
Theoretical Computer Science 92 (1992) 33-47

Elsevier

33

String-matching on ordered
alphabets*

Maxime Crochemore
LITP, Unioersir~ Paris 7, 2 plrrcc Jussicw, 75251 Paris Cede-y 05. France

Abstruct

Crochemore, M., String-matching on ordered alphabets, Theoretical Computer Science 92 (1992)

33-47.

We present a new string-matching algorithm that exploits an ordering of the alphabet. The

algorithm is linear in time and uses a fixed number of memory locations in addition to the text and

the pattern. Therefore, it is time-space optimal. Its main characteristic is that it scans the pattern

from left to right. No preprocessing of the pattern is needed and the complexity is independent of the

size of the pattern. An important consequence is the possibility of computing the periods of a word in

linear time and constant space. The algorithm can also be turned into a real-time string-matching

algorithm.

Introduction

The string-matching problem is to locate a nonempty string, the pattern x, inside

another string, the text t. The symbols of both strings belong to a common alphabet A.

Several classical string-matching algorithms solve the problem, and the reader can

refer to [l] for a review on the subject.
.

In this paper we consider a particular class of string-matching algorithms. The class

is defined by the way words x and t are processed. The algorithms of the class perform

a succession of scans of the pattern against the text interrupted by what can be

considered as shifts of the pattern towards the end of the text. We even restrict our

attention to those algorithms in which the pattern is scanned from left to right. The

classical KnuthhMorris-Pratt algorithm (KMP for short) [lo] belongs to this class.

Its time complexity is linear in the length of the inputs and it also requires an extra

space proportional to the length of the pattern. An improvement on KMP algorithm

*The present work was supported by PRC “Mathematiques Informatique” and by NATO under Grant
CRG900293.

0304-3975/92/$05.00 ,c’ 1992-Elsevier Science Publishers B.V. All rights reserved

has recently been designed by Simon [121 through an implementation of the automa-

ton underlying KMP algorithm.

Algorithms in the above class are certainly not the most efficient ones according to

the minimum number of letter comparisons they perform. From that point of view the

practical efficiency of the Boyer-Moore (BM) string-matching algorithm [3] is well

known. In fact, in this paper, we are interested in algorithms requiring only a constant

amount of extra memory space at run-time. Both KMP and BM algorithms use

a space proportional to the length of the pattern.

There exists two time-space optimal string-matching algorithms, namely, the GS

algorithm [9] and the CP algorithm [S]. They require a fixed amount of extra space

and their worst-case running time is linear. This is the best that can be achieved

and this is why they are time-space optimal. But none of them perform left-to-right

scans, so that it has become a challenge to design such a time-space optimal

algorithm.

Each of the algorithms GS and CP is based on a combinatorial property of words.

The former deals with periodicities in the prefixes of the patterns. The latter uses

critical factorizations of words. The algorithms factorize the pattern p into uv accord-

ing to some property of the periodicities existing inside the pattern. The search phase

is thereafter guided by the search for the right part u of the pattern. The common

feature of both methods is that, through their respective factorizations of the pattern,

they tend to avoid some periodicities of the pattern. This contrasts with both KMP

algorithm and Simon’s algorithm whose first phase amounts to computing the

starting periods of the pattern. The present algorithm adopts the same strategy and

computes periods instead of avoiding them.

The string-matching algorithm of the present paper can be considered as a first

attempt to exploit the fact that the alphabet A is ordered. Of course this is not

a restriction because any alphabet can be ordered. Ordering the alphabet has already

proved useful for critical factorizations of words (see [S]). Recently also, Apostolic0

[2] has designed a square-freeness test on words based on an ordering of the alphabet.

This is a strange phenomenon that ordering the alphabet, which apparently seems to

have nothing to do with the initial problem, turns out to be very fruitful.

The existence of a timeespace-optimal, left-to-right-scan string-matching algorithm

is rather surprising. The result is of main interest from a theoretical point of view. It

provides a new proof that string-matching can be realized by a multihead finite

automaton (see [9] for a discussion on this point). Moreover, the algorithm can be

turned into a real-time algorithm through a simple application of the method

introduced by Galil in [7]. At this stage of the research, however, the algorithm has no

practical purpose. It cannot compete, for instance, with algorithms of [3] or [S].

The paper is organized as follows. Section 1 briefly recalls general things about the

string-matching problem. Section 2 is devoted to the relation between the smallest

period of a word and its maximal suffix according to the alphabetical ordering. The

complete new string-matching algorithm is given in Section 3. The method involved is

previously presented in a preliminary simpler version of the algorithm. Finally, in

Section 4, we show how the algorithm produces a time-space optimal computation of

the smallest period of a word.

