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ABSTRACT 

The intent of this study was to analyze water use across a range of regions, scales and 

practices of the U.S. pork industry. A Life Cycle Assessment of water use within the pork supply 

chain was performed. Cumulative water use was the environmental impact category used in 

the LCA to evaluate the impacts of pork production processes throughout the pork supply 

chain. The functional unit for the analysis was the volume of water required to produce one 

kilogram of swine (live weight) at the farm gate. 

A comprehensive literature review was used to design and propagate algorithms for the 

National Pork Board Pig Production Environmental Footprint Calculator (version 2.0). The 

outputs from the calculator were used to generate lifecycle inventory inputs for unit processes 

in SimaPro (Pre’ Consultants, The Netherlands), an LCA modeling program. The LCA method 

was then used to assess the water footprint for swine production from cradle to farm gate 

production scenarios.  There were 240 different scenarios analyzed that were a combination of 

ten regions, three production strategies and three scales. 

The grow/finish barn phase of the on farm water footprint requires approximately five 

times as much water as the sow and nursery barns irrespective of the barn infrastructure.   

Water used to irrigate swine feed crops contributed 89% of the total cradle to farm gate 

footprint.  Since all 240 scenarios were analyzed with the same ration inputs, the final 

footprints did not vary drastically between scenarios.  There were small deviations such as 

tunnel ventilated production systems consistently required more water than hoop barns due to 

cooling systems in warmer regions.  Smaller scale operations consistently had higher water 

footprints due to economy of scale, although the footprint differences between scales were 



   

marginal.  Regarding the water use that occurred on the swine farm, drinking water was by far 

the most significant contributor to the footprint (81%). Production strategies, production scale 

and region of production were all statistically significant (p < 0.0001) and affected the blue 

water footprint. This may seem self-evident, but these processes have not been quantified at 

this scale prior to this analysis. 
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Introduction 

In recent history, the meat production sector of the agricultural market has been under 

increasing scrutiny from a portion of the public due to the perceived impacts of production 

practices on our natural resources.  As a result, producers of agricultural products including 

pork producers and the general public have both become aware of the importance of 

understanding the sustainability of the products they produce and purchase.  Water footprint is 

defined as the total volume of freshwater that is used to produce the goods and services 

consumed by the process being analyzed.  With water resources declining in many regions of 

the U.S. and around the globe, production costs will likely increase in many regions.  The 

embodied water in pork products (water footprint) may become an argument against pork 

consumption in some regions.  Continued profitability of the swine production sector depends 

upon producers having an understanding of how water scarcity will impact their production 

decisions.  Consequently, the water footprint determination for animal products has become an 

important area of research in water resource management.   

Life Cycle Assessment (LCA) is a tool that can be used to account for the combined 

effects in an agricultural production supply chain. LCAs provide quantitative, confirmable, and 

manageable models to evaluate production processes, analyze opportunities for innovation, 

and enhance awareness of the complexity in systems. LCAs have been used as a tool to identify 

“hot spots” in the supply chain that may introduce opportunities for simultaneously lowering 

environmental impacts and improving efficiency and profitability. Water footprint analysis is an 

important aspect of a comprehensive LCA.    
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Using a systematic LCA approach, this study has expanded the knowledge-base of water 

usage within the US pork industry by analyzing the entire scope of the US pork production 

process in a more expansive way than any single previous study. Existing studies, whether 

national or international, relating to pork or another agricultural industry, were insufficient for 

development of the Live Swine Production Water Footprint Calculator. For example, a recent 

LCA (Stone et al. 2012) evaluated the life cycle impacts of feed for grow-finish swine operations 

in the Northern Great Plains region but did not include irrigated water as an input for corn or 

soybean production in that region. However, our study found that irrigated water used for feed 

accounted for as much as 85% of the entire water footprint for pork production in the same 

region. A literature review by Muhlbauer et al. (2010) consolidated available water 

conservation techniques for the swine industry and even made valuable recommendations as 

to how pork producers could reduce their on-farm water usage but did not provide a view of 

the pre nor post swine farm environmental impacts. 
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1.  DEFINING THE PROBLEM 

 Sustainability 

 Water 

On our planet, water is abundant and is renewable through the hydrologic cycles. 

