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Abstract, It is widely believed ‘hat showing a prohiem to be NP-compleic is tantamount to proving
its computational irtractability. In this paper v/e show that a number of NP-complete nroblems
remain NP-complete even when their domaius are substantially restricted. First we show tae
completeness of Siinpls Max Cut (Max Cut with edge weights restricted to value 1), and, as a co-
rollary, the completeness of the Optimal Linear Arrangement problem. We then show that even
if the domains of the Node Cover and Directed Hamiltonian Path problems are restricted tc
planar graphs, ths two problems remain NP-complete, and that these and other graph probleras
remain NP-complete even when their domains are restricted to graphs with low node degrees.
For Graph 3-Colorability, Node Cover, and Undirected Hamiltonian Circuit, we determine
essentially the lo vest possible upper bounds on node degree for which the problems remain
NP-complete.

Introduction

Certain combinatorial problems, such as the traveling salesman probicm and theorem
proving in the propositional calculus, have long been notorios for their computational
intractability, in that, despite the effort of many clever people, no algorithms have
been found for them which can be gnaranteed to require time bounded by a poly-
nomial in the length of the input. The belief in the inherent difficulty of these problems
has heen strengthened by results of Cock and Karp [3, 13]. These show that
simple forms of the above problzms, together with a wide variety of other combi-
natorial problems, form a class, the NP-complete! problems, no member of which

* The work of this author was done, in part, ai Project MAC, and supported by the iNational
Science Foundation under research grant GJ-34671; present address: IBM Thomas J. Wat-
son Research Center, Yorktown Heights, N.Y.

1 “Polynomial complete” problems, in the terminclogy of Karp [13].



238 M. R. GAREY, D. S. JOHNSON, L. STOCK. {EYER

is known to have a polynomial time algorithm, but such that if .y one of the problems
does have such an algorithm, then they all do.

These results have stimulated many researchers to examine other combinatorial
problems for which no polynomial time algorithms are known, to determine whether
they too are NP-complete, and their efforts have resulted in the discovery of additional
members of this class [15, 17, i9]. Such results have considerable practical
significance. If one knows that the problemn he wishes to solve is NP-complete, and
thus is unlikely to have any polynomial time algorithm, he may feel justified in con-
centrating on more hopeful alternative approaches.

He can look for algorithms which, although admittedly exponential in the worst
case, seem to work quickly on most practical problems (e.g., the simplex method),
or even which are just “less exponential” than previous algorithms, and hence extend
somewhat the maximum size problem which can be solved within practical time
limits [16]. Alternatively, he can look for fast algorithms which, although they
do not actually find optimal solutions for the problem, are guaranteed to yield so-
lutions which are “close” to optimal [6, 9, 11, 12].

An important motivation for this paper is that in many real-world applications
the standard problem does not occur with full generality, but rather in a restricted
form, due to additional constraints imposed on the input domain by the practical
situation at hand. In some cases, such constraints may make the problem more
amenable to efficient algorithmic solution, whereas, in other cases, the rest:icted
problem may be essentially as difficult to solve as the original problem. In this paper
we examine certain natural restrictions on the domains of a number of known
NPF-complete problems, to determine whether the resultant subproblems are still
NP-complete, or if they do have polynomial time algorithms.

Qur results show that many known NP-complete problems remain NP-complete,
even when their domains are substantially restricted. In addition to the immediate
significance of kuowing that these restricted problems are NP-complete, the nature
of the restrictions makes the completeness results useful in two other ways. First,
they increase our knowledge of the essential elements which made the original
problems NP-complete. Second, they give us valuable tools for proving other com-
pleteness results. For instance, by observing that Satisfiability With At Most 3 Li-
terals Per Clause, a restricted form of Satisfiability, is still NP-complete, Karp [13]
was able to derive the NP-completeness of Chromatic Number, Exact Cover, Max
Cut, and a number of other problsms.

In the first half of this paper, we show that an important restricted version of Max
Cut is still NP-complete, and from that derive the completeness of the Optimal
Linear Arrangement problem, as well as a number of more closely related problems.
The second half of the paper considers the effect of restricting the allowable types
of graphs for NP-complete graph problems such as Node Cover, Chromatic Number,
and Hamiltonian Circuit, by either restricting the maximum degree of the nodes,
or allowing only planar graphs, or both.
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We summarize here the basic definitions, referring the reader to [12] for a more
compicte discussion. Let B = {0, 1} and let B* denote the set of all finite strings
of elements from B. Any subset L of B* is called a language. Let n be the class of
functions F: B* — B* which are computable in pclynomial time by one-tape de-
terministic Turing machines. If L and M are languages, we say that L is polynomiael
reducible to M, written LaM, when there is a function fe n such that f(x)c M
if and only if xe L. M is NP-complete if M € NP (the class of languages recog-
nizable in polynomial tir:e by one-tape rondeterministic Turing machines) and every
language in NP is polynomial reducible to M. In fact, if L is NP-complete and LaM,
then M e NP implies that M is NP-complete.

In accord with the above definitions, the “problems” we shall consider in this
paper, although many are more naturally thought of as optimization problems,
shall be presented as recognition problems (with the straightforward details of the
encoding of entities such as graphs and integers into strings cf 0’s and 1’s omitted).
Our proofs can then consist of showing that known NP-complete languages reduce
to the ones we are considering. (A list of the known NP-complete languages we shall
use, together with their definitions, is given in the Appendix). In general, we leave
to the reader the straightforward verification that (a) the language is in NP and (b) the
described mapping can be performed in polynomial time.

1. Simple Max Cut And Related Problems

In [13], the following problem was shown to be NP-complete:

Max Cut

Inpui: Graph2(- = (N, A), weighting function w: 4 = Z (the non-negative integers),
positive integer W.

Property: There is a set § < N such that

> wlu, o) = W.
{u.vjcd
ueS,veN-§

Karp proved tke NP-completeness of this problem by a reduction from the Partition
problem. Thus, his proof relies on the fact that the edge weights can be represented
in space proportional to the logarithm of their magnitudes, since there is a dynamic
programiming algorithm for Partition which runs in time polynomial in the input
lerigth, if those inputs are expressed in unarv (i.e., in length proportional to their
megnitudes).

One might conjecture, therefore, that if we restricted Max Cut by requiring each
edge weight to be exactly 1, the new problem, whick: we call Siraple Max Cut, might

2 We use the ordered pair (IV, 4) to denote a graph G having node set N and edge set A.
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become casy. As added support for this view, notice that if W = [A|, then this
peoblem simply asks whether G is bipartite, which can be determined quite 2asily.

In fact, however, Simple Max Cut is NP-complete, as we show using a two-step
reduction from Satisfiability With At Most 3 Literals Per Clause (Sat3 — for formal
definition, see the Appendix). We first consider the following restricted version of
the Maximum Satisfiability problem of [12]:

Maximum Satisfiability With At Most 2 Literals Per Clause

Input: Disjunctive clauses Cy, Cs, ..., Cp, each containing at most two literals, po-
sitive integer k.

Property: There is a truth assignmer. io the variables which satisfies £ or more
clauses.

We use the abbreviation Max Sat2 to denote this problem. Observe that, when k = p»
this problem can be solved in polyncmial time [3]. However, we now show that
Sat3 can be reduced to Max Sat2, proving that Max Sat2 is NP-complete.

Theerem 1.1. Sat3 ¢« Max Sat2.

Proof. Suppose we are given an input for Sa.3, that is, a set $ of disjunctive clauses,
each containing at most 3 literals. If any clause has fewer than 3 literals, we may re-
place it by an equivalen: clause wkich has exactly 3 literals, merely by repeating one
of the litcrals which it contains. Hence, we may assume that each clause in S con-
tains exactly 3 literals, and we label them (a, v b, v ¢,) through (a,, v b, Vv ¢,), where
each a,, b;, and c; represents either a variable or its negation. The corresponding
set S’ of clauses and value & for Max Sat2 are given by:

§ = Q {(@), (1), (c), (dy), (@;v by, (G, v &), (b, v &y,

(@ivdy), (bvd), (e, v at)},
k = Tm.