1. Scan-and-shift string-matching algorithms

Classical string-matching algorithms find the occurrences of a pattern p inside a test

t by considering increasing positions in t. At each position met during the execution of

the algorithm, a scan is done to decide whether the pattern occurs here or not. This

kind of algorithms thus execute a series of scans and shifts (see Fig. 1). The scans of the

pattern against the text at a given position can be realized in several ways. But a scan

from left to right is certainly most natural. KMP algorithm. for instance, implements

efficiently this left-to-right-scan method.

The typical current situation for left-to-right-scan algorithms is shown in Fig. 2.

Text t is equal to zybz’ and pattern x is equal to yau', where z, z’, u, u’ are words on

A and a, b are distinct letters of A. Another analogous situation is when t =zxbz’, i.e.

when an occurrence of the pattern x has been discovered in t at position Iz(. In either

case, after the scan the pattern is shifted to the right and the process continues a series

of scans and shifts.

Left-to-right-scan string-matching algorithms differ in the number of places the

pattern is shifted to the right. For instance, this number is 1 in the most straightfor-

ward algorithm, but more efficient algorithms perform longer shifts that avoid going

backwards along the text. Shifts always take into account the periodicities of the

pattern that we define now.

Let x be a word on the alphabet A. It is also written x[l]x[2]...x[n] where x[i] is

its ith letter. The length n of x is noted I.xI. An integer p such that 1 dp<n is called

a period of x if x[i] = x[p + i] whenever the two sides of the equality are defined. The

smallest period of x is called the period of x and denoted by p(x).

panem I
Fig. I. Scan-and-shift algorithm

I I

Y lb 1 ---
fa-f

Scan

Fig. 2. Left-to-right-scan

36 M. Crochemore

From the situation in Fig. 2, the length of the shift performed during the search

phase of the Morris and Pratt’s algorithm [11] is p(y). It is p’(y) in KMP algorithm

[lo], where p’(y) is a period of y not incompatible with the letter b that yields the

mismatch between t and x (i.e. not incompatible with any letter different from the

letter a that follows y). The best length of the shift is p(yb). Computing all the periods

p(yb) amounts to considering the minimal deterministic automaton recognizing the

language A*x. Indeed, MP and KMP algorithms implicitly use a representation of

this automaton. Simon [12] has shown how another implementation leads to a faster

algorithm. Figure 3 illustrates differences between the three algorithms. Among all the

previous algorithms, the naive algorithm is the only one which requires only a fixed

number of memory locations in addition to the text and the pattern, but its maximum

time complexity is 0(1 t 1. Ix I). On the other hand, the three other algorithms work in

time O() t I) but need 1.x I extra locations and even I A I . Ix / for the algorithm that stores

all the precomputed periods p(yb). They achieve their linear time complexity mainly

because they avoid scanning twice prefixes of x occurring in the text t.

When a shift is to be done, the algorithm of Section 3 tries to compute the period of

yb. It does not always find the exact period of yb, but in any case it computes an

approximation of it. Moreover, this computation requires only a bounded extra

memory space, and the approximation is good enough to produce an overall linear

time algorithm.

2. Periods of words and their maximal suffixes

The computation of periods needed to realize shifts in our string-matching algo-

rithm relies on few combinatorial properties of words related to a fixed alphabetical

ordering on the set of words A*. The ordering is denoted by 6.

Let I: be the suffix of x which is maximal according to the alphabetical ordering. Let

u be such that x = uu. Considering its smallest period, the word u can be written as wew’

where e > 1, I w I =p(c) is the period of u and w’ is a proper prefix of w. Recall that the

pattern x is nonempty so that words U, u, w and w’ are well defined. The sequence

text ___... abaabac
abaabaa

abaabaa
(i) MP. 3 extra comparisons on letter c.

text abaabac
abaabaa

abaabaa
(ii) KMP. 2 extra comparisons on letter c.

text _..... abaabac
abaabaa

abaabaa
(iii) Simon. 1 extra comparison on letter c.

Fig. 3. Shifts after the first comparison on letter c

Srring-matching on ordered alphabets 37

(u, w, e, w’) is called the MS-decomposition of the nonempty word x (MS stands for

maximal suffix).