However, 83% of our water is salt water, 14% is chemically bond, 2% is ice and only 0.5% is 

available as freshwater. Of that 0.5% freshwater that is available to use, 98% is in underground 

aquifers (Patience, 2012). Not all aquifers are considered sustainable since recharge rates are 

known to be measured in geologic time and most often slower than the rate of depletion. 

Although it freshwater sometimes feels plentiful in the Western world, water that can 

efficiently be converted into potable water is not readily available everywhere throughout the 

world. Water is a resource that is gaining respect as our economy continues to become more 

globalized and as our local reserves become depleted. 

 Animal Production 

In animal production, water is required in larger quantities than any other nutrient. 

Water scarcity will likely limit swine production in some areas of the US, and will certainly 

impact the availability and cost of feeds.  The meat production sector of the agricultural 

community has been under increasing scrutiny and criticism from the consuming public due to 

perceived impacts of production scales on environmental conditions.  Water resources have 

been declining in many regions of the US and around the globe. The embodied water in 

agricultural products (water footprint) may become a valid concern for consumers in some 
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regions.  In addition, water scarcity will likely increase costs of production in many regions.  

Continued profitability of the swine production sector depends upon producers having an 

understanding of how water scarcity will impact their production decisions. 

 Life Cycle Analysis 

 Introduction 

There is increasing interest among consumers, food manufacturers, retailers and other 

food system stakeholders in quantification of product sustainability.  As the food industry 

improves metrics and measurements of environmental impacts it has become clear that a life 

cycle perspective is necessary to summarize the many variables and impacts associated with 

the complex set of processes associated with agricultural production, processing, distribution 

and consumption.  Life Cycle Assessment (LCA) is an effective tool for achieving the goals of this 

project.  

 Life Cycle Analysis as a Tool 

Life Cycle Assessment is a technique to assess the environmental aspects and potential 

impacts associated with a product or process by: compiling an inventory of relevant energy and 

material inputs and environmental emissions, evaluating the possible environmental impacts 

associated with identified inputs and releases, and interpreting the results to assist in making 

more informed decisions. Broadly, an LCA consists of four stages: 

 Define the goal and scope – including appropriate metrics (e.g. greenhouse gas 

emissions, water consumption) 



   

5 
 

 Conduct life cycle inventories (collection of data that identifies the system inputs and 

outputs and discharges to the environment)  

 Perform impact assessment 

 Analyze and interpret the results 

 The goal and scope definition phase is a planning process, which includes delineating 

and describing the product, process or activity; establishing the aims and context in which the 

LCA is to be performed; and identifying the life cycle stages and environmental impact 

categories to be reviewed for the assessment. The depth and breadth of LCA can differ 

considerably depending on the goal of the LCA. 

The Life Cycle Inventory (LCI) phase takes stock of an inventory of all the input/output 

material and energy flows with regard to the system being studied. During this phase, all water, 

energy, materials and environmental releases (e.g.: air emissions, solid wastes, wastewater 

discharge) are identified and quantified for each stage of the life cycle. 

The life cycle impact assessment phase (LCIA) is the third phase of the LCA. This step 

calculates human and ecological effects of material consumption and environmental releases 

identified during the inventory analysis. For this study, Water Use was analyzed and reported. 

Life cycle interpretation is the final phase of the LCA procedure, in which the results are 

summarized and reviewed. Its goal is to recognize the most significant environmental impacts 

and the associated life cycle stage, and emphasize opportunities for potential change or 

innovation. 
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 Objectives of this Project 

The primary goal of this project was to perform a detailed Life Cycle Assessment of 

water use in the U.S. pork supply chain.  This LCA is a cradle to farm gate detailed water 

footprint analysis of three production strategies at three scales across 10 regions.   

