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HYDRAULIC CONDUCTIVITY, INFILTRATION, AND RUNOFF 
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University of Nebraska, 2010 

Advisor: Dean E. Eisenhauer 

 Infiltration and runoff are important processes that affect the efficiency of center 

pivot irrigation systems. No-till planting systems potentially influence the hydraulic 

properties of soils and the soil surface conditions. The result of long-term use of no-till 

could be higher infiltration and lower runoff from rainfall and irrigation.  

This potential was investigated in Nebraska on two center pivot irrigated sites; 

Fillmore County and Phelps County, one furrow irrigated site; South Central Agriculture 

Laboratory (SCAL), and one dryland site; Rogers Farm. Paired treatments were used at 

each location, one that was no-till planted and one that used two to three operations per 

year for seed-bed preparation and cultivation. Operations were consistent for at least 

seven years on all fields before experiments were conducted.   

In 2008-2010 runoff was monitored during the cropping season at the center pivot 

irrigated sites.  During this time interval, hydraulic conductivity tests were performed at 

all sites.  Cumulative runoff data showed more runoff on tilled fields, which aligns with 

findings from the hydraulic conductivity from these fields.  Surface satiated hydraulic 

conductivity was significantly higher for no-till at the center pivot irrigated sites with 6.2 

cm h
-1

 and 8.2 cm h
-1

 measured for no-till and 3.9 cm h
-1

 and 2.8 cm h
-1

 for tilled.  

However, the dryland corn had significantly higher hydraulic conductivity on the tilled 



 

 

plot (46.3 cm   h
-1

) compared to the no-till (8.3 cm h
-1

) plot.  This discrepancy may be 

due to soil shrinkage causing surface cracks. Overall, no-till fields had higher hydraulic 

conductivity and lower runoff. 

Using 2010 gathered rainfall data from the center pivot irrigated sites, satiated 

hydraulic conductivity was predicted using four models: Crust Factor, ROSETTA, Water 

Erosion Prediction Project (WEPP), and Soil Water Characteristics tool (SWC). The 

hydraulic conductivity values were compared to both rainfall and irrigation runoff using 

the Green and Ampt equation.  WEPP had the smallest percent bias (28%). The model 

over predicted runoff at the no-till field at Phelps County.  No model predicted an optimal 

satiated hydraulic conductivity for all fields.



i 
 

 

TABLE OF CONTENTS 

1 Chapter 1: Hydraulic Conductivity and Runoff of Tilled and No-till Cropland ......... 1 

1.1 Introduction .......................................................................................................... 1 

1.2 Methods ................................................................................................................ 5 

1.2.1 Field data ....................................................................................................... 5 

1.2.2 Runoff ......................................................................................................... 10 

1.2.3 Satiated hydraulic conductivity................................................................... 13 

1.2.4 Lab experiments .......................................................................................... 15 

1.2.5 Depressional storage, surface seal, and aggregates .................................... 16 

1.2.6 Macropores ................................................................................................. 18 

1.3 Results and Discussion ....................................................................................... 18 

1.3.1 Measured hydraulic conductivity ................................................................ 18 

1.3.2 Runoff ......................................................................................................... 28 

1.3.3 Surface seal, storage, and aggregates .......................................................... 32 

1.3.4 Macropores ................................................................................................. 35 

1.3.5 Discussion ................................................................................................... 36 

1.4 Conclusion .......................................................................................................... 38 

1.6 References .......................................................................................................... 40 

2 Chapter 2: Determining Satiated Hydraulic Conductivity for the Green and Ampt 

Equation Using Natural Runoff Data ................................................................................ 45 

2.1 Introduction ........................................................................................................ 45 

2.2 Methods .............................................................................................................. 48 

2.2.1 The Green and Ampt equation .................................................................... 48 

2.2.2 Satiated hydraulic conductivity................................................................... 52 

2.2.3 Depressional storage ................................................................................... 56 

2.2.4 Model validation ......................................................................................... 57 

2.2.5 Observed runoff .......................................................................................... 59 

2.3 Results and Discussion ....................................................................................... 60 

2.3.1 Observed runoff .......................................................................................... 60 



ii 
 

 

2.3.2 Satiated hydraulic conductivity................................................................... 60 

2.3.3 Depressional storage ................................................................................... 63 

2.3.4 Rainfall runoff ............................................................................................. 63 

2.3.5 Irrigation ..................................................................................................... 71 

2.4 Conclusion .......................................................................................................... 76 

2.5 References .......................................................................................................... 78 

3 Chapter 3 Appendix A: Observed and Green and Ampt Predicted Runoff 

Hydrographs ...................................................................................................................... 81 

3.1 Phelps Hydrographs ........................................................................................... 82 

Fillmore hydrographs .................................................................................................. 103 

4 Chapter 4 Appendix B: Vadose Zone Properties ..................................................... 116 

4.1 Field Plots ......................................................................................................... 116 

4.2 Vadose Zone Samples ...................................................................................... 116 

4.3 References ........................................................................................................ 123 

5 Chapter 5 Appendix C: Statistical Analysis Results ............................................... 124 

 

  

 

 

 

 

 

 

 

 

 



iii 
 

 

LIST OF TABLES 

Table 1.1. Center pivot characteristics ................................................................................ 6 

Table 1.2. The soil properties at each site ........................................................................... 8 

Table 1.3. Geometric means of satiated hydraulic conductivity in no-till and tilled fields 

for field tests. .................................................................................................................... 20 

Table 1.4. Two-way analysis of variance of satiated hydraulic conductivity (Holm-Sidak 

method). Statistically significant if P < 0.10. ................................................................... 24 

Table 1.5. Texture, organic matter, and bulk density predicted satiated hydraulic 

conductivity using Soil Water Characteristics tool (SWC) and ROSETTA..................... 26 

Table 1.6. Geometric mean Ks span 3 data for tilled field in the above Fillmore County 

analysis; there were 4 of replications of the test.  The data were not used in analysis in 

Tables 1.3 -1.5................................................................................................................... 27 

Table 1.7. Irrigation events and the corresponding runoff depths .................................... 32 

Table 1.8. Results from percent residue, depressional storage (DS), and aggregate 

stability .............................................................................................................................. 35 

Table 1.9.Percentage of area contributing to macropores................................................. 36 

Table 2.1. Green and Ampt input parameters ................................................................... 52 

Table 2.2. Ratio of cropped to fallow hydraulic conductivity given by Nearing et al., 1996

........................................................................................................................................... 54 

Table 2.3. Center pivot characteristics .............................................................................. 60 



iv 

 

 

Table 2.4. Root mean squared error (RMSE), Nash-Sutcliff efficiency (NSE), percent 

bias (PBIAS), and cumulative runoff from rainfall based on the hydraulic conductivity 

derived from four models.................................................................................................. 65 

Table 2.5. Curve numbers, N, from the SCS Handbook (WEPP Tbl 2.2), 1985 and 

inversely measured from observed runoff events (WEPP Eqn 2.15) ............................... 67 

Table 2.6. Cropped to fallow hydraulic conductivity ratio ............................................... 68 

Table 2.7. Modeled runoff for 2010 irrigation runoff events ........................................... 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

LIST OF FIGURES 

Figure 1.1.  Picture of micro runoff plot equipment ......................................................... 10 

Figure 1.2. Hydrographs observed in sump and then converted to runoff from subtracting 

rainfall hitting impervious gutter and being directed into the sump ................................. 12 

Figure 1.3. Field vs. lab satiated hydraulic conductivity for surface and subtillage layers

........................................................................................................................................... 21 

Figure 1.4 Surface and subtillage hydraulic conductivity for tilled and no-till plotsn ..... 22 

Figure 1.5.  Example runoff hydrograph and rainfall hyetograph of an observed runoff 

event .................................................................................................................................. 28 

Figure 1.6. Growing season cumulative runoff with standard deviation error bars from 

rainfall events during Fillmore County cropping seasons 2008-2010 .............................. 30 

Figure 1.7. Growing season cumulative runoff with standard deviation error bars from 

rainfall events during Phelps County cropping seasons 2008-2010 ................................. 31 

Figure 1.8. Fraction of stable aggregates at center pivot irrigated sites ........................... 34 

Figure 2.1. Soil water retention curve for Fillmore County developed using the Soil 

Water Characteristics tool ................................................................................................. 50 

Figure 2.2. Soil water retention curve for Phelps County developed using the Soil Water 

Characteristics tool............................................................................................................ 51 

Figure 2.3. Observed and predicted runoff hydrographs. ................................................. 61 

Figure 2.4. Observed and predicted hydrographs. ............................................................ 62 

Figure 2.5. Observed runoff vs. Crust Factor predicted runoff in 2010 ........................... 69 



vi 
 

 

Figure 2.6. Observed runoff vs. ROSETTA predicted runoff in 2010 ............................. 70 

Figure 2.7. Observed runoff vs. WEPP predicted runoff in 2010..................................... 70 

Figure 2.8. Observed runoff vs. SWC predicted runoff in 2010....................................... 71 

Figure 2.9. Fillmore County no-till modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 5 ............................................................................... 72 

Figure 2.10. Fillmore County tilled modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 5 ............................................................................... 73 

Figure 2.11. Phelps County no-till modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 7 ............................................................................... 74 

 



1 

 

1 CHAPTER 1: HYDRAULIC CONDUCTIVITY AND RUNOFF OF TILLED 

AND NO-TILL CROPLAND 

1.1 Introduction 

The potential for runoff from irrigation and rainfall is linked to management 

practices (Pagliai et al., 2004; Green et al., 2003), peak application rate of the center 

pivot system (Dillon, 1972), and the physical properties within a field (Strudley et al., 

2008).  The field’s soil hydrology illustrates how efficiently water is utilized during an 

irrigation or rainfall event.  Satiated hydraulic conductivity, influenced by the soil’s 

characteristics, describes the ability of soil to transmit water under near saturated 

conditions (ASABE, 2007).  Increasing the rate at which soil absorbs water results in 

more water available to meet crop needs and less water lost through runoff.   Hydraulic 

conductivity is highly variable and dependent on field characteristics and management 

practices.  Understanding the factors that influence hydraulic conductivity in agricultural 

fields may illustrate a potential to decrease runoff.   

Conservation tillage is one management practice that can influence the 

characteristics of the field and increase infiltration of water into the soil.  Differences in 

the surface characteristics, e.g., increasing organic matter, may decrease the amount of 

runoff that occurs from rainfall (Mielke et al., 1986), and may reduce the need for 

irrigation (DeBoer et al., 1992). 

One type of conservation tillage is no-till planting.  No-till planting, defined as 

minimal disturbance of the soil surface by placing the seed directly into the soil without 

disruption of the surface residue, and tillage, the breaking of the structure of soil surface 
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by cultivation (ASABE, 2007), are different management practices that can affect 

infiltration and runoff rates.  Studies have investigated the potential for no-till planting 

to increase hydraulic conductivity and infiltration.  The following factors have been 

linked to the benefits of no-till. 

No-till fields may have higher hydraulic conductivity due to the undisturbed 

macropore network connected to the surface.  Macropores are defined as soil pores 

greater than 1.0 mm (Luxmoore, 1981), which conduct water near saturated conditions 

(Watson and Luxmoore, 1986).  An increase in macropores at the soil’s surface would 

correspond to an increase of water into the soil (Edwards et al. 1979).  The presence of 

macropores has been investigated in many studies.  Blevins et al. (1983) and Logsdon 

(1990) found tillage breaks apart the soil surface structure and, as a result, disrupts the 

flow into the macropores.  Azooz and Arshad (1996) studied silt loam and sandy loam 

soils with conventional tillage and no-till treatments.   The higher observed infiltration in 

no-till was attributed to a greater number of macropores. 

Another impact of no-till may be minimal surface sealing.  As drops from rain or 

sprinkler irrigation hit the soil, aggregates on the surface break down, forming a seal and 

reducing the hydraulic conductivity of the soil (Tebrugge and During, 1999; Ela et al., 

1992; Duley, 1939).  This effect can be reduced by crop residue. After removing residue 

from the soil, Bradford and Huang (1994) found a drop in hydraulic conductivity from 

7.0 to 5.9 cm h
-1

 in no-till fields.  The drop between no-till fields with residue and tilled 

fields with no residue was greater (7.0 to 3.9 cm h
-1

).  Surface sealing may also be 

prevented by certain characteristics of the soil’s surface.  No-till fields keep the surface 
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soil structure intact, which can lead to stable aggregates.  Stronger aggregates have been 

found in no-till due to the undisturbed surface (Packer et al., 1992).  An increase in 

greater organic matter, shown plausible in research performed by Arshad et al. (1990), 

has also lead to reduced surface sealing (McIntyre, 1958).    

Lastly, increased storage created through surface roughness from residue may 

increase the storage that must be filled before runoff occurs (Onstad, 1984).  No-till 

fields are described as having 55-75% residue cover in corn and 40-60% in soybean, 

while tilled fields have 30-60% residue left from a corn crop and 20-40% from soybean 

(USDA NRCS, 1992).  Steichen (1984) investigated surface roughness and found as 

surface residue increased, infiltration increased.  The increase in residue could therefore 

decrease the runoff measured on a field (Gilley et al., 1986). 

These characteristics are potential results of no-till planting, all which may 

increase hydraulic conductivity and reduce runoff.  Although higher infiltration rates 

have been linked with no-till systems, studies have reported mixed findings when 

measuring and comparing the hydraulic conductivity of tilled and no-till fields.  

