-e Sl, 

Gon iu made 
as to the sizes of the subsets [13]. owever, as defined, the problem is 
at, we can conclude from the completeness of Simple ax Cut and the 
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A:w%!&,VE 
et j = n-lS,lj 

Sl, v S; is a partition 

NOW, suppose there is a partition .W 
1 = n such that I( {u, v) E 

i u Si, with ~1 E Sip a,,~ S& and lS;l = 

& u S2, where Si = Si n N and S2 = S$ n N, is a partitioti for G satisfying .. 

E si, VE &}I = I{@, v} 4 ‘:isESi,VES;)I 

= n2-l{(u, V}E A’: UE S;, UC- &}I 

>, n2-(n2- = w. 

Thus G has a cut of wei greater than or equal to if and only if G’ has a cut 
iwith weight not exceeding and divides fk nodes of 
the griph into two equal sized subsets. e reduction is proved. m 

A useful restatement of Simple ut is: ’ 

ositive integer k. 

erty: G has a bipartite subgraph formed by deletin k or fewer edges. 

ode-deletion qersion of this problem is also h?P-complete follows 

ositive i r k. 

g k OF kwer vertices. 



Subgraph is the graph (5)’ = (N”, A’) ZHM! in & 4efin as folbws : 

NE = NV 3; 

A’ = ((Ii, v}: UP v&v’, lo, u) $ A, and i(u, V} rs VI ZG 1); 

k = n-j. 

The reader may verify that G corktains a clique of j erodes if and only 
par&e subgraph forme by deleting n-j or fewer nodes. a 

The: final result of this section concerns the Optimal Linear Arrangement 
Hem [I], defined as follows: 

hymn Graph G = (N, A), weighting function IQ: A + , positive intqer W. 

Property: Tike is a P. -1 function f: N 3 2 such that 

c 
{II. 0) E A 

w ({w, @I* i_fw ymr G m 
This problem is a special case of the well-known quadratic assi nt problem 
a number of related facility location and component piacement problems. We use 
a reduction from Simple Max Cut to shc7w that this problem is NPcomplete, cum 
in the restricted case where all edge weights are required tc be 1 (which we caE: 
Simple Optimal Linear Arrangement). 

0 Simple Cut Q Simp3’e Optimal Linear Arrangement 

iven a graph G = (IK, and positive integer k as input for 
L INI ,r= n4, and l(c) where UnN=@. 

sponding input for Simple Optimal Linear Arrangement is the graph 
and positive integer W detied as follows: 

Iv’ =NWU; 

f = ((si, v):u, VE and {u, v) $ 
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f(uJ=t+i,l <i<n4; 

f @I) = n*+t+i, 1 <i <n-t. 

‘I’hentb~existssuchanfhavingrm~ {I, 2, . . ..n4+n}. Let Fdenotetheset of I-1 
fumtions f: N’ 3 {1,2, . . . . n4+n). Obsem that for any f E F 

and 

F4 == (fE F: c If(J+f (v)l = wq. 
6% da 

shall now show that there is at least 
into a !;et of r consecutive intege 

efore and those t 
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Note that v E U implies L (u) = R(u) = 0. Suppose L(v,) >.R(vo)..Let ~~45 U 

be such that g (tie) > g (14) for ali ti E U. Then by definition of zjofb g (oo) < g (0; < 

im.plks thz3t v E U. Consider the function g E F which is identissl ,.~o g 

that g (vo) = g (Q) and g (~4~) = g (vo). It is not difficu!,a to se8 that 

cxxntradicts either the definition of IV* or the choice of g. 

t = max {g (v): v E A?‘, g (v) < g (vi) and L (v) > R (IV)}. 
- 

The value oft is well-defined since there exists a u E U with g (u) <: g (vo) and L*(U) = 

M @II = 0. Thus, if g (vJ = 8 and g (v2) = d + 1, we must k&e L (21,) e R (i@ 

The fun&on a E F, which is identical 20 g except that g ( vl) = g (0,) and gl(@ F 
g (v,), satisfies *. -. 

contradicting the definition of W? Therefore, we must have m (g) + 0; ‘*- : -Y 
Since r’~i (g) = 0, the IzJkments of U are mapped by g to 8 set .of consecutive integers. 