7m or more of the clauses in S’ can be satisfied simultaneously if and only if the
original set S is satisfiable. For note that, if we have any satisfying assignment for .5,
then either one, two, or three of aq,, b,, ; must be set “true” for each i. The reader
may verify that, in all three cases, there is a truth setting for d; causing precisely
seven of the clauses in S” arising from clause i to be satisfied. Furthermore, no setting
of d; will permit more than seven of the ten clauses to be satisfied, aad at most six<
of the clauses can be satisfied if all of a,, b,, and ¢, are “false”.

We now prove the completeness of Simple Max Cut by reducing Max Sat2 to it.

Theorem 1.2. Max Sat2 o Simple Max Cut.
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Proof. Let clauses C,, C,, ..., C, and integer & be given as input for Max Sat2.
In analogy witl: the proof of Theorem 1.1, we may assume that each clause contains
exactly two literals, not necessarily distinct, and-label them as (a; v b,), (a, v b,), ...,
(@, 7 b,). Furthermore, we may assume that no two clauses are identical since, given
not 1.ecessarily distinct clauses Ci, C3, ..., C, and integer k', an equivalent problem
wit'i all clauses distinct is obtained by replacing each clause C; = (v; v v;) with 1he
two ciauses (¥, v ¢;) and (v, v ¢;) (where ¢, is a new variable) and setting mteger k =
I + q

Corresponding to this input for Max Sat2, we shall construct a graph as input
to Simple Max Cut in two steps, first giving the nodes and a basic framework of
+dges, and then adding in some additional problem-specific edges. Let x,, x5, ..., x,
ve the variables occurring (either complemented or uncomplemented) i in the p clauses.
The set N of nodes for the graph G is

N={T;:0 <i<<3p}u{F:0<i<3p}
u{tu.l<z<n,0\§ < 3p}
Uifi,:1<i<n0<j<3p}
Uil <ig<npu 51 <i<nl

The basic framework A4, of edges is

Ay ={{T, F}:0<i<3p,0<j<3p)}
| it 1 <i<in, 0 <j < 3p}
U{{x i} 1 <i <n0<j<3p!
U {{x 05} 1 <P <n, 0 <1/ < 3p)

For any given pottition N = S, u £, 8, n S; = £, we will say that edge {u, v}
is “baa” if both # and v belong to the sams sci in the partition and is “gooa” other-
wise. Notice that all edges in 4, will be good for any partition N = §; U §, which
obeys {a) all T, belong to the same set in the partition and ali F; belong to the other
set, and (b) for each 7, x; and ali #,; belong to the same set in the partition and x;
and all f;; belong to the other set. Furthermore, if any pair F;, F; belong to different
sets in the partitioa, then at leasi 3p+1 edges from A4; will be bad, since each such
pair of nodes are mutually adjacent to 3p+1 other roades. Similarly, if any pair x;,
x; belong to the same set in the partition, then at least 3p+1 edges from A; will
be bad, since there are 3p+ | disjoint 3-edge paths hetween x; and x,.

The following additional edges are included in G:

Ay = {{a;, b,}:1 <i<<p and ¢; # b;}
U {a, Fa~y 0 1 <i<p}u {{by, Fpu}: 1 <i < p}.

The input for Simple Max Cut is the graph G = (N, 4; U 4,) and W = |4,|+2F.
Given a truth assignment for the n variables which satisfies & or moiz clauses,
construct the partition N = §; u §, as follows:
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S ={Fp0<i<Piuix:x is falee, 1 <i<n}
U {2 x, is false, 1 <i<{n,0<j<3p;
v Sy, .mtrnn l<n<‘n1

- c—vl rv' B0 wa www

Uifyixistrue, 1 <i<<n,0<j< 3p}

ae

Sy = N~ 3y.

Smoe, for each satisfied clause, one or both of a; and b, belonz to Sz, exactly two
edges in A, arising from that clause must be good. Furthermore, by our previous
comments, every edge in A4; is good. Thus we have at least W = |4,|+2k good
edges. .

Now, suppose we have a partition N = S, v S, for which W or more edges are
good. Since k > 0 and |4,} << 3p, the number of bad edges cannot exceed 3p. By
our previous discussion, this implies that ail the F; must belong to the same set,
say S;. For the same reason, exactly one of each pair x,, x; must belong to S,.
Thus, a consiswent truth assignment is obtained by setting x, “true” if and only if x,
belongs to S,. For this truth assignment, clause i is satisfied whenever a; or b, or
both belong tc S,. However, it is not difficult to see that, of the edges in A4, arising
from clause 7, exactly two are good if one or both of g, and b, belong to S, and none
are good if a; and b, both belong io S;. Therefore, since at least 2k edges from A,
must be good, this truth assignment must satisfy at least &k clauses. ]

An eésy corcilary to the comp’cteness of Simple Max Cut concerns the foilowing
problem:

Minimum Cut Into Equal-Sized Subsets
Input: Graph G = (N, A), two distinguished nodes s and ¢, positive integer W.

Property: There is a partition N = 8, U §, with §; 1 S, = @, |$4] =[Sy}, s€ S},
te S, and |{{u,vjeA:uec S, ve Sy} < W.

Observe that this problein can be solved in polynomial time if no restriction is made
as to the sizes of the subsets [13]. However, as defined, the problem is NP-conplete,
as we can conclude from the completeness of Simple Max Cut and the following:

Theorem 1.3. Simple Max Cut o thmum Cut Into Equal-Sized Subsets

Proof. Given a graph G = (N, 4) and positive integer W, as input for Simple Max
Cut, let n = |N| and U = {u,, u,, ..., u,} satisfy U N = g. The corresponding

input for Minimum Cut Into Equal-Sized Subsets is the graph G’ = (N, 4’), nodes u,
and u,, and posmve integer W’, defined as follows:
N' = Nvu U;

A = {{uo}:uveN and {u, v}qéA}
W =n*-Ww.
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Suppose there is a partit:on N = S, U S, such that |[{{n, v} € 4: ue 5|, ve S;}| >
W. Since W is positive, bocth §; and S, are nonempty. Let j = n—|S,!. Form
51 = 8 v {uy, 4y, ...,u;} ard S3 = N'—S;. Then N’ = §] U S; is a partition
for G’ with |S}| = |S3| = n, u, € S}, u, € S5, and

{{u, v} e 4':ue S, ve S} =n*—|{{u, v} ¢ A':ue S}, ve S5}
=n?—|{{u, v} d:ue S,;,ve S;}|
<M-W=Ww.

Now, shppose there is a pariition N’ = S} u S3, with ¥; € S}, ,€ §3,and |S}| =
1S3l =n such that |{{u,v}ed’:uecS}, veS}} <n*—W =W. Then N =
S U S, where $;=S;nNand S, =S5;nN, is a partition for G satisfying -

H{u, v}ed:ue S, ve S}l = {{u, v} ¢ 41 ue S}, ve Sz}
=n*—|{{u,v}e A':ue S}, vc S5}
Znt—@-Ww)=W.

Thus G has a cut of weight greater than or equal to W if and only if G’ has a cut
with weight not exceeding W, which separates u, and u, and divides tn.e nodes of
the graph into two equal sized subsets. The reduction is proved. []

A useful restatement of Simple Max Cut is:

Minimum Edge-Deletion Bipartite Subgraph
Input: Graph G = (N, 4), positive integer k. ‘
Property: G has a bipartite subgraph formed by deleting k or fewer edges.

That the following node-deletion version of this problem is also NP-complete follows
from Theorem 1.4 below.

Minimum Node-Deletion Bipartite Subgraph

Input: Graph G = (N, A), positive integer k.

Property: G has a bipartite subgraph.formcd by deleting k or iewer vertices.
Theorem 1.4. Clique oo Minimwum Node-Deletion Bipartite Subgraph.
Proof. Given a graph G = (N, 4) and positive integer jas input to Clique (for a for-

mal definition of Clique see the Appendix), let n = [N| and ¥ = {uy, u,, ..., 4}
where U n N = @. The corresponding input for Minimum Node-Deletion Bipartite
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Subgraph is the graph ' = (N', A’) and integer * defined as follows:
N =Nu T,
A ={{u,v}:u,veN,{u v} ¢4, and [{y,v}n U] <1};
e k = n—j.

