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Abstract. Translational lemmas are stated in a general framework and then applied to specific 
compfexity classes. Necessary and sufficient ctsnditions are given for every set accepted by a Tur- 
ing acceptor which operates in linear or polynomial time to be accepted by a Turing acceptor 
which operates in space (log nIg for some j > 1. 

There has been a great deal of effort expended in attempting to etermine how dif- 
ferent complexity classes relate to one another. In this work certain “translati 

techniques appear and reappear in diEerent gGes, and thy notion of a set w 
“class-complete” with respect to certain reducibilities plays an important role. The 
purpose of this paper is to raw attention to the use of the:ie translationa 
and co.plete sets, and in particular to clarify the strategy use 
is shown that ce:ltain classes are distinct (i.e., not equal to one another) without 
indicating whethfx one is contained in the other. 

Section 3 we illustrate the use of these 

s rese 
9 and 
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d&ions for this to occur when f(n) = n and j >, 1 is any inkger. In particular, it is 
shown that this relationship exists if and only if every set accepted by a Turing ma- 
chine which operates within polynomial time can be accepted by a ring machine 
which operates within a space bound which is polynomial in log 12. From these con- 
ditions it is shown that wlrtain clalsses defined by time bounded acceptors are not 
equal to certain classes defined by space bounded acceptors. 

e The classes stu&ed here are specified by deterministic and nondeterministic 
multitape Turing acceptors which operate within time bounds or space bounds. 
The functionsfus4 to bound the iamount of time used in a ‘Rtring acceptor’s com- 
putation are such that for all n >, B&z) > II, and are “sekomputable with respect 
to time” in the sense that there is a deterministic Turing machine jW which, upon 
input W, runs for precisely f (lwl) steps and balts. 1 The functions fused to bound the 
amount of space used in a Turing acceptor’s computation are such that for all n 2 0 
f(n) > log n, and are ‘Sself=computable with respect to space” in the sense that there 
is a deterministic Turing machine .M which upon input w marlcs precisely f (1~1) 
consecutive tape squares and halts2 

For a Turing acceptor M, L (M) is the set of strings accepted by aM. It is assumed 
that the reader is familiar with the notion of multitape Turing acceptors which 
operate within time bounds or space bounds. Both on-line and off-line Turing accep- 
tors are considered. An on-line acceptor reads its input from left to right. An off-line 
acceptor can read its input in both directions. An auxiliary pushdown acceptor 
is an ofGline Turing acceptor which has an auxiliary storage tap: which is restricted 
by ,the specified space bound and a pushdown store which is anrestricted.3 

Let f be ,a bounding function. 
E (j’) = {L (M)I M is a deterministic on-line rrulititape Turing acceptor 
es within time bound f >, and NTIME (f) = .jL (:1M)I M is a nondeter- 

ministic on-line multitap ring acceptor which operates within time bound f}. 
(ii) IXSPACECf) = {E [ M is a deterministic off-line multitape Turing acceptor 
icb operates within time nd f}, and NSPACE ($) = (1 (M)I 

el.ermitistic o&line multira ring accleptor which operates wit bin 
@ii) A cf)= W is an auxiliany pushdown acceptor 

within spa632 bunt!: J). 

Some of the classes considered here are defined by taking 
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frequently studied classes with opes of making uniform the 

No 

ME(pc!y (n)) = 6 NTIME (nL), so that DTIME(poly (It)) is \:he class 

of a_ .3 accepted by determin~t\c Turing acceptors which operate in polynomial 

(ii) Let NTIME(poly (n)) = c1 NTIME (nk), so that IdTIM (polly 0:)) is the class 

of sets accepted by nondeterm!i!stic Turing acceptors which operate in polynomial 
time. 

(iii) Let DSPACE oIy (log n)) = 6 DSPACE ((log n)k), and let APDA ((poly 

(log n)) = (j APDA ((log @). 
k=P 

k==l 

e class of sets accepted by deterministic Turing acceptors wihich operate within 
omial time is DTIME(poly (n)). Cobham [3] discussed the importance of the 

CUSS of frlnctions computed in polynomial time; the subclass of characteristic func- 
s corresponds to DTI E(poIy (n)). (In [ 1, 5, 7, IO] this class is referred to as Pa) 
dass of sets accepted by nondeterministic Turing acce;?tors which operate in 
omial time is NTIME(poly (n)). Recently Co;>k [5] and Yarp [lO] have shown 

the importance of the class NTIME(poly (n)) in the: study of corxr:te computational 
complexity. (In [l, 5,7, IO] this class is referred t.3 as P?...) 