The MS-decomposition of x into uwew’ as above gives rather precise information on

the periods of x. Among interesting properties it is worth noting that w has no smaller

period than the trivial one, its length. Such a word is called border-free. The inequality

/uj <p(x) is a rather intuitive property of the maximal suffix, saying that it must start

inside the first period of the word. Proposition 2 provides a more accurate approxima-

tion of the smallest period of the word x.

Proposition 1. Let uwew’ be the MS-decomposition of a nonempty word x. Then w is

border-free which is equivalent to saying that no proper prefix of w is also a sujj’ix qf w or

that p(w)=lwj.

Proof. Assume that w = zz’ = z”z for three nonempty words z, z’ and z”. The word

zweplw’ is a suffix of x distinct from v: so, it is greater than v according to the

alphabetical ordering. The inequality zwe- ’ w’ < v rewrites zwe- ’ w’ < zz’we- ’ w’ and

implies we- ’ M:’ < z’we- ’ w’. Moreover, zw’- ’ w’ is not a prefix of u because otherwise

the smallest period of v would be 1~~1, less than I WI, contrary to the definition of w.

Since then we- ’ w’ is not a prefix of z’we- ’ w’, there is a word y and letters a and h such

that ya is a prefix of we-’ w’, yb is a prefix of z’w’-’ w’ and a <b. Since ya is also

a prefix of v, we get v < z’w- i w’, a contradiction with the definition of v.

Thus, w cannot be properly written simultaneously as zz’ and z”z. This means that

Proposition 2. Let uwew’ be the MS-decomposition of a nonempty word x and let

v = wew’ be the maximal su~x of x. Then, the four properties hold:

(i) ifu is a suJfix of w, p(x)=p(c),

(4 P(.~>IuI,
(iii) ijlul>lwl, p(x)>Ivl=l.xl-12.1,

(iv) ifu is not a sujix of w and IuI<IwI, p(x)>min(lvI,Iuw’l).

Proof. (i) When u is a suIhx of w, IwJ is obviously a period of the whole word x. The

smallest period of x cannot be less than the smallest period of its suffix v. Since this

period is precisely I WI, we conclude that p(x)=p(v)= I MJI.

(ii) We prove ab absurd0 that p(x) > 1~1. If p(x)< IuI there is an occurrence of v in

x distinct from its occurrence which is a suffix. In other words, x can be written as u’uu’

with lu’l <Iu(and lv’(>O. But the suffix cc’ is then alphabetically greater than v,

a contradiction with the definition of v.

(iii) We assume that lul3lcvl. We prove ab absurd0 that p(x)>Ivl=lxJ-Jul. If the

contrary holds there is an occurrence of u in x distinct from the occurrence which is

a prefix of x. This occurrence overlaps v (see Fig. 4). Then, taking into account that

IuI > I WI, there is a nonempty word z that is both a prefix of w and a suffix of u. The

former property shows that v can be written as zz’ (for some word z’) and the latter

38 M. Crochemore

I u w w’

I

I

i

i& ‘f7-j
Fig. 4. No suflix of u is a prefix of w.

border of w tiw ---
Fig. 5. Impossible because w is border-free

property shows that zr: is a suffix of .x. The maximality of u implies v>zv, i.e. zz’>zv.

But this yields z’> L’, a contradiction with the definition of c.

(iv) Assume that u is not a suffix of M? and that 1 u I < 1 w 1. Assume also ab absurd0

that ~(x)dmin(lcl, (c&I). Let z be the prefix of x of length p(x). The word x itself is

then a prefix of ZX. From p(x) < ICI we deduce that the word zu is a common prefix to

x and zx. And from p(x)< Iuw’I we know that u overlaps \ve. If u overlaps the

boundary between two MJ’S or the boundary between the last w and w’, the same

argument as in case (iii) applies and leads to a contradiction. The remaining situation

is when u is a factor of w, as shown in Fig. 5. The last occurrence of w in the prefix zuw

of z.x overlaps an occurrence of M: in the prefix UW@ of X. Note that these occurrences of

MI cannot be equal or adjacent because u is not a suffix of w. This gives a contradiction

with the border-freeness of ~$1 stated in Proposition I. ci

Note. One may note that in case (iii) u cannot be a suffix of w. Because this would

imply u = w which is impossible by (ii).

Examples. Bounds on the smallest period given in Proposition 2 are sharp. We list

few examples of patterns that give evidence of this fact. We consider words on the

aphabet {a, b, c] with the usual ordering (a < b cc).

Let x be aaaaba. The maximal suffix of .X is I!= ha whose smallest period is 2.

In the MS-decomposition mt”\w of x, u =aaaa, \v= ha and IV’ is empty. Then

p(x) = 5 = I UI + 1. As stated in Proposition 2 case (ii) P(X) is greater than IuI but only by

one unit.

