Theoretical Computer Science 1 (1976) 215-226. © North-Holland Publishing Company

TRANSLATIONAL LEMMAS, POLYNOMIAL TIME,
AND (log =)-SPACE*

Ronald V. BOOK

Department of Computer Science, Yale University, New Haven, Conn., USA

Communicated by J. “jllman
Received 1 May 1974

Abstract. Translational lemmas are stated in a general framework and then applied te specific
complexity classes. Necessary and sufficient conditiors are given for every set accepted by a Tur-
ing acceptor which operates in linear or polynomial time to be accepted by a Turing acceptor
which operates in space (log #)’ for some j > 1.

Introduction

There has been a great deal of effort expended in attempting to determine how dif-
ferent complexity classes relate to one another. In this work certain “translational”
techniques appear and reappear in different guises, and the notion of a set which is
“class-complete™ with respect to certain reducibilities plavs an important role. The
purpose of this paper is to draw attention to the use of these translational techniques
and complete sets, and in particular to clarify the strategy used in [1, 27 where it
is shown that certain classes are distinct (i.e., not equal to one another) without
indicating whether one is contained in the other.

In Section 2 we state translationa! lemmas in general terms in order to describe
the techniques us:d in [1, 2, 6, 7, 9, 12, 13]. In Section 3 we illustrate the use of these
techniques by studying some specific complexity classes.

One of the iraportant underlying questions in automata-based computational
complexity is that of time-space tradeoffs: if a process takes a given amount of time
(space) to perform, how much space (time) does it take ? Recently it has been conjec-
tured that for a suitable bounding function f, every set accepted by a deterministic
or nondeterministic Turing acceptor which operates within time bound f (1) can be
accepted by a deterministic Turing machine which operates witlir: space bound (log
f)Y, for j = 2. In Section 3 of this paper, we establish necessary and sufficient con-

* This research was supported ip part by the National Science Foundation under Grants
GJ-30409 and DCR-75-15945.

216 K. V. BOOK

ditions for this to occur when f(#) = n and j > 1 is any integer. Ia particular, it is
shown that this relationship exists if and only if every set accepted by a Turing ma-
chine which operates within polynomial time can be accepted by a Turing machine
which operates within a space bound which is polynomial in log . From these con-
ditions it is shown that certain classes defined by time bounded acreptors are not
equal to certain classes defined by space bounded acceptors.

1. The classes studied here are specified by deterministic and nondeterministic
multitape Turing acceptors which operate within time bounds or space bounds.
The functions f used to bound the amount of time used in a VTuring acceptor’s com-
putation are such that for all » > 0, f(n) > n, and are “self-computable with respect
to tirne” in the sense that there is a deterministic Turing machine M which, upon
input w, runs for precisely f'(|w|) steps and halts.! The functions f used to bound the
amount of space used in a Turing acceptor’s computation are such that foralln > 0
£ (n) > log n, and are “self-computable with respect to space” in the sense that there
is a deterministic Turing machine M which upon input w marks precisely f (jw|)
consecutive tape squares and halts.?

For a Turing acceptor M, L (M) is the set of strings accepted by M. It is assumed
that the reader is familiar with the notion of multitaps Turing acceptors which
operate within time bounds or space bounds. Both on-line and off-line Turing accep-
tors are considered. An on-line acceptor reads its input from left to right. An off-line
acceptor can read its input in both directions. An auxiliary pushdown acceptor [4]
is an off-line Turing acceptor which has an auxiliary storage tape which is restricted
by the specified space bound and a pushdown store which is unrestricted.?

Notation. Let f be a bounding function.

(i) DTIME (f) = {L (M)| M is a deterministic on-line riuliitape Turing acceptor
which operates within time bound £}, and NTIME (f) = {L (M)} M is a nondeter-
ministic on-line multitape Turing acceptor wiich operates within time bound f}.

(ii) DSPACE (f) = {L (M)| M is a deterministic off-line multitape Turing acceptor
which operates within time bound f}, and NSPACE (f) = {L (M)| M is a non-
deierministic off-line muitiiape Turing acceptor which operates wit hin space bound f}.

(iil) APDA (f) = {L(M)| M is an auxiliary pushdown acceptor which operates
withiz space bound s}.

Some of the classes considered here are defined by taking a union of complexity
classes where the union is taken over the positive integers. A simple notation is

! For a string w, w| is the length of w.