In [4] it is shown that for any bounding function,< APDA (f) = Lj DTIME(ZC’). 
00 

Thus, A’PDA (log rr) = DTIME(poIy (n)). ere the class APDA(poly (log n)) = 

DTIME (RF@) is also of interest. 
J-1 

There are several well known rest&s concerning time-space tradeoffs. In particular, 
r any bounding functionfit is luiown that DTIME (f) G NTIME (17 G IXPACE 

G NSPACE (f) c_ AP E (F). It is not. known which of 

ere the classes 

is section we scribe the translationaS lemmas. 
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T,be scheme that we use is based on the notion of “reducibility” studied in recursive 
function theory [ 11). We use the notion of “Greducibili:ies” for a class &? of functions.. I 

that: is, we specify that the reducibikities come from a given class e of functions. 
‘e use the n&ion of a set which is “complete for a class with respect to Gredk~ 

biGties”, emp&asidng that completeness depends on the type of reducibility used. 
Finally, we detie the notion of a class Uosed under E?-reducibilities.‘” 

tion. Let e be a class of functions. 

(i)’ Forj% C!, a set L1 is reducible to L2 via f if L1 s domain(f) and f-f(&) =: L1. 
(ii) k class El qf sets is Ckeducible to a c?ass & of sets if & G eJ(&), i.e., for 

every LI E & there exist Lz E & and f e C? such that L1 is reducible to & via f. 
(iii) Let 2 be a class of sets, A set LO is &complete for ,,@ if Lo E 2 and ,.,.Q is @-r-e- 

ducible to {L,). 
(iv) A &ss _@ of sets is close, f mder C+educibilities if e-l(p) s 2. 

These notions are by no means new. We define them here in order to emphasize 
the dependence on the type of reducibilitg used. Further, the notion of a class Boeing 
‘klosed under e-reducibilities” underlies many of the arguments in the literature 
regarding ‘“complete” sets for various complexity classes. However, this idea has 
not been made expkit previously; we believe that this is a useful concept. See [ 1,2, 
5, 7, 9, 10, 133 for examples. 

The tist translational lemma follows immediately from the definitions ab!ove. 
Its statement represents an attempt to abstract the use of translational techniques 
in 11, 2, 5, 9, 10, 125. . 

l Llet .&, A&, and & be classes of sets, and let E! be a class of fumtions. 
Suppose that ,& is C&reducible to & and that Es is closed under E!-redm%ilities. If 
.& ,c & then A& S &. 

UF & is a class which is closed under Greducibilities and &?I is a class containing 
a set Lo which is G-complete for &, then & G & if and only if Lo E &. as 
b&n the main use of “class-complete” sets in the comparison of comfilexity classes 
found in the literature. See [2, 5, 7, 10, 133 for examples. 
to include its use in [ 1, 21. 

. Let e be a class of functions. Let J2 be a 
Cconzplete for Q, Let 2 be a class of 

.,Q -- tp n@t where teach Et is a class ??f sets which is closed 

are eqzcivalent : 

ts such that there exists 
e index seP 

r GreduciMities. 
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Since Lo is e-co plete for $2, for every L E ii? there exists f E e sucl~ that L 
is reducible to La via f. If there is some i such that L, E A?~, then since ,Ql is closed 
under Greducibilities, this implies ttiat every L E Q is in &, so that (i) implies (ii). 
Since ,,@ = u &, (ii) imphes (iii) and (iii) implies (i). n 

fef 

ma 2.X Let C? be a clicks uffunctions. Let I2 be a class of sets mch that thwe exists 
Lo which h C?amp.lete$~r l2. Let 2 be a class of sets such that for some im!..x 1: &? = 
u L?, where each EL is G class of sets which is closed under e-reducibilities. If i%r all’ 
&I 
id, JZs # E, then Sz 45 L?. 