Hydraulic conductivity values have been shown to be time varying throughout the 

cropping months.  Mapa et al. (1986) found an increase of hydraulic conductivity once 

tillage occurred.  Starr (1990) observed the difference between tilled and no-till 

hydraulic conductivity to be variable throughout the season.  Another factor that changes 

with time is the moisture content.  Initial moisture content and time between runoff 

events has been shown to be a factor in tilled and no-till runoff as well.  Isensee et al. 
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(1993) found that events less than six days since the last runoff result in higher runoff in 

no-till.   

Not only is there variability throughout a season, but also within a field.  Ankeny 

et al. (1990), Culley et al. (1987), Freese (1993), and Buczko et al. (2006) found 

untrafficked rows had higher conductivity in the tilled field.   

When investigating the impact of no-till on water savings, findings have been 

varied.  Blanco-Canqui et al. (2004) and Gregorich et al. (1993) found no difference in 

hydraulic conductivity between tilled and no-till fields. Mielke et al. (1986) noticed 

higher infiltration rates into the tilled fields, and Heard et al. (1988) found texture was a 

more significant factor in the value of hydraulic conductivity than tillage treatment.  

Shipitalo and Edwards (1993) found 36% more infiltration with no-till fields.  

The main objective of this research is to quantify the satiated hydraulic 

conductivity and runoff on center pivot irrigated, long-term no-till systems.   Two 

supplementary objectives include: 

1. Determine the effect of slot, ridge, and disk planting on the satiated hydraulic 

conductivity in a furrow irrigated field and measure satiated hydraulic 

conductivity on dryland tilled and no-till plots. 

2. Investigate factors that may increase the satiated hydraulic conductivity and 

decrease runoff. 
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1.2 Methods 

 To determine the effect of no-till planting on infiltration and runoff, center pivot 

irrigated tilled and no-till fields were studied in Nebraska.  Satiated hydraulic 

conductivity data were compared to the measured runoff events under rainfall and center 

pivot irrigation. Secondly, factors that may influence infiltration, such as residue, 

depressional storage, macropores, and aggregate stability were investigated.    

Supplementing center pivot irrigated field data, hydraulic conductivity 

measurements were performed on furrow irrigated fields. Experiments took place in 

rotational corn (corn/soybean rotated) during the corn year and in continuous corn.  In 

addition to the furrow irrigated site, a dryland site was also included in the study.  

Hydraulic conductivity tests were performed on tilled and no-till sections.  Experiments 

took place in soybean and in corn.   

1.2.1 Field data 

 Study areas included two center pivot irrigated sites, one furrow irrigated site, 

and one dryland site in Nebraska.  The first center pivot site is located in Fillmore 

County in southeast Nebraska.  The study area contains Crete silty clay loam soil 

(USDA NRCS, 2010) with a slope of 1.0%.  Fillmore County center pivots have Nelson 

R3000 Rotators and Sprayheads. The second site is located in south central Nebraska in 

Phelps County.  This site includes fields with Holdrege silt loam soil (USDA NRCS, 

2010) and a measured slope of 0.4%.  In Phelps County, Valley Sprayheads are installed 
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at the no-till site and Nelson Sprayheads at the tilled site.  Center pivot characteristics 

are shown in Table 1.1.   

Table 1.1. Center pivot characteristics.  R = distance to sprinkler; Rs = system length; Wr 

= wetted radius, Da = depth applied. 

Site  Plot Span R, m Q, L/s Da, cm Rs, m Wr, m Field 

size, ha  

Fillmore 

County 

No-till 3 123 37.9 2.5 392 9.8 48 

  5 219      

  7 343      

         

 Tilled 3 145 48.9 2.5 395 8.5 49 

  5 251      

  7 341      

         

Phelps 

County 

No-till 7 359 50.5 2.5 395 6.2 49 

  Tilled 7 355 50.5 2.5  397 8.5 49 

 

Each center pivot site contains two fields cropped with a corn/soybean rotation.  

All the fields were in soybean in 2008.  The two fields for each site included one tilled 

field that was tilled once in the spring, before planting, and one practicing long term, 

continuous no-till.  The no-till and tilled fields at each site were paired to match in 

planting date, corn hybrid and soybean cultivar, location for similarities in weather, land 

slope, and soil type.  Soil properties for each field are shown in Table 1.2.  

In 2009, a rolling stalk chopper was employed in place of pre-planting tillage in 

the tilled field at Fillmore County and Fillmore County no-till field used a strip tillage 

system.  After planting, Fillmore tilled field was only partially cultivated due to the corn 
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being too tall.  Other than these discrepancies, tillage operations have been consistent for 

at least seven years.  The final year, 2010, both no-till fields used true no- till planting 

and the tilled fields were tilled in the spring before planting and once in July.   

Roger’s Memorial Farm is a research farm operated by the University of 

Nebraska-Lincoln.  The farm is located in southeast Nebraska in Lancaster County.  The 

soil is Aksarben silty clay loam with a slope of 6-11% (USDA NRCS, 2010).  The site 

includes two dryland plots, one in corn and one in soybean.  Each plot has three sections 

of no-till and three sections of tilled.  Each section measures 9.1 m by 22.9 m.  There 

were a total of twelve sections included in this research; all were corn/soybean rotated. 

Tillage systems have been continuous since 1981.   
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The South Central Agricultural Research Laboratory (SCAL) in Clay County 

located in south central Nebraska was the location for the furrow irrigated site.  The soil 

is Hastings silt loam (Table 1.2) with a slope of 0.4%.  At this site, one field is divided 

into sections of different, long-term tillage practices.  The tillage had been consistent for 

nine years at the time when the tests were performed.  Tillage practices include sections 

of slot, ridge, and disk treatments divided into continuous corn and corn/soybean 

rotation subsections.  Rotational sections began in 2002.  Each subsection is eight rows 

in width with 76 cm row spacing.   Excluding the first disk plot, which has a length of 

335 m, the length of all sections are 378 m.  Each section repeats three times for a total 

of nine plots (eighteen subsections).  All patches are managed the same in regards to 

irrigation and fertilizer applications.  

In Table 1.2 the wetting front pressure head, hf, was calculated using the 

following pedotranfer function (Rawls and Brakensiek, 1983): 

 

hf = exp[6.53 – 7.326 (0.9 · η) + 0.00158 (Clay)
2
 + 3.809 (0.9 · η)

2
 + 0.000344 (Sand) 

(Clay)  - 0.04989 (Sand) (0.9 · η ) + 0.0016 (Sand)
2 

(0.9 · η)
2 

+ 0.0016 (Clay)
2 

(0.9 · η)
2
 -

0.0000136 (Sand)
2 

(Clay) - 0.00348 (Clay)
2 

(0.9 · η) - 0.000799 (Sand)
2 

(0.9 · η)]     (1.1)  

 

where Sand and Clay units are % and η = porosity.  Assuming 90% of porosity 

described field saturation, or satiation, θs = 0.9 · η.  Porosity was calculated from the 

measured bulk density assuming particle density is 2.65 g cm
-3

. 
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1.2.2 Runoff 

Each center pivot field contained three micro runoff plots, which included a rain 

gage, runoff frame, gutter, sump, and pressure transducer.  This configuration is shown 

in Figure 1.1 

.   

 

Figure 1.1.  Picture of micro runoff plot equipment 

 

At the Fillmore site, the micro runoff plots were located in spans 3, 5, and 7.  At 

the Phelps site, all of the plots were installed in span 7. Runoff plot placement avoided 

unrepresentative rows, such as varying spacing on the end rows of the planter and wheel 
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tracks.  Micro runoff plots were designed based on procedures established in the 

National Phosphorus Research Project (Sharpley and Kleinman, 2003).   The galvanized 

steel frames, measuring 0.76 m wide by 1.83 m long and driven into the soil 15 cm, 

captured a representative sample of field runoff.  Runoff was caught by a 0.10 m wide 

gutter covering the down slope width of the frame.  The gutter routed the runoff into a 

sump extending six feet into the ground.  The gutter was exposed to the rainfall and the 

depth of rain received directly onto the gutter area was subtracted from the amount of 

runoff measured in the sump to acquire an accurate runoff from the micro runoff frame.  

Figure1.2 shows the difference between the sump hydrograph, which includes the depth 

of water from the impervious gutter, and the runoff hydrograph. 
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Figure 1.2. Hydrographs observed in sump and then converted to runoff from 

subtracting rainfall hitting impervious gutter and being directed into the sump 

 

Water in the sump was monitored using a pressure transducer hanging 

approximately five centimeters above the base of the sump.  The HOBO Onset U20 

Water Level USB Logger recorded the change in water level during an event due to 

pressure changes with a resolution of 0.21 cm.  Water level data were recorded every 

five minutes during the summer and adjusted for barometric pressure changes occurring 

throughout the day.  Runoff was assumed to be immediate from the end of the frame to 
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the sump and no routing method was considered.  Data downloaded from the pressure 

transducer were used to calculate the amount of runoff that occurred from within the 

frame during each rainfall or irrigation event.  To accommodate large and numerous 

events, a 12 volt operated, 2.84 m
3 

h
-1

 Johnson Pump Model 2270 was installed to 

remove water from the sump.  

Monitoring runoff began in 2008 at Fillmore County in soybean.  

Instrumentation was installed in August and removed in late September.  In 2009 and 

2010, runoff events in late-May through September were monitored at the Fillmore 

County and Phelps County sites.   

1.2.3 Satiated hydraulic conductivity 

Modification of Smith’s infiltration testing procedure (1999) was used to 

measure hydraulic conductivity.  Single ring infiltration tests were performed at the 

center pivot irrigated sites close to the three runoff plots in each field in late June to 

early July 2009.  Locations were chosen 1.5 m upslope of the three micro runoff frames, 

in three consecutive rows, where there had been minimal foot traffic.  The tests 

performed in the two fields at each site were completed within two days, without any 

rain or irrigation occurring between time intervals.  Eight tests were performed at each 

plot for a total of twenty-four tests per field.   

Rogers Farm hydraulic conductivity tests were performed in early July 2009.  

Tests were executed on both rotational soybean and corn.  Four tests were performed in 

each section for a total of 48 tests.  In early June 2010, single ring infiltration tests were 
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executed at the furrow irrigated site, SCAL.  In each strip, eight conductivity tests were 

performed for the rotational corn and continuous corn for a total of 144 tests.  Again, the 

tests were performed in two consecutive days on dry soil without any rain between days. 

Hydraulic conductivity was measured on the soil surface and in the subtillage 

layer, defined as the soil immediately below the tillage layer.  To measure infiltration of 

water into the soil’s surface, the test areas were prepared by removing loose residue 

while being cautious not to disturb the surface.  Surface residue partially buried in the 

soil within the perimeter of the ring was left in place.  Residue extending beyond the 

border of the test area was cut before the ring was driven into the soil so as not to create 

a gap between the metal rim and soil where water could penetrate.   

Randomly, half the sites were chosen for subtillage infiltration measurement.  

The loose, cultivated layer, approximately 15 cm depending on the cultivator, was 

removed from the tilled field.  The depth of the soil layer removed on the no-till fields 

was 80% of that removed on the corresponding tilled field to account for a higher bulk 

density in the no-till surface layer.  The test areas with the surface layer removed were 

vacuumed to avoid obstruction to water pathways by removing loose dirt that may have 

been displaced from digging.   

A 14.88 cm diameter ring was driven into the ground 15 cm.  A coffee filter was 

then set in the infiltration ring before water was added to minimize surface disturbance.  

For each plot, the temperature of water was documented to account for changes in 

viscosity, then 285 mL of tap water, equivalent to 1.64 cm of depth, was added into the 

ring and the filter was gently removed.  The time was recorded for half the surface to be 
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free from water.  If time exceeded three minutes, water was removed with a syringe until 

half the soil was free from water ponding.  Both time and the volume of water removed 

were recorded. 

The inverse form of the Green and Ampt infiltration equation (Green and Ampt, 

1911) was used to calculate field satiated hydraulic conductivity, Ks, and is given by: 

 

Ks = 1/t [F – hf ∆θ ln (1+F/ (hf ∆ θ))]                                      (1.2) 

 

in which t = time for water to infiltrate; F = cumulative infiltration; hf = wetting front 

pressure head; ∆θ = change in moisture content.  Wetting front pressure head was 

calculated using Rawls and Brakensiek (1983) pedotransfer function. At the time of the 

field infiltration test, a 136 cm
3
 soil sample next to the ring was taken to determine bulk 

density and initial water content.  The length of the bulk density core was 6 cm. A 

sample for lab hydraulic conductivity was also taken randomly from a quarter of the test 

areas. 

1.2.4 Lab experiments 

Satiated hydraulic conductivity was measured in the lab using the falling head 

method (Klute, 1986).  Tests were performed on undisturbed samples collected from the 

matching layer where the corresponding field conductivity test was performed.  The 

location of collection was immediately upslope from the field test.  The samples were 

used to verify field methods.  
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To collect lab samples, a core sampler was driven into the ground 7 cm.  The 

sample ring was 3 cm in length.  The soil was left in the ring during the test to keep the 

core intact.  A 25 cm acrylic tube was fastened to the metal ring sample using a rubber 

seal.  However, the soil/ring seam was occasionally loose, increasing the conductivity 

erroneously.  Samples were soaked in tap water for 12 hours to satiate the core and 

eliminate most of the air in the pores.  After the conductivity test was performed, the 

samples were dried to obtain bulk density.  Subsamples of the core were used for lab 

analysis of percent sand, clay, and organic matter.  