2 Functions which are “self-computable with respect to time” or “self-computable with
respect to space” are often called “linearly honest”.

3 An auxilizry pushdown acceptor can oe either deterministic or nondeterministic. When con-

sidering the class of sets accepted within a specified bound, there is no difference in the computa-
tional power.

TRANSLATIONAL LEMMAS 217

adopted for the most frequent'y studied classes with hopes of making uniform the
entire notational scheme.

Notaiiva
(i) Let DTIME(pcly (n)) = @ NTIME (n*), so that DTIME(poly (n)) is the class
k=1 '

of 5.3 accepted by deterministic Turing acceptors which operate in polynomial
time.

(i) Let NTIME(poly (n)) = Cl NTIME {n*), so that NTIME(poly ()) is the class
k=1

of sets accepted by nondeterministic Turing acceptors which operate in polynomial
tims.

(i) Let DSPACE(poly (log n)) = |) DSPACE ((log n)%), and let APDA ((poly
k=1
(logn)) = L) APDA ((log n)¥).
k=1

The class of sets accepted by deterministic Turing acceptors which operate within
polynomial time is DTIME(poly (n)). Cobham [3] discussed the importance of the
class of functions computed in polynomial time; the subclass of characteristic func-
tions corresponds to DTIME(poly (). (In [1, 5, 7, 10] this class is referred to as P.)
The class of sets accepted by nondeterministic Turing acce)tors which operate in
polynomial time is NTIME(poly (n)). Recently Cook [5] and Karp [10] have shown
the importance of the class NTIME(poly (1)) in the study of corcrate computational
complexity. (In [1, 5, 7, 10] this class is referred t> as NP.)

Tn [4] it is shown that for any bounding function f, APDA (f) = || DTIME(2%).

c>0

Thus, APDA (log n) = DTIME(poly (n)). Here the class APDA(poly (logn)) =
U DTIME (n“#™) is also of interest.

There are several well known resulis concerning time-space tradeoffs. In particular,
for any bounding function f it is kiown that DTIME (f) < NTIME (f) € DSPACE
(f) = NSPACE (f) € APDA (f) = U DTIME (2%). It is not. known which of

>0
these inclusions is proner, although a; least one must be proper since DTIME (f) ¥

U DTIME (2¢). Here the classes DTIME(voly (#)) and NTIME(poly (n)) are

c>0

compared to the classes DSPACE(poly (log n)), APDA(poly (log), and for any
j =1, DSPACE ((log r)’), NSPACE ((log n)’), and APDA ((log n)’). Recall that
for zny f, NSPACE ('f) < DSPACE (f2) [13] (where f2(n) = (f(n)?). Thus,

DSPACE(poly (log 7)) = U NSPACE {(log n)").

It should be noted that the methods used here can be applied to other classes
specified by subelementary bounds.

2. In this section we describe the translationai lemmas.

218 R. V. BOOK

The scheme that we use is based on the notion of “reducibility” studied in recursive
function theory [11]. We use the notion of “C-reducibilities” for a class © of functions.
that is, we specify that the reducibilities come from a given class C of functions.
We use the notion of a set which is “complete for a class with respect to C-reduci-
bilities”, emphasizing that completeness depends on the type of reducibility used.
Finally, we define the notion of a class “closed under C-reducibilities.”

Definition. Let C be a class of functions.

(i) For fe C, a set L, is reducible to L, via fif L, < domain(f)and f~*(L,) = L,.

(i) A class £ of sets is C-reducible to a class £, of sets if £2,=C-1{2,), i.e., for
every L, € £, there exist L, € £, and fe C such that L, is reducible te L, via f.

(iii) Let 2 be a class of sets. 4 set Ly is C-complete for 2 if L,€ 2 and 2is C-re-
ducible to {Ly}.

(iv) A class £ of sets is closed under C-reducibilities if C~1(£2) < L.

These notions are by no means new. We define them here in order to emphasize
the dependence on the type of reducibility used. Further, the notion of a class being
“closed under C-reducibilities” underlies many of the arguments in the literature
regarding “complete” sets for various complexity classes. However, this idea has
not been made explicit previously; we believe that this is a useful concept. See [1, 2,
5, 7,9, 10, 13] for examples.

The first translational lemma follows immediately from the definitions above.

Its statement represents an attempt to abstract the use of translational techniques
in [1, 2, 5, 9, 10, 12].