Define a partition N = S1 u S2 by 
. . . 

S1 = (uEN:g(v) <g(u:) for all uEU], 
i ,- 

Sz = {vEN:g(v) >g(ci) for all z-&I}. 

VVe now have 

. . 

which, since k is an integer, implies 

1 . . _ 
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. 

any of the reductions which were fist used to show certain graph ,theoretic prob- 
to bt: NY-complete invol:/ed the construction of rather ,complikated graphs, 
y non-planar and with nlsdes having arbitrarily high degree. Since in many 

&al problems node degree may be bounded (e.g., fanyin, fan-out. restrictions 
on circuit elements), or graphs may be planar, it is worthwhile to determine’ w&ether 
the complexity of the graphs involved In these reductions was 
. En certain cases, we can observe trkally that it is. For exa 
problem Clique [13]. Since the largest Aique possible in a planar graph has size 4, 
and-the largest clique possible in a graph with maximum node degree k has size k+ 1, 
we can Gnd the largest clique in either case in polynomial time by examining all 
subsets of 4 or fewer (k+ 1 or fewer) nodes, in time proportional to at most n4 
or #+l, respectively. 

More interesting are the cases where the answer is not readily apparent. For 
instance, it is implicit in the literature that Max Cut, when restricted to planar 
graphs, can be solved in polynomial time. [14] presents a polynomial time procedure 
for reducing the problem of tiding the maximum cut in a we&&ted planar graph 
to that of finding a minimum weighted mat&ing in a complete graph derived from 
the dual of the origijaal graph. Although [14] then resorts to a non-polyuonnal 
branch and bound technique9 the weighted matching -can be found in polynomial 
time u&g a method of Edmonds [4]. ’ “. 

. ‘. 

On the other hand, we have found that a number of graph problems remain 
AP-complete even when restricted to planar graphs and graphs with limited node 
degree, In this section, we shall present these completeness results, which concern 
Graph k-ColoraGlity, Node Cover, and Hamiltonian Circuit. The formal definitions 
of these problems appear in the appendix. 

The following table gives the principal restricted versions of these problems which 
we prove to be AWcom@ete: . 

1. 
2. 
3. 
4. 
5. 

or results 

Problem 
9” :anar ph 3-C6krability 
Undire Hamil tsnian Circuit 
I lanar Directed Hamiltonian Path 
Node Cover 
Planar Node Cover 

Node delee at most 
4 
3 

4-Out, 3-In. 
3 
6 

Ii, 3 and 5, it was not previously ar s were 

own only that Crap 



f a wellknown result of 

are Mk~mplete, and these remain significant ope 

plete problem which reduces to it. 

and c such that f f @hf W) 

withf@) = f(b) = f(c) = i, thenf(Yb) = i- 



e set 

Observe that for each clause Ci in the original input, t 
of Yra, yd2, yf3, yfa, yrs, 706 and the variable nodes corresp 
is just a copy of our graph I#. 

truth assignment for C. 
= 1, f (v$, = 2, f (v,) = 

d f (&) := 1 for false* 
rthermore, since assignment satisfies C, 

1 =f (01) E {f (al), f (l&f(q)} for each i; 1 < i Q7. efore, by (ZPA), f can 
be extended to a S-coloring f: N 3 {I. 2,3} for G. 

conversely, supposef: N + (1,2,3) is any 3-coloring of 6. Since the edges in 
G i G n} = (f (&f(v~)} and i Q) = (fW}b 
) that f (vi) E (f(ar).,f(bt), f (q)} for 

f (XJ # f (iI), I < i 6: n, it follows immediate 
e if and only if J(q) = f (vi) gives a truth assi 

if and only if G is kolorable 

3=co Sty. 



. . . 
,.3. 