1.2.5 Depressional storage, surface seal, and aggregates 

Random roughness is a measure of the variation in height of the surface 

depressions, due to soil relief and surface residue, and relates to the depth of water that 

can be stored on the surface.  Random roughness was determined using the Saleh chain 

method (Saleh, 1993). A 1.0 m roller chain (ANSI 35 riv.type) was carefully positioned 

on the ground, parallel to the row, hugging residue and surface contours. The reduced 

length was measured.  The roughness of the field was determined using Saleh’s chain 

method equation for random roughness.  

 

RR = (1 – L2 / L1)100                                                     (1.3) 

 

where RR = random roughness, L1 = the length of the chain, L2 = the adjusted length of 

the chain when draped over depressions and residue on the ground. 
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Once ponding occurs, the water begins to pool in depressions on the surface and 

is referred to as the depressional storage.  From the random roughness, depressional 

storage was calculated by Equation 1.3 developed by Onstad (1987).  

 

DS = 0.112 · RR + 0.031 · RR
2
 - 0.012 · RR · S                          (1.4) 

 

where DS = depressional storage in centimeters, RR = random roughness in centimeters, 

and S = percent slope. 

 In 2009, residue was counted on eight random locations on the fields.  In 2010, 

residue was counted within the runoff frames. Every tenth of a foot, hits or misses were 

counted (a hit being a piece of residue larger than 0.5 cm) on the diagonals of each 

frame, and percent residue was calculated.  The furrow irrigated field residue was 

counted in 2010, upslope from the ring conductivity tests. 

Aggregate stability was investigated at the center pivot sites.  Lab procedures 

were conducted based on the study done by Kemper and Koch (1966). Approximately 

forty grams of soil was taken from the soil surface. Twelve samples were taken from 

each center pivot irrigated field and eight samples from each clay center subplot.  The 

samples were air dried for twelve hours.  The soil was then sieved through a 2 mm and 

then 1 mm sieve.  The aggregates were the portion of the soil that went through the 2 

mm sieve, but not the 1 mm sieve.  The sample was misted with water so air pockets 

would not form when placed into water.  Then the soil was placed on a 250 µm sieve, 

immersed into water, and then removed from water.  The pulsing of inundation took 
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place for three minutes at a rate of 35 submerges per minute.  Samples were dried and 

weighed and the process is repeated with a dispersing solution, hexameta-phosphate.  

The dispersing solution broke apart all aggregates so the sand and residue can be 

weighed and subtracted from the stable aggregates.    

1.2.6 Macropores 

Macropores were quantified in each field through image analysis.  An 8.6 cm 

diameter soil sampler was used to collect soil cores directly below the tillage layer, to a 

depth of approximately 6.5 cm, for both sites.  The core was flipped over and the picture 

was taken on the underside of the excavated core at each infiltration test area.  Pores 

greater than 1.0 mm were considered macropores (Luxmoore, 1981).  The pores at the 

bottom of the tillage layer were assumed to be connected with surface.  Using the 

picture, pores were counted within each sample and the diameter was measured.  Each 

pore was assumed circular.  The total area of macropores was found and compared to the 

area sampled. 

 

1.3  Results and Discussion 

1.3.1 Measured hydraulic conductivity 

Hydraulic conductivity data are presented in Table 1.3 and displayed in Figure 

1.4.   Fillmore County, Phelps County, and SCAL have a texture of silt loam.  Surface 

and subtillage hydraulic conductivity values fall in line with values reported in other 
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references for silt loam such as Rawls et al. (1993).  However, the rotational disk plot in 

SCAL was in the upper range provided.  The Rogers Farm site, which has a texture of 

silty clay loam, had high surface and subtillage hydraulic conductivity values when 

compared to those reported for silty clay loam by Rawls et al. (1993).   At Fillmore 

County, the no-till field had a geometric mean surface hydraulic conductivity of 6.2 cm 

h
-1

and the tilled field had a value of 3.9 cm h
-1

.  Phelps County followed the same trend 

as Fillmore County with a no-till hydraulic conductivity geometric mean of 8.21 cm h
-1

 

and the tilled hydraulic conductivity geometric mean of 2.82 cm h
-1

.   Rogers Farm corn 

had higher hydraulic conductivity in the tilled plot (46.3 cm h
-1

) than the no-till (8.3 cm 

h
-1

).  Rogers Farm soybean measured a hydraulic conductivity of 16.4 cm h
-1

 for no-till 

and 11.3 cm h
-1

 for the tilled.  SCAL slot, ridge, and disk treatments were found to have 

surface conductivities of 8.9 cm h
-1

, 4.6 cm h
-1

, and 22.1 cm h
-1

, respectively, for the 

rotational corn and 4.5 cm h
-1

, 2.8 cm h
-1

, and 8.7cm h
-1

 for the slot, ridge, and disk 

treatments in continuous corn. 
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Table 1.3. Geometric means of satiated hydraulic conductivity in no-till and tilled fields 

for field tests.  Twelve tests were conducted per plot for Fillmore County, Phelps 

County, and SCAL.  Six tests were run for each value in Rogers Farm. 

      Geometric Mean 

   (mean ± 1 standard deviation)* 

Site Plot Date Surface Ks, cm h
-1

 Subtillage Ks, cm h
-1

 

Fillmore County No-till 22-Jun-09 6.18 0.88 

Rotational Corn   (2.10-18.22) (0.15-5.37) 

Tilled** 22-Jun-09 3.89 1.03 

 (1.44-10.49) (0.56-1.88) 

    

Phelps County No-till 23-Jun-09 8.21 1.27 

Rotational Corn   (3.47-19.44) (0.61-2.62) 

 Tilled 23-Jun-09 2.82 1.42 

(1.26-6.30) (0.75-2.67) 

Rogers Farm No-till 7,8-July-09 8.25 13.08 

Rotational Corn (1.39-49.00) (5.21-32.84) 

Tilled 7,8-July-09 46.29 19.83 

(26.28-81.52) (11.23-34.99) 

Rogers Farm No-till 7,8-July-09 16.35 4.94 

Rotational Soybean (4.03-66.36) (1.25-19.45) 

Tilled 7,8-July-09 11.3 15.26 

(1.85-68.98) (1.90-122.57) 

SCAL Slot 10-Jun-10 8.89 1.94 

Rotational Corn (1.26-18.55) (1.08-2.49) 

Ridge 10-Jun-10 4.64 1.39 

(2.57-8.39) (0.74-2.64) 

Disk 11-Jun-10 22.13 1.04 

(11.08-44.20) (0.44-2.50) 

SCAL Slot 10-Jun-10 4.48 0.94 

Continuous Corn (1.26-18.55) (0.57-1.53) 

 Ridge 10-Jun-10 2.81 0.84 

 (0.90-8.77) (0.47-1.49 

 Disk 11-Jun-10 8.74 0.54 

      (2.31-33.04) (0.21-1.40) 

* mean �  standard deviation �  10����������� ���������� 

** Only eight tests are included for Fillmore County tilled 
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The high surface hydraulic conductivity values measured in the field were also 

present in the lab tests as shown in the plot of lab versus field graph in Figure 1.3.   The 

lab test had higher hydraulic conductivity values.  The lab data illustrated the field 

methods were sufficient.  The geometric mean of field measured satiated hydraulic 

conductivity over the geometric mean of the lab satiated hydraulic conductivity was 0.29 

for surface measurements and 0.54 for the values in the subtillage layer, indicating field 

values were slightly higher. 

 

 

Figure 1.3. Field vs. lab satiated hydraulic conductivity for surface and subtillage layers 
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Figure 1.4 Surface and subtillage hydraulic conductivity for tilled and no-till plots.  

Error bars indicate standard deviation    
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Analysis of variance was performed for the satiated hydraulic conductivity 

(Table 1.4).   More detailed results are presented in Appendix A.  Statistical difference 

(P < 0.10) existed between surface hydraulic conductivities in Phelps County and in 

Fillmore County, with no-till values being higher.   At the furrow irrigation site, SCAL, 

a significant difference was found in the rotational corn among each variation for slot, 

ridge, and disk treatment surface hydraulic conductivities. In continuous corn at SCAL, 

only ridge and disk were significantly different.  Disk had the highest hydraulic 

conductivity.  The tilled field was significantly higher in Rogers Farm corn than the no-

till measurements.  The Rogers Farm soybean measurements had no trend.  The only 

subtillage hydraulic conductivity comparison that was different was the disk versus slot 

treatments in SCAL, indicating differences in soil from no-till systems that affect 

hydraulic conductivity are within the tillage (surface) layer of the soil.  
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Table 1.4. Two-way analysis of variance of satiated hydraulic conductivity (Holm-Sidak 

method). Statistically significant if P < 0.10. 

Site Comparisons for factor Comparison  Unadjusted P Different 

Fillmore County Tillage Treatment within Surface Tilled vs. No-till 0.028 Yes 

 
Tillage Treatment within Subtillage Tilled vs. No-till 0.112 No 

 
Phelps County Tillage Treatment within Surface Tilled vs. No-till 0.001 Yes 

 
Tillage Treatment within Subtillage Tilled vs. No-till 0.713 No 

 
Rogers Farm 

Corn 
Tillage Treatment within Surface Tilled vs. No-till 0.012 Yes 

 Tillage Treatment within Subtillage Tilled vs. No-till 0.512 No 

     

Rogers Farm 

Soybean 
Tillage Treatment within Surface Tilled vs. No-till 0.709 No 

  Tillage Treatment within Subtillage Tilled vs. No-till 0.262 No 

    

SCAL Rotation Tillage Treatment within Surface Disk vs. Ridge <0.001 Yes 

Tillage Treatment within Surface Disk vs. Slot 0.001 Yes 

Tillage Treatment within Surface Slot vs. Ridge 0.029 Yes 

Tillage Treatment within Subtillage Disk vs. Ridge 0.115 No 

Tillage Treatment within Subtillage Disk vs. Slot 0.023 Yes 

Tillage Treatment within Subtillage Slot vs. Ridge 0.446 No 

     

SCAL 

Continuous 
Tillage Treatment within Surface Disk vs. Ridge 0.008 Yes 

Tillage Treatment within Surface Disk vs. Slot 0.163 No 

Tillage Treatment within Surface Slot vs. Ridge 0.191 No 

Tillage Treatment within Subtillage Disk vs. Ridge 0.42 No 

Tillage Treatment within Subtillage Disk vs. Slot 0.197 No 

Tillage Treatment within Subtillage Slot vs. Ridge 0.624 No 
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Texture was investigated as a possible influence on hydraulic conductivity 

results.  The no-till field at Fillmore County had significantly higher clay content, with P 

= 0.035. At Phelps County, the tilled field had a significantly higher percentage of sand 

than no-till. Since at the other two sites the tillage treatment variations were located 

within the same field, no differences were found in texture.  Two models were used to 

determined hydraulic conductivity based on the surface properties of the soil.  

ROSETTA (Schaap et al., 2001) is a model for predicting hydraulic conductivity with an 

input of percent sand, silt, and clay and bulk density. The Soil Water Characteristics tool 

(Saxton and Rawls 2006), which is a model that uses pedotransfer functions, requires an 

input of percent sand, clay, and organic matter and bulk density.  The results are shown 

in Table 1.5.  Based on texture differences, hydraulic conductivity should be higher in 

the tilled fields at Phelps County and Fillmore County, confirming higher hydraulic 

conductivity in no-till fields was not due to the percent sand and clay.  
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Table 1.5. Texture, organic matter, and bulk density predicted satiated hydraulic 

conductivity using Soil Water Characteristics tool (SWC) and ROSETTA.  Measured  

          

Ks, cm h
-1

 

Site 

 

 

Plot 

 

 

Measured Subtillage 

(mean ± 1 standard deviation)* 

SWC 

 

 

ROSETTA 

 

 

Fillmore County No-till 0.88 1.32 1.55 

(0.15-5.37) 
 

Tilled 0.67 1.41 7.24 

(0.27-1.67) 

  

 Phelps County No-till 1.27 1.48 1.76 

(0.61-2.62) 

 Tilled 1.42 1.67 2.99 

(0.75-2.67) 

 * mean �  standard deviation �  10���������� � ���������� 

 Data from the tilled field in Fillmore County were collected ten days after 

cultivation.  The ground was wet when cultivation took place, resulting in a very cloddy 

surface.  Only one of the spans where the experiments were conducted was cultivated 

because the corn was high.  Minimal rainfall (<1.27 cm) occurred between the 

cultivation of the single plot and testing; therefore, no surface seal was expected to form.  

The data from this span were excluded in the above analysis, and are given below (Table 

1.6).  The excluded June cultivated plot at Fillmore County tilled had significantly 

higher measured hydraulic conductivity values than the other two plots in the tilled field. 
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Table 1.6. Geometric mean Ks span 3 data for tilled field in the above Fillmore County 

analysis; there were 4 of replications of the test.  The data were not used in analysis in 

Tables 1.3 -1.5. 

