
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2012

Design of a Pretreatment and Enzymatic
Saccharification Scheme of Understory from
Managed Pine Forest for a Biochemical-Refinery
Platform: The Example of the Sweetgum Tree
Angele Djioleu
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Biological Engineering Commons, and the Oil, Gas, and Energy Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Djioleu, Angele, "Design of a Pretreatment and Enzymatic Saccharification Scheme of Understory from Managed Pine Forest for a
Biochemical-Refinery Platform: The Example of the Sweetgum Tree" (2012). Theses and Dissertations. 630.
http://scholarworks.uark.edu/etd/630

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/230?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/630?utm_source=scholarworks.uark.edu%2Fetd%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design of a Pretreatment and Enzymatic Saccharification Scheme of Understory from Managed 

Pine Forest for a Biochemical-Refinery Platform: The Example of the Sweetgum Tree 

 

 

 

 

 

 

 

 

 

  



 

 

 

Design of a Pretreatment and Enzymatic Saccharification Scheme of Understory from Managed 

Pine Forest for a Biochemical-Refinery Platform: The Example of the Sweetgum Tree 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Biological Engineering 

 

 

 

 

 

 

 

 

By 

 

 

 

 

 

 

 

 

 

Angèle Mezindjou Djioleu 

University of Arkansas 

Bachelor of Science in Biological Engineering, 2010 

 

 

 

 

 

 

December 2012 

University of Arkansas 

 
 

 

 



 

 

 

ABSTRACT 

  

The possibility of using sweetgum from southern pine dominated forests as a biobased 

refinery feedstock was investigated. First, a baseline hydrolysis scheme for sweetgum wood and 

bark was designed. Sweetgum wood and bark were pretreated with 0.98% (v/v) sulfuric acid at 

140°C for 30, 40, 50, 60 or 70 min and at 160°C for 30, 40, 50 or 60 min.  The water insoluble 

solid (WIS) fraction was hydrolyzed with a cellulase enzyme cocktail.  Results showed that 

maximum xylose and glucose yields from the wood were 82 and 86%, respectively. Similarly, 

the respective maximum yields of xylose and glucose from the bark were 93 and 24%. 

Concentrations of detected inhibitory compounds such as furfural, hydroxymethylfurfural 

(HMF), formic acid and acetic acid ranged from 0.1 to 32.3 g/ 100 g of raw dry biomass. The 

second part of this project investigated the effect of adding oak wood, sweetgum bark, or oak 

bark, to sweetgum wood on xylose and glucose yields obtained from dilute acid pretreatment and 

enzymatic hydrolysis. Carbohydrate recoveries for each species and mixed biomass samples 

were obtained by using previously established hydrolysis protocols at 160°C for 20 min. Mixed 

biomass samples were prepared to reflect real-life forestry harvesting scenario and consisted of 

70% sweetgum wood plus 1) 30% sweetgum bark; 2) 30% oak bark; 3) 30% oak wood. 100% 

sweetgum was the control. Results showed that oak wood yielded 35% of its theoretical xylose 

content and sweetgum wood, 65%. Both woody species resulted in higher glucose and lower 

formic acid recoveries than their respective bark material. Analysis of data with the Dunnett 

Control’s test in JMP 10.0 showed contamination of sweetgum wood did not have a significant 

effect (P > 0.05) on hydrolysis except with sweetgum bark which exhibited a significantly higher 

xylose concentration than the control. In conclusion, sweetgum wood was a good source of 

carbohydrate for a biobased refinery, but the removal of bark might be necessary to achieve 



 

 

 

desirable yields. It is important to note that all the above results were obtained with intensively 

washed pretreated biomass, which will not be realistic for a real-life sustainable biorefinery. 
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1. INTRODUCTION 

Southern pine forests produce nearly 60% of the softwood lumber in the U. S.; in 

Arkansas, nearly 75% of all produced timber is from pine-dominated forests (Arkansas Forestry 

Commission, 2008).  However, hardwood competition in the pine forest understory is a major 

impediment to pine forest growth.  Therefore, southern pine forests are intensively managed 

(Wear and Greis, 2002).  Annually, more than $150 million are spent reducing or eliminating 

competition in southern pine forests, primarily through the use of herbicides (Siry, 2002).  

The hardwood understory is composed of a mixture of sweetgum (Liquidambar 

styraciflua L.), oaks (Quercus spp.), elms (Ulnus spp.), maples (Acer spp.), dogwoods (Cornus 

spp.), and other miscellaneous hardwood species, which compete with pine for site resources. In 

Arkansas, the quantity of logging residue ranges from 1.71 to 2.03 million dry tons annually, and 

total forest based biomass resources are approximately 50 million dry tons annually (Gan and 

Smith, 2006; Jackson, 2007).  Instead of being a nuisance, this hardwood understory growth 

could become an important source of biomass for lignocellulosic-based biorefineries, especially 

because sweetgum is a fast-growing hardwood.  Capturing biomass from fuel-reduction thinning 

and understory harvests could raise forest based biomass production from 2.3 to 5 million dry 

tons annually in the state of Arkansas alone (Pelkki, 2007). 

Although not yet deployed, lignocellulosic-based refineries present potential for the 

production of fuels and chemicals (Kamm and Kamm, 2004). In standard biorefineries, biomass 

is deconstructed into simple sugars that can be used to produce either biofuels or other 

biochemical products (Wyman, 1994). There are several steps involved in biomass 

deconstruction, of which pretreatment is the most important. Of the evaluated pretreatment 

techniques, dilute acid presents advantages such as low cost and ease of use (Sannigrahi et al., 

2011).  
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The goal of this project was to demonstrate that sweetgum harvested from pine forest 

understory could be used as feedstock in a lignocellulosic-based refinery using dilute acid 

pretreatment.  
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2. LITERATURE REVIEW 

2.1. Lignocellulosic Biomass 

Lignocellulosic material is the most abundant form of organic carbon; approximately 

170×10
9
 tons of biomass are produced yearly by photosynthesis  (Kamm and Kamm, 2004). 

Examples of such material include: forestry products, including hardwoods or softwoods; 

forestry waste, such as sawdust and forest debris; herbaceous energy crops, like switchgrass, 

alfalfa or miscanthus; agricultural residues, including corn stover, wheat straw or sugar cane 

bagasse; and municipal solid wastes.  

As shown in Figure 1, there are three main components in lignocellulosic material 

structure: cellulose, hemicellulose and lignin. Cellulose is the major biomass component 

consisting, depending on the species, of about 35–50% of the structure. Cellulose is composed of 

approximately 10,000 D-glucopyranosyl units linked together with a 1-4-β bond in a highly 

crystalline structure. About 20-35% of biomass structure is made up of hemicellulose, which 

consists of xylose backbone polymers with arabinose, galactose, glucose, or mannose branches. 

In some species, such as hardwood, hemicellulose has acetyl group branching off the xylan 

backbone.  Hemicellulose is linked to cellulose with hydrogen bonds, and this results in biomass 

structure strengthening. The third biomass component is lignin and accounts for 15-25% of most 

types of lignocellulosic material. Unlike cellulose and hemicellulose, lignin is a polyphenolic 

polymer and does not hydrolyze into reduced sugars. Lignin envelops both hemicellulose and 

cellulose and protects the biomass against pests and diseases (Ragauskas et al., 2006; Wyman, 

1994). 
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Figure 1. Structure of lignocellulosic biomass 

Drawing from Zoe Smith 
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2.2. Biochemical-Based Refinery 

The U.S. Department of Energy defined a biorefinery as a facility that converts feedstock 

into a spectrum of valuable products, based on the petrochemical refinery. Kamm and Kamm 

(2004) identified three biorefinery systems that are currently being investigated: 1) lignocellulose 

feedstock (LCF) biorefinery; 2) whole crop (WC) biorefinery; and 3) green biorefiney. LCF 

biorefinery converts lignocellulosic material into a variety of products. Among the three 

biorefinery systems, LCF has the greatest chances of being deployed because: 1) an abundance 

of lignocellulosic biomass; 2) the availability of energy crops and food crop residues; 3) cycling 

of carbon, reducing green house gas emissions; and 4) competition between petrochemical and 

future biobased products markets. WC biorefineries are based on the conversion of cereals such 

as rye, wheat, and maize. Although WC biorefineries strive to exploit all parts of the crop to be 

more profitable, they still remain major competitors to food industries.  Finally, green 

biorefineries are different from LCF and WC biorefineries in the sense that their principal 

products are not fuels, but compounds extracted from the phytosynthetically active parts of the 

feedstock. Examples of compounds extracted from green biorefineries include amino acid, 

proteins, hormones, dyes, enzymes, and organic acids (Kamm and Kamm, 2004). An overview 

of a biorefinery is shown in Figure 2. 
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Figure 2. Overview of a biorefinery 



 

 

7 

 

A biochemical-based biorefinery is a type of LCF biorefinery that combines chemical and 

biological approaches in converting raw biomass. As shown in Figure 3, there are four unit 

operations in a biochemical-based biorefinery: a) pretreatment; b) enzymatic hydrolysis; c) 

fermentation; and d) product separation. The two first steps are the focus of this project because 

they are the limiting factors for large-scale establishment of biorefineries due to their inherent 

costs (Wyman, 1994). 
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Figure 3. Schematic representation of a biochemical-based biorefinery 
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In biochemical-based biorefineries, pretreatment is the most important processing step 

because it is aimed at disrupting biomass structures to facilitate enzymatic hydrolysis. Without 

pretreatment, expensive enzyme cocktails cannot saccharify plant cell walls. Characteristics of 

effective pretreatments are: 1) opening of cellulose crystalline structure to facilitate hydrolysis; 

2) prevention of sugar degradation, especially hemicellulose sugars; 3) limitation of the 

formation of lignin degradation compounds that can inhibit fermentation; and 4) environmental 

and cost friendly (Mosier et al., 2005).  