Lemma 2.1. Let £2,, £2,, and L5 be classes of sets, and let C be a class of functions.
Suppose that 2, is C-reducible to £, and that £, is closed under C-reducibilities. If
L2, = .93, then L; = Lj.

If .2, is a class which is closed under C-reducibilities and .2, is a class containing
a set Ly which is C-complete for .2,, then 2, < .0, if and only if L, .2,. This has
been the main use of “class-complete” sets i the comparison of complexity classes
found in the literature. See [2, 5, 7, 10, 13] for exaimples. We extend this technique
to include its use in [1, 2].

Lemma 2.2. Let C be a class of functions. Let 2 be a class of sets such that there exists
L, which is C-complete for Q. Let 2 be a class of sets such that for some index set I,

L = L, where vach L, is a class of sets which is closed under C-reducibilities. Then
icl

the following are equivalent:
(i) there is some i such that Lo€ f,;
{ii) there is some i such tha. Q < £,;
(i) Q< L.

TRANSLATIONAL LEMMAS 219

Praof. Since L, is C-complete for 2, for every L € £ there exists f& @ such that L
is reducible to L, via f. If there is some i such that L, € ,, then since .22, is closed
under C-reducibilities, this implies that every L € Qis in 2,, so that (i) implies (ii).
Since L2 = 1rL, L2, (ii) implies (iii) and (iii) implies (i). []

ef

Lemma 2.3. Let C be a class of functions. Let 22 be a class of sets such that there exists
Lo which is C-complete for Q. Let .2 be a class of sets such that for some index I, L =

U 2, where each L, is a class of sets which is closed under C-reducibilities. If for al!
&l

iel, O, # L, then Q # L.

Proof. If 2 = .2, then by Part (ii) of Lerama 2.2 there is some i such that Q <
£y F L. Henee, 2 # £.[]

The notions specified above have been used widely in the study of complexity
classes. In particular, Lemma 2.3 describes the strategy used in [1, 2] (and in Section
3 of this paper) where it is shown that certain classes are distinct without showing
that one is or is not contained ia the other.

3. In this section we develop several results concerning the classes NTIME(poly (n)),
NTIME (»') for j > 1, DSPACE(poly (log n)), etc. These results are established
for their own sake as well as providing examples in the use of the translation: |
lemmas of Section 2.

First we describe the classes of reducibilities that we use.

Notation

(i) LetlI be the class of all functions f of the following form: for some finite al-
phabet 2, some ¢ ¢ X, and some constant &k > 1, fis defined for all we Z* by
J(w) = we™ where (we™| = |wlk, 1.e., m = |w|*—|w|.

(ii) Let <7 be the class of all homomorphisms between free mcnoids, i.e., fe F
if and only if there exist finite alphabets 2 and 4 such that f: 2* — A* is a function
with the property that f(¢) = eand foralln > 1 and all g, ,..., 2, € %, f(a; ... @) =
SF(ay) .. fan).

The class 7 is a subclass of the class of functions computed by Turing machines
in polynomial time. In particular, every function in I7 can be computed by an on-line
deterministic Turing machine which operates in polynomial time and logn space.
Notice that these functions are one-to-one. One uses such a function to “pad” the
length of a string by an amount which is a polynomial in the length of the string
being padded.

The class F has been used for many purposes in automata and formal ianguage
theory. A class is closed under -reducibilities if and only if it is closed under inverse
homomorphism.

220 R. V. BOOK

In order to compare classes defined by time-bounds and space-bounds, we need
to show that the space-bonnded classes are closed under Il-reducibilities and under
F.reducibilities. We accomplish this in the following lemmas.

Lemma 3.1. Each of the joliawing classes is closed under II-reducibilities: DSPACE
(poly (log 1)), APDA({poly (lcg 1)), and for every j = 1, DSPACE ((log n)’), NSPACE
((log n)"), and APDA ((log n)’).

Proof. We give a proof for the case of DSFACE ((log n)’) for fixed j, the proofs
for the cases NSPACE ((loz n)’) and APDA ({log n)’) being the same.

Let L, and L, be two languages such that for some fe I7, L, is reducible to L,
via f. Thus, for some finite alphabet 2, some symbol ¢ ¢ 2, and some integer k& > 1,

() f:2* - (£ U {c})* is defined by f(w) = we™ where |wc™| = |w|* for every
we X*;

(ii) L, <= 2*; and

(iii) for all weX*, we L, if ana only if f(w)e L,.