 Effect on the US Pork Industry 

The U.S. pork industry is potentially vulnerable to risks associated with water shortages 

in areas of intense production.  This analysis will provide swine producers with information and 

tools to anticipate and manage for changing water resource conditions.  These impacts vary by 

location, production strategy, life-phase and operation scale.  The pork industry will use the 

results to identify opportunities to reduce water use, consumption of other natural resources 

and the support of other internal decisions for increasing the efficiency, profitability, safety and 

security of the U.S. pork supply chain.   

 

 Hypothesis Statements 

H(0)1:  All swine production strategies have approximately the same water footprint. 

H(A)1: Some swine production strategies have a larger footprint than others. 

H(0)2: All swine production facility scales have approximately the same water footprint.  

H(A)2: Large scale swine production facilities often have a smaller water footprint than small 

scale facilities. 

H(0)3: All regions of swine production have approximately the same water footprint. 

H(A)3:  Water footprints vary with the region of production.   
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2.  LITERATURE REVIEW 

 Overview of Water Use in Swine Production  

This review includes water usage information for feed and swine production as shown in 

Figure 2.1. Each arrow in the diagram represents a range of water usage to or from each unit 

process. The following documents the water usage reported for each phase of the pork life 

cycle, with additional detail placed on the processes from the field to the farm gate (Figure 2.2).  

 Blue vs. Green Water Definition 

In water accounting, water can be classified as either blue or green water. Green water 

is the precipitation that remains in or on top of the soil and vegetation, and does not run off the 

land or recharge the groundwater. Blue water is the available surface or groundwater that can 

be distributed to and competed for by multiple end users.  Only blue water quantity was 

considered in this literature review. In addition, the quality of the blue water was beyond the 

scope of this study. 



   

 
 

 

Figure 2.1. Process flow diagram of the entire pork supply chain with water inputs in pork production unit processes.  
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Figure 2.2. Process flow diagram of the field to gate boundary for water utilization.
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 Water Use from Field to Farm Gate 

All of the water consumption that occurs from crop production, through the live swine 

facility, and to a market ready pig was considered to be the “field-to-gate” water footprint.  The 

boundary of water utilization in pork production processes from field to gate is shown in Figure 

2.2.  The largest components of the pork production process included within the system 

boundaries are crop production for feeds and the live swine production facilities. 

 Water Use in Crop Production 

Of the water used in the production of meat products, the majority has been shown to 

come from water usage in the cultivation of feed crops (Figure 2.3).  Of the water used directly 

in the live swine production facilities, the majority is used in the consumption of drinking water 

by the animals (57%) and in the use of service water (41.5%) (Figure 2.3).  Service water is 

defined as the amount of water used in facility cleaning, animal cooling, etc.  
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Figure 2.3. Distribution of water use in global meat production (excluding processing).  Service 

water refers to cleaning water, washing water, and other services necessary to maintain 

environment (Mekonnen & Hoekstra, 2012). 



   

 
 

 

Figure 2.4. Live swine facility water use diagram

1
2 
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 Water Use at the Swine Production Facility 

Pork production at a live swine facility is the next step in the supply chain. We defined 

the system boundaries for a typical production facility as shown in Figure 2.4.  Within the 

production facility, the system was broken down further into different stages including 

gestation, farrowing, nursery, and finishing.  Muhlbauer et al. (2010) reported the percentage 

of the total facility water usage consumed in each production stage.  The largest amount of 

water was used in the finishing barn (64%) followed by gestation (16%), nursery (11%), and 

farrowing (9%) (Muhlbauer et al., 2010). 

Water inputs and their associated technologies were considered for each life phase of 

pork production. For example, drinking water is consumed in each phase, and drinking water 

consumption varies depending on which of the water delivery technologies were modeled. The 

same was true for facility washing water and cooling water.  It was important to determine the 

appropriate volume of water for the given life phase, region and scale, in addition to the most 

common dispensing methods for a particular production strategy.  The use of drinking water, 

cooling water, and cleaning water for manure management and transport are discussed in 

more detail in the following sections.  