The reader may verify that G contains a clique of j nodes if and only if G’ has a bi-
partite subgraph formed by deleting n—j or fewer nodes. []

The final result of this section concerns the Optimal Linear Arrangement prob-
lem [1], defined as follows:

Optimai Linear Arrangement
Input: Graph G = (N, A), weighting function w: A — Z, positive integer W.
Property: There is a 1—~1 function f: N » Z such that

) W oD-if @O < W.

4, 0} €

This problem is a special case of the well-known quadratic assignment problem and
a number of related facility location and component placement problems. We use
a reduction from Simple Max Cut to show that this problem is NP-complete, even
in the restricied case where all edge weights are required tc be 1 (which we cai
Simple Optimal Linear Arrangement).

Theorem 1.5. Simple Max Cut « Simple Optimal Linear Arrangement

Proof. Given a graph G = (N, 4) and positive integer k as input for Simple Max
Cut, let n = |N|,r = n*, and U = {u;, uy, ...,4,} where U~ N = @. The corre-
sponding input for Simple Optimal Linear Arrangement is the graph G’ = (N’, 4')
and positive integer W defined as follows:

N =NuU;
A = {{u,v}:u,veN' and {u, v} ¢ 4};

4
W e (n +3n+l) k.

{INotice that t'; Iy = 2, (v—u) whiclis the minimum W achievatle for a com-
1Qu<co e
plete graph on ¢ nodes.)

Suppose we have a partition N = S, u S, which satisfies |{{u, v} € 4:ue 5y,
ve S} =2 k. Let S = {ay,a;,..,4} and S, = {by, b,, ..., by~}. Define f as
follows

flay=1i, 1<i<t
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@) =t+i, 1 <i<n®;
fB) =nt+t+i,1 <i<n-t.

Then
4
S 17 @~f o) = (” "”"“) — 3 1£G)—f )
{u, 0} €A 3 {u, 0} ¢ A
4
- (” +_,'f“) =T @~
{u, 0} A

4 )
<(n +n+l) k=W
3
Now suppose there exists a 1—1 functio: f: N' = Z such that
n f@-rol < w.
w,vied

Then there exists such an fhaving reage {1, 2, ..., n* +n}. Let Fdenote the set of 1 —1
functions f: N’ - {1, 2, ..., n* +n}. Observe that for any fe F

M 1
) e -r o+ Z If@—f= % |j-il =(" +;’+ )

u,v)eq’ {u,v}ea 151<)Sa¥4

Therefore, there exists an fe F such that
2 1f@)=f @) >k

U.l’ €A

Define
W* = l;lax ) lf(u) -~f ()i

and

= {fe F: Z @)= ~f ()| = W*}.

{u,v}en
Clearly W* >: kn* and F* is norempty. We shall now show that there is at least
one fe i* which maps the elements of U into a set of r consecutive integers, thereby

partitioning N into those vertices that go before and those that come afterwards.
For each f= F*, define the set

S(f)={veN:3u,u;e U with f(u)} < f(v) < f(u)}

and let m () = |S(f)]. Then there exists a function g € F* such that m (g) < m(f)
for all fe F*. We show that m () = 0, and hence g is our desired mapping.

Suppose m{g) > 0. Let vse S(g) be such that g (vy) = g (v) for all ve S{g),
For each ve N’, define

L{v)=|{ucN':{uv}cA4 and gy <g (@}
and
R@)=|{ueN':{u,v}je A and g (u) > g (v)}l.
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Note that ve U implies L (v) = R(v) = 0. Suppose L (vy) = R (vo). Let u,e U
be such that g (1) = g () for ali we U. Then by definition of vy, g (vy) < g (v) <
g (uy) imphes thiat v € U. Consider the function g € F which is identical to g
except that g (vo) = g (4,) and g (1p) = g (v,). It is not difficult to sec that

2 6@-g () >W* andm(@) <mig)

{u,v}eA

which contradicts either the definition of W* or the choice of g. Thus, L () <
R{vy). Let

t =max {g(v):ve N, g (v) < g (vo) and L(v) > R(v)}

The value of ¢ is well-defined since there emsts aue Uwithg (u) < g (vo) and L ( u) =
R(u) = 0. Thus, if g (v,) = ¢ and g{v,) = t+1, we must have L (v,) < R(»,)

The function g€ F, which is identical to g except that g (v,) = g (v,) and g(vy) =
g (v,), satisiies . .

Z la(u)—g(v)l > 2 lg ) —g (V)] =

Uﬂ €4 U,ﬂ €4l

contradicting the definition of W*. Therefore, we must have m (g) =
Since i (g) = 0, the clements of ¥/ are mapped by g to & set of consecunve integers.
Define a partition N= S, U &, by

Sy ={veN:g(v) <g() for ali ue U},
5, = {veN:g(v) > g (u) for all ueU}.

We now have

knt < Z lg @)—g ()]

u,v

= Je@-g @+ T lg(u)-—g(v)l+ 2 lg@-g @I

{u,v}ed {u,v}e4 {x,v}e4
U, VES; U, VES; UES;,VCS,

< (n-;—l) + (rz+1) +@*+n){{u, v} e d:uc Sy, ve S,)|

3 3 3

n 4 .
gttt vlediues, ve s

which, since k is an integer, implies
[, v}ed:ue S, ve S} >k

This completes the proof of ‘Theorexﬁ i.5.
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‘2. Restricted Graph Probiems

IAany of the reductions which were first used to show certain graph theoretic prob-
leias to be NP-complete involved the censtruction of rather complicated graphs,
Lighly non-planar and with nodes having arbitrarily high degree. Since in many
nraciical problems node degres may be bounded (e.g., fan-in, fan-out restrictions
on circuit elements), or graphs may be planar, it is worthwhile to determine whether
the complexity of the graphs involved in these reductions was necessary.

. In certain cases, we can observe trivially that it is. For example, consider the
problem Clique [13]. Since the largest clique possible in a planar graph has size 4,
and the largest clique possible in a graph witn maximum node degree & has size k+1,
we can find the largest clique in either case in polynomial time by examining all
subsets of 4 or fewer (k+1 or fewer) nodes, in time proportional to at most n*
or n*+!, respectively. '

More interesting are the cases where the answer is unot readily apparent. For
instance, it is implicit in the literature that Max Cut, when restricted to planar
graphs, can be solved in polynomial time. [14] presents a polynomial time procedure
for reducing the problem of finding the maximurm cut in a weighted planar graph
to that of finding a minimum weighted matching in a complete graph derived from
the dual of the original graph. Although [14] then resorts to a non-polynomial
-branch and bound technique, the weighted matching can be found in polynomial
time using a method of Edmonds [4].

On the other hand, we have found that a number of graph problems remain
NP-complete even when restricted t¢ planar graphs and graphs with limited node
degree. In this seciion, we shall present these completeness results, which concern
Graph k-Colorability, Node Cover, and Hamiltcnian Circuit. The formal definitions
of these problems appear in the appendix.

The following table gives the principa! restricted versions of these problems which
we prove to be NP-complete:

" Problem _ Node dejree at most

1. Planar Graph 3-Colcrability 4
2. Undirected Hamiltonian Circuit 3
3. Flanar Directed Hamiltonian Path 4-Out, 3-Irn-
4. Node Cover 3
5. Planar Node Cover 6

For results 1, 3 and 5, it was not previously known if the planar problems were
complete, ever if no restrictions were placed on node degrees. In fact, concerning
result 1, it was previously known only that Graph k-Colorability, with & an input
variable, was NP-complete.

The degree constraints in 1, 2, and 4 are all best possible, in that each of the pro-
blems becomes ezsy if the restriction on node degree is reduced by 1. Node Cover
and Undirecied Hamiltonian Circuit are clearly trivial for.graphs with maximum



248 ‘M. R. GAREY, D. S. JOHNSON, L. STOCKMEYER

degree 2, and a wellknown result of Brooks [2] implies that a connected
graph with maximum degree 3 is 3-colorable if and only if it differs from K, the
complete grapli on four nodes, which is casy to determine.