Suppose that L, € DSPACE ((log n)’), so that there is a deterministic off-line
Turing acceptor M, such that I. (M,) = L, and M, operates within space bound
(log ny’.

We must show that L; € DSPACE ((log n)’). From M,, construct a deterministic
off-line Turing acceptor M, which behaves as follows. Upon input we 2*, M, first
writes |w|* in binary on part of its storage tape (this takes log |w|* tape squares),
znd then simulates M,’s computation on wc™, where |wc™| = |wj*. M, performs
this simufation by reading w on its own input tape and simulating M,’s reading
of c™ on that part of its storage tape which records |w|*. That is, M, perform: this
simulation by reading w on its own input tape and simulating M,’s action ca w.
When M. wishes to move to the right of w in order to read ¢’s, M, simulates the
read head on M,’s input tape by keeping track of the position cf M ,’s head relative
to the rightmost letter of w, on that part of its storage tape which records |wi* in
binary, and simulates the activity on M,’s storage tapes on its own storage tapes.
When M, moves back and forth within the ¢’s, M, keeps track of the position of
the head on M,’s input tape on that portion of M,’s storage tape which contains |w}]*
and simulates the activity on M,’s storage tapes on its own storage tapes.

We claim that M, accepts w if and only i’ M, accepts f(w), so that L (M,) = L,.
Further, /4, uses no more space on input w than M, did on f(w). Now M, operates
within space bound {logn)’ where n = |we™| = |w|%. But (log |w|*)! = k’(log Iw])’,
so that M, operates within space bound k’(log n)’. Since DSPACE(k/(log n)’) ==
DSPACE ((log n)’), this means that L, € DSPACE ((log n)’).

Now consider DSPACE(poly (logn)). Let L, and L, be two languages such
that for some fe I/, L, is veducible to L, via f. If L, e DSPACE(poly (logn)) =

o
U DSPACE ((log 1)), then there is :ome k such that L, € DSPACE ((leg n)¥).

Je=1

TRANSLATIONAL LEMMAS 221

But we have shown that DSPACE ((log n)*) is closed under II-reducibilities so that L,
rzduces to L, via f implies L, € DSPACE ((log n)*) = DSPACE(poly (log #)). Thus
DSPACE(poly (log n)) is closed under I1-reducibilities. Similarly, APDA(poly (log n))
ic closed under IT-reducibilities. []

Leama 3.2. Each of the following classes is closed under F-reducibilities: IDSPACE
‘voly (log n)), APDA(poly (log n)), and for every j = 1, DSPACE ((log n)’), NSPACE
{(log n)’), and APDA ((log n)).

Proof. We give a procf for the case of DSPACE ((log n)’) for fixed j, the proofs
for the cases NSPACE ((log n)’) and APDA ((log n)’) being the same.

Let L, and L, be two languages such that there is a homomorphism /: 2* — 4%
such that for all we X*, we L, if and only if h(w)e L,, where L, = X* — that
is, L, is reducible to L, via he . Suppose that L, € DSPACE ((log x)’), so that
there is a detei ministic off-line Turing acceptor M, such that L (M,) = L, and M,
operates within space bound (log #)’. We must show that L, € DSPACE ((log n)").
From M, construct a deterministic off-line Turing acceptor M, which behaves as
follows. Upon input a; ... a,, each a, € £, M, imitates the action of M, on & (a, ... a,)
= h(a,y) ... h(a,). Sin:e there is a fixed bound k such that for all ael, C <
lh (a)] < k, M, can remember the entire string % (@), a € Z, in its finite state control
while imitating M, on h(a). Now M, will use the same amount of space on
a, ...a, as M, nses on h(a, ... a,). Since M, operates within space bound (log n)’
and A (a, ... &) < kn, this means that M, operates within space bound (log kn)’ <
k'(log n).Thus L, = L (M,) € DSPACE (k’(log n)’) = DSPACE ((log n)‘).

To show that DSPACX(poly (log n)) and APDA(poly (log n)) are closed under
F-reducibilities, one uses an argument just like that in Lemma 3.1. []]

To compare NTIME(poly (n)) with space-bounded classes, we shall depend upon
the fact that NTIME(poly (n)) is II-re<iucible to NTIME (n) and that there is a set
which is F-complete for NTIME (). These results are obtained in the following
lemmas.

Lemma 3.3. Te class NTIME(poly (n)) is {I-reducible to the class NTIME (n).