Biochemical-based biorefineries use chemical pretreatments as opposed to physical 

handling. Depending on the nature of chemicals used or pH conditions, chemical pretreatments 

can either be acidic, alkaline or water-based. Examples of such pretreatment are: uncatalyzed 

steam explosion, liquid hot water, dilute acid, ammonia fiber explosion (AFEX), and lime. These 

different types of pretreatment have a variety of effects on the biomass. For instance, all of them 

improve cellulose accessibility. However, dilute acid mainly removes the hemicellulose and 

disrupts the lignin’s structure, whereas AFEX has minor effects on hemicellulose but, removes 

and alters lignin (Mosier et al., 2005).  

There are advantages and disadvantages associated with each pretreatment technique. In 

general, water-based pretreatments have the advantage of not using expensive catalysts and the 

formation of fermentation-inhibitory compounds is limited. However, water-based processes 

produce xylose oligomers, which inhibit enzymatic hydrolysis of the pretreated biomass and 

require an extra hydrolysis step to break down the oligomers before fermentation. On the other 

hand, catalyzed pretreatment such as dilute acid, AFEX, and lime usually yield highly digestible 

biomass, but the cost associated with the catalyst used can make the process very expensive. 

Sulfuric acid is inexpensive, but its corrosiveness dictates that equipment used for dilute acid 
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pretreatment should be constructed from stainless steel, increasing capita costs. In addition, the 

cost to detoxify liquid hydrolysates, containing fermentation-inhibitory compounds produced 

during dilute acid pretreatment and the excessive amount of water used to wash the pretreated 

biomass prior to enzymatic hydrolysis, also increase its overall cost. Dilute acid pretreatments 

are further discussed below. The elevated price of ammonia and its recycling cost is the principal 

disadvantage of AFEX. Additionally, AFEX is not effective for forestry biomass such as 

hardwood and softwood. Finally, prolonged pretreatment periods are disadvantages associated 

with lime pretreatment. Low pressures and temperatures are used, but pretreatment takes several 

days instead of minutes or hours (Mosier et al., 2005).  

In biochemical-based biorefineries, enzymatic hydrolysis is conducted with an enzyme 

cocktail containing high cellulase activity.  Enzymatic hydrolysis can be carried out under two 

different scenarios: 1) performed separately from the fermentation step, named separate 

hydrolysis and fermentation (SHF); and, 2) enzymatic hydrolysis and fermentation conducted 

simultaneously, named simultaneous saccharification and fermentation (SSF). Of these two 

scenarios, SSF is preferred because enzymatic hydrolysis and fermentation are performed in the 

same vessel. Also, cellulose hydrolysis into glucose is maximized in SSF because fermentation 

of glucose, as it is produced, drives the cellulose hydrolysis reaction forward  (Mosier et al., 

2005; Wyman, 1994).  

Cellulase is a mixture of three enzyme activities (endoglucanase, exoglucanase, β-

glucosidase), which is mainly produced today by genetically modified strains of the fungus 

Trichoderma reesei. Endoglucanase cleaves cellulose inside the chain; exoglucanase breaks off 

two units of glucoses at the end of the chain into cellobiose; and β-glucosidase breaks cellobiose 

units into two glucose molecules that can be fermented into ethanol or other biobased products. 
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Cellulose conversion efficiency improved with β-glucosidase and xylanase supplementations. 

Xylanase hydrolyzes xylan into xylose. Xylanase-supplemented cellulase increased glucose 

yields by 50% for AFEX-pretreated biomass; approximately 57% for lime-pretreated biomass; 

and 14% for dilute acid pretreatment. Therefore, commercial preparations, such as Accelerase
®
 

1500 produced by Genencor, are cocktails that contain a cellulase and xylanase enzymes (Kumar 

and Wyman, 2009; Wyman, 1994). 

2.3. Dilute Acid Pretreatment 

Among the chemical pretreatment techniques that improve cellulose digestibility, dilute 

acid pretreatment has the most potential to be used in a large-scale setting (Sannigrahi et al., 

2011). Although any strong acid can be used, sulfuric acid (H2SO4) has been the most popular 

mainly because of its affordable price. It is usually conducted at low temperatures (< 140°C) for 

a long time or at high temperatures (> 160°C) for a short time. Dilute acid pretreatments have 

increased cellulose digestibility for a wide range of feedstocks, ranging from hardwoods to 

grasses and agricultural residues (Mosier et al., 2005). Reasons for this success are mainly 

attributed to hemicellulose removal from the cell wall and disruption of the crystalline structure 

of cellulose. While low temperatures are not efficient at disrupting the crystalline structure of 

cellulose, high temperatures promote xylose degradation into inhibitory products and premature 

hydrolysis of cellulose. 

In early studies on dilute acid pretreatment of lignocellulosic biomass, effectiveness of 

the pretreatment was mainly measured by cellulose digestibility of the ensuing biomass. 

Cellulose digestibility is defined as the amount of cellulose, in the pretreated biomass, converted 

to glucose during enzymatic hydrolysis. However, recent studies have shown that maximizing 

xylose recovery during dilute acid pretreatment has the potential to improve economical viability 



 

 

11 

 

of the process. Moreover, with the development of engineered microorganisms that can ferment 

5-carbon sugars (pentoses), xylose is no longer considered a waste product in the sugar-to-

ethanol conversion process. For example, genetically modified Escherichia coli could produce 

0.92 g/L/h of ethanol from a broth containing 95 g/L of xylose. Zymomonas mobilis is another 

useful engineered microorganism capable of producing 0.32 g/L/h from fermentation medium 

supplemented with 60 g/L xylose concentration (Chung et al., 2005; Dien et al., 2003; Saha et 

al., 2005). Consequently, efficiency of dilute acid pretreatment is now measured from combining 

xylose and glucose yields after hydrolysis rather than solely glucose yields (Lloyd and Wyman, 

2005).  

One of the main disadvantages of dilute acid pretreatment is the formation of sugars and 

lignin degradation compounds, such as furfural, 5-hydroxymethylfurfural (HMF), formic acid, 

and acetic acid, that could inhibit enzymatic hydrolysis or sugar fermentation. Furfural results 

from the degradation of xylose; HMF from glucose; and both can further degrade into formic 

acid. The acetyl group released from the hemicellulose during pretreatment forms acetic acid 

(Palmqvist Hahn-Hagerdal, 2000). Study on ethanol production from xylose showed that 

presence of these compounds in the prehydrolysate inhibits xylose fermentation. Fermentation of 

xylose contained in a prehydrolysate of poplar and corn stover yielded 67% and 80%, 

respectively (Fenske et al., 1998). Both yields were significantly lower than the control of 90%. 

Cantarella et al. (2004) also showed that formic acid concentrations of 11.5 g/L could 

significantly inhibit cellulose saccharification, yielding glucose concentration of 10 g/L instead 

of 30 g/L obtained in the absence of formic acid. Therefore, reporting concentration of these 

inhibitory compounds in pretreatment hydrolysate would provide another angle to measure the 

efficiency of the pretreatment.  
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2.4. Hydrolysis of Sweetgum Wood and Bark 

Sweetgum wood, as a potential feedstock for a biochemical-based biorefinery, was 

studied by Torget et al. (1990). Sweetgum wood was pretreated with dilute sulfuric acid (0.45-

0.55 (v/v) H2SO4) at 140 and 160°C for times ranging from 0 to 60 min, in a stainless steel 

stirred reactor. Results showed that, at higher temperatures, hemicellulose hydrolyzed faster. 

Nighty eight percent of hemicellulose was hydrolyzed in less than 20 min at 160°C; similar 

yields were obtained by hydrolyzing at 140°C for times from 30 to 60 min. Enzymatic hydrolysis 

of dilute acid pretreated biomass showed improvement of cellulose digestibility; best results 

were with pretreatments at 160°C. Nighty to one hundred percent cellulose digestibility was 

observed for biomass pretreated at 160°C for 5 to 10 min, while 80 to 90% digestibility was 

obtained with biomass pretreated at 140°C for more than 30 min. Temperature did not influence 

lignin solubilization; 15 to 18% of lignin was removed with both temperatures. 