-In addition to the above results, there are a number of more or less immediate
corollarics. Result 2 implies that Directed Hamiltonian Circuit with node degree
boundcd by 3-Out, 3-In is NP-complete; however, the largest degree bounds for
which we know this problem to be easy are 2-Out, 1-In or 2-In, 1-Out. Also, we may
substitute Path for Circuit in result 2. However, we do not know whether Planar
Directed Hamiltonian Circuit, Planar Undirected Hamiltonian Circuit, cr Planar
Undirected Hamiltonian Path are NP-complete, and these remain significant open
problems.

The proofs of the results given in the table follow. For each problem, we show
that there is a known NP-complete problem which reduces to it.

Thesrem 2.1. Sat3 o Graph 3-Colorability.

Proof. The key construct in our proof is the graph H shown in Fig. 1. The graph K’
has two important properties which are straightforward to verify.

(2:.1A) Any coloring of the nodes a, b, and ¢ such that 1€& {f(a),f(),f(c)} can
be extended to a valid 3-coloring f for H which has f(ye) = 1.

(2.1B) If f is a valid 3-coloring of H with f(a) = f(b) = f(c¢) = i, then f(ys) = i-

Fig. 1. Graph H for Theorem 2.1.

Let € = {Cy, C,, ..., C,} be any set of clauses, in variables x;, X5, ..., X,, given
as input for Sat3. As in the proof of Theorem 1.1, we may assume that each clause
contains exactly 3 literals and label them by C, = (¢, v, v ¢). We shall construct
a graph -G which is 3-colorable if and only if C is satisfiable.

The set N of nodes for G is given by

- N={v, o0} Ufr, X 1 <i<np U {p, ISI<p, 1 << 6}
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The set A of edges for G is given by

A = {{vy, v}, {2, v3}, {0y, v3}}
{{xpx}:1<i<n}
U {{vs, x;}, {03, X} 1 i <m}

"V {{ag, yis}> (b, Y2} fen yis}: 1 < i< p}

v {{029 y!ﬁ}, {039 ylG}: 1 < i sp}
W {{ri ¥i2ds (1o 2ieds iz P 1 < <pj}
U {013 Y15} {Vi3s 16} {018 Vis} 1 1 < < p}
U {{i 1i5}: 1 < i < p}.

Observe that for each clause C, in the original input, the subgraph consisting
of Yi1s Yi2s Yi3s Yias Vis» Vis and the variable nodes corresponding to ay, b;, and c,
is just a copy of our graph H.

Now considc - any satisfying truth assignment for C. Define f: N—{y,;: 1 <i <
P, 1 <j <6} bysetting f(v)) =1, f(v2) =2, f(v3) = 3,f(x) =1 andf(x)) =
‘2 for x; true, and f(x;} =2 and f(x;) =1 for x; false. Clearly f assigns dif-
ferent values to adjacent nodes. Furthermore, since the truth assignment satisfies C,
1 =f{v))e{f(a),f(%).5(c)} for each i, 1 <i < p. Therefore, by (2.14), f can
be extended to a 3-coloring f: N— {1.2, 3} for G.

Conversely, suppose f: N — {1, 2, 3} is any 3-coloring of G. Since the edges in 4
force {f(x),/(x): 1 <i<<n} = {f(v,),f(v2)} and {f{yis): 1 < i <p} = {f(v1)}s
it follows from (2.1B) that f(v,) € { (@), f (b)), f(c))} for cach i, 1 <i < p. Since
we alsc must have f(x;) # f(x)), 1 <i < n, it follows immediately that setting x,
true if and only if S (x;) = f(v,) gives a truth assignment which satisfies C.

Thus C is satisfiable if and only if G is 3-colcrable, and the reduction is proved. [}

Theorem 2.2. Graph 3-Colorability a. Planar Graph 3-colorability.

Proof. The key structuie vsed in this proof is the graph H pictured in Fig. 2, which
will be called a crossever with outlets u, u’, v, and o' as labelled. This crossover,
simpler than our original, was provided by Michael J. FFischer. & has 13 sudes
#nd obeys the following; properties, as the reader may readily verify.

(2.2A) Any valid 2-coloring of H gives the same color to x and #’, and the same
coler 10 v and o',

(2.2B) For any (i,j) e {1, 2, 3} x {1, 2, 3}, there exists & 3-coloring of H using
colors 1, 2, and 3 such that # and «' receive color #, and v and ¢’ receive color j.

Given a graph G = (N, 4), we construct a planar gaph G’ = (N', 4’) as follows
{(see Fig. 3):

(i) Embed G in the plane, allowing adges to cross each cther, but such that no
more than two edges meet at any one point (other than their mutual endpoint)
and no edge touches a node other thap its own eadpoint. (This can be done in any
number of standard ways in polynomial time).
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u

~ Fig. 2. Trossover H for Theorem 2.2.

(i) For each. edge {x,y} € A4, call its representation in the plane the {x, y}-iing
To each such line which is “crossed™ by other lines, add new points, one between
each endpoint and the nearest crossing to it, and one between each pair of adjacent
CTOSSings.

(iii) Replace each crossing in the graph by a copy of graph H, identifying the
outlets ¥ and u’ with the pearest new points on either side of the crossing on one
of the lines involved, and 1demnfymg v and o’ with the nearest new points on the
other line,

(iv) For éach {x, y} € A choose one endpomt as the distinguished endpoint and
coalesce it with the nearest aew point on the {x, y}-line. The edge butween the
other endpoint and ifs nearest new point on the {x, y}-line will be called *he operant
edge of the {x, y}-line.

This completes the construction of G'.

Suppose G’ is 3-colorable and let f: N’ — {1, 2, 3} be a valid 3-coloring. Then f

restricted to N < N’ will be a va.id 3-coloring of G. For suppose not. 7len there
wauld,exist an {x,y}e A such that f(x) = f(»). Consider the {x, y}-line in G%
and assume without loss of generality that x is the distingnished endpoint for this
line chosen in Step (iv). Theu by (2.2A) ali the new points on tte {x, y}-line must
have the same color as x. Thus both endpoints of the operant edge for that line have
the same color, a contradiction. :
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l |
(i) x® /[ ‘ E oy

(ii) D o o—ay

(iii)

(iv)

Fig. 3. Construction of G', as it affects the {x, y}-line.

Conversely, if f: N — {1, 2, 3} is a valid 3-coloring for G, it can be extendzd to
a 3-coloring for G’ as follows: For each {x, y} € 4, color each new point on the
{x, y}-line with color f(x), where x is the distinguished endpoint of the line. This
insures that al’ the operant edges of G’ are validly colored. By (2.2B) this 3-coloring
can be extended to the interior nodes of the crossovers, thus yielding a valid 3-col-
oring of ¢’.

Thus G’ is 3-colorable if and only if G is, and the reduction is proved. []

Theorem 2.3. Planar G’raph 3-Celor abzhty o Planair Graph 3- Colorabtlzty With Node
Degree At Most 4. :

Pmof. The key to our construction will be the use of “node substitutes”. Fig. 4(z)
shows the 3-outlet node substitute H,, with its first, second, and thiré outlet nodes
labelied. For k > 4, the k-outlet node substitute H,, is formed by adjoining to Hj-,
a copy of H; having its first outlet coinciding with outlet k—1 of H-,. The outlet
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nodes of H, are the nodes having degree 2. The outlets which originally belonged
to H—, ratain the same labels, with “he second outlet of the adjoined H; becoming
outlet k—1 and its third outlet becoming outlet . Fig. 4(b) shows Hj.

2 . . 3 4
14@&3 1ZM&5
' ; . (by

Fig. 4. Node substitutes Hs and Hi.

It is easy to prove by induction that, for all &k > 3, the following facts hold:

(2.3A) H, has 7 (k—2)+1 nodes, including & outlets.

(2.3B) No node of H, has degnee exceeding 4.

(2.3C) H, is planar.