As shown in Figure 2.3, the vast majority of water use in pork production is related to 

the swine ration.  The on farm water footprint consists of drinking water, washing water, 

cooling water and other water sinks.  Figure 2.3 from Mekonnen & Hoekstra (2012) disagrees 

with Figure 2.5 from Muhlbauer et al. (2010) with respect to animal drinking water.  The survey 

data collected by Muhlbauer et al. shows the pig drinking water comprises 80% of the on farm 

water footprint which is 23% more than Mekonnen & Hoekstra estimated.  However, both 
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sources agree that pig drinking water makes up the largest percentage of the on farm blue 

water footprint. 

 

Figure 2.5. The average water usage breakdown from nine farrow to finish swine operations 
(excluding feed footprint) from survey data. Adapted from Muhlbauer et al. (2010). 

 

 Drinking Water Consumption in Swine Production Facilities 

 Pig Drinker Systems 

Drinking water has been predicted to make up the largest amount of the live swine 

facility water footprint (Muhlbauer et al., 2010). For this reason, it was important to fully 

understand drinking water consumption at each life stage. The drinking systems considered 

here are the most commonly used technologies in the U.S. pork production industry: nipple 
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drinker systems, cup drinking systems, and wet/dry feeders.  Nipple drinkers are emphasized in 

this report as they are the most commonly used system in North American swine production 

(Patience, 2012). 

 Nipple Drinker System 

In general, nipple drinkers are water dispensers that do not capture excess water that is 

spilled while the animal is drinking.  These drinkers provide an outflow of water when pigs place 

their mouths against a small exposed outlet (Figure 2.6 ).  Instead of being directed to a 

collection apparatus, the excess flow is routed into manure storage, and is lost from the system 

(Muhlbauer et al., 2010). As a result of the absence of a water collection vessel in nipple drinker 

systems, and the tendency of swine to move against the nipples when they are not being used 

for drinking, nipple drinker systems are associated with the highest wastage rate (Muhlbauer et 

al., 2010).   

However, there are 

management techniques that are 

currently in use that can decrease 

the amount of water lost from 

nipple systems. By altering the 

mounted height of the nipple, and 

the system flow rate, producers 

have been able to improve the 

water usage efficiency of nipple drinkers.  In their comparison of nipple drinker efficiency 

studies, Muhlbauer et al. (2010) reported that by periodically adjusting the nipple height to the 

Figure 2.6. Nipple drinking system 
(Mountainharvestorganic.com, 2011) 
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shoulder level of the swine, and by reducing water flow rates, water wastage can be decreased 

by 15% (Li & Chénard, 2005).  The alterations in the drinker systems did not result in changes in 

the daily water intake by the pigs.  Commonly used swing nipple-type drinker systems are 

mounted on the ceiling and are allowed to move freely within the production area.  The height 

of these systems can be easily adjusted to improve water usage efficiency.  In addition, the 

swinging nipple systems allow them to be displaced when the swine move against them, 

resulting in an 11% decrease in water wastage from conventional nipple drinkers (Brumm, 

2000).   

Other systems use a variation of the nipple drinker known as bite ball style drinkers, 

which require that the outlet be inserted further in the pig’s mouth before water is dispensed, 

reducing wasted water (Muhlbauer et al., 2010).  Li and Chénard (2005) showed that 

unadjusted height nipple drinkers with 1000mL/min peak flow rates had the largest wastage 

(41.8%) compared to recommended height with 500mL/min flow rates (15.1%).  Studies of bite 

ball style drinkers showed reductions in overall water usage of 8-22% compared to traditional 

nipple drinker systems over different growth stages (Muhlbauer et al., 2010). By altering the 

mounted height of the nipple, and the system flow rate, producers have been able to approach 

but not reach the efficiency of other drinker systems. To the extent that pig watering is a water 

use of concern, these technologies could be employed to reduce water use. 