In exploring the possibility of using whole trees in biorefineries, Torget et al. (1991) 

investigated the hydrolysis of sweetgum bark. Temperatures ranging from140 to 160 °C and acid 

concentrations of 0.50 to 0.65% v/v% were used to hydrolyze sweetgum bark. Hydrolysis of 

sweetgum bark was much more complex than that of sweetgum wood. All xylan and 

approximately 17% of Klason lignin were hydrolyzed with hot water prior to acid addition; up to 

50% of sweetgum bark mass was loss after pretreatment. Although, all the hemicellulose was 

removed during pretreatment, enzymatic attack of pretreated sweetgum bark was not successful 

at releasing glucose at both temperatures investigated. Maximum cellulose digestibility of 25 % 

was observed. Concentrations of acetic acid and furfural in liquid hydrolysates after pretreatment 

were reported. The concentrations of acetic acid and furfural at 140°C and 160°C were 1.9 and 
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0.2 g/L, and 2.2 and 0.6 g/L, respectively, indicating that higher temperatures favored sugar 

degradation.  

Martin et al. (2010) also investigated the hydrolysis of hemicellulose in sweetgum wood 

and bark. A 65°C water-extraction of shikimic acid prior to dilute H2SO4 (0.98% v/v) 

pretreatment at 130°C for 50 min increased xylose yield by 21 and 17% from sweetgum bark and 

wood, respectively. This work showed how extraction of value-added compounds could be 

integrated into a biorefinery prior to hydrolysis in order to increase the economical efficiency of 

the conversion of lignocellulosic biomass into fuels.  

Spindler et al. (1991) investigated the simultaneous saccharification and fermentation 

(SSF) of dilute sulfuric acid (0.45% v/v) pretreated sweetgum wood at 140°C for 60 min. SSF 

was conducted at 37°C for 3 and 8 days with either Saccharomyces cerevisiae or a mixture of S. 

cerevisiae and Brettanomyces clausenii, in a fermentation broth containing cellulase 

supplemented with an excess of β-glucosidase. Results showed that with S. cerevisiae, 86% of 

theoretical ethanol yield was obtained after 3 days. On the other hand, mixtures of S. cerevisiae 

and B. clausenii only yielded 59% after 3 days and 84% after 8 days of theoretical ethanol yields, 

respectively. In general, pretreated sweetgum wood was a good feedstock for ethanol production. 

2.5. Hydrolysis of Oak Wood and Bark  

Knappert et al. (1980) investigated the effects of temperature and acid concentration on 

glucose yields from dilute acid pretreatment and enzymatic hydrolysis of oak wood. Oak wood 

was pretreated for 0.22 min with sulfuric acid concentrations raging from 0.4 to 1.2% (w/w) and 

at temperatures from 160 to 220°C. In general, oak wood responded positively to the acid 

pretreatment. Enzymatic hydrolysis of non-pretreated oak biomass resulted in 21.3% cellulose 

digestibility; pretreated material, 189 °C with either 0.6 or 1% w/w sulfuric acid, and 
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enzymatically hydrolyzed for 48 h displayed 100% cellulose digestibility. The increase in 

cellulose digestibility was attributed to nearly complete removal of hemicellulose, a reduction of 

cellulose degree of polymerization from 606 to 398, and disruption of cellulose crystalline 

structures. No scientific literature covering oak bark hydrolysis was located. 

2.6. Hydrolysis of Mixed Biomass 

Hydrolysis of mixed biomass per se has not received a lot of attention as compared to 

pure biomass. Jensen et al. (2008) investigated mixture effects on the kinetics of hemicellulose 

hydrolysis of mixed biomass during dilute acid pretreatment. Kinetic parameters for 

hemicellulose hydrolysis of aspen, balsam, basswood, red maple and switchgrass were 

established; xylose concentrations were predicted using the developed kinetic model. For all the 

tested biomass samples, the difference between predicted and experimental xylose 

concentrations were less than 0.5 g/L. Additionally, xylose concentrations in hydrolysates 

stemming from pretreated mixed biomass samples also could be predicted by combining the 

weighted kinetic parameter for each sample in the mixture. For example, experimental xylose 

yield of 6 g/L from hydrolysis of biomass mixtures, containing 50% balsam and 50% 

switchgrass, could be predicted by combining half of the kinetic parameters of balsam and 

switchgrass. There was no synergistic or antagonist effects on the xylose yield from biomass 

mixture.  

2.7. Conclusion 

In summary, sweetgum wood is a good source of sugars for the production of 

lignocellulosic ethanol. Dilute sulfuric acid pretreatment significantly improved its cellulose 

digestibility; and, fermentation of its released glucose can be converted to ethanol. However, 

optimum pretreatment conditions for sweetgum wood to maximize xylose yields, which will, in 
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turn, increase ethanol yields have not been evaluated. Moreover, the formation of degradation 

compounds has not been tracked, leading to a lack of understanding between generation of these 

compounds and pretreatment severity. Furthermore, all the studies reported on hydrolysis of 

sweetgum species were always conducted with 100% of pure debarked sweetgum wood. 

However, it is more likely that sweetgum will be harvested along with other understory species 

present in the understory of pine plantations. The contribution of sweetgum bark material to the 

carbohydrate material balance also needs to be ascertained. Investigating the possibility for 

biorefineries to handle, as a feedstock, whole sweetgum tree contaminated with other biomass 

will give a realistic picture of the conversion of sweetgum to ethanol.   
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3. OBJECTIVES 

The goal of this project was to demonstrate that sweetgum wood harvested form southern-

pine-dominated plantation understories could be used as feedstock in biochemical-based 

biorefineries. In addition, this work also investigated the possibility for biorefineries to handle 

whole sweetgum trees, including sweetgum wood and bark, or whole sweetgum trees mixed with 

oak wood and bark. Realization of this goal will be one step towards increasing the use of 

understory biomass, limiting the release of herbicides in the environment, and translating forestry 

logistics to biorefinery applications.  Specific objectives were: 

1) Investigate the effects of temperature and time during dilute acid pretreatment on xylose 

and glucose yield from dilute acid pretreatment and enzymatic hydrolysis of sweetgum 

wood and bark  

2) Determine saccharification conditions for maximum xylose and glucose recovery for 

sweetgum wood and bark 

3) Investigate the effect of adding sweetgum bark, oak wood or oak bark to sweetgum wood 

on glucose and xylose recovery from saccharification under optimum conditions 
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4. MATERIALS AND METHODS 

4.1. Biomass Description 

Bark and wood from sweetgum and oak were obtained from Dr. Matthew Pelkki and Dr. 

Philip Tappe, School of Forest Resources, University of Arkansas, Monticello, AR. The 

feedstock was in the form of 1 cm × 1 cm chips.  The mature trees were harvested with a 

chainsaw from a pine plantation understory in Drew County, AR. All the branches were removed 

and only the stem was used. Bark was separated from the wood with a chain flail debarker. 

Samples of each individual species were milled to pass through a 20 mesh (0.84 mm) screen 

using a Wiley Mini Mill (Thomas Scientific, Swedesboro, NJ) and samples were dried in a 

105°C oven until sample moisture was less than 5%, as determined using an MB45 Moisture 

Analyzer (Ohaus Corporation, Pine Brook, NJ). 

4.2. Compositional Analysis of Natural Biomass 

A 10-g sample dry biomass for sweetgum and oak wood and bark was submitted to a 24-

h ethanol extraction according to the method described in the National Renewable Energy 

Laboratory (NREL) LAP/TP-510-42619 protocol (Sluiter et al., 2008a).  Contents of structural 

carbohydrates and acid insoluble lignin (AIL) of ethanol-extracted biomass were determined 

following NREL LAP/TP-510-42618 protocol (Sluiter et al., 2008b). Composition of raw 

biomass is given in Table 1. 
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Table 1: Compositional analysis of natural biomass (% dry weigh) 

Biomass Xylan Glucan 
1
AIL Extractives Ash 

2
SG Bark 8.56 ± 0.76 21.20 ± 0.89 31.57 ± 0.28 15.95 5.76 ± 1.00 

SG Wood 15.04 ± 2.92 45.00 ± 1.27 20.37 ± 3.00 2.31 0.27 ± 0.1 

Oak Wood 14.41 ± 2.05 48.06 ± 0.1 16.05 ± 0.78 3.26 0.06 ± 0.1 

Oak Bark 11.29 ± 1.48 25.35 ± 2.93 25.02 ± 1.27 11.47 5.02 ± 0.8 

Data are means of 3 replications ± 1 standard error 

1: Acid insoluble lignin 

2: Sweetgum 
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4.3. Dilute Acid Pretreatment 

A 1-g sample of dry biomass was soaked in 10 mL of 0.98% (v/v) sulfuric acid (H2SO4) 

in 50-mL centrifuge tubes for 12 h. The mixture was placed in a 32-mL stainless steel 

pretreatment tube (14.22 mm inner diameter, 5.59 mm wall thickness, 200 mm length) with an 

additional 10 mL of H2SO4. Pretreatment tubes containing raw biomass and acid were heated in a 

fluidized sand bath (Techne Incorporated, Burlington, NJ) at the desired temperature and for the 

desired time. Illustration of the pretreatment set-up is shown in Figure 4. After pretreatment, the 

tubes were immediately submerged into cold tap water for 1 min; slurry contents were poured 

into 15-mL centrifuge tubes for separation into a liquid fraction (prehydrolysate) and a solid 

fraction (pretreated biomass). The pretreated biomass was washed by stirring in 30 mL of 