(2.3D) H, is 3-colorable, but not Zmlerable and every vahd 3. coloring of H,
assigns the same color to every outiet node.

Given any planar graph G, we show how tc construct a planar graph G’, using node
~ sabstitutes, whicl: has maximum degree 4 and whlch is 3-colorable if and only if G
is 3-colorable.

Fix a planar embedding of G and arbitrarily designate the r nodes of & which
have degree exce:ding 4 as v,, v,, ..., v,. We construct a sequence of grapiis G =
Go, Gy, ..., G,'=: (G’ as follows: G; is constructed from G;-,. Let d be the degree
of v; in G;—; and let {u,, v,}, {u,, v;}, ..., {us, v,} be the edges incident with v,, taken
in clockwise order. To form G,, delete node v, from G,—,, replacing it with a copy
of H,, and replace each edge {u,, v,} by an edge Jommg u; to outlet j of the node
substitute. :

It follows from the construction and previously stated facts that, for 0 < ¥ <,
G, is planar, G, has r—k -nodes with degree exceeding 4, and G, is 3-colorable if
and only if G is 3 colorable. Thus, G’ = G, satisfies all the required properiies, com-
pleting the proof. [

Theorem 2.4. Undirected Hamiltonian Circuit « Undirected Hamiltonian Circuit
With Node Degree At Most 3.

Proof. This construction will also use a “node substitute”, which is formed from
a special graph, called a fan. The one-outlet fan F, cousists simply of a single node.
The single node, labelled Uy, ,, is both the inlez and the outlet of F,. Inductively, as-
sume we have defined the k-outlet fan Fy, & 2> 1, withinlet U, , and ovtlets U, , through
Ui v The (k-- 1)-outlet fan Em is formed from Fk by adding the foliowmg nodes
and edgses: .
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Nodes: Upyy, 1 <1 <k+15 8,44, 1 <i<<k+1

Edges: {Upp, Siyra} 1 <i<E;
{Ukt1,60 Skrra} 1 <E<h+1;
{Ukt1,c015 Serrah 1 i< k;
{Se+1.4+15 Uer,1}-

Theinlet of Fyy, is U, and its outlets are Uy,,,; through U,yq 1+1. Fig. 5 shows F,
F,, and F;.

2,2 Ptsz,z Us 3
ey IU2,2 —-lS

Us, 1 2.2 Uy, | ! 2

o —o S, 4 c-’-—-—-—-—Tsz,a TUs,z
Uz 4

Uz 4 U—-“—-—*Ss,i

- U‘Usn
Fy Fao Fa

Fig. 5. Fans Fx, Fz., and F3.

it is easy to prove by induction that the foiiowing facts hoid for ali k > 1:

(2.4A) F, contains k%>+k~1 nodes, none with degree exceeding 3.
(2.4B) F, has one inlet node of dsgree 1 and & outlzi nodes, none with degree

exceeding 2.
(2.4C) For any outlet node of F,, there exists a path from the inlet to that outlet

which includes each node of F, exactly once.

One more property of F, will be required and, since its proof is not quite as straight-
forward, we present it as a lemma.

Lemma 2.4.1. Suppose a graph G contains a subgraph H isomorphic to F, k > 1,

in such a way that

(i) no two nodzs of H are adjacent in G unless the correspondiag noaes of F, are ad-
Jacent, and

(ii) any node of H which is adjaceni io a node of G not belonging to H corresponds
to either an inlet or cutlet node of Fj.
Then, any Hamiltonian circuit of G contains a paih from the “inlet” of H to some “out-
let” of H, consisting precisely of all the nodes of H.
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Proof of Lemma. The Lemma holds trivially for k£ = 1. Suppose it holds for
Fi-y, k > 1, and consider a graph G which contains a subgraph H isomorphic to F,
in the specified manner, and which contains a Hamiltonian circuit C. We consider
the nodes of H as being labelled identically with the correspoading nodes of Fi.
Observe that 7, and hence G, contains a subgraph i’ isomorphic to F,-, which
has inlet node U, , and which satisfies the two conditions of the Lemma. By the
induction hypothesis, C contains a path from U, to some Uy, ; which includes
precisely the nodes belonging to H'. The node Uy-,,; and the remaining nodes of H
are shown in Fig. 6.

Uk-1, j

G o = e e—e)

Uk,1 Sk, 1 Uk,i Sk,j Yk, j+1 Uk,k Sk, k

Fig. 6. Remaining nodes of H.

Consider the set T of nodes of the form U, ; and S, 1 < i < k. By the construc-
tion of F, and the assumptions on H, there are only two ways by which the nodes
of T can be accessed by circuit C:

(a) From nodes cf G not in H via an outlet U, ,.

(b) From an outlet Ui, of H', via the corresponding S,;.

Since C contains a path from U, , to U,—, ; which uses all the nodes of H', ths
only wzy that (b) can occur is via the edge {Uy-y,}, Si,s}. Using this edge, the path
from U,,; to Uy, ; can be extended to a path from U,,, to either Uy ; or Uy ;+,
consisting precisely of the nodes belonging to H. If this is not what occurs in C,
then either that edge is not used, or it is used and C exits from the set of nodes T
before ail nodes of T have been covered. In either case, a non-zero and equal number
of U-type and S-type nodes from T will remain to be covered by subsequent visits
of the Hamiltonian circuit to the set T. However each such visit of 7" by C must both
enter and leave via a U-type node, and hence must use one more U-type node than
S-type node. Thus, not all the S-type nodes could be covered by C, contradicting
the fact that C is a Hamiltonian circuit. Therefore, C must contain 2 path from Uy,
to some outlet U, ; consisting precisely of all the nodes of H, as claimed. The Lemma
follows by induction. [J

Given a graph G = (N, 4), w= now show how to construct a graph G’ == (N, 4"),
having maxirnum node degree 3, such that G’ contains a Hamiltonian circuit if and
only if G does.

Let N = {vy, 03, ..., vy} Where 2 = |[N|. Let D, denote the double-fan formed
by joining two copies of F, with an edge connecting their in'et nodes. The cutlet
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nodes or one of the copies of F, are the inlet nodes for D,, and the outlet nodes of
the other copy are the outlet nodes of D,. For each node v, in N, the graph G’ contains
a copy D,(i) of D,. The inlets of D,(i) will be denoted by v,(i), v,(i), ..., v,() avd its
outleis by uy (i), (i), ..., u,(i). The specification cf G’ is compleied by including in G,
for ach edge {v, v,} € 4, the two edges {u,(i), v,(j)} and {w,(j), v,(i)}.

Tae following useful properties of double-fans D, are immediate consequences
of th~ corresponding properties for F,:

{2.4a) D, contains 2 (n*>+n—1) nodes, none with degree exceeding 3.

(2.4b) The ninlet nodes and n outlet nedes of D, each have degree not exceeding 2.

(2:42) For each outlet and each inlet of D,, there is a path between them which
includes every node of D, exactly once.

{2.4d) Suppose an undirected graph H centains a subgraph D isomorphic to D,
in the manner specified in Lemma 2.4.1. Then every Hamiltonian circuit of H con-
tzins a path from an “/.ilat” of D to an “outlet” of D, containing precisely all the
ncdes of D,

Observe that G’ kas maximum degree 3, since each inlet or outlet of a D,(i) has
at most one edge joining it to a rode not belonging to D,(i), using properties (2.4a)
aad (2.4b).

Suppose G’ has a Hamiltonian circuit C, i.e., an ordering of the nodes as y,, y,, ...,
Vs Where m = |N’|, such that for all j, 1 <j<m, {y;,y;+1} €4’ and such that
{¥m Y1} = A'. We may assume without loss of generality that y, and y, do not belong
to the same cdouble-fan D,(i). Thus, by construction of G’, one of y,, y, must be
an inlet of some fan D,(i) and the other must be an outlet of another fan D,(j).
Since G’ is an undirected graph, we may assume that y, is an inlet of some fan D,(i)_
Then, by (2.4d), C determines an ordering D,(i,), Du(i,), ..., D,(i,) of the double-fang
suck that all the nod-s of D,(i;) precede all the nodes of D,(i;) in C whenever 1 <
k < j <n. But the construction of G’ implies that v, v,, ..., v;, must then be
a Hamiltonian circuit of G. (Notice that this argument fails when » = 2, however,
in this case we may let G' = G.)