Geometric Mean 

(mean ± 1 standard deviation)* 

 

Site 

 

Plot Surface Ks, cm h
-1

 Subtillage Ks, cm h
-1

 

Fillmore County  

 

Tilled Span 3  

 

43.9 

(31.3-61.6) 

0.29 

(0.12-0.67) 

* mean �  standard deviation �  10�������� � ��������� 

 

The value for the surface satiated conductivity conducted in cracked soil at 

Fillmore County tilled resembles the magnitude of hydraulic conductivity for the Rogers 

Farm Corn tilled plot value.  It is possible the high values observed at Rogers Farm are 

the result of dried soil that has cracked due to high clay content (29%).  Moisture deficit 

was highest during the tests run at Rogers Farm (∆θ = 0.30) and cracks were observed in 

the corn tilled field at Rogers Farm.  SCAL disked plot may have been high due to the 

low bulk density (Table 1.2).  Measurement of hydraulic conductivity recently after 

tillage can increase the bulk density, and therefore the hydraulic conductivity.  This 

study assumed satiated hydraulic conductivity was constant with time although shown in 

other studies to be highly variable throughout the cropping season (Starr, 1990 and 

Gantzer and Blake, 1987).  Tillage systems may have a positive effect on infiltration 

immediately after tillage, before reconsolidation and surface sealing has taken place.  

Therefore, our infiltration results may be influenced by the time of measurement.   
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1.3.2 Runoff  

At the center pivot sites, 55 irrigation and rainfall runoff events were captured 

during the crop seasons from 2008-2010.  An example runoff hydrograph from one of 

the runoff events is shown in Figure 1.5.   

 

Figure 1.5.  Example runoff hydrograph and rainfall hyetograph of an observed runoff 

event. Total precipitation = 1.78 cm 

 

Forty-three pairs of the events (both tilled and no-till) were the result of rainfall and 12 

individual events were monitored irrigation events.  Figures 1.6 and 1.7 display 

cumulative rainfall runoff over the monitored seasons.   Events shown do no encompass 
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the total runoff events that occurred during the time frame.  These are events with 

complete data from both no-till and tilled fields and ones with questionable or 

incomplete data were excluded. 

At the sites, the two fields are located within 1.5 km, so rainfall depths were 

similar at both fields.  For the no-till field in Fillmore County, 7.2 cm of runoff was 

observed.  During these same events, 9.3 cm cumulative runoff was obtained from the 

tilled field in Fillmore County.  The cumulative rainfall was 38.1 cm for no-till and 40.1 

cm for tilled.  Runoff vales at this site were not significantly different, so a conclusion 

could not be drawn.  Rainfall totals for events included in the graph at Phelps County 

were 58.8 cm for no-till and 62.7 cm for tilled.  Cumulative amounts of runoff were 6.4 

cm for no-till and 14.6 cm for tilled in Phelps County. These values were significantly 

different. 
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Figure 1.6. Growing season cumulative runoff with standard deviation error bars from 

rainfall events during Fillmore County cropping seasons 2008-2010 
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Figure 1.7. Growing season cumulative runoff with standard deviation error bars from 

rainfall events during Phelps County cropping seasons 2008-2010 

 

Few irrigation events were captured due to incomplete rain data in 2009 since a 

rain gauge was not installed in the field.  In Fillmore County average irrigation runoff 

was 14.9% for tilled and 1.7% for no-till for six and three monitored events respectively.  

In Phelps County tilled 52.0% of irrigation water ran off compared with 38% runoff 

from no-till.  Two events were recorded to have runoff from no-till and one irrigation 

runoff event from tilled (Table 1.7).   
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Table 1.7. Irrigation events and the corresponding runoff depths 

Site Field Year Day-Month Irrigation, cm Runoff, cm 

Fillmore County No-till 2010 4-Aug 2.74 0.02 

   

10-Aug 2.74 0.03 

   

20-Aug 3.12 0.10 

 

Tilled 2008 8/27-8/28 3.41 0.45 

  

2009 28-Jun 1.81 0.05 

   

7-Jul 2.08 0.34 

   

5-Aug 2.08 0.89 

  

2010 6-Aug 3.18 0.47 

12-Aug 3.33 0.17 

      Phelps County No-till 2009 11-Aug 2.54 0.15 

  

2010 13-Jun 2.18 0.83 

  Tilled 2009 21-Jul 2.29 1.20 

 

1.3.3 Surface seal, storage, and aggregates 

To explore reasons for variations in hydraulic conductivity between tilled and 

no-till, surface sealing, depressional storage, aggregate stability, and residue were 

investigated.  The amount of water storage per field was determined by calculating 

depressional storage. The results of depressional storage are shown in Table1.8.  

Depressional storage was calculated assuming residue is a barrier that can retain pools of 

water and therefore reduce runoff.  No-tilled fields had a depressional storage of about 

0.13 cm while tilled fields were in the 0.02-0.03 cm range. Depressional storage reduces 

runoff because soil depressions must be filled before runoff occurs.  The storage is a 

result of soil microrelief and residue, which can retain a significant amount of water 

after ponding occurs.  Therefore, more residue and soil depressions would decrease the 
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amount of runoff.  From a one-way analysis of variance, Fillmore County no-till 

depressional storage was significantly larger than tilled (P = 0.002).  Phelps County no-

till also had significantly more depressional storage than tilled (P = <0.001).   

Residue slows down the water velocity and protects the ground from rain 

impaction.  In 2009, residue measurements constituted about 20% cover for tilled fields.  

No-till fields differed.  Fillmore County, when the no-till field utilized strip till, had 65% 

residue and Phelps retained 82% of the previous year’s residue on the surface.  In 2010, 

when Fillmore County no-till switched to true no-till, both no-till fields had residue in 

the 90% range contrastingly the tilled fields having about 40% cover.  These percentages 

align with values given by the Natural Resources Conservation Service for tilled and no-

till residue (USDA NRCS, 1992). Slot and ridge treatments at Clay County had about 

40% residue cover while disk treatment residue was 14%.  

Aggregate stability results showed no-till sites have significantly more stable 

aggregates (Figure 1.8).  Forty-five percent and 33% of aggregates are stable in no-till 

fields at Fillmore County and Phelps County, respectively.  Tilled field aggregate tests 

resulted in 28% and 13% stable aggregates from Fillmore County and Phelps County 

respectively.  
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Table 1.8. Results from percent residue, depressional storage (DS), and aggregate 

stability 

May 2009 Late May 2010 Early Aug 2009  

County Plot Residue, % Residue, % DS, cm 

Stable 

Aggregates, % 

 (std dev) (std dev) (stdev) 

Fillmore No-till 65  92.84  0.13  45 

 (6.70) (0.06) (0.08) 

Tilled 25  37.41  0.03  28 

 (15.30) (0.02) (0.06) 

 

Phelps No-till 82  91.42  0.13  33 

 (5.90) (0.05) (0.08) 

Tilled 21  46.74  0.02  13 

 (17.00) (0.02) (0.04) 

 

Clay Slot NA 45.70  NA 31 

 (8.50) (0.13) 

Ridge NA 33.80  NA 36 

 (10.50) (0.17) 

Disk NA 14.70  NA 24 

     (8.10)   (0.12) 

 

1.3.4 Macropores 

On average about 0.01 - 0 .15% of the area of the field was found to have 

macropores (Table 1.9), which is at the lower end of the range cited by Logsdon et al. 

(1990)  for pores greater in diameter than 0.04 cm (0.03-1.7% of total area).  Since this 

study included pores larger than 0.1 cm, not 0.04 cm, it is expected that less area would 

be found.  There was no difference in percentage of surface area from macropores 

between tilled and no-till at Fillmore County or at Phelps County, or between plots at 

Clay County.  Rogers Farm had significantly higher macropore area in the no-till field.  

This may be from the long term applications of no-till.  Rogers Farm has had consistent 
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tillage practices for 28 years when experiment was conducted.  The other sites have been 

consistent for about seven years. Another factor may be the depth at which measured 

(6.5 cm) did not correspond to the connectivity of the surface pores.   Perret et al. (1999) 

used CAT scanning and found most macropore networks reach only the 4 cm length, 

falling short of the sampled region in this experiment.  Future investigation to determine 

connectivity of the macropores to see how the network compares at different depths 

would help in understanding the effects of macropores on these fields.    

Table 1.9.Percentage of area contributing to macropores 

Site Plot Macropore area, % 

Fillmore County No-till 0.028 

Tilled 0.056 

Phelps County No-till 0.009 

Tilled 0.005 

Rogers Farm No-till 0.166 

Tilled 0.025 

SCAL Slot 0.101 

Ridge 0.100 

Disk 0.147 

 

 

1.3.5 Discussion 

Even though no difference was determined in macropore quantity at three of the 

four sites, percent residue, depressional storage, and aggregate stability were all 

significantly higher in no-till, which appeared to influence hydraulic conductivity and 
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runoff.  Hydraulic conductivity was significantly higher in the no-till field at Phelps 

County.  The higher hydraulic conductivity measurements in the no-till field 

corresponded to significantly less runoff from the no-till field in Phelps County.  

Although this may be influenced by residue or aggregate stability, the slope of the no-till 

field is less than the tilled field in Phelps County, which could reduce runoff.  However, 

depressional storage is not sensitive to the percent slope term.  Changing the no-till field 

in Phelps County to have a slope matching the tilled field resulted in only a tenth of a 

millimeter drop in depressional storage.   

In the no-till field at Fillmore County, the hydraulic conductivity values were 

significantly higher than tilled.  The observed runoff, however, there was no significant 

difference found between tillage treatments.  A few reasons could be increasing the 

runoff at the no-till field.  Frequent rainfall and irrigation could result in no-till moisture 

content being higher, and therefore, increasing the observed runoff.   Isensee et al. 

(1993) found on average, when events were less than six days apart, runoff was higher 

on the no-till field.  As discussed previously, residue plays an important role in reducing 

runoff.  Limited residue could lead to more surface sealing and reducing the hydraulic 

conductivity.  Because Fillmore County no-till used strip tillage in 2009, 30% less 

residue covered the surface. However, no differences were visible among 2009 runoff 

and the other years. 

Disk hydraulic conductivity measurements were significantly higher in SCAL 

rotational corn.  This may be because of the bulk density being lower.  Measurements 

taken in dryland corn showed tilled to have the highest hydraulic conductivity.  Soil was 
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dry and cracked which may have influence the abnormally high data from the tilled 

dryland corn.   

Texture was found to be significantly different between the fields where the 

runoff plots were located.  Infiltration rates are impacted by texture as shown by the Soil 

Water Characteristics tool, which takes percent sand, clay, and organic matter to predict 

hydraulic conductivity.  This model predicted lower satiated conductivity in the no-till 

fields at Fillmore County and Phelps County, indicating the impact of no-till 

overshadowed the texture influence. 

For future investigations, the time period between rainfall and irrigation events 

should be included in the analysis.  No-till may remain at a higher moisture content, 

increasing the amount of runoff.  Macropore connectivity should be quantified to better 

understand the impact large pores have on the field.  Also, a longer time period between 

cultivation and hydraulic conductivity experiments should be practiced to account for 

surface sealing.   

1.4  Conclusion 

Effects of long-term no-till systems were found to be variable among sites.  The 

surface hydraulic conductivity was significantly higher for no-till at the two center pivot 

irrigated sites, concluding at these sites, no-till did increase infiltration. Runoff was 

significantly higher in the tilled field in Phelps County, and in Fillmore County no 

significant difference between field runoff was found.  However, the rotational corn 

furrow irrigated field and dryland rotational corn field had higher hydraulic conductivity 
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in the tilled plot.  The continuous corn furrow irrigated field and the dryland rotational 

soybean field showed little difference among tillage practices.   

No-till fields showed greater residue, depressional storage, and higher aggregate 

stability indicative of no-till systems.  At the center pivot irrigated sites, these qualities 

pointed to higher amount of water to infiltrate, and therefore, less runoff during rain and 

irrigation events.  With these qualities, runoff is reduced and farmers may be able to 

lower pressure pivot packages to save energy.  
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2 CHAPTER 2: DETERMINING SATIATED HYDRAULIC CONDUCTIVITY 

FOR THE GREEN AND AMPT EQUATION USING NATURAL RUNOFF 

DATA 

2.1  Introduction 

The state of Nebraska receives variable annual rainfall depths, ranging from 

about 30 cm to 73 cm rainfall moving west to east across the state (USGS, 2005).  In 

many regions irrigation is necessary for growing crops, illustrated by the 8 million acres 

irrigated in Nebraska (USDA Census, 2007).  Employing economical irrigation practices 

requires understanding the effect of management systems on the hydraulic properties of 

the soil (Gilley, 1984). With differences in rainfall, and a large percentage of agriculture 

land that is irrigated, focus must be put on the hydrology of the soil in order to 

understand how water can most effectively be used. This study was performed in eastern 

and south central Nebraska on rotational corn and soybean in order to understand the 

role tillage plays on water management. Conservation tillage systems may respond 

efficiently to low pressure irrigation by increasing infiltration and decreasing runoff.  If 

expected infiltration rates can be quantified, this response would create an opportunity 

for energy savings and improve conservation of soil and water resources. 

No-till planting is defined as minimal disturbance of the soil surface by placing 

the seed directly into the soil without disruption of the surface residue, and tillage is the 

breaking of the structure of soil surface by cultivation (ASABE, 2007). The effect of 

tillage practices on irrigation and rainfall is complex and requires knowledge of the 
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influence different tillage systems have on the soil characteristics and how these 

qualities influence infiltration.  Many variables play a part in adding to the complexity 

of the soil-water interaction.   It is unknown how many of the variables must be taken 

into account in order to accurately predict how different tillage systems will impact 

runoff (Loague and Freeze, 1985). 