Fig. 2. Crossover N for Theorem 2.2. 

edge (x, y) E A, call its representation l 

ne which is %mssed” by other gnes, ii 
eat oint and the nearest crossing to it, and one between each pair of adjacent 



. 
(1) 

0 ii 

(iii) 

PfiV) 

: 

x Y 

; . 

. 

X Y 

. : . 

: . . . . 

X Y 

: . . 

. * . . . . 

X Y 

. . . . 

Fig. 3. Construction of G’, as it afkcts the (x, y)-line. 

3-coloring for G, it can be exten~dcd 

ihy a UP 



outlet ik- 1 and it!” tlg_ outlet beltamin_g outlet k. Fig. . _ _c . . 

t is easy to prove iaductiorl that, for all k >, 3, the following facts hold: 

+ 1 nodes;, inckding k outlets. 
degree exce&ing 

and every valid 3-coloriq: of Hk 

ow to construct a planar graph G’, usiq node 
4 and which is 3-colorable if and if G 

off G and arbitrarily designate the P nodes of (; which 

follows : Gr is coslstructe:d from G1 -r. 

an edge joining ZQ to outlet j of thtz node 

atisfies al the.re 
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Nodes: Uk+l i, 1 < I < , 

inlet of Fkfl is &,l and its out ets tl,k+l. 

S2,2 

“2,2 

S2,9 

Q2,? 

s3,s 

*3,3 

s3,2 

u3,2 

s3, i 

“3,4 

Fl Fz 

Fig. 5. Fans Fl, F2,, and F3. 

F3 

it is easy to prove by induction that the fbiiowing facts hold for a31 k> I: 

(2 
(2:4B) 

I$ contains k2+k-1 nodes, none with degree exceeding 3. 
.Pk has one inlet node of degree 1 and k out& nodes, none 

exceeding 2. 
(2.4C) For any outlet node of Fk, t 

~hkh, includes each node Of Fk ex 
exists a path from the inlet to t 

since its proof is not 4 
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The ‘Lemma holds triviallJr for EC = 1. S 
-cl, k > 1, and’consider a graph G’ which CO:~ 

ln the specifkd manner, and which contains a amiltonian circuit C. 
the nodes of as being labelled identically with the car 
C>bserve that 3”’ and hence G, contains a subgraph H’ isomorphic to F&l 
has inlet node l/i, i and which satisfies the two conditions 

pothesis, C (contains a path from UiB 1 to some Uk-i,l whiclj includes 
e node Uk- i,l and the remaining nodes of 

Uk-1, j 

..a -3 -@b----@ 

"k,l Sk, 1 % i Sk, j uk, jtl "k,k Sk,k 

Fig. 6. Remaining nodes of H. 

onsider the set Tof nodes of the form U& and Skis, 1 < i < k, 
of I$ anti the assumptions on H, there are only two ways by 

of 2’ can be accessed by circuit 6: 

rom nodes of G not in K via an outset Uk,*. 
Ekrom an outlet U&,[ of H’, via the corresponding _SkSL. 

sirxx’ C cotltains a path from Ul, i to Uk-x,J which uses all the nodes of H’, t&z 
only way that (b) can occur is via the edge { l,Js Sk,& Using this edge, the path 
~Rxkl Ui,$ to E-i;;-1.j can be extended to a pa from Ul,1 to either Uk,l or Uk,I+1 
consisting precise@ cQ the nodes belonging to H. If this is stat 

r that edge is not used, or it is used and C exits from 
.es of I”ha~ been covered. In either case, a non-zero 

S-type nodes could be covered b 



a,odes or one oft , and the outlet nodes of 

-2 corresponding properties for F,: 
Aa) D,, contains 2 (n2+n- 1) nodes, none with degree exceeding 3. 
.4b) The tk inlet nodes and 19 outlet nodes of each have degree not exceeding 2. 