Conversely, suppose v, vy, ..., vy, is a Hamiltonian circuit C of G. By censtruc-
tion of G some outlet of D,({;) must be connected ¢o some inlet of D,(i;+,) in G,
for 1 <j < n, and similarly for D,(i,) aud D,{i,). It is then a simpie matter to con-
struct a Hamiltonian circuit in G’ using (2.4c).

Therefore, we have: shown ihat G’ contains a Hamiltonian circuit if and only if G
does, coinpleting the proof of Theorem 2.4. 7]

Theorem Z.5. Exact Cover o Planar Directed Hamilton.an Path.

Proof. Given any collection S of sets, we must construct a planar directed graph G
which has a Hamiltonian path if and only if S contains an cxsct cover. We first
introduce some terminology.

Let G = (N, A) be a directed graph with nodes py, ps, ..., 9. The edges in 4
are ordered pairs {z, p,>. We will call p, and p; adjacent whenever either {p;, p,> € 4
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or {p,, p:) € A. Any Hamiltonian path (H-path) of G can be identified with a string
m .
PunPiy - Pumy Of nodes such that N = le {pi»} and <Py, Piy+1y) € A4 for all

1<j<m.
et N* denote the set of all finite strings of eleraents from N. A partial H-path o

for G is an element of N* which is a prefix of some H-path for G. For any partial

f -
4 \:/ “

&
[ ]
°

e ® ~
( \fa // )
[ o= A
fy
- ¢- —
wow W w )|
N / \ e ~ 7\
® ® ®
Yo.1 Yo,2 Yot ]
L—k:}. L] O-m—-% ® M-/-\. LI Q ® Qi—
di 043 Dy €y Oz by oG 0y biyciy
® ® °
y‘d ”‘2 y'u'
N e "Q e GC«\O ° oc-\c ° s o o<-‘ e &g ——
dz2 Gz Dz1Cp4 022 22 Ca2 Ot bytCoy €
® ® ®
Y2 Y2,2 : Ya.t

\ Yn-1,1 ¥n-1, 2 Yn-1,t
@ @ @

Cn en
\/-l\o @ 0‘/2\&3 ® 0’:5 OQ ® O

n,1 b, Cng Cn2 P2 Cn2 n,t byt Cnt
» Yn,1 Yn,2 ,,Yn.t
Onet, i Onsr, 2 Onat, te1 One t

fn+1

Fig. 7. The skeleton of G.
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H-path o for G, T € N* is a k-extension of w if the length of 7 is k and wr is a partial
H-path for G.

k¢ any string p = b, b, ... b, € N*¥, we say that v € N belongs to f i{ and only
if ¢ = b; for some i,1 <i < k, and {u, v) = A belonys to B if and only if u = b,
auc v = by, for some i,1 <i<k.

n
I{ow suppose we are given a collection S = {Sy, S,, ..., S,} of sets with |J S, =

Il = {uy, uy, ..., u,}. The plonar directed grayh G = (IV, 4) is specified as follows:
The set N of nodes, which depends only on » and ¢, is

N={{,c,:1<isnl<j<t}
vi{g:0<i<ntl, 1 <j<1}
V. 0<i<nl<j<t}

O {duew fir 1 <E<n} 0 (s}

The sct of edges 1s made up of two parts, A == 4; L A,, the first of which depends
only on n and ¢ and forms a ske.cton for G (see lFig. 7):

Ay = {{a0,55 Y0.17s Fn.ps Ont1,0: 1 <J < i}
U {{o.s Go.5+175 €Bnta, 3 Putr,prdt 1 <J < t-1]
U {00 J10s Sot1s Pn 0}
O {fis di>. {fis €, {di, fi+1)» en, 1),
{di, 81,10, \:,1, A1), ey, €100, {Ciin @) 11 <@ <}
U {{Cp @1, 1410 815115 G0 1 <<, 1 <j <=1}

The remaining edges in 4 = 4, U 4, flesh out the skeleton provided by 4,. For
each i and j, 1 <i<m 1 <j <t they connect ce:tain nodes from {a; ;, b; ;, ¢; ;
Yi-1,j» Y1.;}» depending on whether or not u; belongs to S;. If 4, ¢ S;, then 4, contains
the eight edges shown in Fig. 8A. If #; € S;, then 4, contains the seven edges shown
in Fig. 8B.

.QI 0Qi
a -./»‘-bi'j \eCi i aj ii:i/—-\\lii'j \ﬂci,l
"\ A " i
|/ /
N
Iy s
(A) (B)

Fig. 3. Edges in A4,.
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This completes the description of G. The reader should observe from Figs. 7 and 8
that G is planar.

Informally, the relationship be:ween G and the covering problem is as follows.
Suppose that we are building an H-path for G, in step-by-step fashion, aid, at the
same time, generating 20 exact cover for U, Clearly, the H-path must begin with
80,15 Yo.15 90,25 0,25 -+ 0,15 Yo,00 J1- For each k, 1 < k < n, at the step the H-path
reaches f;, we choose edge {f;, 2 if S, is to be included in the cover, and edge {f;, d;)
if it is not to be included. We then proceed left (right) alorg the & ;, by, 1, line
of the graph, exiting from d(e,), and finally arriving at f,+,. Helping us in the choice
of which direction to travel that line is the fact that the nodes 3, 1 <j<t,
“remember” which elements of U have been covered by previously selected sets.
Specifically, y;-,,; has already been visited by the partial H-path if and only if
element v, has not been covered yet. Note that, when we are about to make our
first choice, at f;, all nodes y, ; are already in the path and no element from U
has been covered. When we reach f,+,, after having made a decision for each set S,
none of the y, , can have been visited by the partial H-path (or it could not be ex-
tended to an H-path), sc all elements of U have been covered by the selected sets.
The edges of 4, force the transmission of information from one row of y; ; nodes
to the next, ar.d also prevent set S, from being chosen wherever any of its members
has aiready been covered. This latter property insures that the sets in the cover are
disjoint, as required by Exact {over.

The following Lemma shows how the edges in A, force the desired paths, by
giving the relevant propertics of Figs. 8A and 8B. Figs. 9A and 9B show all edges
of G which are incident with nodes of interest.

Lemma 25.1. Fixiandj, 1 <i<n1<j<t Letx=d, ifj=1 and x = 1 ;-
otherwise; x' = e, if j = t and X' = a, ;+, otherwise. Let & be any partial H-path

N Nig
i-1,1 : A\”

.
Y Y /x./"

X 0@ P e G0 X' X & ot \oq—-ix‘

0L, ‘"\\ bm/cm ' aj, j bi, j Ci,j

. v
/f‘ PN

(a) {B)

Fig. 9. Cases for Lemma 2.5.1.
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of G salisfying:
(i) every v N—{a, ,, b, , ¢, ;} adjacent :c y,_, ; belcngs to w, and
w v None of a5, by 4, ¢,y belonas o o.

Then the following hold:

vase 1. u; ¢ S; (Fig. 9A)

({L) If © = wxay , is a partial H-parh of G, the only possible 4-extensions of © are
b5 Vim1.3 61,3 %' and by 3 315 €15 X',

(1R) If © = wx'c,,; is a partial H-path of G, the only possible 4-extensions of ©
are by, Yi-1,; @5 and by y 3.,y a5 x.

Case 2. u; € S; (Fig. 9B)

(2L) Same as (1L). .

(2R) If © = wx'cy,; is a partial H-path of G, the only possible 3-extension of 7t is
b,y a4, %,

Proof of Lemma. (Case 1L) Let y be an H-path with prefix 7. The last node of y
must be a,+4 .. The only possible 4-extension of t which has been excluded is b, ; y; ; vv’
where v # ¢; ;. But then ¢; ; would have to be the last node of 7, since properties (i)
and (ii) of o insure that {x’, ¢; ;) belongs to y; that is, ¢, ; does not yet belong to
the H-path and the only "vay that path can reach ¢; ; is through x’. This contradiction
nroves (1L).