Proof. If L, € NTIME(poly (n)) = |) NTIME (#), then there exists a j > 1 such
=

that L, € NTIME (»’), and hence, there exists a nondeterministic Turing machine M,
such that L {M,) = L, and such that M, operates within time bound #’. Let X be
a finite alphabet such that L, < Z*, and let ¢ ¢ X be a new symbol. Let L, =
{we™| we Ly, |we™| = |w}’}. From M, ore can construct a nondeterministic ma-
chine M, to recognize L, as follows. Initiaily, M, reads input symbols from & and
imitates M, on that initial portion of tke input. While imitating M; on w. M,
simultaneously checks whether the number of ¢’s is precisely |w]’ —|w|. The imitation

222 R. V. BOOK

of M, on w takes at most |w}’ steps since M, operates within time bound »’, and
having recorded |w| while readingw, M, can check whether there are exactly [w|/—|w|
¢’s in real time. Thus, M, can be made to operate in real time, i.¢., within time bound
n, so that L, = L (M,) € NTIME (n). If f: Z* -» (Z'u {c})* is defined by f(w) = wc™
where m = |w)/—~|w]|, then fe I and clearly L, is reducible to L, via f. Since L,
was taken arbitrarily from NTIME(poly (n)), we have the result. []

Lemma 3.4. For every j > 1, there exists a language Lo which is F-complete for
NTIME ().

Proof. This is established in [2]. The language given in [2] is the set of all strings
of the form a, Ma, M ... a, M where M encodes anondeterministic multitape Turing
acceptor which operates within time bound »/, each 4, is the encoding of an input
symbol of M, and a, ... a, is accepted by M. For further details, see [2]. []

To show that NTIME(poly (n)) is included in DSPACE(poly (log n)), it is enough
to show that NTIME (n) is so included.

Theoremn 3.5. The following are equivalent:

(i) NTIME(poly (7)) = DSPACE(poly (log n)) (resp., APDA(poly (log n)));
(ii; NTIME (n) < DSPACE(poly (log) (resp., APDA(poly (log n))):
(iii) z!ézere eJ!c)ists J =1 such that NTIME (n) < DSPACE ((log n)’) (resp.,APDA
((log n)));
(iv) there exists j = 1 such that NTIME(pcly (n)) = DSPACE ((log n)’) (resp.,
APDA ((log n)). ,

Proof. We prove the resuit for DSPACE (), the proof for APDA () being the same.
It is immediate from the definitions that (i) implies (ii), (iii) implies (ii), (iv) implies (i),
and (iv) iraplies (jii). '

To prove that (ii) implies (jii), we use Lemma 2.2. By Lemma 3.4, there is a lan-
guage L, which is F-complete for NTIME (r). By Lemma 3.2, for every j > 1,
DSPACE ((logn)) is closed under F-reducibilities. Suppose NTIME (n) <
DSPACE(poly (log n)). Then by Lemma 2.2, there exists some k = 1 such that
NTIME (n) = DSPACE ((log n)¥).

To prove that (iii) implies (iv), we usec Lemma 2.1. By Lemma 3.1, for everyj > 1,
13SPACE ({log n)’) is closed under /1-seducibilities. By Lemma 3.3, NTIME(poly (1))
is II-reducible to NTIME (n). Suppose that for some k > 1, NTIME (n) = DSPACE
((logn}¥). By Lemma 2.1 this implies that NTIME (poly (n)) < DSPACE ((log n)*). [

From the equivalence of (i) and (i) in Theorem 3.5, we see that NTIME(poly ()} <
DSPACE(poly (logn)) if and only if NTIME (r) < DSPACE(poly (log n)). By
Lemma 3.4, there exists a language L, which s F-complete for NTIME (#), and by

TRANSLATIONAL LEMMAS 223

" Lemma 3.2 DSPACE(poly (icg n)) is closed under F-reducibilities. ‘Thus we aave
the following result.

Corollary. There exists a language Lo € NTIME (n) such tha: NTIMLE\uoly (n)) <
DSPACE(poly (log n)) (resp., APDA(poly (logn))) if and only if L,e DSPACE
(po., 'logm)) (resp., APDA(poly (log n))).

The fact that the space-bounded machines were deterministic played no role in the
prvof of Theorem 3.5. Thus, if NSPACE () is substituted for DSPACE () threughout,
the resulting statements still hold.