Rx each outlet and each inlet of & re is a path between them which 

a;iad (2.4b). 
Suppose G’ has a Hamiltonian circuit C, i.e., an ordering of the nodes as yl, y,, . . . . 
, where m = lAPI, such that for all j, 1 <j < m, {y,, y,+J E A’ and such that 
j yl} E A’. We Z?L y assume without loss of generality that y, and y,,, do not belong 

to the same double-fa s, by construction of G’, one of yl: ym must be 
an inlet of some fan other must be an outlet of another fan D&). 
Since G’ is an undirecte aph, we may assume that y1 is an inlet of some fan D,@, 
Then, by (2.4d), C determines an ordering D&J, (i,i, . . ., D&J of the double-fans 

he no&x of D&J precede all the nodes of D,(i,) in C whenever 1 
ut the construction of G’ implies that I+ qz, .*., vi, must the 

a Hamiltonian circuit of G. (Notice that this argument fails when n = 2, 
ia this case zNe may let G’ = 6.) 

Conversely, suppose vi,, vi;?, . . . . amiltonian circuit C of 
tion of G some outlet of D&J cted *to some inlet o 

iI). It is then a simp 

s a Hamiltonian circuit if a nly i 

ct ire& ilt0 th. 
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or Qe,pa) E A. m&y miltodan path ath) of G can be identifie 

.Pird%a) ‘a# Pm0 of nodes such that N = 6 (P~~J~} and 
j-1 

1 zgj<m. 
ILet N* &m&t the set of all finite strings of elements purt$al &path 0 

for G is an element of IV* which is a prefix of some .W;p for G. Fot’any partial 

I 
_-----a-- -------\f”,__ 

a., - e--o00 

Yn-1, t 

anlt b,,t %,t 

%+I, t-l Qn+,, t 



of o if the lengt 

we say that v E N te $ 2 and only 
belongs to /3 if and only if tl = bi ‘ 

ax v l blti for some i, 1 4 i < k. 

Gow suppose we are given a collection S = {S,, &, . . . . Sn) of sets with fi Si = 

ir = 
{ 

841, us, . ..) 
The set N of nodes, 

= (.W, A) is specified as fo;;dws: 
which depends only on p2 and t, is 

The set of edges 1s made up of two parts, JI = Al LI A29 the first of which 
only on %c and t and forms a &e&on for (3 (see Fig. 9): 

The remaining edges in A = Ai u A2 flesh out the skeleton provi or 
each i’ and j, 1 < i < n, 1 < j < t, they connect ce: tain nodes from {Q, br,r, cstf, 

hether or not fcj belongs to Si. If uj & &, then. Ad contains 
Eg. 8A. Ifu, E &, then A2 contains the seven ed 



Thk ~~~rnpletes tlSle description of I;;. The reader should obsewe from Figs. 7 and 8 
that C is planar. 

h$orm&.ly, the relationship be:~xc:n G and the CO 
Suppose that we are building MI path for G, Jn st 
same time, generatiag aa exact cover for U. Clearly, t 
%*I* YO,fY @0*2* Yo,29 ‘.‘? Q~, yo,g, fi. For e&h k, P < 
reaches&, we &osse edge cfa, q) if & is to be included in the cover, a 
if it is nrot to be included, then proceed left (right) along the @k,J, bkIJ, C~,J line 
oWxe grq&, exiting from c&(e&, and &ally arriving atl”,+,. ing us in the choice 
of which idirection to travel that line is the fact that the ykMl,$, 1 <j < f, 
‘“reznember” which elements of U have been covered by previouslj! selected sets. 
Specifically, ,9 &-l,J has akea?i& een visited by the partial J&path if and only if 
elemmt: q has not been covere that, when we are about to make cur 
tist choke, at f’., all nodes ~1 in the path and no element from U 
has been covered. en we reachf,+i, after having made a decision for each set 3& 
noose of the J’,*,~ can have been visited by partial &path (or it cuuld not be ex- 
tended to an &path), so all elements of have been covered by the selected sets* 

e edges of AZ force the transmission of information from one row of y&,1 nodes 
to tfze next, and alss peeve et 3k from being chosen whenever any of its members 
has already ken covelxd. s latter property insures that the sets in the c:over are 
disjoint, as required Cover. 

