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Hashiguchi, K. and K. Yamada, Two recognizable string-matching problems over free partially 

commutative monoids, Theoretical Computer Science 92 (1992) 77786. 

The two string-matching problems over free partially commutative monoids are studied and 

analyzed in detail in order to present efficient linear-time algorithms for solving these two problems 

over a constant-size alphabet. 

1. Introduction 

Let C be a finite alphabet, and C* the free monoid generated by C. h denotes the 

empty word. One of the typical string-matching problems over C* is the following: 

Given a text string XEZ* and a pattern string FEZ*, decide whether or not y is 

a factor of x. 

Many efficient algorithms for this string-matching problem are known, cf. 

Gf,2,5,9,141. 
Recently many contributions about free partially commutative monoids have also 

appeared [3,4,6,7, 10-13, 151. We recall its definition briefly. Let l3 be an irreflexive, 

symmetric binary relation over Z. z 0 (or = simply) denotes the smallest equivalence 

relation over C* such that for any x,y~C*, x = y if x = uabv and y = ubav for some 

(a, b)~tI and U, UE.Z*. Then = is a congruence relation. M(C, 6) denotes the quotient 

of C* by the congruence =. M(E, 0) is the free partially commutative monoid 

generated by ,?I w.r.t. 8, and can be regarded as a model of concurrency control system, 

or a model of any system with finitely many partially commutative operations. For 
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any x,y~C*, if x=uyti for some u,L~EZ *, then we call y a d-factor of x; moreover, if 

u = h, then y is a e-prefix of x, and if u = h, then y is a &suffix of x. 

We study the following two problems over M(C,tI). Let x,y~Z* be a given text 

string and a pattern string, respectively. 

Problem A: Decide whether or not y is a o-factor of x. 

Problem B: Decide whether or not x has a prefix of which y is a B-suffix. 

Problem B may be regarded as a hybrid problem concerning C* and M(C, 0). We 

analyze these two problems in detail, and obtain two efficient algorithms solving these 

two problems. The two algorithms have certain similar characters and consist of two 

parts. The first part consists of constructing functions pa,b as in [l] to each x,,b(y), 

where a, bEC, a # b, (a, b)$Q, and rc,, b(~j) is the string in C* obtained from y by deleting 

all letters distinct from a and b. 

The running time of this part is 0( 1 y 1.1 C2 I). The second part of the algorithm for 

Problem A (Problem B) consists of scanning x once from left to right with proper 

transitions in the above functions, and deciding whether or not y is a &factor of x (y is 

d-suffix of some prefix of x). The running time of this part is 0( Ix/ ‘1 ,X3 I). 

This article is an extended abstract of [S]: only Theorem 7 is a new observation. 

2. Main results 

Let @denote the set of pairs (a, b) such that a #b, u, beC and (a, b)$B. C, is the set of 

aEC such that (a, b)EO for any distinct beC. r is a binary relation over C* such that 

for any u,u~C*,uru iff for any (a,b)EZ(u) x C(u), (a, b)EfI. 8* is a binary relation 

over C* such that for any u, VEC*, uO*uiffforany(a,b)~C(u)~C(~),eithera=bor 

(a, b)EH. 

The congruence = can be characterized by simultaneous equations over Z*: the 

following theorem is fundamental. 

Theorem (Cori and Perrin [4]). For any u, ~E.I*, u E v ifs the following conditions hold: 

(1) For any UEC, IUlJU(,. 

The following two propositions hold. 

Proposition 2.1. For any x, YEC*, y is a 6-factor of x ifs the following conditions hold: 

(1) For any UEC,, jxla=IyIO. 

(2) There exists a prejix x~,~ of qC(x) for each (b,c)E@ for which the following 

conditions hold: 

(2.1) x,,b nb,h) is a prefix of 7cb,c(x)i 

(2.2) For any (b,c),(b,d)Ee, IXb,clb=IXb,dlb. 