Modeling infiltration into the soil simplifies the complexity and is a useful tool 

for quantifying runoff.  The ability to accurately predict the multifaceted process of 

infiltration and runoff from easily measurable soil properties, simplifies soil hydrology, 

advances research, and aids in assimilating results.  The useful instrument of modeling 

runoff sheds light on advantages to specific tillage systems.   

The difference between infiltration rates and rainfall or irrigation intensity can be 

estimated using the Green and Ampt infiltration equation, which is based on continuity 

and Darcy’s Law of water flow through soil (Green and Ampt, 1911).  Many computer 

models use the Green and Ampt equation to model the infiltration of water into the soil.  

In order to run a Green and Ampt based model, properties that describe infiltration are 

required.  The input parameters for the equation include the wetting front pressure head 

(hf), satiated hydraulic conductivity (Ks), and fillable porosity (∆θ).  Satiated hydraulic 

conductivity describes the ability of a soil to transmit water under near saturated 

conditions (ASABE, 2007).  This parameter is difficult to quantify because of its 

dependence on many other properties, and consequently, its high variability in space 

(Rehfeldt et al., 1992). Output values from the Green and Ampt equation are highly 
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sensitive to this term, and the reliability of the Green and Ampt output depends on the 

accuracy of the satiated hydraulic conductivity (Brakensiek and Onstad 1977). 

Methods for determining Ks range from pedotranfer functions to parameter 

optimization.  Although calibrating a model by optimizing Ks, such as minimizing the 

sum of squares of measured and observed runoff offers a reliable method for 

determining Ks, calibration is difficult and time consuming.  Frequently, observed runoff 

data are not available.  To resolve this problem, many equations have been developed to 

predict Ks using easily measurable soil properties and the characteristics of the field as 

inputs.   

Measuring all the required soil properties for a given area is often not a viable 

option.  Pedotransfer functions offer equations to predict hard to measure parameters 

using easy-to-measure soil properties, such as texture.  These properties can often be 

found from other resources, such as Web Soil Survey (USDA), therefore, requiring no 

field measurements.  These functions allow for quick analysis and can be used to derive 

parameters for modeling.  

The objective of this chapter is to investigate four pedotransfer functions models: 

Crust Factor, referring to an equation developed by Rawls et al (1990); ROSETTA 

(Schaap et al., 2001); an equation used in the Water Erosion Prediction Project (WEPP) 

(Nearing, 1996); and Soil Water Characteristics tool (SWC) (Saxton and Rawls, 2006) 

to determine which equation most accurately describes satiated hydraulic conductivity 

when both tilled and no-till fields are considered.  These equations are also implemented 

to determine the most accurate method for describing center pivot irrigation runoff.   
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2.2 Methods 

 Runoff from rainfall and irrigation was observed during the 2010 crop season at 

two center pivot irrigated sites in Nebraska (see Chapter 1 for field descriptions). The 

sites, Fillmore County and Phelps County, each include paired no-till and tilled fields.  

To establish an accurate model for describing the impact of no-till planting on runoff, 

four equations were chosen to define satiated hydraulic conductivity in the Green and 

Ampt equation.  The observed runoff was compared to the Green and Ampt predicted 

runoff values for each of the four pedotransfer functions. 

2.2.1 The Green and Ampt equation 

The Green and Ampt model (Green and Ampt, 1911) of a one-dimensional, 

piston flow wetting front and a constant initial moisture content was used in the 

infiltration rate calculations for the tilled and no-till fields.  Using the iterative method 

for unsteady rainfall by Chow et al (1988), the pre-ponding equations are: 

 

f(t) = R(t)                                                          (2.1) 

F(t+∆t) = ∆t R(t) + F(t)                                                 (2.2) 

 

where f(t) = infiltration rate at time, t, R(t) = intensity of rainfall or irrigation, F(t+∆t) = 

cumulative infiltration at next time step.  Time of ponding (tp) is determined once f(t+∆t) 
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< R(t).  Assuming no accumulation of ponded water depth on surface, the equations are 

then: 

 

f(tp ) = R(tp)                                                        (2.3) 

F(tp) = Ks hf ∆θ / (R(tp)-Ks)                                             (2.4) 

∆t’ = (F(tp) – F)/R(tp)                                                 (2.5) 

tp =t + ∆t’                                                          (2.6) 

∆θ = 0.9 η - θi                                                        (2.7) 

 

where ∆t’ = increase in time from the beginning of the time interval to when ponding 

occurs, η = porosity, θi = initial moisture content.  After surface satiation, the infiltration 

equations are adjusted to: 

 

f = Ks [(hf ∆θ / F) + 1]                                                  (2.8) 

t = {F - F(tp)- hf ∆θ [ln(F + hf  ∆θ) / F(tp)+ hf ·∆θ)]} / Ks + tp.                   (2.9) 

 

Equation 2.9 is implicit in respect to F, and an iterative solver must be used to obtain 

cumulative infiltration for each step.  In replacement of Equation 2.10, an explicit 

equation was used for calculating F after ponding occurs, which was developed by D. E. 

Eisenhauer (personal communication, 2010).  Values compared favorably with 

equations developed by Hachum and Alfaro (1980), which confirmed the correctness of 

the model.   
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 Porosity was calculated from field measured bulk density.  Assuming 90% of 

porosity described field saturation, or satiation, when air is trapped in soil pores 

resulting in incomplete soil saturation (SSSA, 1996), θs = 0.9 η. The average initial 

matric potential was determined using 15 cm Watermarks in two locations at each field 

to describe the first 30 cm of soil.  The Soil Water Characteristics tool developed by 

Saxton and Rawls (2006) was used to create a soil water retention curve (Figures 2.1, 

2.2) from percent sand, percent clay, bulk density, and percent organic matter to find 

initial moisture content before each rainfall or irrigation event. 

 

Figure 2.1. Soil water retention curve for Fillmore County developed using the Soil 

Water Characteristics tool 
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Figure 2.2. Soil water retention curve for Phelps County developed using the Soil Water 

Characteristics tool 

 

Wetting front pressure head was calculated using the Rawls and Brakensiek 

(1983) pedotransfer function:  
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where Sand and Clay equal the percent sand and clay contents respectively.  The 

calculated parameters for wetting front pressure head and satiated moisture content, used 

in the Green and Ampt model are shown in Table 2.1.   

Table 2.1. Green and Ampt input parameters. ρb = bulk density, hf = wetting front 

pressure head, and θs =  field saturated moisture content 

Site 

 

Field 

 
θs, cm

3
/cm

3 

(std dev) 

hf, cm 

(std dev) 

ρb, g cm
-3 

(std dev) 

Fillmore County No-till 0.50  35.9  1.19  

    (0.02) (4.2) (0.05) 

  Tilled 0.61  28.1  1.09  

    (0.14) (1.2) (0.40) 

          

Phelps County No-till 0.51  29.5  1.15  

    (0.01) (3.7) (0.02) 

  Tilled 0.52  23.9  1.10  

    (0.00) (0.6) (0.0) 

 

To solve for cumulative infiltration during a rainfall or irrigation event, an 

accurate value for Ks must be developed.  This parameter can range in orders of 

magnitude when measured (Rawls et al., 1993).  Many models offer estimates of this 

parameter and are discussed below.     

2.2.2 Satiated hydraulic conductivity  

 The first method applied to define the satiated hydraulic conductivity was the 

field measured procedure. The inverse Green and Ampt infiltration equation was applied 

to calculate field satiated surface hydraulic conductivity as discussed in Chapter 1.  The 

data measured in the field are given in Table 1.3.   
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Early season, ponded infiltration tests did not include the effect of aggregate 

breakdown; therefore, the second method to determine satiated conductivity was 

Rawls’s crust adjustment equation (Rawls et al., 1990).  The equation adjusts the field 

measured surface hydraulic conductivity to account for the effects of the surface seal.  

An adjusted satiated hydraulic conductivity, Kc, was used based on the crust 

conductivity developed by Rawls et al. (1990). 

 

Kc = Ks · SC · Z / (Ψi + Z)                                               (2.11) 

SC = 0.736 + 0.0019 · (Sand)                                           (2.12) 

Ψi = 45.19 – 46.68 · (SC)                                                 (2.13) 

 

SC and Ψi, the correction factor for partial saturation and matric potential drop at the 

subcrust level, respectively, which are developed from pedotransfer functions.  Crust 

thickness, Z, was assumed to be 0.5 cm for both tillage treatments as was in the Rawls et 

al. study (1990).  

The second model to define Ks was ROSETTA (Schaap et al., 2001).  

ROSETTA uses five pedotransfer functions developed from the input of bulk density 

and percent sand, silt, and clay.  This computational model is an artificial neural network 

(Schaap et al., 2001).   

The equations in the Water Erosion Prediction Project (WEPP) (Nearing et al., 

1996) were used to calculate Ks.  WEPP uses an optimized conductivity for the fallow 

condition based evaluation of 43 soils. The fallow hydraulic conductivity (Kef) is 
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calculated using Hydrologic Soil Group and percent sand. For Hydrologic Soil Group B, 

the following describes fallow hydraulic conductivity for all four fields (Nearing et al., 

1996): 

 

Kef = 1.17 + 0.072 Sand.                                            (2.14) 

 

Based on the curve number, which is an indication of how much runoff is 

expected from a surface for specified management practices and cropping, ratios were 

developed by Nearing et al. (1996) to describe the crop condition hydraulic conductivity 

(Ks) from the fallow condition.  According to the Nearing et al. (1996) research, the ratio 

of Ks/Kef was consistent within a soil group for a given land use and tillage practice.  

The ratios provided by Nearing et al. (1996) are shown in Table 2.2.  In addition to the 

ratios, a regression analysis related Ks to the fallow hydraulic conductivity and curve 

number by Equation 2.15.   

Table 2.2. Ratio of cropped to fallow hydraulic conductivity given by Nearing et al., 

1996 

Crop Type N  Ks/Kef  

Conventional corn 81 1.58 

Conservation corn 80 1.79  

Conventional soybean 81 1.70 

Conservation soybean 80 1.91 

 

Equation 2.15 was developed by Nearing et al. (1996) to provide a means of using 

management practices not provided in the above ratio table (Table 2.2).  According to 
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Nearing et al. (1996), the equation more accurately describes cropped satiated hydraulic 

conductivity when compared to the ratios. 

 

                          Ks = 56.82 Kef 
0.286

/ [1 + 0.051 exp (0.06 N)] - 2                         (2.15) 

 

where N = the runoff curve number.  The WEPP equation developed for cropped 

hydraulic conductivity requires knowledge of the curve number for a given field.  The 

SCS Handbook (1985) gives curves numbers for different land uses and treatments.     

The curve number for conventional tillage in soybean adequately described the tilled 

fields where runoff was observed; however the closest description in the handbook for 

no-till land was conservation tillage.  This curve number was originally developed on 

cultivated land with varying amounts of residue (Rawls and Onstad, 1980) and may not 

be descriptive of the no-till fields in this study.  Since minimal literature describes curve 

numbers for no-till fields, the data collected from runoff events at the two center pivot 

irrigated sites were used to develop a curve number to compare with the handbook 

tabular value.  This was accomplished by rearranging the SCS curve number equation to 

solve for maximum surface storage, S (Hawkins et al., 1985): 

 

S = 5[P + 2Q – (4Q
2
+ 5 PQ)

1/2
]                                       (2.16)      
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where P = rainfall and Q = runoff.  Then, the curve number was calculated by averaging 

the maximum surface storage, S, for all events per treatment application (USDA-SCS, 

1985): 

 

N = 25400/(254 + S).                                                (2.17) 

 

In the above equation, S has units of mm.  Calculated curve numbers for tilled and no-

till fields were used in Equation 2.15.   

 Lastly, Soil Water Characteristics tool (SWC) (Saxton and Rawls 2006) was 

used to predict satiated hydraulic conductivity.  A compilation of regression equations 

from other studies is used in the model.  SWC requires inputs of percent sand and clay 

or textural class, organic matter, and bulk density.   

2.2.3 Depressional storage 

The amount of water stored on the soil surface before runoff occurs is 

depressional storage, DS and needs to be considered in the model. Two methods were 

used to find this value.  NRCS (2005) provides a table of values based on percent 

residue and percent slope on a field.  The second method was measuring DS in the field.  

Random roughness is a measure of the variation in height of the surface depressions due 

to soil relief and surface residue and relates to the depth of water that can be stored on 

the surface.  Random roughness was determined using the Saleh chain method (Saleh, 

1993). A 1.0 m roller chain (ANSI 35 riv.type) was carefully positioned on the ground, 
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parallel to the row, hugging residue and surface contours. The reduced length was 

measured.    The roughness of the field was determined using Saleh’s chain method 

equation for random roughness.  

 

RR = (1 – L2 / L1)100                                                     (2.18) 

 

where RR = random roughness, L1 = the length of the chain, L2 = the adjusted length of 

the chain when draped over divots and residue on the ground. 

Once ponding occurs, the water begins to pool in depressions on the surface and 

is referred to as the depressional storage.  From the random roughness, depressional 

storage was calculated by Equation 1.3 developed by Onstad (1987).  

 

DS = 0.112 · RR + 0.031 · RR
2
 - 0.012 · RR · S                          (2.19) 

 

where DS = depressional storage in cm and S = percent slope.  The depth of 

depressional storage was subtracted from the total runoff modeled using the Green and 

Ampt equation in order to account for variations in roughness. 