Millipore filtered water on a stir plate, set at 300 rpm for 30 min. The water-insoluble-solid 

(WIS) fraction was separated from the wash water by vacuum filtration through a Büchner 

funnel containing Whatman No. 1 filter paper from VWR Scientific Products (West Chester, 

PA). The WIS fraction was stored at 4°C for a maximum of 3 days until used for enzymatic 

hydrolysis. The prehydrolysate and wash water were recovered and stored for a maximum of 3 

days at 4°C before xylose, glucose, and degradation compounds determination.  
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Figure 4. Schematic representation of dilute acid pretreatment set up 
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4.4. Enzymatic Hydrolysis 

A commercially available enzyme cocktail, Accellerase®1500, donated by Genencor 

(Danisco US Inc., Rochester, NY) was used to hydrolyze the WIS fraction. The enzyme cocktail 

had an endoglucanase activity of 2200 to 2800 CMC U/g and a β-glucosidase activity of 525 - 

775 pNPG U/g (provided by the manufacturer). The WIS fraction was mixed in a 50-mL amber 

bottle with 5 mL of sodium citrate buffer (pH = 4.8), 0.5 mL of enzyme and 4.5 mL of Millipore 

filtered water. The Amber bottles were placed in a shaking water bath (Thermo Electron 

Corporation, Winchester, VA) at 55°C and 100 rpm for 24 h. The enzymatic hydrolysis set-up is 

illustrated in Figure 5. The resulting slurries were poured into a 15-mL centrifuge tube, 

submerged in boiling water to stop the reaction, and centrifuged at 3000 × g for 2 min. The 

volume of the supernatant (enzymatic hydrolysate) was measured and the liquid was stored at 

4°C for a maximum of 3 days until it was analyzed for sugar content; the pellet was discarded.  
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Figure 5. Schematic representation of enzymatic hydrolysis set up 
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4.5. Analytical Method 

Sugars and degradation compounds in liquid hydrolysates were analyzed based on NREL 

LAP/TP-510-42623 protocol (Sluiter et al., 2008c). 

4.5.1. Sugar Analysis  

Five-mL aliquots of prehydrolysate, wash water and the enzymatic hydrolysate were 

neutralized with calcium carbonate (Fisher Scientific, Fair Lawn, NJ) and filtered through a 0.2-

µm filter for xylose and glucose analyses with a Waters 2695 Separations module (Milford, MA) 

equipped with Shodex precolumn (SP-G, 8 µm, 6 × 50 mm) and Shodex column (SP0810, 8 µm 

× 300 mm). Millipore filtered water (0.2 mL/min) was the mobile phase and the column was 

heated to 85°C with an external heater. Sugars were detected with a Waters 2414 Refractive 

Index Detector (Milford, MA). Examples of sugar chromatograms are shown in Figure 6. Sugars 

concentration in liquid hydrolysates were determined based on calibration curves shown in 

Figure 7, which were established using sugar standards, D-(+) glucose from Alfa-Aesar (Ward 

Hill, MA) and D-(+) xylose from Sigma-Aldrich Inc (St. Louis, MO). 
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Figure 6. Chromatograms of sugar in liquid hydrolysates from dilute acid pretreatment and enzymatic hydrolysis of sweetgum wood. 

Retention times of glucose, xylose and arabinose were 47.2, 50.6, 60.0 min, respectively. (A), prehydrolysate; (B), wash water; and, 

(C), enzymatic hydrolysis hydrolysate. 
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Figure 7. Xylose and glucose calibration curves for a Waters 2695 Separations 

module equipped with a Shodex precolumn (SP-G, 8 µm, 6 × 50 mm), Shodex 

column (SP0810, 8 µm × 300 mm) and a Waters 2414 Refractive Index Detector. 

Millipore filtered water flowing at 0.2 mL/min was the mobile phase 
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4.5.2. Degradation Compounds Analysis 

Aliquots of the prehydrolysate and wash water were filtered through a 0.2-µm filter and 

analyzed for degradation compounds with a Waters 2695 Separations module equipped with a 

Bio-Rad Aminex HPX-87H Ion Exclusion 7.8 mm × 30 mm column, heated to 55°C.  The 

mobile phase was 0.005 M H2SO4 flowing at 0.6 mL/min.  Compounds were detected with a UV 

index using the Waters 2996 Photodiode Array detector.  Furfural and HMF were detected at 280 

nm; whereas, formic acid and acetic acid were detected at 210 nm. Chromatograms of 

degradation compounds are shown in Figure 8. Concentrations of compounds in liquid 

hydrolysates were determined with calibration curves shown in Figure 9, which were established 

with reference standards purchased from VWR (Scientific Products).  
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Figure 8. Chromatograms of degradation compounds in liquid hydrolysate from dilute 

acid pretreatment of sweetgum wood. Furfural and HMF, retention times of 44.5 and 29.6 

min detected at 280 nm, respectively, in (A) dilute acid prehydrolysate and (B) wash 

water. Formic acid and acetic acid, retention times of 13.3 and 14.8 min detected at 210 

nm, respectively, in (C) dilute acid prehydrolysate and (D) wash water 
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Figure 9. Calibration curves of HMF, furfural, formic acid, acetic acid for a Waters 2695 separations module equipped with 

a Bio-Rad Aminex HPX-87H Ion Exclusion 7.8 mm × 30 mm column and a Waters 2996 Photodiode Array detector. The 

mobile phase was 0.005 M H2SO4 flowing at 0.6 mL/min 
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4.6. Hydrolysis of Pure Sweetgum Wood and Bark 

Sweetgum wood and bark were pretreated using the protocol described above at 140°C 

for 30, 40, 50, 60 or 70 min and at 160°C for 30, 40, 50 or 60 min. A completely randomized 

design (CRD) was used because of a limited number of available reactors. All pretreated biomass 

samples were subjected to enzymatic hydrolysis following the protocol described above. All 

pretreatment experiments were performed in triplicate.  

4.7. Hydrolysis of Contaminated Sweetgum Wood  

Pure sweetgum wood, sweetgum bark, oak wood, and oak bark were initially pretreated 

at 160°C for 20 min following the protocol described above. Because it was suspected that the 

conditions in the sand bath could change between operations, all runs were blocked by 

replication in order to minimize variations in results due to equipment failure. Mixed samples 

were also pretreated at 160°C for 20 min using a randomized block design (RBD). Mixed 

biomass samples were prepared as follow: 1) 70% sweetgum wood and 30% oak wood; 2) 70% 

sweetgum wood and 30% oak bark; and 3) 70% sweetgum wood and 30% sweetgum bark. One 

hundred percent of sweetgum wood was the control. All pretreated biomass samples were 

subjected to enzymatic hydrolysis following the protocol described above. All experiments were 

performed in triplicate. 

4.8. Statistical Analysis 

Xylose and glucose yields from mixed samples were run through an analysis of variance 

(ANOVA) procedure in JMP 9.0 (SAS Institute, Cary, NC) to identify any significant effect due 

to contamination. Means of each treatment levels were compared to the control (sweetgum 

wood) with the Dunnett’s control test in JMP 9.0 (SAS Institute, Cary, NC). Significance was 

established for P < 0.05. 
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5. RESULTS AND DISCUSSION 

5.1. Hydrolysis of Pure Sweetgum Wood 

 In order to design a hydrolysis scheme for sweetgum wood, the effects of the 

pretreatment time and temperature on glucose and xylose yields obtained from dilute acid 

pretreatment and enzymatic hydrolysis of sweetgum wood were investigated. Pretreatment was 

conducted at 140°C for 30, 40, 50, 60, and 70 min, and at 160°C for 30, 40, 50, and 60 min. 

5.1.1. Dilute Acid Pretreatment 

Figure 10 presents the yields of xylose and glucose recovered in sweetgum wood 

prehydrolysates and wash waters using various pretreatment times at 140°C and 160°C. 

Although the two liquid streams were analyzed separately, their carbohydrate contents were 

combined to calculate xylose and glucose yields as percentages of the theoretical amount in the 

dried biomass.  

Xylose was the primary sugar recovered in the prehydrolysates and wash waters, 

indicating high hydrolysis of the hemicellulosic fraction of wood during pretreatment. At 140°C 

(as shown in Figure 10A), xylose yield modestly increased with pretreatment time up to a 

maximum value of 79% after 60 min. Conversely, at 160°C (Figure 10B) hemicellulose 

hydrolysis released its maximum, 71%, within 40 min of pretreatment, at which time xylose 

yields decreased.  