Proposition 2.2. For any x, YEC *, y is a Q-suJix of some pre$x u of x $f the following 

conditions hold: 
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(1) For any =L /4,>lyl,; 
(2) For each (b, C)E& z,_(y) is a sz@x qfq,,(u). 

We shall first develop the results which we need for solving Problem A. 

Proposition 2.3. Let u, y, t EC *, and assume that Y is &factor of ut. Then there exist 

x, b, ‘;, ~EC* such that (1) C$ is a tk@ix ofu, (2) cd = y, (3) $ is a O-prejix oft, and (4) 

u/j’Ty and jrs. 

Definition. Let u, ycC *. 

(1) An extensible pair of (u, Y) is a pair (a, /J) such that (i) a, ~EC*, (ii) CC/II is a Q-suffix 

of u, and (iii) for some ‘;EC*, r;, = y and /r’ I- ;‘. 

(2) An extensible, 2-maximal pair of (u, y) is an extensible pair (a, /I) of (u, y) with I/? 

maximum, that is, ~~~=rnax{ljIi ~P’EC* and (r’,/!~‘) is an extensible pair of (u,y) for 

some LY’EZ*‘. i 
(3) An extensible, (1,2)-maximal pair of (u, y) is an extensible, 2-maximal pair (x, fi) 

of(u,y) with Irl maximum. that is, Iri=max{lz’I Ic(‘EZ* and (r’,P’) is an extensible, 

2-maximal pair of (u,y) for some fl’EZ*). 

Notation. For any u,y~Z*, (u,y) denotes any extensible, (1-2)-maximal pair of 

(u, y): see Theorem 2.5. 

Proposition 2.4. Let u, ~EC* und (a, /?) be an extensible pair of (u, y). Then for any 

a~.Z(b) and beZ with (a,b)E& x,,~(c()=~c,,~(~). 

Theorem 2.5. Let u, YGC*. 

(1) Let (a,, /II) and (x2, p2) be two extensible pairs of (u, y). Then there exists an 

extensible pair (2, /I) of (u, y ) such that (i) PI and /I2 are Q-suJfixes of /I, and (ii) aI and c(~ 

are both H-pwjixes and H-sujfkes of x. 

(2) (u, y ) is unique up to the congruence =. 

Notation. For any u,u,w,tEC*, (u,v)-(w,t) means u-w and czt. 

Theorem 2.6. Let u,y~Z*, aEC, (u,Y)-(~~,B~) and (ua,y)=(@z,b’~). Then a2b2 is 

a 8-sujjix of cilPla. 

We need the following proposition and corollary for efficiency of our algorithm 

solving Problem A. 

Notation. For any a, /I c Z* and B = E, ~(a, B) denotes <Q(X), G(P)). 

Proposition 2.7. Let B, C c C be such that B u C = Z and B r C. Then for any u, yeC *, 

~A(u,Y))-<~s(u), Xns(Y)). 
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Corollary 2.8. Let u, YEC* and aE.?I. Assume that there exist B,C c Z such that 

BuC=C, BTC and aEC. Then ne((ua,y))=7rB((u,y)). 

Now we shall develop the results for solving Problem B. 

Definition. Let U, YEC*. 

(1) An extensible word of (u, y) is aEZ* such that a is a o-suffix of u and a o-prefix 

of y. 

(2) A maximal extensible word of (u, y) is an extensible word M of (u, y) with I(a) 
maximum, that is, I(z) = max ( I( a’) ) a’ is an extensible word of (u, y)}. 

Notation. [u, y] denotes any maximal extensible word of (u, y): see the following 

theorem. 

Theorem 2.9. Let u,y~Z*. 

(1) Let aI, a2~.X* be two extensible words of (u, y). Then there exists an extensible 

word aeG* of (u, y) such that sll and a2 are both 8-prejixes and O-suffixes of 2. 
(2) [u, y] is unique up to the congruence =. 

Theorem 2.10. Let u,y~C* and aeC. Then [ua,y]-[[u,y]a,y]. 

The following proposition and corollary are necessary for efficiency of our algo- 

rithm solving Problem B. 