2.2.4 Model validation 

The models used were assessed based on efficiency and linear regression 

statistics.  The cumulative runoff for each observed event was plotted against predicted 

cumulative runoff from the Green and Ampt model based on the different hydraulic 
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conductivities.  Similar values of observed and modeled landed close to the unit slope 

regression line.   

Nash-Sutcliff efficiency (NSE) was used to evaluate the hydraulic conductivity 

values (Nash and Sutcliff, 1970): 

 

NSE = 1 – [ ∑ (Yobs – Ymodel)
2
/ ∑ (Yobs – Ymean)

2
]                       (2.20) 

 

where NSE is the coefficient of efficiency, Yobs is the observed runoff from rainfall and 

irrigation, Ymodel is the predicted runoff for each event during 2010 crop season, and 

Ymean is the mean observed event runoff.  NSE can range from – ∞ to 1.  A perfect fit is 

1, indicating the sum of squares cancelled out due to the observed and predicted values 

being equal.  A negative number indicates the model is no better than using the mean of 

the data as the predictor.   

The root mean squared error (RMSE) was also calculated by: 

 

RMSE = [ ∑ (Yobs – Ymodel)
2
/ n]

1/2

.                                 (2.21) 

 

In the above equation, n = number of runoff events captured.  The RMSE indicates 

precision, and the smaller the number, the closer the model matches the observed values. 

RMSE has the same units as the values being compared and the magnitude of the RMSE 

is based on the data.   
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Lastly, the percent bias (PBIAS) was found (Moriasi et al, 2007).   

 

PBIAS = � ∑ (Ymodel � Yobs�100/∑ �Y
obs

��                          (2.22) 

 

where PBIAS indicates the positive or negative percentage of deviation of the modeled 

data from the observed.  A positive value indicates the model over predicted the runoff 

and a negative value indicates the tendency of the model to under predicted the runoff. 

2.2.5 Observed runoff 

Each of the four fields contained three micro runoff plots, which included a rain 

gage, runoff frame, gutter, sump, and pressure transducer, as described in Chapter 1.  

The Soil Hydrologic Group of each field is B. In 2010, a tipping rain gauge was installed 

in soybean to determine intensity of rainfall and irrigation.   Because of the 

completeness and detail of the rain data, along with the high amount of collected 

observed runoff events in 2010, these data were chosen for comparison with the Green 

and Ampt model. Utilizing the rain intensity and runoff data, hydrographs were 

developed for both observed data and the modeled data from the iterative Green and 

Ampt equation.   

Irrigation application rates formed by the rain gauge located in the middle runoff 

plot in each field (span 5 in Fillmore and span 7 in Phelps) were plotted for each 

irrigation runoff event.  Using the center pivot design for the fields, design application 

rate curves were formed corresponding to the sprinklers in each span where runoff plots 
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were located for a 2.54 cm application.   The characteristics of the center pivots used for 

the design curves are shown in Table 2.3.  

Table 2.3. Center pivot characteristics.  R = distance to sprinkler; Rs = system length; Wr 

= wetted radius, Da = depth applied. 

Site  Plot Span R, m Q, L/s Da, cm Rs, m Wr, m Field 

size, ha  

Fillmore 

County 

No-till 3 123 37.9 2.5 392 9.8 48 

  5 219      

  7 343      

         

 Tilled 3 145 48.9 2.5 395 8.5 49 

  5 251      

  7 341      

         

Phelps 

County 

No-till 7 359 50.5 2.5 395 6.2 49 

  Tilled 7 355 50.5 2.5  397 8.5 49 

 

2.3 Results and Discussion 

2.3.1 Observed runoff  

Twenty-six runoff events were measured during the growing season of 2010.  

Six of the runoff events were due to irrigation events.  The runoff data were used to 

create the event hydrographs to compare with the Green and Ampt modeled 

hydrographs.  Sample hydrographs are shown in Figures 2.3 and 2.4, and the observed 

and modeled hydrographs for all the events in 2010 are provided in Appendix A.  

2.3.2  Satiated hydraulic conductivity  
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Hydraulic conductivity was estimated using four models.  Table 2.4 provides the 

hydraulic conductivity values predicted by each model.  These Ks values were used in 

the Green and Ampt iterative equation for each monitored runoff event in 2010.  The 

WEPP hydraulic conductivity results for both the ratio developed by Nearing et al. 

(1996) that is derived from the tabular curve number found in the SCS handbook (WEPP 

Tbl 2.2) and the curve number calculated from the maximum surface storage measured 

on the fields (WEPP Eqn 2.15) are shown in Table 2.4.  The hydraulic conductivity 

derived from the ratio provided by Nearing et al. (1996), WEPP Tbl 2.2, was used in 

runoff analysis. 

 

Figure 2.3. Observed and predicted runoff hydrographs. 
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Figure 2.4. Observed and predicted hydrographs. 

 

Table 2.4. Satiated hydraulic conductivities of the surface layer used in the Green and 

Ampt model   

Site Plot  
Experimentally 

Measured 

Crust 

Factor 
ROSETTA  

WEPP 

Tbl 2.2 

WEPP 

Eqn 2.15 
SWC 

 

 
               Hydraulic conductivity, cm h

-1
 

Fillmore 

County 
No-till 

6.18 3.22 1.55 0.52 0.53 2.14 

(2.10-18.22)* 
     

 

Tilled 
3.89 1.28 7.24 0.44 0.42 2.56 

(1.44-10.49) 
     

Phelps 

County 
No-till 

8.21 5.85 1.76 0.52 0.53 2.49 

(3.47-19.44) 
     

 
Tilled 

2.82 0.26 2.99 0.51 0.44 2.94 

(1.26-6.30)           
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2.3.3 Depressional storage 

Depressional Storage was determined using the table from NRCS (2005) and 

measured values (Table 2.5).  Comparing the modeled runoff outputs using both 

depressional storage numbers to the measured runoff, the measured DS resulted in 

higher efficiency and less percent bias.  Therefore, in the analysis for model comparison, 

the measured DS values were used. 

Table 2.5. Depressional Storage from NRCS and from measured 

 

2.3.4 Rainfall runoff 

Efficiency and error values, along with the cumulative modeled and measured 

runoff for the season are given in Table 2.5. PBIAS and NSE values corresponded in all 

but two categories (Phelps County No-till and Phelps County Composite) for picking the 

optimal model for each grouping.  RMSE values did not always align with the chosen 

PBIAS and NSE best model.  NSE values were often negative, indicating poor 

efficiency for the model.  PBIAS is therefore used in discussion to compare models.  

Site % Residue % Slope 

NRCS Depressional 

Storage, cm 

Measured Depressional 

Storage, cm 

Fillmore 

No-till 93 1.0 2.00 0.13 

Fillmore 

Tilled 37 0.9 1.42 0.02 

Phelps 

No-till 91 0.2 2.16 0.13 

Phelps 

Tilled 47 0.5 1.73 0.03 
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Field measured surface hydraulic conductivity resulted in the high Ks values.  

Although high values were also observed in the lab, using the field measured hydraulic 

conductivity as the parameter for the Green and Ampt equation resulted in no runoff 

throughout the crop season and, therefore, was not consistent with the observed runoff. 

Discrepancies between modeled runoff using the measured saturated hydraulic 

conductivities and measured runoff may be due to the hydraulic conductivity testing 

methods or characteristics of the field at the time of hydraulic conductivity 

measurement.  Testing may have destroyed the surface seal that results from water drop 

impact, or created cracks in the soil.  Early season measurement did not account for 

compaction of the seasonal soil surface after tillage or surface crusting from multiple 

rainfall and irrigation events (Mapa et al., 1986). 
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The Crust Factor equation, developed by Rawls et al. (1990), takes into account 

surface crusting. In the Crust Factor equation, experimental data were used and adjusted 

lower to account for the surface crust.  This was the only model that predicted the Phelps 

County no-till field to have higher hydraulic conductivity than the tilled field.  This is 

significant since Phelps no-till experienced significantly less runoff than the Phelps 

County tilled field throughout the season.  Although this method did predict more runoff 

events than the unadjusted experiment values, this model still predicted low runoff 

depths.  Phelps County tilled field was the only field where total runoff was over 

predicted by the Crust Factor model. The pooled percent bias for all fields was -36%. 

The composite Phelps County runoff was most accurately described by this model 

(PBIAS =  -6%).  

ROSETTA predicts hydraulic conductivity using the soil properties of percent 

sand, silt, and clay and bulk density.  The PBIAS was -67% when all four fields were 

considered collectively.  Modeled runoff data for most fields were lower than observed 

data.  The exception to this was Phelps County no-till field, predicting one hundredth of 

a centimeter more than observed.  Because ROSETTA does not include adjustments for 

management practices, such as residue left on the ground or the effect of rain impaction, 

the model did not account for the influence of tillage systems on infiltration and runoff.  

ROSETTA best predicted runoff from the composite no-till fields and the no-till field in 

Phelps County. 

The WEPP model predicts satiated hydraulic conductivity for fallow conditions 

and adjusts the value by considering crop type and management practices through the 
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curve number.  Curve numbers were calculated using the measured runoff data from the 

micro runoff plots.  The no-till curve number was 83, and the curve number for the tilled 

fields was 87.  These values were higher than SCS (1985) tabular values for curve 

number (Table 2.5).  One reason for this may be the number of small rainfall depths 

used to predict the curve number was at the low end of the curve number versus 

precipitation curve so the values did not represent the curve number asymptote 

(Hawkins et al., 1985). Another reason is the assumed initial abstraction ratio may be 

too high (initial abstraction/S = 0.2) (Woodward et al., 2003).   

Table 2.5. Curve numbers, N, from the SCS Handbook (WEPP Tbl 2.2), 1985 and 

inversely measured from observed runoff events (WEPP Eqn 2.15)  

N for Hydrological Soil Group B 

Crop Type WEPP Tbl 2.2 WEPP Eqn 2.15 

Conventional beans 81 87 

Conservation beans 80 83 

    

Ratio values describing the cropped to fallow hydraulic conductivities are shown 

in Table 2.6.  Using the curve number from the micro runoff plot data in the WEPP 

equation (Equation 2.15) indicated a ratio close to what was described by Nearing et al., 

1996.  Ratios 1.70 and 1.91 were used to calculate Ks from Kef, which were given in the 

paper by Nearing et al. (1996). Ks values were similar for the two different methods 

used, resulting in similar results for each model.  The ratios provided by Nearing et al. 

(1996) based on the SCS curve numbers (WEPP Tbl 2.2) were therefore used in the 

analysis instead of the derived curve numbers with Equation 2.15 (WEPP Eqn 2.15). 
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Table 2.6. Cropped to fallow hydraulic conductivity ratio 

 Ks/Kef  

Crop Type WEPP Tbl 2.2* WEPP Eqn 2.15** 

Conventional beans 1.70 1.49 

Conservation beans 1.91 2.11 

   * WEPP Tbl 2.2 is the optimized ratio to describe the given soil group in Nearing et al., 

1996. 

** WEPP Eqn 2.15 is the ratio determined using Equation 2.15 from Nearing et al. 

1996. 

 

Using the WEPP Tbl 2.2 hydraulic conductivity, runoff was over predicted at the 

no-till field in Phelps County with a PBIAS of 155%.  Other than Phelps County no-till 

field, WEPP most accurately predicted all sites.  The composite PBIAS was equal to 

28%, and when Phelps no-till was not considered, the PBIAS was 3.22%.  The Fillmore 

County composite PBIAS was -0.01%.   

SWC predicted hydraulic conductivity based on bulk density and percent sand, 

clay, and organic matter. The composite PBIAS was -74%.  SWC model had low RMSE 

values, however it did not have the smallest PBIAS for any grouping. 

Scatter plots for each model are shown in Figures 2.5-2.8.  The graphs show the 

model predicted value for each runoff event against the observed runoff event.  Each 

event had a different depth of rainfall.  The closer the two values, the closer to the 1:1 

line the points fall.  Crust Factor is accurate with some scatter.  ROSETTA and SWC 

graphs display the underestimation of the modeled runoff depths. The WEPP graph 

exhibits the accuracy of the model, especially at Fillmore County, which follows the 
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regression line; however most of the Phelps County no-till field events were 

overestimated. 

 

Figure 2.5. Observed runoff vs. Crust Factor predicted runoff in 2010 
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Figure 2.6. Observed runoff vs. ROSETTA predicted runoff in 2010 

  

 

Figure 2.7. Observed runoff vs. WEPP predicted runoff in 2010 
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Figure 2.8. Observed runoff vs. SWC predicted runoff in 2010 

 

2.3.5 Irrigation 

From the runoff events investigated, irrigation runoff events were isolated for 

analysis.  Irrigation rate curves for specific events were formed to illustrate the 

effectiveness of the tipping rain gauge and application rate relationship.  Figures 2.9-

2.11 show the rain gauge captured the smoothness of the application rate.   All models 

performed poorly with the irrigation runoff prediction.  ROSETTA, WEPP, and SWC 

underestimated runoff.  SWC had the best PBIAS of -9%.    WEPP had a PBIAS of 

129%.  Table 2.9 shows the values for the observed irrigation runoff from 2010. 
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Figure 2.9. Fillmore County no-till modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 5  
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Figure 2.10. Fillmore County tilled modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 5 
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Figure 2.11. Phelps County no-till modeled irrigation application rate and the observed 

tipping rain gauge curve from Span 7 

 

 

Table 2.7. Modeled runoff for 2010 irrigation runoff events 
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Discussion 

Runoff is sensitive to the hydraulic conductivity parameter in the Green and 

Ampt equation.  Brakensiek and Onstad (1977) found that a 10% lower Ks value over 

predicts the volume of runoff by 44%.  This makes it difficult for one model to 

accurately describe any field.  For example, no model could predict the low observed 

runoff at Phelps County no-till field.   Some condition affecting the runoff in this field 

was not taken into account in these models. Factors such as stem flow can effect 

infiltration.  Also the assumptions in the Green and Ampt model can influence results.  