Glucose also was detected in prehydrolysates and wash waters. Pretreatment time did not 

affect glucose recovery at 140°C, with less than 5% of the glucose recovered. However, at 160°C 

glucose yields increased with pretreatment time. Pretreatment at lower temperatures is ideal in 

achieving a high xylose recovery. More elevated temperatures, especially for prolonged periods 

of time, will result in considerable loss of xylose and premature hydrolysis of the cellulosic 
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fraction, which can result in glucose degradation. These findings are in agreement with studies 

performed on other feedstock with dilute acid pretreatment (Cara et al., 2008; Lloyd and 

Wyman, 2005; Torget et al., 1990). 
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Figure 10. Prehydrolysate of sweetgum wood: xylose and glucose yields. Pretreatment 

occurred at (A): 140°C and (B): 160°C with 0.98% (v/v) H
2
SO

4
. The yields represent the 

amount of xylose and glucose recovered as a percentage of the theoretical amount in the 

raw biomass. Error bars standard error of 3 replications  
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An inherent and undesirable property of dilute acid pretreatment is the production of 

sugar and lignin degradation compounds which are inhibitory to enzymatic hydrolysis and 

detrimental to microorganisms used in sugar fermentation (Palmqvist and Hahn-Hagerdal, 2000). 

Furfural, HMF, formic acid and acetic acid were detected in prehydrolysates and wash waters 

from wood pretreatment (Table 2). Furfural and HMF result from xylose and glucose 

degradation, respectively, and both can further degrade into formic acid; acetic acid is released 

from acetyl groups of hemicellulose polymers (Palmqvist and Hahn-Hagerdal, 2000).  

Concentrations (g/100 g of dried biomass) of degradation products increased with time 

and severity of pretreatment (Table 2). Sugar degradation was less severe at 140°C than at 

160°C; the increase in degradation compounds, especially furfural and formic acid, at 160°C 

coincided with a decrease in xylose recovery. Even though there was a slight degradation of 

xylose at 140°C, xylose recovery did not decline with pretreatment time because, at lower 

temperature, the rate of xylan hydrolysis is higher than its degradation rate (Lloyd and Wyman, 

2005).  
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Table 2 

Degradation compounds (g/100g of natural biomass) produced from 0.98% (v/v) sulfuric acid pretreatment of sweetgum 

wood 

Pretreatment conditions  Prehydrolysate  Wash water 
a 

Temperature 

(˚C) 

Time 

(min) 

 Acetic 

Acid 

 

Furfural 

Formic 

Acid 

 

HMF 

 Acetic 

Acid 

 

Furfural 

Formic 

Acid 

 

HMF 

140 30  4.6 ± 0.9 0.1 ± 0.0 1.8 ± 0.3 0.0 ± 0.0  2.5 ± 0.2 0.2 ± 0.1 0.8 ± 0.2 0.0 ± 0.0 

140 40  2.9 ± 0.5 0.2 ± 0.3 1.8 ± 0.6 0.0 ± 0.0  2.7 ± 0.3 0.4 ± 0.2 0.9 ± 0.3 0.0 ± 0.0 

140 50  2.9 ± 0.2 0.2 ± 0.0 1.8 ± 0.2 0.0 ± 0.0  3.1 ± 0.3 0.1 ± 0.0 0.9 ± 0.1 0.0 ± 0.0 

140 60  3.6 ± 0.3 0.3 ± 0.6 3.4 ± 1.2 0.0 ± 0.0  2.5 ± 0.5 0.5 ± 0.3 1.5 ± 0.8 0.0 ± 0.0 

140 70  3.7 ± 0.1 0.3 ± 0.0 3.6 ± 0.2 0.0 ± 0.0  2.7 ± 0.3 0.2 ± 0.0 3.0 ± 0.3 0.0 ± 0.0 

            

160 30  4.8 ± 2.0 0.7 ± 0.2 8.1 ± 2.5 0.1 ± 0.0  3.2 ± 0.4 0.6 ± 0.1 5.4 ± 1.6 0.0 ± 0.0 

160 40  4.3 ± 0.1 1.2 ± 0.1 10.4 ± 0.8 0.1 ± 0.0  2.7 ± 0.1 0.7 ± 0.1 4.8 ± 0.2 0.0 ± 0.0 

160 50  5.0 ± 0.4 1.3 ± 0.1 10.6 ± 0.8 0.2 ± 0.1  3.2 ± 0.2 1.0 ± 0.1 5.6 ± 0.2 0.1 ± 0.0 

160 60  3.7 ± 0.7 1.6 ± 0.4 6.6 ± 1.3 0.2 ± 0.1  3.7 ± 0.6 1.8 ± 0.4 5.5 ± 1.5 0.2 ± 0.1 

Data are means ± standard error of three replications 
 a 

Water used for washing pretreated biomass 
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5.1.2. Enzymatic Hydrolysis 

The effects of pretreatment time on xylose and glucose yields from enzymatic hydrolysis 

of sweetgum wood pretreated at 140°C and 160°C are depicted in Figure 11. Xylose and glucose 

yields were calculated as percentages of the theoretical amount in the dried biomass and should 

be differentiated from cellulose digestibility reported by Torget et al. (1990). As expected, most 

of the glucose was solubilized during enzymatic hydrolysis for both pretreatment temperatures; 

however, biomass pretreated at 140°C (Figure 11A) was less responsive to enzymatic attack than 

the one pretreated at 160°C (Figure 11B), shown here by a higher glucose recovery at 160°C 

than at 140°C. Although most of xylose present in sweetgum wood was solubilized during 

pretreatment at 140°C, complete removal of the hemicellulose during pretreatment did not 

translate to higher digestibility. It is possible that performing enzymatic hydrolysis for more than 

24 h could improve glucose yields; however, our results showed that glucose yields increased 

only 10% after 48 h of enzymatic hydrolysis. Moreover, 24 h was the time recommended by the 

enzyme manufacturer for maximum activity of the enzyme. 

Seventy four percent of glucose was recovered in enzymatic hydrolysates of biomass 

pretreated at 160°C (Figure 11B) and better digestibility of pretreated sweetgum wood was 

observed with increasing pretreatment times. Obtaining more digestible material from 

pretreatment conducted at harsher conditions has previously been reported (Foston and 

Ragauskas, 2010); hydrolysis of the amorphous section of the cellulose, observed in this work, 

resulted in higher glucose concentrations during prolonged pretreatment at 160°C. Kabel et al. 

(2007) attributed the relationship between high temperature and cellulose degradability to the 

disruption of lignin structures during pretreatment; however, lignin structures in natural and 

pretreated sweetgum wood were not analyzed in our work.  
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Figure 11: Enzymatic hydrolysate of pretreated sweetgum wood: xylose and glucose yields. 

Pretreatment occurred at (A): 140°C and (B): 160°C with 0.98% (v/v) H
2
SO

4
. The yields 

represent the amount of xylose and glucose recovered as a percentage of the theoretical 

amount in the raw biomass. Error bars are standard error of 3 replications. 
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5.1.3. Overall Yields  

The dilemma between maximizing xylose recovery during pretreatment and producing 

highly digestible cellulosic material occurred because the conditions for maximum xylose 

recovery did not correspond to conditions for maximum glucose recovery. Similar results have 

been observed (Lloyd and Wyman, 2005). One solution to this problem could be to maximize 

total fermentable sugars yields (TFS) (TFS = xylose + glucose) from pretreatment and enzymatic 

hydrolysis of the biomass, as reported by Lloyd and Wyman (2005). Yields of xylose, glucose 

and TFS expressed as percentages of theoretical amounts present in dried wood (sugar yields) or 

as amount of sugars (g) produced from 100 g of dried biomass (raw biomass yields) are depicted 

in Table 3. In general, at 140°C xylose, glucose, and TFS yields modestly increased with 

pretreatment time. Up to 47% of TFS were recovered after 70 min of pretreatment; these 

pretreatment conditions yielded maximum xylose recovery of 82%. Any sugar cocktail (xylose + 

glucose) obtained at 140°C contained low amount of glucose and, for a fermentation process; 

this is not the ideal sugar stream. Pretreatment at 160°C yielded a maximum TFS of 72% after 60 

min of pretreatment; these pretreatment conditions also gave maximum glucose recovery of 

86%. At 160°C, an increase in pretreatment time did not have an effect on TFS yields; however, 

the sugar stream obtained at times before 40 min had a higher percentage of xylose than streams 

obtained after 40 min, which had a higher percentage of glucose. This occurred because the 

xylose concentration in the sugar stream decreased while the glucose concentration increased 

with pretreatment time.  
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Table 3 

Sugars produced from 0.98% (v/v) sulfuric acid pretreatment and enzymatic hydrolysis of sweetgum wood 

Pretreatment conditions  Sugar yields
a
  Raw biomass yields

b
 

Temperature (˚C) Time 

(min) 

  

Xylose 

 

Glucose 

 

TFS
c 

  

Xylose
 

 

Glucose
 

 