The: fohcbwing Lemma shows how the edges in Aa force the desired paths, by 
l&viW the relevant ~rqe~&~ of Egs. 8A and 8 . F&g, 9aQ &nd 

of 42 Which are incident with nodes of interest. 
show all edges 



of G saiitfying : 

G, the only possible d-extensions of z are 

Case 2. ui E St (Fig. 
(2L) &une tzs (IL). 

ath of G, the only possible extensions of z 

0 .rfz = c~x~q,~ is a partial fh of 6, the only possible 3-exhmion of z is 
-hj %J x* 

fo mma, (Case IL) Let ‘)o be an path with pre 2. The last node of y 
st be a,,+l rt. The only possible Ltrextension of z which has been excIude 

where v # cilj. But then c~,~ wo ave to be the last node of y3 ske properties (i) 
and (ii) of w insure that (x’, qj longs to y; that is, cfcj does not yet belong to 
the H-path and the only day that path can reach c#,~ is through x’. This contradiction 
proves (1 L). 

other cases follow similarly. 0 

our informal description of the correspondence between 
exact covers, the reader shi?uld have no difkufty in verifyin 

&h whenever S contains an exact cover. To cornpiek tk 
z-em 2.5, v:~ must show the converse. 

Suppose that G has an = (2: (6, eJ belongs to y}. 
ms an exzxt cover for U. Illretie the parti 
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follows almost entirely by mma 2.51 O The on other possibility is that O& might 
be extended by &j&1 (o ekfk+l). But the w argument similar to t 
of Lemma 2.5.1 shows that ek (respectively 4%) must be the last node of the 
which is impossible. 0 

is now clear that (Ski k 4z T) is an exact cover for U. Since any 
form Ofn+$ yn,i an&l,1 yn,2 4fr,2 l .8 yn,t an+l,t, Lemmhz 2.5.2 
res that I,J Sk = Un = nd (iv) insures the disjointness 

the cover, This c=pletes the proof of Theorem 2.5. 0 

Observe that the directed graph G cdr&ucted in the proof need not have arbi- 
trarily large degree, in fact, no node has in-degree exceeding 3 or out-degree ex- 
ceeding 4. It is not known, however, whe 
constraints for which Planar Directed 

Sat3 a Node Cover Node Degree At Most 3. 

Suppose we are given a set 6’ = (Cl, C2, ..*, Cp} of disjunctiviz ciauses, 
corWning no more than 3 literals, As in the proof of Theorem l.i, 

:~dsume that each clause contains exactly 3 literals, possibly with duplicati 
laterals omurring in clause c& as ah& a, 2, and ah& 1 < k < p. Let xl, x2, . . . . x,, 

variables occurring in the p da&es, and for each i, 1 < i < G, ki m (i) 
denote the number of occurrences of variable x4 (as literal xt or literal RI) in the 
clauses. itrarily index the na (i) occurrences of variable xf as occurrence 1, 
occurrence 2, . ..) occxrrence m (i). shall construct a graph 6, having node degree 
at most 3, and give an integer k such that C is satisfiable if and only if G has 
a node cover of size k, 

G = (IV, A) in several steps. rst, for each variable xi, 
= (AT,, A,), a simple circuit lIV,,l = lAli = 2m (i), as 

the alternate labelling of the nodes. 

5, 1 Fi,i 5, 3 _ 5,2 

-- 

Ti,m( i) Fi, m(i) 

ig. 10, subgraph Ht. 



and 
= Xl is the ja ocxxcrenrze of v’ariable xI 

.N= (J w cb!L 
id I 

A==(~A~LJ(~A;~R,~ 
b-4 h-1 

Observe that every ode of G has degree at most 3. -show that the set 
is sati&able if and only if G has a node cover of site 5’. 

The following properties of the s Hi are easy to verify: 
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in C}. 

C of clauses 

(MA) There exists a node cover for H’ containing m (I’) nodes, including alll 
I~TB nodes Ft,$. dre also exists su a node cover which includes 

,3 arad no nodes & 
aode cover for Hr contains fewer than m (i) nodes, and every node 

cover for Hr which includes both a. node Fr,l and a lode Td,l ;nust contain more 
than m(i) nodes. 