Proof. If Q = P, then by art (ii) of Lemma 2.2 there is some i such that Sz g; 
be, Q # L?. 0 

The notions specified above have been used wi ely in the sturdy of csmpletit y 
classes. In particular, Lemma 2.3 describes the strategy used in [ 1,2] (and in Sectio:a 
3 of this paper) where it is shown that certrrin classes are distinct without showinlg 
that one is or is not contained ;;II the other. 

3. In this section we develop several results concerning the classes NTlME(poly I(n) I, 
NTIME (~29 for j 2 1, DSI?AC~($oly (iog n)), etc. These results are establishe ij 
for their own sake as well as providing examples in the use of the translation: I 

lemmas of Section 2. 
First we describe the classes of reducibilities that we use. 

Notation 
(i) Let II be the class of al1 functions f of the following form: for some finite al- 

phabet C, some c $ & and some constant k > 1, f is defined fcr all w E C* by 

fM= wcm where IwPl = Iwlk, i.e., m = lwlk-Iw[. 
(ii] Let 5 be the class of all homomorphisms between free mcnoids, i.e., _& F 

if and only if there exist finite alphabetsC and d such that fi C* + d * is a function 
erty that f (e) = e and for all n >, 1 and ali ul ,..., a,, E X, f (a, ..e an) = 

f(Q) •*~fbl)~ 

‘I%e class D is a subclass of the class of functions computed by uring machines 
in polynomial time. In particular, every function in 67 can be computed l?y an on-1in.e 
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In order to compare classes defined by time-bounds and space-bounds, we need 
to show that the space-bounded classes are Iclosed under II-reducibilities and under 
TNreducibjlities. We accomplish this in the foll.owing lemmas. 

. Each of the fihwing classes is closed 

II)), APDA(poly (lcig n)), and for every j 2 
((log n)qg aEd APDA ((log r2)Q. 

D+educibiZities : 

PACE ((log n)?), 

We give a proof for the case of DSPACE ((log 49 for tied j, the proofs 
for the cases MPACE (0o.g n)9 and AFWA ((log 49 being the same. 

T&t L1 and L2 be two lan.gJages such that for some f E L?, L1 is reducible to Lz 
v&f. T’hus, for some finite alphabet C, some symbol d: # L’, and some integer k; >, 1, 

ci) f:C* + (Z’ u {cl);* is defined by f(w) = wcm where Iwc~~ = 1~1~ for every 
WEC”; 

((ii) Lr sz C?; and 
(iii) for all w E C*, Iv E 1 1 2P 8na only if f(w) E Lz. 
Suppose th,at Lz E DSPACE ((log az>‘), so that there is a deterministic o&line 
iring acceptor Mz such that L (A&) = Lz and M2 operates within space bound 

(jfog #* 
st show that L1 E DSPACE ((log n)9. From M2, construct a deterministic 
ring acceptor MI which behaves as follows. Upon input w E c1, MI first 

writes 1~1~ in binary on part of its storage tape (this takes log lwlR tape squares), 
and then simulates s computation on wcm, where Iwcml = 1~1”. Ml performs 
this simulation by r w on its own input tape and simulating M2’b reading 
of cm on that part of its storage tape which records IwlR. That is, MI perform.: this 

by reading w on its own input tape and simulating ‘5 action on w. 

! wishes to move to the right of w in order to read c’s l simulates the 
read head on M2’s input tape by keeping track of the position cf fi i’s head relative 
to the rightmos? letter of w, on that part of its storage tape which records 1~1~ in 
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ut we have shown that CE ((log r~)~) is closed un r Greducibilities so that I_,, 
reduces to Lz via f implies L1 E DSPACE ((log I@) c PACE(poly (log n)). Thus 

ACEOpoly (log n)) is closed under I’&redu&bilities. Similarly, APDA(pol;r (log n)) 
in closed under II-reducibilities. 0 

. Each of the following classes is closed under Weducibilitiesa DSPACE 
rpoly (log n)), APDA(poly (log n)), andfor every j > 1, DSPACE ((log n)j), NSPACE 
((log n)?, and APDA ((log n)j). 

Proof. We give a proof for the case of DSPACE ((log n)q for fixed j, the proofs 
for the cases NSPACE ((log n)j) and APDA ((log n)9 being the same. 