There are other classes which may play the role of NTIME (#) in Theorem 3.5.
In particular it is easy to prove that for any j > 1 the following are equivalent.:

(i) NTIME (n) = DSPACE ((log n)’);
(ii) every language accepted by a simple nondeterministic Turing acceptor which
operates within timac bound rnlog# is in DSPACE ((log n)’);*

(iii) every language accepted by a nondeterministic on-line, one storage tape Turing
acceptor which operates in inear tizae iz in DSPACE ((log n)’).

There are several results which follow from Theorem 3.5 and its proof.

Theorem 3.6. NTIME(poly (n)) # DSPACE(poly (log n)) and NTIME(poly (n)’) #
APDA(poly (iog n)).

Proof. In [14] it is shown that for every j > 1, DSPACE ({log n)’) ¢ DSPACE
((log n)’+1). Thus, for all j, DSPACE ((log n)’) § DSPACE (poly (log #)). Similarly,
by results in [4] and [8] it can be shown that for all j, APDA ((logn))) & APDA
(poly (log n)). Thus this result follows from Theorem 3.5 and Lemma 2.3. []

Theorem 3.7. For every j>1, NTIME (n) # DSPACE(poly (log n)) and
NTIME (#’) # APDA(poly (log n)).

Proof. As noted in the proof of Theorem 3.6 for every j > 1, DSPACE ((log n) ¢
DSPACE(poly (logn)). By Lemma 3.2, for every j:> 1, DSPACE ((log n)’) is
closed under F-reducibilities. By Lemma 3.4, for every k > 1, there is a set which
is F-complete for NTIME ¢#*). From Lemma 2.3 we conclude that for every k > 1,
NTIME () # DSPACE(poly (log n)). The prcof that NTIME (#*) # APDA(poly
(log n)) is the same. [_|

Theorem 3.8. Forallj,k > 1, NTIME(#’) # DSPACE ((log n)*) and NTIME () #
APDA ((log n)").

Proof. Suppose that for some J, k 3> 1, NTIME (») = DSPACE ((log n)*). Then
NTIME (n) < DSPACE ((log n)*). By the equivalence of (jii) and (iv) in Theorem 3.5,

4 A simple Turing machine has exactly one tape upon which input is written and work is
performed, and has only one rcad-write head on that tape.

224 | R. V. BOOK

this implies that NTIME(poly (n)) = DSPACE ((log n)*). Since for all j, NTIME
{n') € NTIME(poly (n)) [6], we have NTIME {n’) ¢ DSPACE ((log n)*). []

Again, if DSPACE () is replaced by NSPACE () in Theorem 3.8, then the re-
sulting statements are true.

In Theorems 3.5-3.8 the classes specified by time bounds involve only nonde-
terministic acceptors. The results still hold if one considers deterministic acceptors
instead of nondeterministic acceptors. However, the proofs must be altered slightly.
In particular, Lemma 3.4 does not hold for deterministic acceptors. To obtain the
deterministic counterparts of Theorems 3.5-3.8, one must note that there is a lan-
guage L, € DTIME (n®) with the property that for every L e DTIME (n) there is
a function f€ & such that L is reducible to L, via f. This provides the appropriate

APDA (poly(logn))

e

DSPACE (poly (log n))

APDA ((log n)¥)

DSPACE {(logn)*)

NTIME (poly(n))

|
7

——— — Gp— —— ot

/

APDA (log n) = DTIME (poly (n)) |

|
I
I] -l
| | '
| { NTIME (nl)
| | '
‘ DTIME (n) {
|
DSPACE (log n) i !
; !
; NTIME (n)
/
l //
DTIME (n)
Fig. 1. £, —— .2, indicates that .2, < £, and

= £, indicates that 2, G £,,

TRANSLATIONAL LEMMAS 225

APDA (polyilog n)) .
APDA ((log n)k), k=1

APDA({logn)

DSPACE (poly (log n))

DSPACE ((log n)k)

DSPACE (fog n)
NTIME (paly(n))

NTIME (nd),] >1

wlwlo]0]~|n

NTIME (n)

DTIME (poly(n)) #

? |
£ #|#

u

L S I TN IR AL TR VR B S L R I S I
#lolw| w0} %
#“lolH] W]

DTIME(n})

LR SR SR SR SR N NE R YRS
*

| %

LI SR NE N R SR S
LIRS IR

HlO]H | "

DTIME (n) # | #

Fig. 2. 2, ? £, indicates that it is not known whether £, = .2; or £y # £,.

counterpart of Lemma 3.4. We state the counterparts of Theorems 3.5-3.8 without
proof.