Now, suppose \;ie are given a truth assignment to he n variables which satisffies 
clauses. The corresponding; nJde cover S contains the following 

nodes : 

(i) For each variable xt which is set “true “, the cover of m (i) nodes for which 
includes all T,‘,pl. 

variable xL which is set “false”, the cover of RI (i) nodes for Hi which 

clause ch, all the nodes of Ni except some one of them Vhsj such 
that literal a&f is xue for this truth assignment (at least one such literal exists (Since 

clause is satisfied). 
learly, these nodes cover all of the edges belonging to the sets A,, I < E’ < n, 

Each edge ( 1 is also covered sink either Vs,n 
= xs is ;!rue and elongs to S.., Similarly, each edge in .B2 is 
, S is a node cover. rthermore, the number of nodes in S is 
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either aSI the gitj nodss and none of the &J s, or all the F/,1 nodes and none 

of the Tip nodes. A consistent truth assignment can be obtained by setti 

if S c0ntairt.s all the & nodes, and setting xi “false”” otherwise. 
verify that, because oi t.ihe edges in 2r this truth setting s 

of clauses. &1 

leorem 2.6 was obtained independently by 

% Nude Covet a Hanat Node Cover. 

The key structure used in this proof is the graph pictured in Fig* 119 w&h 
analogously to Theorem 2.2 will be called a ctossovet, with outlets vg, vi, v2, ami vi, 
as labelled. 

Fig. Il. Crossover H for Theorem 2.7. 
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Table 1. Values of e [P; j] 

i‘;\l,l o/-II 2 

Given a graph G = (N, A) we construct a planar graph 6’ = (J& A’) using 
these crossovers as follows : 

(i) Embed G ir: t-he plane, allowing edges to cross each other as in Theorem 2.2. 
(ii) Replace each crossing by a copy of as shown in Fig. 12. 

. . . 
J 

. . . . 

l . 

. 

. 
. l 

. . . 

. . 
. 

Y 

. 

9EFORE (G) AFTER (13’) 

Fig. 12. Construction of 6” (only outlets of crossovers shown). 

The crossovers which replace crossings on the edge {x, y> wil’i be called crossovers 
on the {x9 y}-Zke. The edges connecting these crossovers to each other and to x 
and y will be called edglzs olt the (x, y}-rirte. The endpoints of these edges will be called 
the rzodes on the (x, y}-he. Such nades which are also crossover outlets will be called 
the (x, y}-oz&:s of their crossover. e one which is nearest x will be the crussover9s 

CpFle nearest y its x 02&t, for ea crossover on the (x9 y}-line. 
er of copies of Ed us 
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Suppose t” -e is a nsde cover S of G = (IV, A) with 1st = k. We construct a node 
cover of G* Lm S as folllows. For each edge (Y, y} E A, let f(x, y) be an endpoint 
lof that edge which is in S. Then define 

Sb = (u: zf is the f(x, y) outlet for a crossover on the (x, y}-fine for some 

Since S is a node cover for G, f is detined for ail edges in A, and SO S w S’ covers 
ah the line edges of G’. oreover, since each crossover is on two lines in G’, S’ con- 
tains exactly two outlets for e.ach crossover, one from each outllet pair, and SO 18’1 = 

2d. Au. that remains is to cover the as yet uncovered crossover edges. For these, 
obfkrve tram Table IL that any set which contains two nodes from a crossover, one 
from each outlet pair, can be extended, by adding 11 of the crossover’s internal 
node;, to form a node cover of the crossover made up of c [I, l] = 13 nodes. 
Let S” be the set containing, for each crossover, the 11 additional nodes needed 
to extend S’ to a node cover :for that crossover. Thus S u S’ u 22” is a node cover 
of G” having k+2d+ 1 la’! = k-t- 13d nodes. 

Conversely, suppose there is a node cover of G’ having k+ 13d nodes. Let 

k” = min {I Sl : S is a node cover of G’), and 

M =z {S: S is a node cover of G’ ard ISI = k*}. 