TFS
c 

140 30  68.9 ± 5.1 13.4 ± 3.3 31.5 ± 3.3  15.6  ± 1.1 6.3 ± 2.1 21.9 ± 2.3 

140 40  74.1 ± 4.4 20.8 ± 2.1 38.2 ± 2.7  16.8 ± 1.0 9.8 ± 1.0 26.5 ± 1.9 

140 50  71.3 ± 5.4 23.1 ± 0.7 38.8 ± 2.2  16.1 ± 1.2 10.8 ± 0.3 27.0 ± 1.5 

140 60  82.1 ± 3.9 27.4 ± 1.0 45.2 ± 1.8  19.9 ± 1.4 15.8 ± 3.2 35.7 ± 4.2 

140 70  82.0 ± 1.8 30.4 ± 1.2 47.2 ± 0.7  18.6 ± 0.4 14.3 ± 0.5 32.8 ± 0.5 

          

160 30  71.4 ± 3.2 55.0 ± 3.2 64.6 ± 5.0  16.2 ± 0.7 28.7 ± 3.8 44.9 ± 3.5 

160 40  72.1 ± 7.0 66.8 ± 2.3 68.5 ± 0.8  16.3 ± 1.6 31.3 ± 1.1 47.7 ± 0.6 

160 50  54.0 ± 8.1 74.8 ± 2.3 68.1 ± 1.1  13.1 ± 1.2 35.1 ± 1.1 47.3 ± 0.8 

160 60  41.9 ± 5.6 86.2 ± 0.6 71.8 ± 2.2  9.5 ± 1.3 40.4 ± 0.3 49.9 ± 1.5 

Data are means ± standard error of three replications 
a  

Percentage of theoretical yield. 
b 

Yields in g/100 g of natural material. 
c  

Total fermentable sugars 
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5.2. Hydrolysis of Pure Sweetgum Bark 

The possibility to use sweetgum bark as feedstock for a biorefinery was also assessed. 

Tree bark usually is not considered an ideal candidate, mainly because it is not a substantial 

source of carbohydrate when compared to tree wood. The sweetgum bark used for this study 

contained on a dry basis 21.2% glucan and 8.56% xylan (Table 1). In addition, bark biomass 

contains extractives than can potentially interfere with enzymatic hydrolysis or fermentation. 

However, using the whole tree would simplify supply chain processing and increase the amount 

of carbohydrate available per tree harvested. Even though bark should be integrated in the 

biomass conversion process, wood will dictate the process parameters; therefore, sweetgum bark 

in this study was submitted to the same pretreatment and enzymatic hydrolysis conditions as for 

sweetgum wood.  

5.2.1 Dilute Acid Pretreatment 

The effects of pretreatment time on xylose and glucose yields from prehydrolysates and 

wash waters of bark pretreated at 140°C and 160°C are shown in Figure 12. Sugar recovery from 

sweetgum bark pretreatment did not follow the same trend as for sweetgum wood pretreatment. 

Xylose loss occurred faster at 140°C (Figure 12A) than at 160°C (Figure 12B). More xylose was 

recovered at 160°C than at 140°C. These results were in contrast to results obtained for 

sweetgum wood because harsher pretreatment conditions of the wood yielded lower xylose 

recovery. The significant difference between the response of the bark and the wood to 

pretreatment could be attributed to the significant difference between their respective 

compositions. 
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Figure 12. Prehydrolysate of sweetgum bark: xylose and glucose yields. Pretreatment occurred 

at (A): 140°C and (B): 160°C with 0.98% (v/v) H
2
SO

4
. The yields represent the amount of 

xylose and glucose recovered as a percentage of the theoretical amount in the raw biomass. 

Error bars are standard error of 3 replications 
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Furfural, HMF, formic acid and acetic acid were present in the prehydrolysate and wash 

water from the bark pretreatment (Table 4). Concentrations of these by-products in pretreatment 

liquid streams were lower at 140°C than at 160°C. It was expected that concentration of furfural 

and formic acid would be higher at 140°C than at 160°C given that a higher loss of xylose 

occurred at 140°C. Concentrations of formic acid in the bark prehydrolysate and wash water, 

especially at 160°C, were over 11 g per 100 g of natural biomass. When combining formic acid 

recovery in the prehydrolysate and wash water obtained from pretreatment at 160°C for 40 min, 

formic acid yield was 43% of the dried biomass. Thus, it is more likely that for sweetgum bark, 

reactions other than sugar degradation could be responsible for xylose loss and formation of 

formic acid during pretreatment. High extractive content of bark could be the origin of such 

elevated amount of formic acid in the prehydrolysate. The presence of those inhibitory 

compounds at such elevated concentrations in the pretreatment liquid streams could be one 

reason why bark is not an ideal candidate as a feedstock for a biorefinery. 
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Table 4 

Degradation compounds (g/100g of natural biomass) produced from 0.98% (v/v) sulfuric acid pretreatment of sweetgum bark 

Pretreatment conditions Prehydrolysate   Wash water
a 

Temperature 

(˚C) 

Time 

(min) 

 Acetic 

Acid 

 

Furfural 

Formic 

Acid 

 

HMF 

 Acetic 

Acid 

 

Furfural 

Formic 

Acid 

 

HMF 

140 30  1.4 ± 0.2 0.0 ± 0.0 16.1 ± 0.4 0.0 ± 0.0  1.6 ± 0.1 0.0 ± 0.0 4.8 ± 1.1 0.0 ± 0.0 

140 40  3.0 ± 1.2 0.0 ± 0.0 19.7 ± 2.2 0.0 ± 0.0  1.5 ± 0.1 0.0 ± 0.0 3.9 ± 1.5 0.0 ± 0.0 

140 50  1.6 ± 0.4 0.1 ± 0.0 14.5 ± 3.9 0.0 ± 0.0  2.0 ± 0.3 0.1 ± 0.0 7.6 ± 3.4 0.0 ± 0.0 

140 60  1.5 ± 0.2 0.1 ± 0.0 12.5 ± 2.1 0.0 ± 0.0  2.0 ± 0.4 0.1 ± 0.0 7.7 ± 3.0 0.0 ± 0.0 

140 70  1.1 ± 0.0 0.1 ± 0.0 9.0 ± 0.2 0.0 ± 0.0  2.6 ± 0.1 0.2 ± 0.0 11.9 ± 1.1 0.0 ± 0.0 

            

160 30  3.9 ± 1.2 0.1 ± 0.1 21.6 ± 2.9 0.1 ± 0.0  2.6 ± 0.3 0.2 ± 0.0 14.7 ± 3.3 0.0 ± 0.0 

160 40  7.9 ± 2.8 0.4 ± 0.0 32.3 ± 6.4 0.1 ± 0.0  2.0 ± 0.4 0.2 ± 0.0 11.2 ± 4.2 0.0 ± 0.0 

160 50  6.3 ± 1.7 0.5 ± 0.0 26.9 ± 1.3 0.1 ± 0.0  2.2 ± 0.3 0.3 ± 0.0 10.8 ± 1.7 0.0 ± 0.0 

160 60  2.6 ± 0.5 0.6 ± 0.2 16.7 ± 4.8 0.1 ± 0.0  2.5 ± 0.5 0.5 ± 0.1 10.8 ± 5.3 0.1 ± 0.0 

Data are means ± standard error of three replications
  

a
 Water used for washing  pretreated biomass 
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5.2.2. Enzymatic Hydrolysis 

The enzymatic hydrolysis of sweetgum bark (Figure 13) was not as successful as for the 

hydrolysis of sweetgum wood. A maximum of 11% of glucose was recovered in bark enzymatic 

hydrolysate compared to 74% for wood. An increase in pretreatment time or temperature did not 

improve glucose yields.  

This resistance to enzymatic attack after pretreatment has been reported to be inherent to 

sweetgum bark (Torget et al., 1991). Although hemicellulose was completely removed, only 

22% of cellulose digestibility was observed for sweetgum bark pretreated at 160°C for up to 30 

min. Torget et al. (1991) attributed sweetgum bark’s resistance to enzymatic attack to its 

complex nature and to condensation of lignin in hot acid.  Extractives, such as shikimic acid, 

reported by Martin et al. (2010) and high ash content could also contribute to sweetgum bark’s 

recalcitrance. Moreover, Cantarella et al. (2004) showed that formic acid concentrations of 11.5 

mg/mL inhibited the cellulose enzymatic cocktail; therefore, formic acid detected in bark 

prehydrolysates of our study could contribute to the recalcitrance observed in the bark. 

Insufficient washing of the pretreated pellet could exacerbate this recalcitrance. A better 

understanding of sweetgum bark structure and composition needs to be established to design 

optimum processing conditions to maximize saccharification of this feedstock system.  
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Glucose Xylose Glucose Xylose 

(A) (B) 

Figure 13. Enzymatic hydrolysate of pretreated sweetgum bark: xylose and glucose yields. 