The wetting front is assumed to be a piston, when in reality, the wetting front does not 

have a sharp boundary of saturation.  The model did not account for redistribution of 

water during drying periods of the storm when the intensity decreased after ponding.  

Lastly, no head of water was assumed to be at the surface once ponding occurred.  These 

assumptions can affect the results.  

Investigating four models for predicting an accurate hydraulic conductivity for 

different soil types and tillage at the four fields in this study resulted in no overall 

optimal model.  The most accurate model for determining hydraulic conductivity of the 

given fields was WEPP, which had a negative efficiency (NSE = -0.06) and a PBIAS of 

28%.  WEPP poorly predicted the no-till field at Phelps County, and when the no-till 

field at Phelps County was excluded from analysis, the NSE was a satisfactory 0.58 with 

a PBIAS of 3%.  WEPP is the only model out of the four to be derived from field 

measured data.  The other three models were derived using laboratory experiments.  A 
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drawback to WEPP was the regression equation for Kef was developed using only one 

no-till field.   

SWC and ROSETTA had the highest PBIAS values.  These models did not take 

into account surface crusting as in the Crust Factor model or the management practices 

as in the curve number used in WEPP.  These are important processes when considering 

infiltration (Blevins et al., 1983).  When only irrigation runoff was considered, SWC had 

the highest efficiency. 

Pairing tilled and no-till fields, the WEPP model, which accounts for tillage 

applications, had the lowest PBIAS for the composite tilled fields.  ROSETTA was the 

best model for no-till fields.  The curve number used in WEPP for no-till was the value 

for conservation soybean given in the SCS handbook.  This number was derived from 

experiments on tilled fields with more than 30% residue cover (Rawls and Brakensiek, 

1986).  This does not describe the no-till soybean fields. A lower curve number would 

be expected, which would reduce runoff predicted from the no-till sites.  With proper 

descriptive curve numbers, WEPP may be able to better describe the no-till field in 

Phelps County.   

 

2.4  Conclusion 

Realizing the amount of runoff expected on a field with a given soil type or 

certain management practices is important in order to quantify water savings as well as 

understanding the benefits of irrigation and tillage management.  The Green and Ampt 
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equation has been proven to be an accurate and useful model for calculating infiltration 

into the soil.  The equation is highly sensitive to the hydraulic conductivity term, a term 

that is difficult to accurately measure in the field or calculate due to high amount of 

influences, such as texture, surface cover, rainfall energy, soil structure, ect.  Also, 

hydraulic conductivity is highly variable in a field and throughout the crop season.   

Four pedotransfer functions were evaluated to find a good predictor of hydraulic 

conductivity that can be used when comparing tilled and no-till fields: Crust Factor, 

ROSETTA, WEPP and SWC.  WEPP had the highest efficiency for the four fields 

compared in this research.  WEPP used field measured data, which displays the effect of 

soil management practices.  Although WEPP poorly described the no-till field at Phelps 

County, it had the lowest composite PBIAS and the lowest PBIAS for the other three 

fields.  Consistency in a model is most important in order to use the model for any 

application. 
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3 CHAPTER 3 APPENDIX A: OBSERVED AND GREEN AND AMPT PREDICTED RUNOFF HYDROGRAPHS  

Using the models described in Chapter 2 to determine satiated hydraulic conductivity, runoff was predicted from the iterative Green 

and Ampt equation.  Runoff hydrographs from rainfall and irrigation for each model were plotted with the observed runoff. Graphs 

were made for each field for every observed runoff event in 2010. 
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3.1 Phelps Hydrographs 
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4 CHAPTER 4 APPENDIX B: VADOSE ZONE PROPERTIES 

4.1 Field Plots 

Study areas included two center pivot irrigated sites in Nebraska.  Each site has a 

no-till and tilled field.  The first site is located in Fillmore County, southeast Nebraska.  

The study area contains Crete silty clay loam soil with a slope of approximately 1%.  The 

second site is located in south central Nebraska in Phelps County.  This site contained 

Holdrege silt loam soil with a slope of 0.4%.  Both sites contain two corn/soybean 

rotation fields.  Each location consists of a field that is cultivated at least once in the 

spring before planting, and one practicing long term continuous no-till.  These operations 

have been consistent for at least seven years.  The no-till and tilled fields at each site were 

paired to match in planting date, crop hybrid, land slope, and soil type.  

4.2 Vadose Zone Samples 

In 2009, data were collected after planting.  Three holes were cored from each 

field using UNL’s Geoprobe hydraulic sampler, which provided five 1.5 m samples to a 

depth of 7.5 m.  The core diameter was 3.75 cm.  In the lab, the 1.5 m sections were 

analyzed every 0.3 m for texture, bulk density, organic matter, water retention, and 

hydraulic conductivity.  From properties gathered in the lab, water content graphs were 

developed for Fillmore County and Phelps County sites.  Because of compression from 

probing, the water content equated from the lab measured high bulk density at the 

Fillmore County site.  Pedotransfer functions from Saxton and Rawls (2006) estimated 
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the bulk density to account for this discrepancy.  From the adjusted bulk density, water 

content was then determined. 

To illustrate the water transfer rate in the vadose zone, a nitrate analysis on the 3-

4.5 m layer in the vadose zone was performed (Katupitiya et al., 1997).  The nitrate levels 

were measured every 0.15 m.  Peaks of nitrate, representing total migration for a year, 

exhibited the yearly movement of pore water.  Darcy’s velocity was obtained by using 

the water content in the 3 - 4.5 m core and the pore water velocity. The volumetric water 

content graphs paired with the percolation rates, which were derived from the nitrate 

samples, potentially could determine the flux beneath the root zone.   

A water content difference between tilled and no-till was analyzed below the root 

zone to the depth of water movement since current tillage systems began, the years being 

estimated by vp.  Average water content values, θv, are listed in Table 4.1.  Water had 

moved 4 m in Fillmore and 6 m in Phelps since the no-till systems were established.  

Based on this depth for analysis, a significant difference was found in volumetric water 

content at the Fillmore site, with tilled having a higher water content as shown in Figure 

4.1.  Average volumetric water contents were 0.39 and 0.38 m
3
/m

3
 for tilled and no-till, 

respectively.  The second site showed a similar trend, although not significant, with 0.30 

m
3
/m

3
 found for tilled and 0.28 m

3
/m

3
 for no-till as displayed in Figure 4.3.  These results 

are similar to the research done by Shipitalo et al. (2000) and Katuitiya (1995) that 

examined the effect of preferential flow directly below the root zone and found no 

significant difference between tilled and no-till field water contents.   
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The water movement into the vadose zone is given in Table 4.1.  The three cores from 

each field were used to determine an average rate of vertical water movement, vp.  Values 

were 0.53-0.58 m yr-1 in no-till and 0.43-0.97 m yr-1 for tilled.  Katuitiya (1995) mean 

pore velocity values were in range of the data in this study.  Even though tillage systems 

are long-term, percolation rates were comparable over the 7.5 m depth.  Figures 4.2 and 

4.4 display satiated hydraulic conductivity in the vadose zone. 

 

Table 4.1.  Water movement into vadose zone using nitrate analysis.  θv is the average 

volumetric water content in the vadose zone. vp denotes mean pore water velocity.   

 

      

 

 

 

 

Site 

 

Plot 

 

θv, m
3
/m

3
 

 

Average vp, m/yr 

 

Fillmore 

 

No-till 

 

0.38 

 

0.53 

 Tilled 0.39 0.43 

 

Phelps 

 

No-till 

 

0.28 

 

0.58 

 Tilled 0.30 0.97 
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Figure  4.1.  Fillmore County volumetric water content under tilled and no-tilled fields 

and Fillmore cumulative water depth in the vadose zone 
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Figure 4.2.  Satiated hydraulic conductivity in vadose zone for Fillmore County.  30 

samples per geometric mean.   

Error bars indicate standard deviation =  abs [exp (ln y0 
± ln sy)- geometric mean] 
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Figure 4.3.  Phelps County volumetric water content under tilled and no-tilled fields and 

Phelps cumulative water depth in the vadose zone.   
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Figure 4.4.  Phelps County satiated hydraulic conductivity in the vadose zone.  30 

samples per geometric mean.   

Error bars indicate standard deviation =  abs [exp (ln y0 
± ln sy)- geometric mean] 
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5 CHAPTER 5 APPENDIX C: STATISTICAL ANALYSIS RESULTS 

 

 

 

 

 

One Way Analysis of Variance  

 

Data source Field vs Lab Ks 

 

Dependent Variable: log Ks  

 

Normality Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, November 11, 2010, 2:16:04 PM 

 

Data source: Field vs Lab Ks 

 

Group N  Missing  Median    25%      75%     

Lab 12 0 0.751 0.0872 1.334  

Field 48 0 0.788 0.429 1.152  

 

H = 0.00546 with 1 degrees of freedom.  (P = 0.941) 

 

The differences in the median values among the treatment groups are not great enough to exclude the 

possibility that the difference is due to random sampling variability; there is not a statistically significant 

difference    (P = 0.941) 
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Two Way Analysis of Variance  

 

Data source: Fillmore No-till vs. Tilled Ks without Span 3  

 

General Linear Model 

 

Dependent Variable: Log Ks  

 

Normality Test: Passed (P = 0.141) 

 

Equal Variance Test: Passed (P = 0.097) 

 

Source of Variation  DF   SS   MS    F    P   

Layer 1 2.841 2.841 22.676 <0.001  

Tillage 1 0.999 0.999 7.976 0.009  

Layer x Tillage 1 0.0302 0.0302 0.241 0.628  

Residual 24 3.007 0.125    

Total 27 6.852 0.254    

 

 

The difference in the mean values among the different levels of Layer is greater than would be expected by 

chance after allowing for effects of differences in Tillage.  There is a statistically significant difference (P = 

<0.001).  To isolate which group(s) differ from the others use a multiple comparison procedure. 

 

The difference in the mean values among the different levels of Tillage is greater than would be expected 

by chance after allowing for effects of differences in Layer.  There is a statistically significant difference (P 

= 0.009).  To isolate which group(s) differ from the others use a multiple comparison procedure. 

 

The effect of different levels of Layer does not depend on what level of Tillage is present.  There is not a 

statistically significant interaction between Layer and Tillage.  (P = 0.628) 

 

Power of performed test with alpha = 0.0500:  for Layer : 0.997 

Power of performed test with alpha = 0.0500:  for Tillage : 0.724 

Power of performed test with alpha = 0.0500:  for Layer x Tillage : 0.0500 

 

Least square means for Layer :  

Group Mean  

Surf 0.814  

Sub 0.171  

Std Err of LS Mean = 0.0956 

 

Least square means for Tillage :  

Group Mean SEM  
NT 0.683 0.102  

T 0.302 0.0885  

 

 

Least square means for Layer x Tillage :  

Group Mean SEM  
Surf x NT 1.038 0.145  

Surf x T 0.590 0.125  

Sub x NT 0.328 0.145  
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Sub x T 0.0130 0.125  

 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Layer 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
Surf vs. Sub 0.644 4.762 <0.001 0.050 Yes  

 

 

Comparisons for factor: Tillage 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

NT vs. T 0.382 2.824 0.009 0.050 Yes  

 

 

Comparisons for factor: Tillage within Surf 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

NT vs. T 0.448 2.344 0.028 0.050 Yes  

 

 

Comparisons for factor: Tillage within Sub 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

NT vs. T 0.315 1.650 0.112 0.050 No  

 

 

Comparisons for factor: Layer within NT 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

Surf vs. Sub 0.710 3.475 0.002 0.050 Yes  

 

 

Comparisons for factor: Layer within T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

Surf vs. Sub 0.577 3.262 0.003 0.050 Yes 
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Two Way Analysis of Variance Tuesday, March 23, 2010, 10:15:44 AM 

 

Data source: Fillmore No-till vs. Tilled Ks 

 

Balanced Design 

 

Dependent Variable: Log Conductivity Data  

 

Normality Test: Passed (P = 0.219) 

 

Equal Variance Test: Passed (P = 0.227) 

 

Source of Variation  DF   SS   MS    F    P   

Tillage Treatment 1 0.00259 0.00259 0.00750 0.931  

Depth Treatment 1 11.476 11.476 33.281 <0.001  

Tillage Treat x Depth Treatme 1 0.220 0.220 0.638 0.429  

Residual 44 15.172 0.345    

Total 47 26.871 0.572    

 

 

The difference in the mean values among the different levels of Tillage Treatment is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in Depth Treatment.  There is not a statistically significant difference (P = 0.931). 

 

The difference in the mean values among the different levels of Depth Treatment is greater than would be 

expected by chance after allowing for effects of differences in Tillage Treatment.  There is a statistically 

significant difference (P = <0.001).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The effect of different levels of Tillage Treatment does not depend on what level of Depth Treatment is 

present.  There is not a statistically significant interaction between Tillage Treatment and Depth Treatment.  