The word x = aababu meets case (iii) of Proposition 2. Here u = au, w = ha and IV’ is

empty. The smallest period of X, 5, is exactly one unit more than the length of the

maximal suffix haha.

We exhibit two examples for case (iv) of Proposition 2. The first example is

.u=acahcu. We have u=a, w=cab and w’=ca. Then the quantity min(lv1, luwel) is

1 twE~ = 4. The smallest period of x is p(x) = 5. The word satisfies p(x) = I uweI + 1 = 1~1.

The second example is .x = ababbbab. For it, u = aba, It’= bbba and w’= b. This is

a reverse situation where min(/ v /, I we 1) = IL’/ = 5. The smallest period of x is now

6 and we have p(r) = 1111 + 1 <I weI.

An immediate consequence of Proposition 2 is that condition (i) is certainly true for

words having a small period, i.e. having a period not greater than half their length

(p(x)< /XI/~). The computation of the smallest period of these words can then be

deduced from a computation of their maximal suffixes (and MS-decomposition)

together with a test “is u a suffix of N?“. This fact has already been used in [S] to

approximate smallest periods of patterns. The following corollary is directly used in

the proof of the string-matching algorithm of the next section.

Corollary 3. Let ULZ~‘~V’ be the MS-decomposition qf a nonempty word x and v = wew’ be

the maximal @fix of x.
Ifcr is a @fix qf w, p(x)=p(c)= I\t’l.

Otherwise, p(.x)>max(lul, min(lrl, ~uwP~))>l.x//2.

Proof. When u is not a suffix of w, statements (ii), (iii) and (iv) of Proposition 2 show

that the inequality p(x)>max(1~1, min(I VI, Iu~+l)) holds. It remains to prove that the

last quantity is greater than 1x1/2. The inequality is trivially satisfied if Iul > 1x1/2.

Otherwise, / ~‘1 which is equal to 1.~1-1 uI is greater than 1x1/2. And 1~~~1, equal to

1.x I- 1~1, is also greater than 1.3~ l/2 because I w’ / < I w /. This completes the proof. 0

3. String-matching algorithm

As output of a string-matching algorithm we consider the set of positions of

occurrences of x in t, say

P(x, t)={posENIO<posdIt and t[pos+i]=x[i], 1 ~i~lxl}

In particular, this set contains the overhanging occurrences of .Y in t, i.e. the occurren-

ces of x at positions pos > I t I - 1.x I in t. The set is never empty since it contains at least

the position It I.

A first version of the string-matching algorithm is given in Fig. 7. It uses two

variables pos and ~1 that are pointers on text t and pattern x, respectively, as shown in

Fig. 6. At each position pos inside text t, the algorithm of Fig. 7 executes a scan

(line l), tests whether an occurrence has been found (line 2) and then realizes a shift

(lines 4,5,8 and 9). The instruction at line 3 is unessential. It takes care of overhanging

occurrences of the pattern inside the text, avoiding to go beyond the end of the text. It

40 M. Crochemore

Y lb1 ---

Fig. 6. Variables pas and m

fUnCtiOn POSITIONS(X,t); /* PRELIMINARY VERSION */

begin

p:=0;
PO.5 :=o; m:=l;
while (pas I Itl) do

{ /* scan from left to right */
1 while (pos+mlltl) and (tilxl) and (t[pos+ml=x[ml) do m:=m+l;

/* test for occurrence */
2 if (pos+m=ltl+l) or (m=lxl+l) then add pos to P;

/* take care of overhanging occurrences */
3 if (pos+m=ltl tl) then m:=m-1;

/* shift to the right */
4 (i, j,k,p) :=MAXIMAL_SUFFIX(X[~~...X[~-lit [pos+ml);
5 if (x[l]...x[i] is suffix of

the prefix of length p of x[i+ll_.x[m-llt[pos+ml) then
8 { pos:=pos+p; m:=m-p+l; }

else
9 { pos:=pos+max(i,min (m-i,j))+l; m:=l; }

1
return(P);

end function.

Fig. 7. First version of Algorithm POSITIONS

can be deleted for a search of full occurrences only. The algorithm of Fig. 7 executes

shifts of the pattern (lines 8 or 9), as explained in Section 1, after a maximal suffix

computation. It applies directly to Corollary 3. To see this point we must explain the

meaning of variables i, j, k and p. Let us describe precisely what is the output of

Function MAXIMALLSUFFIX applied to a nonempty word z.