Pretreatment occurred at (A): 140°C and (B): 160°C with 0.98% (v/v) H
2
SO

4
. The yields 

represent the amount of xylose and glucose recovered as a percentage of the theoretical amount in 

the raw biomass. Error bars are standard error of 3 replications.  
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Table 5 presents the sugar recoveries from pretreatment and enzymatic hydrolysis of 

sweetgum bark. Maximizing xylose or glucose yields in bark was possible because the recovery 

for both sugars occurred at 160°C. Moreover at 160°C, pretreatment time did not affect TFS or 

glucose yields; therefore, maximization of xylose recovery was the only factor affecting 

pretreatment conditions of sweetgum bark. 
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Table 5 

Sugars produced from 0.98% (v/v) sulfuric acid pretreatment and enzymatic hydrolysis of sweetgum bark 

Pretreatment conditions  Sugar yields
 a 

 Raw biomass yields
 b 

Temperature 

(˚C) 

Time 

(min) 

  

Xylose 

 

Glucose 

 

TFS
 c 

  

Xylose 

 

Glucose 

 

TFS
 c 

140 30  60.0 ± 4.3 15.9 ± 1.2 29.5 ± 2.2  5.3 ± 0.4 3.2 ± 0.2 8.5 ± 0.6 

140 40  81.4 ± 6.4 16.9 ± 1.4 36.7 ± 2.9  7.2 ± 0.6 3.4 ± 0.3 10.6 ± 0.8 

140 50  73.6 ± 3.3 16.9 ± 0.5 34.3 ± 1.3  6.5 ± 0.3 3.4 ± 0.1 9.9 ± 0.4 

140 60  65.3 ± 7.2 16.9 ± 1.3 31.8 ± 2.1  5.8 ± 0.6 3.4 ± 0.3 9.2 ± 0.6 

140 70  60.2 ± 2.0 13.9 ± 0.3 28.1 ± 0.5  5.3 ± 0.2 2.8 ± 0.1 8.1 ± 0.1 

          

160 30  88.2 ± 3.4 17.8 ± 1.0 40.3 ± 1.2  7.8 ± 0.3 3.6 ± 0.2 11.6 ± 0.4 

160 40  93.5 ± 6.5 21.4 ± 1.0 44.5 ± 1.9  8.3 ± 0.6 4.3 ± 0.2 12.9 ± 0.6 

160 50  91.8 ± 7.3 22.4 ± 1.4 44.9 ± 2.5  8.1 ± 0.6 4.4 ± 0.3 13.0 ± 0.7 

160 60  72.7 ± 1.0 24.5 ± 0.7 39.3 ± 0.8  6.4 ± 0.1 4.9 ± 0.1 11.3 ± 0.2 

Data are means ± standard error of three replications 
a
 Percentage of theoretical yield           

b
 Yields in g/100 g of natural biomass.  

c 
Total fermentable sugars 
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5.3. Hydrolysis of Contaminated Sweetgum Wood  

Previous hydrolysis study of pure sweetgum wood and bark showed that optimum 

hydrolysis condition of sweetgum wood, using our equipment and protocol, was 160°C for 60 

min. The latter conditions yielded maximum TFS of 72%. Unfortunately, the sand bath, 

instrument used to conduct pretreatments, malfunctioned, and when repaired produced different 

fluidization conditions. With the repaired set-up, higher sugar degradation was observed when 

pretreating at 160°C for 60 min. Adjusting the pretreating conditions to 160°C, for 20 min 

limited sugar degradation and yielded 60% of TFS.  

5.3.1. Hydrolysis of Pure Biomass 

Table 1 summarizes the composition of sweetgum wood and bark, as well as oak wood 

and oak bark. Oak and sweetgum wood had similar composition; both barks were also alike in 

terms of composition. Both wood contained 45% glucan; bark contained only up to 21% glucan. 

More lignin, extractives, and ash were present in both barks as compared to both woods. 

Although bark biomass did not represent a considerable source of sugars, the effect of combining 

bark and woody biomass during pretreatment needed to be determined because of the potential to 

simplification of biomass handling process prior to hydrolysis. 

Hydrolysis of pure sweetgum wood, sweetgum bark, oak wood, and oak bark was first 

investigated to determine the effect of pretreatment and enzymatic hydrolysis conditions on their 

respective xylose and glucose yields. Figure 14 presents xylose and glucose recoveries (left 

panel) and degradation compound productions (right panel) of all the biomass samples during 

pretreatment. Xylose and glucose are expressed as percentage of their respective theoretical 

yields (recovered/amount present in un-pretreated biomass); yields for acetic acid, furfural, 

formic acid, and HMF are expressed as g compound per 100 g natural biomass. Based on xylose 
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yields, pretreatment conditions were more suitable for both barks than for woods. Oak bark 

yielded the highest xylose, 80%, whereas oak wood yielded the lowest, 35%. Low xylose 

concentrations and elevated amounts of furfural determined in oak wood prehydrolysate showed 

that pretreatment conditions were particularly severe for oak wood. Xylose from sweetgum wood 

was 30% higher than from oak wood and this difference indicated that optimum conditions to 

maximize xylose yield for sweetgum wood might not be the best for oak wood. Furthermore, 

difference in xylose yields between bark and wood biomass ascertained the fact that 

pretreatment-induced hemicellulose hydrolysis was specific to the species on one hand, and to 

the plant part on the other hand.  

Production of furfural and HMF were slightly lower in bark samples than in wood. 

However, both oak bark and sweetgum bark yielded higher formic acid contents than 

corresponding wood samples.  Sweetgum bark yielded almost twice the amount of formic acid 

than that of oak bark, indicating that species affected its concentration.  Results presented in the 

previous study of sweetgum bark pretreatment showed that sugar degradation was not the sole 

mechanism responsible for elevated formic acid concentrations detected in corresponding 

prehydrolysate. These results suggested that some other components such as extractives, may 

play a role in the production of high formic acid yields. Formic acid is known as a potent 

enzymatic hydrolysis and fermentation inhibitor (Panagiotou and Olsson, 2007; Palmqvist and 

Hahn-Hagerdal, 2000); because of this fact, it may be prudent to omit bark biomasses from 

pretreatment operations  
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Figure 14. Recovery compounds from dilute acid pretreatment of lignocellulosic biomass 

samples. Pretreatment was done with 0.98%(v/v) H2SO4 at 160°C for 20 min. Samples are oak 

bark (OB), oak wood (OW), sweetgum bark (SB), and sweetgum wood (SW). Xylose and 

glucose yields are percentage of their respective theoretical amount in the raw sample. Error 

bars are standard error of 3 replications 
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Figure 15 presents oak bark, oak wood, sweetgum bark and sweetgum wood sugar yields 

obtained after subjecting pretreated samples to enzymatic hydrolysis. As for Figure 14, yields 

were expressed as percentages of theoretical yields (recovered/amount present in natural 

biomass). Only glucose was detected in all enzymatic hydrolysates, indicating complete 

hydrolysis of hemicellulose during pretreatment. Pretreated oak bark and sweetgum bark samples 

yielded only 10% glucose, suggesting that bark biomass was resistant to enzymatic hydrolysis. 

Data presented in the above study of sweetgum bark saccharification already highlighted its 

recalcitrance to enzyme. Lack of literature on oak bark hydrolysis limited our understanding of 

its low glucose yield. However, it is possible that similar mechanisms responsible for sweetgum 

bark’s negative response to enzymatic hydrolysis also impeded oak bark’s saccharification; 

Figure 16 shows that only 20% of cellulose in pretreated bark was actually converted to glucose.  

Approximately 48% of glucose was recovered in both woody samples, as shown in 

Figure 15. For sweetgum wood, glucose yields, obtained by enzymatic hydrolysis, were 

significantly lower than previously determined values, of 74%.  Cellulose digestibility studies of 

pretreated biomass, as shown in Figure 16, demonstrated that only 70% of the cellulose present 

in pretreated sweetgum wood was converted to glucose. As for oak wood, 92% of cellulose 

digestibility and 48% of glucose yield suggested that a major proportion of its cellulose was 

degraded during pretreatment.  
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Glucose 

Figure 15: Sugar recovery from enzymatic hydrolysis 

of pretreated lignocellulosic biomass samples with 

0.98%(v/v) H
2
SO

4
 at 160°C for 20 min. Samples are 

oak bark (OB), oak wood (OW), sweetgum bark (SB), 

and sweetgum wood (SW). Glucose yield is a 

percentage of its theoretical amount in the raw sample. 

Error bars are standard error of 3 replications. 
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Figure 16. Cellulose digestibility of dilute sulfuric 

acid pretreated biomass. Acid concentration was 

0.98% v/v, pretreatment temperature = 160°C and 

time = 20 min. 
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Combined xylose, glucose, and TFS yields from dilute acid pretreatment and enzymatic 

hydrolysis of bark samples are illustrated in Figure 17. In summary, both barks yielded higher 

xylose concentrations than their respective woods, while both woods yielded higher glucose and 

TFS amounts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Sugar recovery from dilute acid 

pretreatment and enzymatic hydrolysis of 

lignocellulosic biomass samples. Pretreatment was 

done with 0.98%(v/v) H
2
SO

4
 at 160°C for 20 min. 

Samples are oak bark (OB), oak wood (OW), 

sweetgum bark (SB), and sweetgum wood (SW). Sugar 

yields are percentage of their theoretical amount in the 

raw samples. Error bars are standard error of 3 

replications. 