(P = 0.429) 

 

Power of performed test with alpha = 0.0500:  for Tillage Treatment : 0.0500 

Power of performed test with alpha = 0.0500:  for Depth Treatment : 1.000 

Power of performed test with alpha = 0.0500:  for Tillage Treat x Depth Treatme : 0.0500 

 

Least square means for Tillage Treatment :  

Group Mean  

T 0.384  

NT 0.370  

Std Err of LS Mean = 0.120 

 

Least square means for Depth Treatment :  

Group Mean  

SUB -0.112  

SURF 0.866  

Std Err of LS Mean = 0.120 

 

Least square means for Tillage Treat x Depth Treatme :  

Group Mean  

T x SUB -0.172  
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T x SURF  0.941  

NT x SUB -0.0515  

N T x SURF 0.791  

Std Err of LS Mean = 0.170 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Tillage Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.0147 0.0866 0.931 0.050 No  

 

 

Comparisons for factor: Depth Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

SURF vs. SUB 0.978 5.769 <0.001 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment within B 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
SURF vs. SUB 1.113 4.644 <0.001 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment within H 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
SURF vs. SUB 0.843 3.515 0.001 0.050 Yes  

 

 

Comparisons for factor: Tillage Treatment within SUB 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

NT vs. T 0.121 0.503 0.617 0.050 No  

 

 

Comparisons for factor: Tillage Treatment within S 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.150 0.626 0.535 0.050 No  
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Two Way Analysis of Variance Tuesday, March 23, 2010, 10:17:32 AM 

 

Data source: Phelps No-till vs. Tilled Ks 

 

Balanced Design 

 

Dependent Variable: log transformed  

 

Normality Test: Passed (P = 0.377) 

 

Equal Variance Test: Passed (P = 0.302) 

 

Source of Variation  DF   SS   MS    F    P   

Tillage Treatment 1 0.516 0.516 4.723 0.035  

Depth Treatment 1 3.700 3.700 33.842 <0.001  

Tillage Treat x Depth Treatme 1 0.796 0.796 7.277 0.010  

Residual 44 4.811 0.109    

Total 47 9.823 0.209    

 

 

Main effects cannot be properly interpreted if significant interaction is determined. This is because the size 

of a factor's effect depends upon the level of the other factor. 

 

The effect of different levels of Tillage Treatment depends on what level of Depth Treatment is present.  

There is a statistically significant interaction between Tillage Treatment and Depth Treatment.  (P = 0.010) 

 

Power of performed test with alpha = 0.0500:  for Tillage Treatment : 0.460 

Power of performed test with alpha = 0.0500:  for Depth Treatment : 1.000 

Power of performed test with alpha = 0.0500:  for Tillage Treat x Depth Treatme : 0.693 

 

Least square means for Tillage Treatment :  

Group Mean  
F 0.508  

W 0.301  

Std Err of LS Mean = 0.0675 

 

Least square means for Depth Treatment :  

Group Mean  
S 0.682  

SUB 0.127  

Std Err of LS Mean = 0.0675 

 

Least square means for Tillage Treat x Depth Treatme :  

Group Mean  

F x S 0.915  

F x SUB 0.102  

W x S 0.450  

W x SUB 0.152  

Std Err of LS Mean = 0.0955 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 
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Overall significance level = 0.05 

 

Comparisons for factor: Tillage Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

F vs. W 0.207 2.173 0.035 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
S vs. SUB 0.555 5.817 <0.001 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment within F 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

S vs. SUB 0.813 6.021 <0.001 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment within W 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

S vs. SUB 0.298 2.206 0.033 0.050 Yes  

 

 

Comparisons for factor: Tillage Treatment within S 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

F vs. W 0.465 3.444 0.001 0.050 Yes  

 

 

Comparisons for factor: Tillage Treatment within SUB 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

W vs. F 0.0500 0.371 0.713 0.050 No  

 

T-test Wednesday, March 10, 2010, 11:06:50 AM 

 

Data source: Phelps 

 

Normality Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, Rank Sum Test begun 
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Two Way Analysis of Variance Sunday, March 28, 2010, 2:09:34 PM 

 

Data source: Rogers Farm Soybean 
 

Balanced Design 

 

Dependent Variable: Log Transformed Data  

 

Normality Test: Passed (P = 0.076) 

 

Equal Variance Test: Passed (P = 0.970) 

 

Source of Variation  DF   SS   MS    F    P   

Tillage Treatment 1 0.163 0.163 0.302 0.589  

Depth Treatment 1 0.228 0.228 0.422 0.523  

Tillage Treat x Depth Treatme 1 0.635 0.635 1.175 0.291  

Residual 20 10.801 0.540    

Total 23 11.827 0.514    

 

 

The difference in the mean values among the different levels of Tillage Treatment is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in Depth Treatment.  There is not a statistically significant difference (P = 0.589). 

 

The difference in the mean values among the different levels of Depth Treatment is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in Tillage Treatment.  There is not a statistically significant difference (P = 0.523). 

 

The effect of different levels of Tillage Treatment does not depend on what level of Depth Treatment is 

present.  There is not a statistically significant interaction between Tillage Treatment and Depth Treatment.  

(P = 0.291) 

 

Power of performed test with alpha = 0.0500:  for Tillage Treatment : 0.0500 

Power of performed test with alpha = 0.0500:  for Depth Treatment : 0.0500 

Power of performed test with alpha = 0.0500:  for Tillage Treat x Depth Treatme : 0.0652 

 

Least square means for Tillage Treatment :  

Group Mean  
T 1.118  

NT 0.954  

Std Err of LS Mean = 0.212 

 

Least square means for Depth Treatment :  

Group Mean  

SUB 0.939  

SURF 1.133  

Std Err of LS Mean = 0.212 

 

Least square means for Tillage Treat x Depth Treatme :  

Group Mean  

T x SUB 1.184  

T x SURF 1.053  
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NT x SUB 0.693  

NT x SURF 1.214  

Std Err of LS Mean = 0.300 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Tillage Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.165 0.550 0.589 0.050 No  

 

 

Comparisons for factor: Depth Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
SURF vs. SUB 0.195 0.650 0.523 0.050 No  

 

 

Comparisons for factor: Depth Treatment within T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

SUB vs. SURF 0.130 0.307 0.762 0.050 No  

 

 

Comparisons for factor: Depth Treatment within NT 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

SURF vs. SUB 0.520 1.226 0.234 0.050 No  

 

 

Comparisons for factor: Tillage Treatment within SUB 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.490 1.155 0.262 0.050 No  

 

 

Comparisons for factor: Tillage Treatment within SURF 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

NT vs. T 0.160 0.378 0.709 0.050 No  
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Two Way Analysis of Variance Sunday, March 28, 2010, 2:04:31 PM 

 

Data source: Rogers Farm Corn 
 

Balanced Design 

 

Dependent Variable: Log Transformed Data  

 

Normality Test: Failed (P < 0.050) 

 

Equal Variance Test: Passed (P = 0.528) 

 

Source of Variation  DF   SS   MS    F    P   

Tillage Treatment 1 1.297 1.297 5.895 0.025  

Depth Treatment 1 0.0424 0.0424 0.193 0.665  

Tillage Treat x Depth Treatme 1 0.484 0.484 2.201 0.153  

Residual 20 4.399 0.220    

Total 23 6.222 0.271    

 

 

The difference in the mean values among the different levels of Tillage Treatment is greater than would be 

expected by chance after allowing for effects of differences in Depth Treatment.  There is a statistically 

significant difference (P = 0.025).  To isolate which group(s) differ from the others use a multiple 

comparison procedure. 

 

The difference in the mean values among the different levels of Depth Treatment is not great enough to 

exclude the possibility that the difference is just due to random sampling variability after allowing for the 

effects of differences in Tillage Treatment.  There is not a statistically significant difference (P = 0.665). 

 

The effect of different levels of Tillage Treatment does not depend on what level of Depth Treatment is 

present.  There is not a statistically significant interaction between Tillage Treatment and Depth Treatment.  

(P = 0.153) 

 

Power of performed test with alpha = 0.0500:  for Tillage Treatment : 0.553 

Power of performed test with alpha = 0.0500:  for Depth Treatment : 0.0500 

Power of performed test with alpha = 0.0500:  for Tillage Treat x Depth Treatme : 0.170 

 

Least square means for Tillage Treatment :  

Group Mean  

NT 1.017  

T 1.481  

Std Err of LS Mean = 0.135 

 

Least square means for Depth Treatment :  

Group Mean  

SUB 1.207  

SURF 1.291  

Std Err of LS Mean = 0.135 

 

Least square means for Tillage Treat x Depth Treatme :  

Group Mean  

NT x SUB 1.117  
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NT x SURF 0.917  

T x SUB 1.297  

T x SURF 1.665  

Std Err of LS Mean = 0.191 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor: Tillage Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.465 2.428 0.025 0.050 Yes  

 

 

Comparisons for factor: Depth Treatment 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

SURF vs. SUB 0.0841 0.439 0.665 0.050 No  

 

 

Comparisons for factor: Depth Treatment within NT 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
SUB vs. SURF 0.200 0.739 0.469 0.050 No  

 

 

Comparisons for factor: Depth Treatment within T 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  
SURF vs. SUB 0.368 1.360 0.189 0.050 No  

 

 

Comparisons for factor: Tillage Treatment within SUB 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.181 0.668 0.512 0.050 No  

 

 

Comparisons for factor: Tillage Treatment within SURF 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

T vs. NT 0.749 2.766 0.012 0.050 Yes  
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One Way Analysis of Variance  

Data source: Phelps Sand 

 

Normality Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, March 25, 2010, 10:27:05 AM 

 

Data source: Data 1 in Notebook1 

 

Group N  Missing  Median    25%      75%     

Phelps NT Sand 24 0 22.000 18.000 24.000  

Phelps Tilled Sand 24 0 26.000 24.000 27.000  

 

H = 16.027 with 1 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Tukey Test): 

 

Comparison Diff of Ranks q P<0.05   

Phelps Tilled vs Phelps NT Sand 383.000 5.584 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance  

 

Data source: Phelps Clay 
 

Normality Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, March 25, 2010, 10:27:57 AM 

 

Data source: Data 1 in Notebook1 

 

Group N  Missing  Median    25%      75%     

Phelps NT Clay 24 0 21.000 20.000 22.500  

Phelps Tilled Clay 24 0 20.000 19.000 20.500  

 

H = 7.388 with 1 degrees of freedom.  (P = 0.007) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.007) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Tukey Test): 

 

Comparison Diff of Ranks q P<0.05   

Phelps NT Clay vs Phelps Tilled 260.000 3.791 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance  

 

Data source: Fillmore Sand 
 

Normality Test: Passed (P = 0.064) 

 

Equal Variance Test: Passed (P = 0.108) 

 

Group Name  N  Missing Mean Std Dev SEM  
Fillmore NT Sand 24 0 21.333 2.777 0.567  

Fillmore Tilled Sand 24 0 19.375 1.907 0.389  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 1 46.021 46.021 8.112 0.007  

Residual 46 260.958 5.673    

Total 47 306.979     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.007). 

 

Power of performed test with alpha = 0.050: 0.752 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant? 

Fillmore NT  vs. Fillmore Til 1.958 2.848 0.007 0.050 Yes 
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One Way Analysis of Variance  

 

Data source: Fillmore Clay 
 

Normality Test: Passed (P = 0.207) 

 

Equal Variance Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, March 25, 2010, 10:33:59 AM 

 

Data source: Data 1 in Notebook1 

 

Group N  Missing  Median    25%      75%     

Fillmore NT Clay 24 0 25.000 20.000 28.000  

Fillmore Tilled Clay 24 0 22.000 20.000 22.000  

 

H = 4.451 with 1 degrees of freedom.  (P = 0.035) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.035) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Tukey Test): 

 

Comparison Diff of Ranks q P<0.05   

Fillmore NT C vs Fillmore Till 203.000 2.960 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance  

 

Data source: Rogers Farm Sand 
 

Normality Test: Failed (P < 0.050) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, March 25, 2010, 10:23:47 AM 

 

Data source: Data 1 in Notebook1 

 

Group N  Missing  Median    25%      75%     

RF NT Sand  24 0 17.500 16.500 21.000  

RF Tilled Sand 24 0 17.000 15.000 18.000  

 

H = 4.947 with 1 degrees of freedom.  (P = 0.026) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.026) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Tukey Test): 

 

Comparison Diff of Ranks q P<0.05   

RF NT Sand  vs RF Tilled Sand 212.000 3.091 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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One Way Analysis of Variance  

Data source: Rogers Farm Clay 

 

Normality Test: Passed (P = 0.586) 

 

Equal Variance Test: Passed (P = 0.445) 

 

Group Name  N  Missing Mean Std Dev SEM  

RF Tilled Clay 24 0 28.458 3.989 0.814  

RF NT Clay 24 0 29.583 4.529 0.925  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 1 15.188 15.188 0.834 0.366  

Residual 46 837.792 18.213    

Total 47 852.979     

 

The differences in the mean values among the treatment groups are not great enough to exclude the 

possibility that the difference is due to random sampling variability; there is not a statistically significant 

difference  (P = 0.366). 

 

Power of performed test with alpha = 0.050: 0.047 

 

The power of the performed test (0.047) is below the desired power of 0.800. 

Less than desired power indicates you are less likely to detect a difference when one actually exists. 

Negative results should be interpreted cautiously. 