Let L1 and L2 be two languages such that there is a homomorphism h: Z* --) d * 
such that for all MJ E 27, w t’ L1 if and only if h (w) E L2, where IdI c Cz8 -that 
is, L1 is reducible to L2 via h E 7. Suppose that L2 E DSPACE ((log n)j), so that 
there is a deteiministic off-line Turing acceptor Mz su that L (M2) = Lz and Mz 
operates within space bound (log n)l. We must show at L1 E DSPACE ((log 12)j). 

From Mz construct a deterministic off-line Turing acceptor Ml which behaves as 
follows. Upon input al . . . a,,, each a1 E Z, Ml imitates the action of M2 on h (a, -.. a,) 
= h (a,) . . . I2 (a,). Since there is a fixed bound k such that for all a E Z, C < 
Ih la)1 < k, Ml can remember the entire string h (a), a E C, in its finite state control 
while imitating M2 on h (a). Now Ml will use the same amount of space on 
a, . . . a,, as Mz uses on h (a, . . . a,). Since Mz operates within space bound (log n)j 
and h (al . . . a,,) < kn, this means that Ml operates within space bound (log kn)j < 
kJ(log n)‘.Thus I& = L (Ml) E DSPACE (kj(log n)q = DSPACE ((log n)j). 

To show that DSPACX(poly (log n)) and APDA(poly (log n)) are closed under 
%educibilities, one uses an argument just like that in Lemma 3.1. 0 

lemmas. 

E(poly (n)) with space-bounded classes, we shall depend upon 
Gucible to NTIME (n) and that there is a se: 
These results are obtained in the following 

. 2he class N (poly (n)) is ill-reducible to the class N E (12). 

ence, there exists a 
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of MI on w takes at most IwlJ steps since &&* operates within time bound &, and 
having, recorded 1~1 while reading w, I#& can check whether there are exactly lwl’- Iwl 
6’s in real time. can be made to operate in real time, i.e., within time bound 
n, so tl-rat Ez = C ( E (pt). TPfi C* -3 (Z u {c})* is defined by f(w) = wcm 
where M = lwlj=-lwl, then f E lI clearly L, is reducible to Lz via $ Since L1 
was taken arbitrarily from NT1 oly (I@), we have the result. 0 

For every j >, 1, there exists a language LO which is ‘!$com,llkte , for 

This is established in r2]. The language given in [2] is the set of all string,s _ 

of the form & &Ft .,@ . . . a,, &? where .n encodes a nondeterministic multitape Turing 
acceptor which operates within time bound P#, each a”# is the encoding of an input 
symbol of iI& and al . . . a, is accepted by II.4. For further details, see [2]. 

To show that NT1 E(poly (n)) is included in DSPACE@oly (log n)), it is enough 
to show that NTIME (n) is so included. 

3.5. The following a;pe equivalent: 

0 i 
( ic 
.*9 

( ) ill 

( ) iv 

oly (n)) G DSPACE(poky (log n;)) (aesp., A (poly [log 13))); 
(IZ) G DSPACEQpoly (log n)) (resp., A (log 4)) x 
ists j 2 1 such that NIIM’E (12) G BS 

Ir(log #)) ; 

g n)p> (req.,APDA 

;,!here exists j 2 1 sz.41 that NTIME(ps3y (n)) s DSPACE ((log n)f) (resp., 
A ((log n)3. 

prove the result for DSPACE ( ), the proof for APDA ( ) being the same. 
It Is immediate from the defiltitions that (i) implies [ii), (iii) implies (ii), (iv) implies [i), 
and (iv) implies (iii). 
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mma 3.2 (poly (log n)) is closed under F-reducibilities. Thus wc have 
the following result. 

There exists a languag 

;po1y (log n)) 
dd7 IJog n)) (resp., A 

E (n) such tha: E,;ioly (n)) c 
og n))) if and only r Lo E IXWKE 

fact that the space-botmded machines were deterministic played no role in the 
f Theorem 3.5. Thus, if NSPACE ( ) is substituted for DSPACE ( ) thrsughout, 

e resulting statemen.ts still h,old. 
There are other classes which may play the role of NTI 

n particular it is easy to prove that for any j > 1 the 
(i) NTIME (n) G DSPACE ((log n)j) ; 

(n) in Theorem 3.5. 
ing are equivalent: 

(ii) every language accepted by a simple nondeterministic Turing acceptor which 
operates within bound y1 log n is in DSPACE ((log n)j) ;’ 

(iii) every lan accepted by a nondeterministic on-line, one storage tape Turing 
acceptor which operates in inear tixe is ii1 SPACE ((log pr)j). 