 Cup Drinking System 

Cup drinkers use a collection basin to provide drinking water.  A lever, when moved by a 

pig, releases water into a basin or bowl that the pig can then drink from.  Alternatively, the 

basin could have a liquid-level float switch to control water delivery. 
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Figure 2.7. Cup drinking system (Gillisag.com, 2010) 

 

In general, cup style drinkers 

have higher water use efficiencies 

than nipple drinkers.  The collection 

of excess water in a basin minimizes 

wastage, as all of the water pumped 

into the system can be used by the 

pigs, though water is still wasted in 

small volumes due to evaporation 

and splashing by the pigs in drinking 

or play. Muhlbauer et al. (2010) cited studies comparing water usage in cup and nipple drinker 

systems, and the reduction in usage from the cup drinkers ranged from 20-31.2% in the nursery 

and finisher phases.  A potential problem associated with cup drinkers is the retention of 

potentially contaminated water in the drinking water basins; however, studies have not 

identified any impacts on pig performance resulting from changes in drinker type (Muhlbauer 

et al., 2010).  

 Wet/Dry Feeder 

A wet/dry trough mixes feed and water in the same container.  These troughs allow for 

a reduction in water consumption per day, with the savings occurring mostly in the growing and 

finishing stages. Shelf style feeders separate the water and feed within the container using 

depressions to collect only the drinking water (Muhlbauer et al., 2010). 

As with the cup drinkers, the capture of water in the feed basin increases water usage 

efficiency compared to nipple style drinkers.  The concerns with wet/dry troughs mirror those 
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of cup drinkers, most notably the 

retention of contaminated water in the 

reservoir. Some producers say that pigs 

find the food less appetizing after it is 

saturated, causing them to eat less food; 

however, no changes in gains have been 

documented between the different 

drinker types (Muhlbauer et al., 2010). 

 Effects of Temperature on Drinking Water Consumption 

The temperature and relative humidity of a pig’s surroundings is known to affect the 

pig’s desire to consume food and water (NRC, 2012). Climate can also have non-physiological 

effects on pigs that impact water consumption. According to Patience (2012), it is common for 

bored or heat stressed pigs to waste more water while playing with drinkers.  As a result, higher 

ambient temperatures result in an increase in water usage.   

The overall relationship between swine drinking water use and temperature is not 

straightforward.  Since pigs do not sweat, they rely on evaporative heat transfer from 

respiration as a cooling mechanism.  From a behavioral perspective, it becomes unclear which 

external factors most affect drinking water demand.  Ingram & Stephens (1979) evaluated the 

relative importance of thermal conditions on pig drinking water and concluded that there was 

insufficient evidence to predict drinking water by manipulating the pigs’ thermo-receptors.  

In contrast to water consumption, food consumption shows a strong decreasing trend 

as temperature increases, with a corresponding increase in respiration rates (Renaudeau, 

 

Figure 2.8. Wet/dry feeder trough (Christianson 
et al., 2009). 
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2010). This decline in daily feed consumption is most likely the result of a physiological 

mechanism that is triggered to reduce the metabolic heat produced by the pig.  Increasing 

respiration is a pig’s main physiological pathway to accelerate heat exchange. These 

phenomena are accounted for by the daily water requirement averages shown in Table 2.1. 

  

Table 2.1. Average daily water intake of pigs in each life stage used to create and parameterize 
algorithms within the PPEFC. 

Pig Life Stage 
Drinking 
System 

Average Daily Water 
Intake (l/pigspace/day) 

Standard 
Deviation 

Min Max 

Gestation1,2,5,7 nipple 18 4.7 13 24 

Lactation1,2,5,7 nipple 26 8.3 18 37 

Nursery1,7,9 nipple 3 0.5 3 4 

Grower1,5,6,7,8 nipple 6 3.2 5 8 

Finisher1,3,4,6,8,10 nipple 8 3.6 5 15 

1Almond, 1995   
2Almond, 2002 
3Amornthewaphat et al., 2000 
4Brumm, 1999 
5Brumm, 2006 
6Christiansen, 2002 
7Froese & Small, 2001 
8Li, 2005 
9Margowen, 2007 
10Rantanen, 1994 
 

The volume of water each pig consumes will fluctuate (not always predictably) with 

environmental conditions such as age, temperature, humidity, airspeed, stocking density, 

drinker flow rate, disease or stress level, and feed composition (Stockill, 1991, Nyachoti, 2001). 