The other cases follew similarly. [

Using Lemma 2.5.1 and our informal description of the correspondence between
H-paths and exact covers, the reader should have no difficuity in verifying that G
has an H-path whenever S contains an exact cover. To compiete the proof of Theo~
rem 2.5, we must show the converse.

Suppose that G has an H-path 9. Let T = {k} {f;, e,> belongs o p}. We shall
show that S’ = {S;| k€ T} forms an exact cover for U. Deiine the partial unions
Up=Gand U= U S,1 <k

1<I<k
leT

Then we have the following:

Lemma 2.5.2. For each k,! <k <n+1, if o€ N* and wf, is ¢ partial H-path
of G, then
(i) None of {a;,;, b1y Ci,ppdis 2 k <i<n, 1 <j<t} kelong to w.
() Al of {ay,, by i 1 <P <<k=1, 1 <j< 1t} belong to w.
(iii) For each j. 1 << j < t, yp—.,; belongs to o if and only if u; § Uy—;.
(iv) If there exists j such that u, € Uy—; 0 S, then d, is the only 1-extension of wf,.

Preof of Lemma. The proof is by induction. The basis k¥ = 1 is immediate since
any H-path must begin with 2, Yo,1 @u,2 Yo,2 -+ @0,: J0,1 f1. The induction step
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foliows almost entirely by Lemma 2.5.1. The orly other possibility is that ¢, might
be extended by d, fi+, (or by e fi+y). But then an argument similar to the proof
of Lemma 2.5.1 shows that e, (respectively ¢/,) must be the last node of the H-patk,
which is impossible. []

It is now clear that {S;| ke T} is an exact cover for U. Since any H-path must
have the form @f,iq Va1 Gnit.1 Va2 Fnt1,2 oo Vnut Gns1,00 Lemma 2.5.2 (iii) for k =

n+1 insures that |J S, = U, = U, and (iv) insures the disjoininess of the sets in
keT

the cover. This completes the proof of Theorem 2.5. []

Observe that the directed graph G constructed in the proof need not have arbi-
trarily large degree, in fact, no node has in-degree exceeding 3 or out-degree ex-
ceeding 4. It is not known, however, whether these are the strorgest possible degree
constraints for which Planar Directed Hamiltonian Path remains NP-complete.

Theorem 2.6. Sat3 a Node Cover With Node Degree At Most 3.

Proof. Suppose we are given a set C = {C,, C,, ..., C,} of disjunctive ciauses,
each containing no more than 3 literals. As in the proof of Theorem 1.i, we may
s3sume that each clause contains exactly 2 literals, possibly with duplication. Index
the literals occurring in clause C, as a4, @;,3, and a3, 1 <A < p. Let xq, X5, o0y Xy
derote the variables occurring in the p clauses, and for each i, 1 <i <y, ici m (i)
denote the number of occurrences of variable x; (as literal x; or literal %) in the
clauses. Arbitrarily index the m (i) occurrences of variable x, as occurrence 1,
occurrence 2, ..., occurrence m (i). We shall construct a graph G, having node degree
at most 3, and give an integer k > 0, such that C is satisfiable if and only if G has
a node cover of size k.

We describe ithe graph G = (N, A) in several steps. First, for each variable x;,
we have a subgraph H; = (N, 4,), a simple circuit with |N;| = |44 = 2m (i), as
shown in Fig. 10. Observe the alternate labelling of the nodes.

Fig. 10. A subgraph H,.

For each clause C;, we have a subgraph H,, = (N;, 4;) where N}, = {Fy,.1, Vi2s Vas}
and 4;, consists of an edge joining each pair of nedes belonging to N;. The remaining

edzes, which each join a node from some set N, to 2 node from some set IV, are as
follows:

By = {{T}.;, Vs.}: a5, = x, is the j® occurrence of variable x, in C}
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and
B, = {{F, ;, Vs..}: a,, = X; is the j® occurrence of variable x, in C}.
The graph G = (N, A) is defined by:

N = U Ni v U ‘Vhs
f=l

A= UAgUUA:RUB1UBz.
t=1 h=1
Observe that every node of G has degree at most 3. We show that the set C of clause<
is satisfiable if and only if G has a node cover of size 5p.
The following properties of the subgraphs H, are easy to verify:

(2.6A) There exists a node cover for F; containing m (f) nodes, including all
nodes T;; and no nodes F; ;. There also exists such a node cover which includes
all nodes F,; and no nodes T ,.

(2.6B) No aode cover for H; contains fewer than m (i) nodes, and every node
cover for H; which includes both a node F; ; and a node 7;, must contain more
than m (i) nodes.

Now, suppose we are given a truth assignment to the n variables which satisfies
the set C of clauses. The corresponding; node cover S contains the following
nodes:

(1) For each variable x; which is set “true”, the cover of m (i) nodes for H; which
includes all T, ;.

(ii) For each variable x, which is set “false”, the cover of m (i) nodes for ¥, which
includes all F; ..

(iii) For each clause C,, all the nodes of N} except some one of them ¥V, ; such
that literal g, ; is true for this truth assignment (at least one such literal exists since
the clause is satisfied).

Clearly, these nodes cover all of the edges belonging to the sets 4, 1 <i <n,
and 4;, 1 <h <p. Each edge {T;, V,,} in B, is also covered since either V,,
belongs to S or a,, = x; is true and T} ; belongs to S. Similarly, each edge in B, is
covered by S. Thus, § is a node cover. Furthermore, the number of nodes in S 1s

2p+ 3 (m (i) = 2p+3p = 5p,

i=1

as required.
Conversely, suppose we have a node cover S for C' such that {S| = 5p. § must
contain at least two nodes from each N, in order to cover the edges in 4;, for a total

n
of at least 2p such nodes. Similarly, by (2.6B) 5 must contain at least S (m(@) = 3p
i=1

ndes from the N,. Hence S must contain exactly 2 nodcs from eack N, and exactly
n (f) nodes from each ;. Thus by (2.6A) and (2.6B), § must contain, from each N,
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cither all the T} ; ncdes and none of the Fy,; nodes, or all the F, ; nodes and aone
of the T, ; nodes. A consistent truth assignment can be obtained by setting x; “true™
if S contairs all the 7} ; nodes, and setting x; “false” otherwise. The reader may
verify that, because of the edges in B, and B,, this :ruth setting satisfies the set C
of clauses. [}

Remark. Theorem 2.6 was obtained independently by Peter Herrmann L10].
Theorem 2.7. Node Cover o Planar Node Cover.

Proof. The key structure used in this proof is the graph H pictured in Fig. 11, which
analogously to Theorem 2.2 will be called a crossover, with outlets v, v1, v3, and v;,
as labelled.

Va

V2
Fig. 11. Crossover H for Theorem 2.7.

Now for each i, j, 0 < i,j < 2, let ¢ [i,j] be the minimum cardinality for all node
covers C of H obeying
Vi, Vi}nCl=i and |{V,, V3} nC| =

Observe that, by symmetry, when i or j equals 1, the value of ¢ [i, j] is independent
of which element of the corresponding pair is in C. Table 1 gives the values of ¢ [i,7]-
We leave to the reader the straightforward but tedious verification of the entries.

From Table 1, we observe that the following properties hold:

(2.7A) For 0 <1<2, ¢{1,]]-c[0,I] <1 and c[/ 1]-¢[}, 0] <O

(2.7B) For 0 <! K2, c[2,1]-c[,l}=c[L2]~c [} 1] =L
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Table 1. Values of ¢ [i, j]

\}\i 0 1 2

N
0 13 14 15
i 13 13 14
2 14 14 i5

Given a graph G = (N, A) we construct a planar graph G' = (N’, 4’) using
these crossovers as follows:

(i) Embed G ir the plane, allowing edges to cross each other as in Theorem 2.2.

(ii) Replace cach crossing by a copy of H, as shown in Fig. 12.

AR |
r / A

BEFORE (G) AFTER (3")

Fig. 12. Construction of G’ (only outlets of crossovers shown).