Let the word z be factorized into uzj where u is its maximal suffix. Let uwew’ be the

MS-decomposition of z (then v = w’w’). Values of variables i, j, k and p are then given

by
i=lul, j=Iuw@l, k=lw’l+l, P=lwl=Pw.

Figure 8 displays the situation. The value of i is the position in z of its maximal suffix v,

and j is the position of the rest w’. The smallest period of v is given by p. The 4-tuple

(i, j, k, p) is called the MS-tuple of z. The MS-decomposition of z and its MS-tuple

characterize the same concept. The output of Algorithm MAXIMAL-SUFFIX is precisely

the MS-tuple of its input word. The Algorithm itself is given in the Appendix.

Proposition 4. Algorithm POSITIONS in Fig. 7 computes the set of positions of occurren-

ces of pattern x in text t.

String-matching on ordered alphabets 41

I I

J u w w w 1 w’

4 >
I I

r(.>

:
1 i J J +k

Fig. 8. The MS-tuple (i. j, k, p) of the pattern.

Proof. First note that if the pattern x occurs at position pas in t, instruction at line

1 stops with m= 1x1+ 1. Thus, the next instruction correctly adds the value of pas to

the final output P.

It remains to show that no occurrence of the pattern is missed by a too long shift.

But this amounts to prove that the length of the shift realized at line 8 or at line 9 is not

greater than the period of x [l] . . . x[m - l] t [pos + m]. This is exactly what is stated by

Corollary 3. 0

Algorithm MAXIMAL-SUFFIX may be implemented to run in time proportional to the

length of its input (see the Appendix). But even with this assumption, the algorithm of

Fig. 7 does not always run in linear time. Quadratic complexity is due to com-

putations of maximal suffixes. For instance, if the pattern is a” and the text is also

a long repetition of the only letter a, at each position in the text, the maximal suffix of

the whole pattern is recomputed leading to an 0(1x1. ItI) time complexity. The

complete version of the algorithm improves the first version by avoiding entire

recomputations of maximal suffixes. This is only possible under certain conditions

and it is achieved with the help of another combinatorial property of maximal suffixes.

The condition is first introduced on an example and stated in Proposition 5.

Example. Consider the pattern x = babbbabbbab. Its maximal suffix is v= bbbabbbab.

Both words have smallest period 4. With the notation of MS-decompositions, we have

u = ba, w = bbba and w’ = b. The exponent of w in u is e = 2. If the last four letters of

x are deleted, corresponding, for instance, to a shift of 4 positions to the right, we are

left with the word x1 = babbbab. Its MS-decomposition produces u1 = ba, v1 = bbbab,

w1 = bbba and w; = b. We note that the second decomposition is produced from the

first one by pruning one occurrence of w. This generalizes to any word for which the

exponent e of the MS-decomposition is greater than 1 (see Fig. 9).

The above result is not necessarily true when e = 1. Let, for instance, x be

bbabbbabb. It has period 4 like its maximal suffix LI= bbbabb. Deletion of the last four

letters yields x1 = bbabb which is its own maximal suffix and has period 3. A situation

pretty far from the previous one.

Proposition 5. Let (u, w, e, w’) be the MS-decomposition of a nonempty word x (wew’ is

the maximal &ix qf x = uwew’). Assume that p(x) = I w 1. Then, ife > 1, (u, w, e - 1, w’) is

42 M. Crochemore

maximal sufiixof UWVW'
I

U w ! w w'

I I

U w 1 w'

maximal suffix of uww’

Fig. 9. Highly periodic pattern.

the MS-decomposition of x’ = uwP ‘w’. In particular, the word we- ’ w’ is the maximal
&fix of x’ and it has period p(w”- ‘w’)= 1 WI.

Proof. Let I! = W@U” be the maximal suffix of x. Any proper suffix of u of the form

zwe- lb>’ with z #E is less than L’ itself by definition. But, since w is border-free

(Proposition l), the longest common prefix of w and z is shorter than z. This leads to

w > z and proves that MI is greater than all its proper suffixes. This further proves that

we- ‘w’ is its own maximal suffix. And, since hypothesis p(x) = 1 w 1 is equivalent to “U is

a suffix of w“, this also proves that t~‘-i w’ is the maximal suffix of nwe- l w’.
Equality p(w’- ’ NJ’)= 1 WI is another consequence of the border-freeness

stated in Proposition 1. Thus, (u, w, e- 1, w’) is the MS-decomposition of

announced. 0

of w

x’ as

One can note that a pattern x that satisfies the hypothesis of Proposition 5 has

a rather small period and may be considered as highly periodic. Its smallest period is

not greater than half its length. Conversely, if the smallest period of x is not greater

than 1x1/3 then Proposition 5 applies.