As a result, most drinking systems have been designed to provide pigs with as much water as 
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they will drink.  A downside of this approach is high wastage rates related to water delivery 

systems, flow rates, barn temperature and pig behavior.  Phillips et al. (1989) reported that 

drinking systems could result in wastage rates of up to 80% in commercial sow barn operations. 

Li (2005) recorded water waste to be as high as 42% with high flow unadjusted nipple drinkers 

in finishing operations. 

 Sow Drinking Water for Gestation and Lactation 

The sow stage is more water intensive per head than the subsequent production stages, 

as shown in Table 2.1.  The higher consumption rates require maximum nipple flow rates of 

1000mL/min for gestating sows and 1500mL/min for lactating sows. The high nipple flow rates 

likely account for the reported water wastage rates of 23-80% (Patience, 2012). 

During the farrowing and lactation phase it has been shown that, within a reasonable 

range, water consumption of the sow does not affect the gain of piglets (Almond, 2002). The 

lactating sows’ daily water intake is the highest of all growth phases and ranged from 18-37 

l/day (Almond, 1995, Froese & Small 2001). The higher water intake in the lactation phase can 

be partially attributed to the piglets’ nutritional reliance upon the sow. Lactation and gestation 

have the greatest standard deviation of reported drinking water values (Table 1.1). 

 Nursery Drinking Water Consumption 

Water-to-feed ratios are reported by Patience (2012) for all life cycles other than the 

nursery phase. Nursery barns do not have consistent correlations between the quantity of 

water and the quantity of feed consumed. The nursery stage is known to have the lowest 

drinking water requirements per pig of all the growth stages (2.1). Lower peak flow rates 500 

mL/min than other growth stages are recommended for nursery pigs (Patience, 2012).   
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 Grow-Finish Water Consumption 

As finishing pigs near market weight, water weight declines to about 50% of their total 

body mass (Patience, 2012). Water usage for growing/finishing pigs mostly occurs immediately 

before or after feeding with approximately 85% of daily water consumption occurring at that 

time (Patience, 2012). Pigs will employ extra effort in order to obtain water from lower flow 

(100 ml/min)  drinkers, suggesting that lower flow rates will not significantly affect pig 

performance (Brumm, 2008). Patience (2012) recommends nipple flow rates 750mL/min for 

growing and finishing pigs. 

 Cooling Water Consumption in Swine Production Facilities 

After drinking water systems, cooling systems are the second largest consumer of water 

in the live swine production facility (Figure 2.5).  The influence of cooling technologies, climate, 

barn type and stocking density on cooling water consumption are discussed in the following 

sections.  

 Cooling Technologies 

In warmer climates, depending on the type of barns employed, water may be needed to 

cool pigs in the gestation, farrowing, and finish production phases. It should be noted that 

nursery barns do not often require cooling since nursery pigs easily tolerate temperatures as 

high as 90°F. Water is usually dispensed onto the pigs using a drip or sprinkling/misting system. 

Water is also used in evaporative cooling pads (cool cells) that remain wet and remove heat 

from the fresh air being forced through the porous cooling pad with electric fans as it enters a 

barn. In a drip or sprinkler cooling system, water is dispersed onto the pigs, and as it 

evaporates, heat is removed from the animal. With evaporative cooling pads, the air 
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temperature is lowered allowing better heat transfer from the pig to the passing air. All water 

cooling systems require air flow across the animal. As shown in Table 2.2, cooling water 

requirements vary with cooling technology and regional temperature (Muhlbauer et al., 2010). 

Table 2.2. Estimated water use for different swine cooling systems used to create 
algorithms within the PPEFC (Midwest Plan Service, 1991). 

Cooling Technology 
Recommended water flow rate when above 85°F 

(l/pig/hr) 

Sprinkler 0.4 

Drip 2.8 

Evaporative Pad 2.3 

 

 Effects of Regional Climate on Cooling Requirements 

Cooling requirements for swine facilities are affected by the local climate. Where water 

is used for cooling animals, the quantity required is affected by regional climate and cooling 

technology, and can vary from 100 l/pig/year to 1000 l/pig/year.  In Table 2.2, the Midwest Plan 

Service (1991) has recommended water flow rates for each of the three most common cooling 

technologies. Humidity also affects cooling requirements but its effects are not well quantified 

in swine literature. 

