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Abstract
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The two string-matching problems over free partially commutative monoids are studied and
analyzed in detail in order to present efficient linear-time algorithms for solving these two problems
over & constant-size alphabet.

1. Introduction

Let X be a finite alphabet, and X* the free monoid generated by X. A denotes the
empty word. One of the typical string-matching problems over 2 * is the following:

Given a text string xeZ* and a pattern string yeZ*, decide whether or not y is
a factor of x.

Many efficient algorithms for this string-matching problem are known, cf.
[1,2,5,9,14].

Recently many contributions about free partially commutative monoids have also
appeared [3,4,6,7,10-13,15]. We recall its definition briefly. Let 6 be an irreflexive,
symmetric binary relation over 2. =, (or = simply) denotes the smallest equivalence
relation over X* such that for any x,yeZ*, x=y if x=uabv and y=ubav for some
(a,b)ef and u,veX *. Then = is a congruence relation. M (X, 8) denotes the quotient
of Z* by the congruence =. M(ZX,0) is the free partially commutative monoid
generated by 2 w.r.t. 8, and can be regarded as a model of concurrency control system,
or a model of any system with finitely many partially commutative operations. For
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any x,yeZ2*, if x=uyv for some u,veXZ*, then we call y a f-factor of x; moreover, if
u=MX, then y is a 6-prefix of x, and if v=2, then y is a #-suffix of x.

We study the following two problems over M(Z,8). Let x, yeZ* be a given text
string and a pattern string, respectively.

Problem A: Decide whether or not y is a 6-factor of x.

Problem B: Decide whether or not x has a prefix of which y is a 0-suffix.

Problem B may be regarded as a hybrid problem concerning Z* and M (2, 0). We
analyze these two problems in detail, and obtain two efficient algorithms solving these
two problems. The two algorithms have certain similar characters and consist of two
parts. The first part consists of constructing functions p, ; as in [1] to each m, ,(y),
where a,beX, a+#b, (a,b)}¢0, and =, ,(y) is the string in X * obtained from y by deleting
all letters distinct from @ and b.

The running time of this part is O(|y|-|2?|). The second part of the algorithm for
Problem A (Problem B) consists of scanning x once from left to right with proper
transitions in the above functions, and deciding whether or not y is a 8-factor of x (y is
g-suffix of some prefix of x). The running time of this part is O(|x|-|Z3/).

This article is an extended abstract of [8]: only Theorem 7 is a new observation.

2. Main results

Let 6 denote the set of pairs (a, b) such that a#b, a,be X and (a, b)¢6. X, is the set of
aeX such that (a,b)e® for any distinct beZ. I is a binary relation over X* such that
for any u,veX* u v iff for any (a,h)eZ(u)x XZ(v), (a,b)eb. 6% is a binary relation
over X * such that for any u, ve 2*, u8* v iff for any (a,b)eZ(u) x X (v), either a=5 or
(a,b)eb.

The congruence = can be characterized by simultanecous equations over X*: the
following theorem is fundamental.

Theorem (Cori and Perrin [4]). For any u,ve 2*, u=v iff the following conditions hold:
(1) For any aeZ, |ul,=|v|,.
(2) For any (a,b)€d, m, p(u)=14,(0).

The following two propositions hold.

Proposition 2.1. For any x,yeX*, y is a 0-factor of x iff the following conditions hold:
(1) For any aeX, |x|s=1yla.
(2) There exists a prefix x, . of ny (x) for each (b,c)ef for which the following
conditions hold:
(2.1) XapTo.e(y) is a prefix of m, (x);
(2.2) For any (b,c),(b,d)€0, |xy c|p=|%p alp-

Proposition 2.2. For any x,yeX*, y is a B-suffix of some prefix u of x iff the following
conditions hold:
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(1) For any aeX, jul,>|yl;
(2) For each (b,c)eb, n, (y)is a suﬂi'x of my .(u).

We shall first develop the results which we need for solving Problem A.

Proposition 2.3. Let u,y, teX*, and assume that y is O-factor of ut. Then there exist
o, B, v, 0eX* such that (1) aff is a 0-suffix of u, 2) ad =y, (3) ¥9 is a B-prefix of t, and (4)
aff I’y and BT 9.

Definition. Let u, ye2*.