We now explain how Proposition 5 is used to improve on the complexity of the first

version of Algorithm POSITIONS. When a shift, done according to a period (line 8),

leaves a match between the text and the pattern of the form nwemlw’ we can avoid

computing the next maximal suffix from scratch. We may better exploit the known

decomposition of the match. To do so, we consider Algorithm NEXT_MAXIMAL_SUFFIX

that computes the maximal suffix of its input x starting from the maximal suffix of

a prefix of x. The algorithm is given in Fig. 10. Except for initializations, it is a copy of

Algorithm MAXIMAL-SUFFIX given in the Appendix. The input (i,j, k, p) is assumed to be

the MS-tuple associated with the prefix of x[l] . . x[n] of length j+ k- 1.

The final version of the string-matching algorithm is shown in Fig. 11. The differ-

ence with the first version in Fig. 7 lies in the computation of the MS-tuple (i,j, k,p). In

this version, the MS-tuple is still initialized as in Fig. 7 at the beginning of the

execution of the algorithm and after each shift, except when the situation of Proposi-

tion 5 is met. In this case (shift at line 7) the variablej of the MS-tuple is just decreased

by the period p, length of the shift. The test j - i > p at line 6 stands for condition e 3 2

in Proposition 5.

String-matching on ordered alphabets 43

function NEXT_MAXIMAL_SUFFIX (x[l].. .x[nl, (i,j,k,p))
while (j + k I n) do {

if (x[i+k] = x[j+k]) then
{ if (k = p) then (j:=j+p; k:=l;) else k:=k+l; }
else if (x[i+k] > x[j+k]) then
{ j:=j+k; k:=l; p:=j-i;)
else
{ i:=j; j:=i+l; k:=l; p:=l; }

} end while
return (i, j,k,p);

end function.

Fig. 10. Computing maximal suffixes

function POSITIONS(x,t); /* FINAL VERSION */
begin

P:=0(;
pos:=o; m:=l; (i,j, k,p) :=(O, l,l,l);
while (pas 5 Itl) do

1 { while (pos+m<ltl) and (mllxl) and (t[pos+ml=x[ml) do m:=m+l;
2 if (pos+m=ltl+l) or (m=lxl+l) then P:=P U Iposl;

3 if (pos+m=ltl +l) then m:=m-1;
4 (i,jik,p) :=NEXT MAXIMAL SUFFIX(X[~]...~[~-l]t[pos+m], (i, j,k,p));
5 if (x[ll...x[i] suffix Of

the prefix of length p of x[i+l]...x[m-l]t[pos+m]) then
6 if (j-i > p) then
I { pos:=pos+p; m:=m-ptl; j:=j-p;)

else
8 { pos:=pos+p; m:=m-p+l; (i,j,k,p) :=(O,l, 1,l); }

else
9 { pos:=postmax(i,min(m-i, j))+l; m:=l; (i,j,k,p) :=(O,l,l,l);)

t
return(P) ;

end function.

Fig. 11. String-matching algorithm

Proving that the new version of Algorithm POSITION works well extends in a rather

straightforward way from Proposition 4 and is left to the reader.

Proposition 6. The number of letter comparisons executed during a run of Algorithm

POSITIONS on words x and t is less than 6.1 t I+ 5. This includes comparisons done during

calls ofFunction NEXT-MAXIMALLSUFFIX.

Proof. First consider line 5 in Fig. 11. The comparisons executed on the prefix

x[l] . . . x[i] of the pattern can be charged to t [pas + I] . t [pos + i]. The instruction

at line 5 is eventually followed by instructions at line 7, at line 8 or at line 9. Whichever

instruction follows, the value of pos increases by more than i. Thus, never again

comparisons at line 5 are charged to the factor t [pos + l] . t [pos + i] of the text. The

total number of comparisons at line 5 is thus bounded by ItI.

44 M. Crochetnow

We next prove that each other letter comparison executed during a run

of Algorithm POSITIONS (including comparisons done during calls of Function

NEXT-MAXIMAL-SUFFIX) leads to a strict increment of the value of expression

5.pos+m+i+j+ k. Since its initial value is 3 and its final value is 5. ItI +8, this

proves the claim.

Whatever is the result of the letter comparison inside Function NEXT-MAXIMAL-

SUFFIX, the value of i +j + k increases by 1, and even by more than 1 when the last line

of the function is executed. It is worth noting that the relation kdj-i always holds.