Proposition 2.11. Let B, C c C be such that B u C = C and B r C. Then for any u, YEC *, 

nefCu,Yl)-C~g(~),~B(Y)I. 

Corollary 2.12. Let u, YEC* and aEC. Assume that there exist B, C c C such that 

BuC=Z, BTC and aEC. Then nr,([ua,y])=n,([u,y]). 

3. Algorithms solving Problems A and B 

We shall first present algorithms solving Problem B. The following is a rather 

implicit algorithm solving Problem B, whose correctness is clear from Theorems 2.9 

and 2.10. 

Algorithm B.l 

Input: A text string x=al . . . a,, n 2 1, a,GC, 1 <i < n, and a pattern string YE-Z+ 

Output: “ACCEPT” if y is a B-suffix of some prefix of x; 

“REJECT” otherwise 

begin 

itl; tth; scfalse; 

while s = false and 1 < i < n do 



Striny-matchiny prohlrms over fire partially commutatiae monoids 81 

begin 

t+Ctai>.Yl; 

if Irl=lyl, then 

begin 

write “ACCEPT”; 

Sctrue 

end 

else iti+ 1 

end 

if S=false, then write “REJECT” 

end 

Notation. Let UEC*. When u #h, [u] denotes the longest word which is both a proper 

prefix and a proper suffix of u. We put [h] = h. 

Definition. Let (h, C)E& 

(l) Pb,c is the function from Pre(zn,,,(y)) to Pre(z&y)) such that for any 

ucPre(nb,c(y)), Pb.c(u)=[ul. 

(2) pj,!i.=pb,, and for k> 1, pj,“j=pb.c.pj,~cml’. 

(3) $,,( is the failure function from Prc(q,,(y)). { b,c) to Pre(q,c(y)) such that for 

any wgPrc(q,c(y)) and dg(h,cj, 

(3.1) $b.c(~vd) =pj,:)( w)d if m is the least positive integer such that 

PX~‘(w)d~Pre(7Cb,,(J’)); 

(3.2) $b,r( wd)=X if such an nz does not exist. 

For the proof of the following proposition, see [l]. 

Proposition. For uny (b,C)EH;~vEPre(nb.c(y)) and dg{b,c}, $b,c(wd) is the longest 
word in Pre(71b,,(y))T\(Suf(wd)-{ wd}). 

Definition. G( C, 8) is the finite undirected graph whose vertices are letters of Z and 

whose edges are those {a, bJ such that (a, b)~& Let {C,, . . . , C,) be the set of 

connected components of G( C, g), and for each 1~ i < e, let 4 be the set of vertices 

of ci. 

Notation. For each 1 < i < e, ni denotes the function zV,. 

Now we have the following more precise implementation of Algorithm B.l. 

Algorithm B.2. 

Input: A text string x=al . ..a., n> 1, ails, 1 <ibn, and a pattern string YEC’ 

Output: “ACCEPT” if y is a Q-suffix of some prefix of X; 

“REJECT” otherwise 
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begin 

Obtain 7rr,(y) for each agC, and ~~,~(y) for each (b,c)~@; 

Construct pb,c for each (b, c) E &; 

t,ch for all a&,; tb,c +-h for all (b,c)E@; 

scfalse; it 1; 

while s = false and 16 i 6 n do 

(* where aiE Vj, 1 dj<e, and B= Vj *) 

begin 

if UiECc, then t,,tthe shortest word of I,,ai or za,(y) 

else 

begin 

if for all bEQ(ai), ta,,baiEPre(71,,,b(y)), then 

t a,,btta,,bai for all b~8(ai) 
else 

begin 

t a,,btlC/,~,b(ta,,bai) for all bE&(ai) with 

t,,,bai4Pre(71,,,b(Y)); 
&btmin{Itb,clbI(b,c)EVj~ Vjn&} for all b~l/j; 

while for some (b,c)E~jX Vjn@, Itb,clb)~b, do 

begin 

if b=Ui or c=ai, then tb,c+$b.c(tb,cUi); 

else ~b.c+~b,c(4A; 

~b+min(hI4A) 
end 

end 

end 

if Ital=lz,(y)I for all UEC, and 

Itb,cl=lnnb,c(y)I for all (b,c)E& then 

begin 

write “ACCEPT”; 

sctrue 

end 

else i+-i+ 1 

end 

if s=false, then write “REJECT” 

end 

Theorem 3.1. The running time of Algorithm B.2 is O(lxyl /Cl 3). 