(1) An extensible pair of (u, y) is a pair (, §) such that (i) a, fe XZ*, (ii) af is a O-suffix
of u, and (ii1) for some yeX* ay=y and I 7.

(2) An extensible, 2-maximal pair of (4, y) is an extensible pair (e, ) of (u, y) with | §]
maximum, that is, |f|=max{|f’||f'€eZ* and («’, f’) is an extensible pair of (u, y) for
some a'eX*}.

(3) An extensible, (1, 2)-maximal pair of (4, y) is an extensible, 2-maximal pair (2, )
of (u, y) with |o| maximum, that is, |x|=max {|«'||2’eZ* and (2, f’) is an extensible,
2-maximal pair of (u, y) for some f'eZ*}.

Notation. For any u,yeX*, {u,y)> denotes any extensible, (1-2)-maximal pair of
(u,y): see Theorem 2.5.

Proposition 2.4. Let u,yeX* and (x,f3) be an extensible pair of (u,y). Then for any
aeX(B) and beX with (a,b)ef, n, p(a)=1,(V).

Theorem 2.5. Let u,yeXZ*.

(1) Let (a1, By) and (x5, B,) be two extensible pairs of (u,y). Then there exists an
extensible pair (x, 8) of (u, y) such that (1) f, and B, are 0-suffixes of B, and (ii) &, and o,
are both 0-prefixes and 0-suffixes of a.

(2) {u,y> is unique up to the congruence =.

Notation. For any u,v,w,teX*, (u,v)=(w,t) means u=w and v=t.

Theorem 2.6. Let u,yeX™, ae2, {u,y>=(ay, ;) and {ua,y)=(az,B,). Then a; B, is
a B-suffix of a0, p,a.

We need the following proposition and corollary for efficiency of our algorithm
solving Problem A.

Notation. For any o, f < X* and B< Z, ngla, B) denotes {mg(a), np(f)>.

Propeosition 2.7. Let B,C = X be such that BoC=2X and BT C. Then for any u, ye Z'*,
ng({u,y )= mplu), ma(y))-
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Corollary 2.8. Let u,yeZ* and aeX. Assume that there exist B,C <X such that
BuC=X BI'C and acC. Then ng({ua,y>}=np({u, y ).

Now we shall develop the results for solving Problem B.

Definition. Let u, yeX'*.

(1) An extensible word of (u, y) is a2 * such that « is a 8-suffix of u and a 8-prefix
of y.

(2) A maximal extensible word of (u, y) is an extensible word o of (u, y) with I(a)
maximum, that is, /(x)=max{/(a')|a’ is an extensible word of (u, y)}.

Notation. [u,y] denotes any maximal extensible word of (u,y): see the following
theorem.

Theorem 2.9. Let u, yeX*.

(1) Let oy, 2,6 X* be two extensible words of (u,y). Then there exists an extensible
word aeX* of (u,y) such that o, and o, are both 0-prefixes and G-suffixes of a.

(2) [u,y] is unique up to the congruence =.

Theorem 2.10. Let u,yeX* and aeX. Then [ua,y]=[[u,y]a.y]

The following proposition and corollary are necessary for efficiency of our algo-
rithm solving Problem B.

Proposition 2.11. Let B,C < £ be such that BoC=Z and BI C. Then for any u, yeZ'*,
ng{[w, y1)=[np(u), ng(y} ]

Corollary 2.12. Let u,ycX* and acX. Assume that there exist B,C < X such that
BuC=Z% BI'C and aeC. Then ng([ua,yl)=ng({u, y])

3. Algorithms solving Problems A and B

We shall first present algorithms solving Problem B. The following is a rather
implicit algorithm solving Problem B, whose correctness is clear from Theorems 2.9
and 2.10.

Algorithm B.1
Input: A text string x=a,...a,, n=1, a;€X, 1<i<n, and a pattern string yeX*
Output: “ACCEPT” if y is a #-suffix of some prefix of x;
“REJECT” otherwise
begin
i—1; t«A; sfalse;
while s=false and 1<i<n do
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begin
te{ta,y];
if [1]=]y|, then
begin
write “ACCEPT”,;
S«true
end
else i—i+1
end
if S="false, then write “REJECT”
end

Notation. Let ueX* When u A, [ u] denotes the longest word which is both a proper
prefix and a proper suffix of u. We put [A]=A.