Successful comparisons at line 1 trivially increase m and, consequently, expression

5. pos + m + i + j + k. At the same line there is at most one unsuccessful comparison.

This comparison is eventually followed by instructions at line 7, at line 8 or at line 9.

We examine successively the three possibilities.

The effect of line 7 is to replace 5.pos+m+i+j+k by 5.(pos+p)+(m-p+ 1)+
i + (j - p) + k. The expression is increased by 3. p + 1 which is greater than 1. Line 8 is

executed whenj-i>p does not hold. This means indeed thatj-i=p (j-i is always

a multiple of p). We also know that i<p [see Proposition 2 case (ii)] and one

can observe on Function NEXT_MAXIMAL_SUFFIX that k<p. Now, at line 8, m

decreases by p - 1, i and k decreases by less than p, and j = i + p decreases by less than

2. p. Since pos is replaced by pos + p the value of 5. pos + m + i +j + k is increased by

more than 1.

Let us examine the execution of line 9. Ifs is the value of max(i, min(m - i, j)) + 1 the

increment ofexpression 5.pos+m+i+j+k is 1=5.s-(m-l)-i-(j-l)-(k-l)=

5.s-m-i-j-k+3 or 5.s-2.m-i+2, because j+k=m+l after the function

call at line 4. The value s is greater than or equal to both i and m/2. So 132,
which proves that again at line 9 expression 5. pos + m + i +j + k increases by more

than 1.

The effect of line 6, that can decrease m by one unit, is of no importance in the

preceding analysis. 0

The complexity of Algorithm POSITIONS is independent of the size of the pattern. For

information only, the upper bound on letter comparisons executed by algorithm

KMP is 2.1 x / + 2.1 t I. In the exceptional situation where the pattern is almost as long

as the text, the bound becomes 4. (tl, a quantity that is to be compared to the 6. It I + 5

of Algorithm POSITIONS.

Theorem 7. Algorithm POSITIONS in Fiy. 11 applied to a text t and a pattern x runs in
time 0(I t I) and requires constant space.

Proof. This is an immediate consequence of Proposition 6 because time complexity of

Algorithm POSITIONS is proportional to the number of letter comparisons. Variables

used in the algorithm require only a constant amount of space. q

Slriny-marchin,q on ordrrrd alphabets 45

4. Time-space optimal computation of periods of words

When p is a period of the word x, the word x[l] . . . x [n -p] is both a proper prefix

and suffix of x. It is called a horder of x. In fact, this defines a one-to-one correspond-

ence between periods and borders of x and the smallest period of x is associated with

its longest (proper) border. In other terms, the word x overlaps itself or it occurs inside

itself at the overhanging position p.

The main feature of the Knuth, Morris and Pratt’s string-matching algorithm

is an efficient preprocessing of the borders of all the prefixes of the pattern x.

It then provides an algorithm to compute the periods of x. The computation requires

between 1 x 1 and 2 Ix / letter comparisons and 0(I x I) extra memory locations.

Since Algorithm POSITIONS computes all overhanging occurrences of the pattern

inside the text, it can be used, in a natural way, to compute all periods of a word.

The periods of a word x are the elements of P(x, x), i.e. the positions of x in x itself.

Figure 12 gives an algorithm that computes the smallest period of a word. It is a

straightforward adaptation of Algorithm POSITIONS and it can easily be extended to

compute all periods of its input.

Theorem 8. The periods of a word x can be computed in time 0(1x1) with a constant

amount of space.

fUnCtiOn SMALLEST_PERIOD(X) ;

begin
per:=l; m:=l; (i,j,k,p):=(O,l,l,l);
while (per+m I 1x1) do
{ if (x[per+m]=x[m]) then

{ m:=m+l; }
else
{ (i,j,k,p) :=NEXT_~XIMAL_SUFFIX(X[l]...X[m-l]X[per+m], (i,j,k,p));

if (x[l]...x[i] suffix of
the prefix of length p of x[i+l]~.x[m-l]x[per+m]) then

if (j-i > p) then
{ per:=per+p; m:=m-p+l; j:=j-p; }
else
(per:=per+p; m:=m-p+l; (i,j,k,p) :=(O,l,l, 1); 1

else
{ per:=pertmax(i,min(m-i,j))+l; m:=l; (i,j,k,p) :=(O,l,l,l);)

1
1
return (per);

end function.