The crossovers which replace crossings on the edge {x, y} will be called crossovers
on the {x, y}-line. The edges connecting these crossovers to each other and tc x
and y will be called edges on the {x, y}-line. The endpoints of these edges will be called
the nodes on the {x, y}-line. Such nodes which are also crossover outleis will be called
the {x, y}-outle's of their crossover. The one which is nearest x will be the crossover’s
» outlet, the one nearest y its x outlet, for each crossover on the {x, y}-line.

Lot d bo the number of copies of H used in constructing G’. Observe that the
edges of G' can be partitioned into two sets: line edges, those which are on the
{x, y}-line for some {x, y} € 4, and crossover edges, those which are part of one
of the d crossovers. All the edges on the {x, y}-line can be covered by taking either x
and all the x-cutlets of crosscvers on the line, or y and all the y outlets. The edges
in the crossovers can oaly be covered by crossover nodes.

Now, since in G’ each edge-crossing of the planar representation of G has been
replaced by a planar graph which itself contains no crossings, ¢’ is planar. More-

over, the size of G’ is clearly at most a polynomial in the size of G. The proof of
the theorem will thus be concluded by showing that, for any k, G has a node cover
of size k if and only if G’ has a node cover of size k+13d.
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‘Suppose: #+ -eis a nede cover S of G = (N, A) with | S| = k. We construct a node
cover of G" ...m S as follows. For each edge {x, ¥} € 4, let f(x, y) be an endpoint
of that edge which is in S. Then define

5" = {v: v is the £ (x, ) outlet for a crossover on the {x, y}-line for socme
{x,y} e A}.

Since S is a node cover for G, f is defined for ail edges in 4, and so S U S’ covers
all the line edges of G'. Moreover, since each crossover is on two lines in G', S’ con-
tains exactly two outlets for each crossover, ocne from each outlet pair, and so |S’| =
2d. All that remains is to cover the as yet uncovered crossover edges. For these,
cbserve trom Table 1 that any set which contains two nodes from a crossover, one
from each outlet pair, can be extended, by adding 11 of the crossover’s internal
nodes, to form a node cover of the crossover made up of ¢[1,1] = i3 nodes.
Let S” be the set containing, for each crossover, the 11 additional nodss needed
to extend S’ to a node cover for that crossover. Thus Su S’ U §’ is a node cover
of G’ having k+2d+11d = &+13d nodes.
Conversely, suppose there is a node cover of G’ having k+13d nodes. Let

k* = min {|S]: S is a node cover of G'}, and
M = {S: S is a node cover of G’ ard || = k*}.
For each S e M, define
m(S) = |{xe S: x is an outlet node for some crossover in G'}|,
m* = min {m (S): Se M},

and let $* € M be some node cover with m (S*) = m*. Since S* must contain 13
nodes from each of the crossovers in crder for it t¢ cover all the crosscver edges
(see Table 1), we know that |S* n V| < k. We conclude cur proof by showing that
S’ = 8* n N is a node cover of G.

Suppose it is not. Then there exists some {x,y} € 4 such that ' n {x,y} =0
and hence S* n {x, y} = @. Let the number of crossovers on the {x, y}-line be /.
Then there are /41 edges oa the {x, y}-line, and hence at ieast /+1 of the nodes on
the line must be in S§*, and since neither xnor y s, all 14 1 must be outlets. ¥ we let ()
be the number of crossovers on the {x, y}-line with i of their {x, y}-outlets in S*,
we thus have n (2)—n (0) > 1. We shall show that this leads to a contradiction.

Let X, be the set of nodes in the ith crossover on the {x, y}-line, 1 <i </, and
lei S; = X;n 8§* Let T; < X, be a node cover of the crossover containing its x
outlet (but not the y outlet) and the same non {x, y}-outlets as does S, and having
minimem cardinality for such node covers. For each 7, let r (i) be the number of
{x, y}-outlets of the ith ¢: ossover which are in S*. Then we have, by (2.7A) and (2.7B)

r(i) = 0 implies |7}| < |S||+1,
r{i) = 1 implies |T}| < IS,
r (i) = 2 implies |T}] < |S.|—1.
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i i
Let T=UT, S=U S, Since n{2)—n (0) >> 1 we have by the above that

i=1 i=1
IT} <15]-1.

Moreover, T contains at least one fewer {x, y}-outlet than does S, and exactly the
same number of non {x, y}-outlets. Furthermore, T v {x} will cover all the line edges
hat § did, and so T* = (S*—S)u T u {x} is a node cover of G’ with

{T*| = |S¥*|=|Sj+IT|+1 < |S*| = k¥, and
m(T*) = m(S¥)—1 = m*—1,

contradicting the defi=ition of m*. Thus $* U N is a node cover of G and the theorem
is proved. [

Notice that, if the graph G given as input for Node Cover has no node degree
exceeding 3, the graph G’ constructed in the proof as input for Planar Node Cover
will have no node degree exceeding 6. This implies that Planar Node Cover With
Node Degree At Most 6 is NP-complee. It is not known whether this degree bound
is best possible.

3. Concluding remarks

We have seen that a number of graph-theoretic NP-complete problems remain
NP-complete when the structure of the allowed inputs is substantially restricted.
Similar questions can be asked for restricted versions of other NP-complete problems.
For example, it is not yet known whether Steiner Tree [13] for planar graphs
or multiprocessor scheduling with 3 processors, unit time tasks, and an arbitrary
partial order [193 are NP-complete. The open status of Undirectad Hamiltonian
Circuit for planar graphs has been mentioned previcusly. The question of whether
Max Cut with restricted node degree i; NP-complete also remains open.

In examining such problems, ii is important to kezep in mind that two types of
results are possible. Not only is it important. to find simple subcases which are still
NP-complete, but it is also important to find large subdomains for which the problem
car: be solved in polynomial time. We have given one example in this latter direction,
the case of Max Cut for planar graphs. Other recent papers [5, 7, 8] have shown that
Clique and Chromatic Number can be solved in polynomial time for “transitively
orientable” graphs, “chordal” graphs, and “circle” graphs.

Both types of resvlts should prove useful to designers of practical combinatorial
algorithms.
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APPENDIX
Definitions of NP-Complete Problems

Satisfiability With At Most 3 Literals Per Clause (Sat3) [13]

Input: Set of clauses C = {Cl, C,, ..., Cp} in variables xy, x,, ..., X, €ach clause
being the disjunction: of 3 or fewer literals, where a literal is either a variable x;
or its negation X,.

Froperiy: There is a truth assignment to the variables which simultaneously satisfies

all the clauses in C (a clause is satisfied if any one of its disjuncts is x; for some “true”

variable x,, or x; for some “false” x,).

Cligue [13]

Input: Graph G = (N, A), positive integer k.

Property: G has a clique of size greater than or equal to %, i.e., a set N’ = N with

IN'| > & and such that for all ny, n, e N', {ny, n,} € A.

Exact Cover [13]

Input: Collection of sets S = {Sy, S5, .0y Sp}-

Froperty: S has an exact cover, i.e., a subcollection §' & SsuchthatJ S; = 0 AYR
Se€s’ i=1

and for all Sg, SJE Sfu, “ N SJ = f.

Graph /-Colorability [13]

Input. Graph G = (N, A).

Property: G has a legal k-coloring of its nodes, i.e., there is a map f: N = {1,2, ..., k}
such that {n;, n,} € 4 implies f(n,) # f(n,).

Undirected (Directed) Hamiltonian Path (Circuit) [13]

Input: Graph G = (N, A). (Directed graph G == (N, 4)).

Property: G has a Hamiltonian path (circnit), i.e., an ordering of tkc nodes N =
{ny, 1y, ...,y } such that for 1 <is<CIN[, {my, msi} €A ((ny, nysy) € 4), and
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(in the circuit case only) {ny;, n,} € 4 ({inywy, 1) € A).
Node Cover [13]

Irput. Graph G = (N, 4), positive integer k.
P-operty: G has a node cover of size less than or equal to k, i.e., a subset N' = N
with |[N'| < k and such that for all {x, y}€ 4, {x,y} "N’ # 0.
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