Definition. Let (b, ¢)e6.

(1) pp.. is the function from Pre(m, .(y)) to Pre(m; (y)) such that for any
uePre(m, (), pp.(u)=[u].

(2) piti=py.c and for k=1, pffl=p, . i<

(3) Y. is the failure function from Pre(n, (y))- {b,c} to Pre(m,, (y)) such that for
any wePre(mn, (y)) and de{b,c},

3.1 Y (wd)=p™(w)d if m is the least positive integer such that
pb7(wydePre(m, (¥));

(3.2) Y, (wd)=A1 if such an m does not exist.

For the proof of the following proposition, see [1].

Proposition. For any (b,c)e8,wePre(n, (y)) and de{b,c}, Y, (wd) is the longest
word in Pre(m, (y)) N (Suf(wd)—{wd}).

Definition. G(Z,6) is the finite undirected graph whose vertices are letters of ¥ and
whose edges are those {a,b} such that (a,b)ef. Let {C,,...,C.} be the set of

connected components of G(Z, 8), and for each 1<i<e, let V; be the set of vertices
of C;.

Notation. For each 1 <i<e, n; denotes the function 7y,

Now we have the following more precise implementation of Algorithm B.1.
Algorithm B.2.

Input: A text string x=a,...a,, n=1, a;€X, 1 <i<n, and a pattern string yeZ™*

Output: “ACCEPT” if y is a #-suffix of some prefix of x;
“REJECT” otherwise
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begin
Obtain n,(y) for each acX, and m, (v) for each (b, c)eb;
Construct p, . for each (b,c)ef;
1< for all aeZ,; t, .« for all (b,c)eb;
s<false; i«1;
while s=false and 1 <i<n do
(* where a;eV;, 1<j<e, and B=V; %)
begin
if a;e2, then 7,,<the shortest word of 1,,4; or na;(y)
else
begin
if for all beb(a;), t,, ya;ePre(m,, ,(v)), then
tapla.pa; for all bed(a;)
else
begin
o b Wai (1, pa;) for all bef(a;) with
ta,p @i Pre(mg, 4 (¥)); B
gpe—min{|t, |y |(b,c)eV;x V;n 0} for all beV;
while for some (b,c)eV;x V;n0, [ty .1y > &, do
begin
if b=a; or c=aq;, then t, .y, (8 .a;);
else 1, .y c(Lp.c);
epe-min { &y, [, ||
end
end
end
if |t,|=|7.(y)| for all aeX, and
|ty | =17y (¥)| for all (b,c)ed, then
begin
write “ACCEPT”;
setrue
end
else i—i+1
end
if s="false, then write “REJECT”
end

Theorem 3.1. The running time of Algorithm B.2 is O(|xy|-|Z|3).

Next we shall present algorithms solving Problem A. We first present the following
implicit algorithm solving Problem A.
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Algorithm A.1
Input: A text string x=a,...a,, n=1, a,eX, 1 <i<n, and a pattern string yeX”
Output: “ACCEPT” if y is a -factor of x;
“REJECT” otherwise

begin
ie1; ai: fei; s—Talse;
while s=false and 1 <i<n do
begin
(2, B)=Lafa; y>;
if |«|=|y], then
begin
write “ACCEPT”
setrue
end
else i—i+1
end
if s=f{alse, then write “REJECT”
end

Definition. Let u, yeZ* and {u, y > =(2, ). Define the following:
(1) A(u,y)=2(p).
(2) B(u,y)={acX(B)/lala=|yla}-
(3) For each (a,b)eb, g(u, y,a,by=n, ().
(4) For each acZX, e(u, y,a)=|al,.

Lemma. (1) Y, 5 e(u, y,a)=|al.
(2) For each (a,b)EA(uJ’sd’b)X(A(”» y)UB(u’ y))mH—, q(u’y’ a’b)zna‘b(y).
(3) For each ac A(u,y)o B(u, y), e(u, y,a)=]yl,.