Glucose Xylose 

Total Fermentable Sugar 
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5.3.2. Hydrolysis of Mixed Biomass 

In this this work, the mixed biomass samples were prepared in the following manner: 1) 

70% sweetgum wood mixed with 30% oak bark 2) 70% sweetgum wood mixed with 30% oak 

wood; 3) 70%  sweetgum wood mixed with 30% sweetgum bark. The control was 100% 

sweetgum wood. Sugar yields from all three mixed samples were compared to the ones from 

100% sweetgum wood in order to determine whether or not the addition of  oak bark, oak wood 

or sweetgum bark would affect ensuing sugar recovery from sweetgum wood. To calculate the 

sugar yields from the mixed biomass samples, two scenarios were considered. In scenario A, it 

was assumed that all  sugar recovered in the  hydrolysates were solely stemming from sugar 

hydrolysis present in the  sweetgum wood fraction of the mixed biomass. For example, under 

scenario A, xylose yield was calculated as follow: 

                     

                                           
     

With scenario A,  oak bark, oak wood, and  sweetgum bark were considered as non-significant 

source of sugars. This scenario could overestimate sugar yield because the net amount of sugar 

recovered in the hydrolysates would actually result from the hydrolysis of the sugar in the 

sweetgum wood fraction, but also from the other fration in the mixture. Scenario B took into 

consideration the possibility of having the other fractions also contribute to net sugar recovery; 

an example of xylose yield calculated under scenario B is given by:   

                     

(                                                       )              
     

Data presented in Figure 18 presents xylose and glucose yields, from pretreatment, 

calculated according to scenario A (Figure 18A) and scenario B (Figure 18B), respectively. Data 

bars with a star (*) represent samples significantly different (P < 0.05) than the control. Results 

in Figure 18A showed that addition of oak bark and sweetgum bark significantly increased 
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xylose yield from sweetgum wood. Pure sweetgum wood yielded 52% xylose of theoretical 

available xylose; the addition of oak bark and sweetgum bark resulted in 80 and 90% xylose 

recoveries, respectively. In Figure 18B the addition of sweetgum bark enabled the highest xylose 

recovery, 72%, which was significantly different than that of 52% obtained for the control made 

up solely of sweetgum wood. These results indicated that sweetgum bark possibly affected 

hemicellulose hydrolysis of the mixture during pretreatment by preventing xylose degradation. 

As shown in Figure 19, furfural yields were 2.07 and 1.44 g per 100 g of dried sample for 100% 

sweetgum wood and combination of sweetgum wood and bark, respectively. These results may 

be useful; they suggests that debarking the tree prior to hydrolysis operations may not be 

necessary. However, a caveat must be placed. In all the work performed in this thesis, the 

pretreated biomass was rinsed with at least thirty times volumes of water prior to enzymatic 

hydrolysis. In the interest of water usage minimization, the rinsing step may not be possible at 

the deployment scale; in that case, the use of bark would not be recommended.  
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(A) (B) Glucose Xylose Glucose Xylose 

Figure 18: Sugar recovery from dilute acid pretreatment of lignocellulosic biomass samples. 

Pretreatment was done with 0.98%(v/v) H
2
SO

4
 at 160°C for 20 min. Samples consist of 100% 

sweetgum wood (SW) or 70% SW + 30% contaminant. Contaminants include oak bark (OB), 

oak wood (OW), or sweetgum bark (SB). Xylose and glucose yields are percentage of their 

respective theoretical amount in (A): sweetgum wood fraction and (B): entire sample. Error 

bars are standard error of 3 replications. *Samples are significantly different from the control 

(SW). 
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Figure 19. Degradation products from dilute acid 

pretreatment of lignocellulosic biomass samples. 

Pretreatment was done with 0.98%(v/v) H
2
SO

4
 at 160°C 

for 20 min. Samples consist of 100% sweetgum wood 

(SW) or 70% SW + 30% contaminant. Contaminants 

include oak bark (OB), oak wood (OW), or sweetgum 

bark (SB). Error bars are standard error of 3 replications. 
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Oak wood did not significantly influence xylose yields (P > 0.05). Although oak is a 

good source of xylose, as shown in Table 1, most of its five-carbon sugar was degraded during 

pretreatment using the tested conditions, 160°C for 20 min; therefore the addition of oak wood 

did not significantly increase xylose yields. Figure 20A shows that the combination of sweetgum 

and oak woods afforded the highest glucose yields, 68%, during enzymatic hydrolysis. The 

difference between glucose yield from sweetgum-oak-wood combination and the control 

indicated that oak wood significantly increased glucose concentrations in enzymatic hydrolysate 

(Figure 20A). Conversely, addition of oak bark or sweetgum bark did not increase glucose yields 

stemming from enzymatic hydrolysis. Interestingly, the protective mechanisms that prevent 

cellulose hydrolysis of bark did not inhibit cellulose hydrolysis from sweetgum wood mixed with 

sweetgum or oak bark (Figure 20A).  
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(A) (B) Glucose Glucose 

Figure 20. Sugar recovery from enzymatic hydrolysis of pretreated lignocellulosic biomass 

samples with 0.98%(v/v) H
2
SO

4
 at 160°C for 20 min. Samples consist of 100% sweetgum 

wood (SW) or 70% SW + 30% contaminant. Contaminants include oak bark (OB), oak 

wood (OW), or sweetgum bark (SB). Glucose yield is a percentage of its theoretical amount 

in (A): sweetgum wood fraction and (B): entire sample. Error bars are standard error of 3 

replications. *Samples are significantly different from the control (SW). 
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Another approach in analyzing the presented data was to predict sugar yields from 

mixtures, based on mixture fractions. Predicted sugar yields were calculated by adding weighted 

yields for pure sweetgum wood with weighted yields for pure oak wood, oak bark, or sweetgum 

bark. Experimental yields were obtained by adding mixture yields, calculated with scenario B, 

from pretreatment and enzymatic hydrolysis. 

Comparison between predicted and experimental yield is shown in Figure 21. In general, 

the absolute value of the difference between the predicted and experimental yields was less than 

11% of the experimental yield. Experimental xylose yield from sweetgum wood-bark 

combination was about 20% significantly higher than predicted value; this difference was 

basically due to the fact that sweetgum bark prevented the xylose degradation of sweetgum 

wood. The synergistic effect of sweetgum bark could not be captured with the predicting model. 

The trend observed in Figure 21 showed that, for the most part, studying the hydrolysis of pure 

biomass species present in a mixture could be sufficient to determine the amount of sugar that 

would be recovered from the hydrolysis of the mixture. Jensen et al. (2008) reached similar 

conclusion with the hydrolysis of hemicellulose from softwood, hardwood, and switchgrass 

mixtures during dilute acid pretreatment. The results presented by Jensen et al. (2008) did not 

extend to enzymatic hydrolysis nor did they include any bark biomass.  
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Figure 21. Comparing experimental and predicted sugar recovery data from dilute acid pretreated and enzymatic hydrolysis of 

lignocellulosic biomass samples. Pretreatment was done with 0.98%(v/v) H
2
SO

4
 at 160°C for 20 min. Samples consist of 100% 

sweetgum wood (SW) or 70% SW + 30% contaminant. Contaminants include oak bark (OB), oak wood (OW), or sweetgum 

bark (SB). Error bars are standard error of tree replications. 
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6. CONCLUSION 

 The possibility to use sweetgum wood from southern pine-forests as a feedstock in a 

biochemical-based biorefinery was investigated. High xylose and glucose yields were obtained 

from hydrolysis of 100% sweetgum wood. However, it was not possible to optimize pretreatment 

conditions to attain simultaneously maximum xylose and glucose yields. Therefore, maximizing 

total fermentable sugars with higher glucose content was a better approach to design an optimum 

hydrolysis scheme of 100% sweetgum wood for ethanol production. The best pretreatment 

conditions were 160°C for 60 min with 0.98% (v/v) sulfuric acid. 

Hydrolysis of sweetgum wood contaminated with sweetgum bark, oak wood, and oak 

bark was also investigated. This work was actually the first to investigate the hydrolysis of oak 

bark into fermentable sugars. Contamination of sweetgum wood did not suppress its hydrolysis; 

a tendency of sweetgum bark to prevent xylose degradation during pretreatment was also 

observed; and it was possible to predict sugar yield from contaminated biomass by studying the 

hydrolysis of each biomass in the mixture. However, the excessive amount of formic acid 

produced by both bark during pretreatment could prevent the utilization of bark biomass because 

it would require intensive washing of pretreated biomass and detoxification of prehydrolysate 

before saccharification and fermentation in order to remove the formic acid. In sum, sweetgum 

wood from pine understory could be a good feedstock for a biorefinery however removal of the 

bark could be necessary to avoid additional unit operations. 

 Future work should investigate the contamination effects on the fermentation of released 

sugars from sweetgum wood hydrolysis. Some effort could also be done to determine the 

contamination effects on the amount of water needed to wash the pretreated biomass before 

saccharification.  
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