There age several results which fol!oy: from Theorem 3.5 azzd its proof. 

rem 3,6. NTIME(poly (n)) # DSI?ACE(poly (log E(poly (#) # 
APDA(poly (log n)). 

wn that for every j >, 1, DSPACE ((log #) $ 
j, DSPACE ((log #) $ DSPAC 

by results in. [4] and [$I it can be shown that for all j, 
(p01y (log FZ)). Thus this result follows from Theorem 3.5 and Lemma 2.3. 0 

.7. For every j > 1, N SPACE(poly (log 4) and 
A(poly (log pt)). 

As noted in the p Theorem 3-S for every j > 1, 
CE(poly (log n)). a 3.2, for every j -3 1, 

closed under $reducibilities. By Lemma 3.4, for every k l 3 1, there is a set which 
Lemma 2.3 we co .t for 

(poly (1Qg n)). i!k )J: 
(log@) is the same. hz]I 



this implies that NTIME(poly (n)) G DSPACE ((log n)‘). Since for all j, NTIME L 

:rp3 F NTIME(poly (n)) [6], we have NTIME cd) q DSPACE ((log n)lt). 0 

Again, if DSPACE () is replaced by NS CE: ( ) in Theorem 3.8, then the re- 
suiting statements are true. 

Tn Theorems 3.5-3.8 the classes specified by time bounds involve only nonde- 
terministic acceptors. The results still Id if one considers deterministic acceptors 
instead of nondeterministic acceptors. wever, the proofs must b altered slightly, 

~a particular, Lemma 3.4 does not hold for deterministic acceptors. To obtain the 
deterministic counterparts of Theorems 3.5-3.8, one must note that there is a Ian- 
guage LO E DTIME (n2) with the property that for every LE DTIME (n) there is 
a function& 9 such that L is reducible to LO viaJ This provides the appropriate 

DSPACE (poly (log n)) 
I 
1 

J I 

r 
I 

1 APDA ((log n)k) 

I 

/ 

I 
I I 

I I NTIME boly( n 1) 
DSPACE kg dk) 1 

I I 

I 

I 

APDA (log n) = 

I 

I 

I 

I / 

I 

I 
IME (n’) 

I 

I/ 
DTIME fn St 

I 
DSPACE (log rl,) 

I 
I 
! 
I 

NTIME (n ) 

J 

DTIME(n) 
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Fig. 2. _& ? E2 indicates that it is not known whether J% = -% or J% # =-@z~ 

counterpart of Lemma 3.4. We state the counterparts of Theorems X5-3.8 without 
proof. 

eimm 3.9. The’ folIowing are equivalent: 
(i) DTIME(poly (n)) G DSI’ACE(poly (log n)); 
(ii) DTIME (n) E DSPACE(poly (log n)); 

(iii) there exists j > 1 such that 
(iv) there exists j > 1 such that DTIME(poly (n)) ,c DSPACE ((log n>9. 

(p~ly (n)) # DSPACE(poly (log n)); 
(ii) for every J+ > 1, bob (log n)) ; 
(iii) for every j, k > CE (&)g n)k). 

The results in Theorems 3.6, 3.7, 3.8 and 3.10 are of t c same form* 

e class is 2. sub- 
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under IiQeducibil thia result to show that 

are linear context-free 
ration. 

For uny j>l, if DS 
.n)J)) con&zins the imge under mtwerming 

w?olgr 0) s ((log n)g (req., NSPACE ((Iog n)3, 

Some of the inclusion relations between the classes studied here are illustrated 
in Fig. It. Some of the statements of inequa’dity of classes are given in 
statements that a class specified bjy time-bounded machines is not equal to a class 
spixified by space-bounded machines are new results. 

wish to thank Celia hall for many helpfuli comments on this work. 
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