By this lemma, it suffices to compute ¥ ,.y é(u, y, a) for each prefix u of x. To do this,
we also need p(u, y,a,b)eZ for each (aq, b)ef: see PROCEDURE NEWSTATE and Algorithm
A.2 below. Here for each (a, b)ed, p(u, y, a, b) is a sufficiently long suffix of 7, ,(xf) and
a prefix of n, ;(y) so that for any teZ*, g(ut,y,a,b) is a suffix of p(u, y,a,b)t when
{a,b}— A(ut,y)#0. Thus, p(k,y,a,b)=X\, and for each (a,b)eflnA(u,y) x A(u,y),
p(u,y,a,b)=q(u,y,a,b). Here we also note that (a,b) should be rather regarded as
aset {a, b}, and p(u,y,a,b) and p(u, y,b,a) have the same meaning, etc.

We need the following subroutine which computes (1) A(ua, y), B(ua, y} = Z, (2) for
each (b,¢)ed, g(ua, v, b, ¢), p(ua, y,b,c)eX*, and (3) for each beZ, e(ua, y,b), when (4)
a2, (5) A(u,y), B(u,y) < X, (6) for each (b, c)eb, q(u, y, b, c), p(u, y, b, c)e 2 * and (7) for
each beZ, s(u, y, b) are all given as inputs. Here we recall the definition of G (2, 6), and
let aeV;, 1 <j<e.
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PROCEDURE NEWSTATE
Input: aeV;, 1<j<e; A,BcX; g,20 for each beZ; p(b,c),q(b,c)eX* for each
(b,c)eb
begin
if ac(AuB)NO(Z(y)— (AU B)), then
begin
A—Avuia}; B«B—{a};
for each bef(a), do
if p(a,b) aePre(n, ,(y)), then p(a,b)«p(a,b)a
else p(a,b)—y, »(p(a, b)a)
end
else
if aeX,, then
begin
g8+ 1;
if &,=|y|, then A=A U {a}
end
else
for all bef(a), do
begin
A—A—{b}; B«B—{b};
if p(a,b)acPre(n, ,(y)), then p(a,b)—p(a,b)a
else p(a,b)—y, »(p(a,b)a);
g(a,b)p(a,b); e,«<|q(a,b)|,
end;
while for some (b,c)eV;x ¥;n0, |q(b,c)|, > &, do
begin
A—A—{b}; BB~ {b};
if b=a or c=a, then p(b,c)—y, (p(b,c)a)
else p(b, c)py (p(b,c));
g(b,c)—p(b,c);
gye—min{ ey, |g( b,c)s)
end;
for each bel, do
if ey=|y(y, then B«Bu {b}
end

Now we can present a more precise implementation of Algorithm A.1.

Algorithm A.2
Input: A text string x=a,...a,, n> 1, q;€X, 1 <i<n, and a pattern string yeX *
Output: “ACCEPT” if y is a f-factor of x;
“REJECT” otherwise
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begin
Obtain 7,(y) for each aeZ, and =, .(y) for each (b,c)e0;
Construct p, . for each (b, c)e0;
g,«<0 for all beX; A«0; B<®; p(b,c)«\ and
q(b,c) for each (b, c)el; sfalse; i—1;
while s= false and 1 <i<n do
(xwhere aeV;, 1<i<e,and D=2~ V%)
begin
aedi;
NEWSTATE;

if > &,=|yl, then
bel
begin
write “ACCEPT”
S—true
end
else i—i+1
end;
if s="false, then write “REJECT”
end

Theorem 3.2. The running time of Algorithm A2 is O(|xy|-|Z|3).

In Algorithms B.2 and A.2, we need only bounded amount of memory during
processing the text string x once from left to right. Thus, the following theorem holds
by estimating an upper bound amount of necessary memory.

Here for yeZ*, L (v, Z,0)={xeX*|yisa O-factor of x} and Lp(y, Z,0)={xeX*|y
is a B-suffix of some prefix of x}.

Theorem 3.3. (1) L, (y,2,0) can be recognized by a finite deterministic automaton
which has at most |y| x| Z|? x 21¥1+3 states.

(2) Lg(y,Z,8)can berecognized by a finite deterministic automaton which has at most
[vlx|Z|? state.

It is left open to decide the numbers of states of the minimal automata which
recognize L,(y,2,0) and Lg(y,2,0) or to obtain better upper bounds of these
numbers.

Remark. Our algorithms solving Problems A and B in this paper may be regarded as
FPCM versions of the Knuth—Morris—Pratt string-matching algorithm [9] over the
free monoids.
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