Next we shall present algorithms solving Problem A. We first present the following 

implicit algorithm solving Problem A. 
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PROCEDURE NEWSTATE 

Input: a~vj, 16jde; A,BcC; &b>O for each bcC; p(b,c),q(b,c)eC* for each 

(b,c)d 

begin 

if a~(AuB)n0(C(y)-(AuB)), then 

begin 

AtAu{a}; BtB-{a}; 

for each bEf?(a), do 

if p(a,b) =Pre(%, b(y)), then Aa, b)+p(a, b)a 

else P(G b)+$,.,(P(‘? b)a) 

end 

else 

if UEC,, then 

begin 

E,+E,+ 1; 

if s,=lyl,, then AtAu{u} 

end 

else 

for all bd(u), do 

begin 

AtA-{b); BtB-{b}; 

if p(a,b)a~Pre(~~,b(y)), hen p(a,b)+p(a,b)a 

else P(&b)~$,,b(P(& bb); 

4(a>b)+p(a,b); Ebtid&b)ib 

end; 

while for some (b,c)EVjX Vjng, lq(b,c)lb>Eb, do 

begin 

AtA-{b}; BtB- jbj; 

if b=u or c=u, then p(b,c)t$,,,(p(b,c)u) 

else P(b, c)@Pb,h(b, c)); 

db, c)+p(b> c); 
Ebcmin{%id b,c)lb} 

end; 

for each be I$, do 

if &,,=Iylb, then &Bu{ b} 
end 

Now we can present a more precise implementation of Algorithm A.l. 

Algorithm A.2 

Input: A text string x=u,...u,, n> 1, UiEZ, 1 <i<n, and a pattern string ygC’ 

Output: “ACCEPT” if y is a o-factor of x; 

“REJECT” otherwise 
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begin 

Obtain q(y) for each UGC, and q,(y) for each (b,c)~& 

Construct P,,~ for each (h, c)E~?; 

q,+O for all b~1; At@; Lit@; p(b,c)ch and 

q(b,c)+h for each (b,c)~& stfalse; itl; 

while s = false and 1 < i < n do 

(*where aEVj, l<i<e, and D=C-Vj*) 

begin 

UtUi; 

NEWSTATE; 

if c ~~=(yl, then 
hET 

begin 

write “ACCEPT” 

st true 

end 

else i+-i+ 1 

end; 

if s=false, then write “REJECT” 

end 

Theorem 3.2. The running time oj” Algorithm A.2 is 0( Ixy( ICI 3). 

In Algorithms B.2 and A.2, we need only bounded amount of memory during 

processing the text string x once from left to right. Thus, the following theorem holds 

by estimating an upper bound amount of necessary memory. 

Herefory~~*,L,(y,~,8)={xE~*IyisaB-factorofx}andLB(y,~,8)={xEC*Iy 

is a &suffix of some prefix of x}. 

Theorem 3.3. (1) L,(y, C, fl) can be recognized by a jinite deterministic automaton 

which has at most IyI x lC12 x 21Zlt3 states. 

(2) LB(y, Z, 0) can be recognized by afinite deterministic automaton which has at most 

lyl x ICI2 state. 

It is left open to decide the numbers of states of the minimal automata which 

recognize LA(y, Z, Q) and LB(y,C, (3) or to obtain better upper bounds of these 

numbers. 

Remark. Our algorithms solving Problems A and B in this paper may be regarded as 

FPCM versions of the Knuth-Morris-Pratt string-matching algorithm [9] over the 

free monoids. 
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