Theorem 3.9. The following are equivalent:
(i) DTIME(poly (n)) = DSPACE(poly (log n));
(ii) DTIME () =< DSPACE(poly (log n));
(iii) there exists j > 1 such that DTIME (n) = DSPACE ((log n)’);
(iv) there exists j > 1 such that DTIME(poly (n)) = DSPACE ((log n)’).

Theorem 3.10.
() DTIME(poly (1)) # DSPACE(poly (log n));
(ii) for every j > 1, DTIME (n') # DSPACE(poly (log n));
(iii) for every j, k > 1, DTIME (#’) # DSPACE ((log n)").

The results in Theorems 3.6, 3.7, 3.8 and 3.10 are of the same form. They state
that two classes, specified in different ways, are not equal. But no information is
given in the statement of the result or in the proof as to whether one class is a sub-
class of the other. , :

In [1] it is shown that NTIME(poly () = DTIME(poly (n)) if and only if
NTIME (#) < DTIME(poly (n)). The proof (rephrased in terms of the concepts
used here) is based on Lemma 3.3 and the observation that DTIME(poly () is

226 R. V. BOOK

closed under IT-reducibilities. Greibach [7] has extended this result to show that
NTIME(poly (n)) = DTIME(poly () if and only if DTIME(poly (1)) contains every
language of the form A (L, n L,) where L, and L, are linear context-free languages
and & is a nonerasing homomorphism. The languages used in Greibach’s proof
are linear context-free and in DSPACE (log n). This leads to the following obser-
vation.

Proposition. For any j=1, if DSPACE ((logn)’) (resp., NSPACE ((logn)’),
APDA ((log n)’)) contains the image under nonerasing homomorphism of DSPACE
(logn), then NTIME(poly (n)) < DSPACE ({logn)’) (resp., NSPACE ((log n)’),
APDA ((log n)")).

Some of the inclusion relations between the classes studied here are illustrated
in Fig. 1. Some of the statemeats of inequality of classes are given in Fig. 2. The
statements that a class specified by time-bounded machines is not equal to a class
specified by space-bounded machines are new results.

Acknowledgment

I wish to thank Celia Wrathall for many helpful comments on this work.
References

[1] R. Book, On languages accepted in polynomial time, SIAM J. Comput. 1 (1972) 281-287,

2] R. Book, Comparicg complexity classes, J. Comput. System Sci. 9 (1974) 213-229.

{3] A. Cobham, The intrinsic computational difficulty of functions, Proc. 1964 Congress for
Logic, Math., and Phil. of Sci. (North-Holland, Amsterdam, 1964) 24-30.

[4] S. Cook, Characterizations of pushdown machines in terms of time-bounded computers,
J. ACM 18 (1971) 4-18.

[s] S. Zook, The complexity of theorem-proving procedures, Proc. Third ACM Symposium
on Theory of Computing {1971) 151-158.

{61 S. Cook, A hierarchy for nondeterministic time complexity, Proc. Fourth ACM Symposium
on Theory of Computing (1972) 187-192.

{71 S. Greibach, The hardest context-free language, SIAM J. Comput. 2 (1973) 304-310.

{8} J. Hartmanis and R. Stearns, On the computational compiexity of algorithms, Trans.
Am. Math. Soc. 117 (1965) 285-306.

{9] O. Ibarra, A note concerning ncndsterministic tape complexities, . ACM 19 (1972) 608-612.

{10] R. Karp, Reducibilities among combinational problems, in: R. Miller and J. Thatcher (eds.),
Complexity of Computer Computations (Plenum Press, New York, 1972).

[11] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New
York, 1967).

{12] S. Ruby and P, C, Fischer, Translational methods and computational complexity, Conf.
Record IEEE Sixth Annual Symp. on Switching Circuit Theory and Logical Design (1965)
173-178.

f13] W. Savitch, Relationships between nondeterministic and deterministic tape complexity,
J. Comput. System Sci. 4 (1970) 177-192.

{14] R. Stearns, J. Hartmanis and P. Lewis, Hierarchies of memory limited computations,
Conf. Record IEEE Sixth Annual Symposium on Switching Circuit Theory and Logical
Design (1965) 179-190.