For each SE M, define x 

~tz (S) = 1 (x E s’: x is an outlet node for some crossover in G’)I, 

m” = min(nr(S): SEM}, 

and let S* E M be qome node cover with m (S*) = PPZ? Since S* must contain 13 
nodes from each of the crosso’vers in order for it to cover all the crossover edges 
(see ‘Fable l), we know that IS* n ATI < k. conclude our proof by showing th;at 
S’ = S* n N is a node cover of G. 

Suppose it is not. Then there exists some {x, y} E A such that S’ n {x, y) = 0 
ami hence S* n {x2 y) = 0. Let the number of crossovers on the {x, y&line be 1. 
Then there are If 1 edges 03 tht {x, y}-line, and hence at least I+ P of the nodes on 
the line must be in S*, and since neither xnory is, all I+ !I must be outlets. If we let II(~) 

ossovers on the {x, yj-line with i of their (x, yj-outlets in S*, 
to a contradiction, 
line, 1 < i < I9 and 

t Ti s X# be a node cover of the crossover containing its x 



SOME SIMPLIFIED NP-COMPLETE GRAPH PROBLEMS 265 

Let T = (J Tl, S = (J Si. Since n -n (Q) > 1 we have by the above that 
14 i-1 

~reover, T contains at least one fewer {x, y)-outlet than does S, and exactly the 
same number of non {x, y}-outlets. Fuzthermore, T LJ {x} will co<der all the line edges 
&at S did, anld so T* = (P- S) w T LJ {x} is a node cover af GP with 

fT*I = ISSI+i+jTJ+l < IS*! = k*, and 

m m = m(P)-1 = ?PP-1, 

contradicting the defZtion of m*. Thus S* u N is a node cover of G and the theorem 
is proved. n 

Notice that, if the graph G given as input for Node Cover has no node degree 
exceeding 3, the graph G’ constructed in the proof as input for Planar Node Cover 
will have no node degree exceeding 6. This implies that Planar 3Jode Cover With 
Node Degree At Most 6 is AP-comple:e. It is not known whether this degree bound 
is best possible, 

We have seen that a number of graph-theoretic NB-complete problems remain 
NP-complete when the structure of the allowed inputs is substantially restricted. 
Similar questions can be asked for restricted versions of other NP-complete problems. 
For example, it ia not yet known whether Steiner Tree [13] for planar graphs 
or multiprocessor scheduling w 3 processors, unit time tasks, and arbitrary 
partial order [l te. The open status of IJndirected miltonian 
Circuit for planar graphs has been mentioned previously. The question of whether 

x Cut with restricted node (Degree i; NP-corn 

a examining such problems, it is important t that two types of 
results are possible. subcases which are still 

d !large subdomains for 
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The authors are pleased to thank uth for pointing out a correction to 
our original proof of Theorem 1.2, Shi question of the 
status of Optimal Linear Arrangement, an elpfizl comments 
on our original manuscript. 

AMe added’ in proo$ The adtonian path 
open in &don 2 have recently been proven 
the first two authors. 

sst ter 

uf: Set of clause!; C = (C,, Czr . . . . CP} in variables x1, x2, . . . . x”, each clause 
ing the disjunction of 3 or fewer literale, where a literal is either a variable xi 

or its negation Zi. 

Pq~fy: There is a truth ass nt to the variables w 
all the clauses in C (a clause is d if any one of its 
variablrz JQ, or X1 for some “false” q). 

l uhaaeously satisfies 
s xi for some %ue” 

raph G = (NO, A), positive integer k-. 

: G has a clique of size greater than or equal to k, i.e., a set N’ G N with 
and such that for afl nl, n2 E N”, (nip n2) E A. 

#xift: ollectiora of sets S = (S,, Sz, . . . . SJ. 

as an exact cover, i.e., a subcollection S’ s S such t 

and for ah &, SJ E S’, S# n SJ = fl. 
s@s’ ’ 
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it case only) ( ((IolrJ,, n,) E A). 

WI 

node cover of size less than or e ual to k, i.e., a subset N’ s N 

for all ix, y} 45 A, {x, y} n IV’ + 0. 
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