Fig. 12. Optimal computation of the smallest period

46 M. Crochemorr

5. Conclusion

In [9], Galil and Seiferas indicate how their optimal algorithm can be modified

to compute overhanging occurrences of the pattern, and thus, the period of a word.

Even if their paper contains a flaw related to the adaptation, Galil [S] has shown how

it can be adapted. A similar technique applies to the other optimal string-

matching algorithm of [S]. Both algorithms scan the word from a precomputed

internal position, which makes the computation inherently off-line. The present

algorithm is also time-space optimal but, unlike the two above algorithms, it

scans the word from left to right. Consequently, the computation of the period is made

on-line.

The interest in the string-matching algorithm presented in this paper is mainly

theoretical. The algorithm cannot reach the efficiency of the algorithms of [3] (and

variants) and [S]. This is due to the left-to-right-scan feature that yields a linear lower

bound on the number of letter comparisons (this lower bound is sublinear for BM and

CP). Nevertheless with a left-to-right scan the buffer on the text can be reduced to half

the length of the pattern. We do not know how much the upper bound 6. ItI on the

number of letter comparisons can be reduced for optimal string-matching algorithms

with left-to-right scan. It is still possible to improve on lengths of shifts in Algorithm

POSITIONS, but this does not seem to affect the bound.

The algorithm of Fig. 11 has also the advantage of turning into a real-time

algorithm as are both algorithms of [7] and [4]. The proof relies on the transforma-

tion introduced by Galil in [7]. He defines a “predictability condition” that is

a sufficient condition for an on-line algorithm to be transformable into a real-time

algorithm. The predictability condition holds for Algorithm POSITIONS. It also holds

for the string-matching algorithm of Simon [12].

Finally, we would like to point out a surprising phenomenon. The combinatorial

result of Proposition 2 provides an approximation of the period of a word. The

property leads to the string-matching algorithm of Fig. 11 which itself adapts to an

exact computation of periods by an optimal and on-line algorithm. This raises the

natural question: can the iteration of this feedback effect be helpful in some way, for

instance to design a faster string-matching algorithm?

Appendix

The core of the string-matching algorithm of Fig. 7 is an algorithm that computes

the alphabetically maximal suffix of words. This algorithm is a straightforward

adaptation of an algorithm of [6]. A proof of it can also be found in [S]. The

algorithm works in linear time (hint: each letter comparison yields a strict increment

of the value of i + j + k).

String-matching on ordered alphabets

function MAXIMAL SUFFIX (x[l]...x[n])
:=o; j:=l; k:=l; p:=l.

Chile (j + k I II) do (
if (x[i+k] = x[j+kl) then
(if (k = p) then {j:=j+p; k:=l;} else k:=k+l;)
else if (x[i+kl > x[j+kl) then
{ j:=j+k; k:=l; p:=j-i; }
else
{ i:=j; j:=i+l; k:=l; p:=l; }

1 end while
/* the maximal suffix of x[ll... x[n] is x[i+ll . ..x[n]. */
/* and p is the smallest period of x[i+ll...x[nl */
return (i, j, k,p) ;

Fig. 13. Computation of maximal suffixes.

References

III

c-a

Dl
M

c51

[f-51
c71
PI

c91

llO1

1111

Cl21

A.V. Aho, Algorithms for finding patterns in strings, in: J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, Vol. A, Algorithms and Complexity (Elsevier, Amsterdam, 1990) 255-300.

A. Apostohco, Optimal parallel detection of squares in strings, Reports CSD-TR-932 and CSD-

TR-1012, Purdue University, 1990.

R.S. Boyer and J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (1977) 762-772.

M. Crochemore, Longest common factor of two words, in: Ehrig, Kowalski, Levi and Montanari, eds.,
TAPSOFT ‘87, Vol. I (Springer, Berlin, 1987) 2636.

M. Crochemore and D. Perrin, Two-way pattern matching, Rapport LITP 89-8, Universite Paris 7,

1989; to appear in J. ACM.
J.P. Duval, Factorizing Words over an Ordered Alphabet, J. Algorithms 4 (1983) 363-381.
Z. Galil, String Matching in real time, J. ACM 28 (1) (1981) 134149.

Z. Galil, personal communication, 1990.

Z. Galil and J. Seiferas, Time-space optimal string matching, J. Comput. System Sci. 26 (1983)

280-294.

D.E. Knuth, J.H. Morris Jr and V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2)
(1977) 323-350.

J.H. Morris Jr and V.R. Pratt, A linear pattern-matching algorithm, Report 40, University of
California, Berkeley, 1970.

I. Simon, personal communication, 1989.