 Effects of Barn Infrastructure on Cooling Requirements 

The three barn infrastructure types reviewed in this study were drop curtain, tunnel 

ventilated and hoop barns. Drop curtain barns are often used in warmer climates since they can 

be naturally ventilated without additional energy input. When supplemental cooling is required, 

sprinkler/misting systems are generally used in drop curtain barns. Tunnel ventilated barns, on 
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the other hand, are well suited for the use of evaporative pad cooling, with fans at each end of 

the barn forcing air across the production area.  In warmer climates, some tunnel ventilated 

barns also have sprinkler systems installed.  

The cooling requirements for hoop barns are very similar to drop curtain barns since 

they also utilize natural ventilation.  Some hoop barns may also have sprinkler/misting systems 

in warm climates, but it is not desirable to wet the natural bedding (corn stalks, straw, wood 

shavings, etc.). Hoop barns may require less water, electricity and/or natural gas for climate 

control, but in harsh climates, pig health and growth could suffer. 

 Effects of Stocking Density on Water Consumption 

Pigs add significant heat to their environment when closely confined.  Stocking density, 

which is defined as the number of animals per given floor space based on animal size and stage 

of growth, can thus have a significant effect on the amount of cooling necessary to keep the 

pigs healthy.  

Research trials have consistently shown that reducing the amount of space per pig leads 

to a reduction in feed consumption from nursery to finish (Kornegay and Notter, 1984; Brumm, 

2006).  Average daily gain decreases as daily feed intake decreases. Some researchers have 

tried to overcome this problem by increasing the nutrient density of the food, but daily gain 

was still depressed in crowded facilities (Brumm, 2006). Since there are significant water 

requirements associated with feed production, a reduction in daily feed reduces daily water 

consumed, but that effect is countered by the reduction in daily gain. Since it is not extensively 

studied, stocking density is not a reliable predictor of carcass characteristics (Brumm, 2006). 
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Turner et al. (1999) documented that pigs will use more water when they are in larger groups 

than smaller groups, even when the pig per drinker ratio was maintained. 

 Cooling Requirements by Life Phase 

 Sow Cooling 

Piglets in the farrowing barn with sows have a much higher preferred temperature 

range than sows (Table 2.3).  In fact, piglets are often supplied with heating pads or lamps to 

provide supplemental warmth. In Table 2.2 above, sprinkler cooling uses less water than other 

technologies, but it is not optimal for a sow barn during farrowing since the piglets would also 

receive cooling (MWPS, 1991). When the sow is in a farrowing room, drip cooling can 

effectively cool only the sow.  If supplemental cooling is employed at sow barns it is typically 

evaporative pads (cool cells). 

  



   

 25 
 

Table 2.3.  Recommended thermal conditions for swine used to parameterize cooling system 
activation within the PPEFC (FASS, 2010; Thompson, 1996). 

Life stage 
Body weight 

(kg) 
Preferred 
range (°F) 

Lower intervention1 
(°F) 

Upper intervention2 

(°F) 

Sow >100 60 - 75 5 90 

Lactating sow >100 60 – 80 60 90 

Piglets < 5 >90 80 100 

Pre-nursery 5 - 15 80 – 90 60 95 

Nursery 15 - 35 65 – 80 40 95 

Growing 35 - 70 60 – 75 25 90 

Finishing 70 - 100 50 – 75 50 90 

1 Supplemental heating in some form needs to be considered when 
temperatures at the pig near the lower intervention temperature. 

 

2 Supplemental cooling in some form needs to be considered when 
temperatures at the pig near the upper intervention temperature. 

 

1,2 Without intervention, pig health and growth may be compromised.  

 

 Nursery Cooling 

Nursery pigs do not require as much cooling water as older pigs because they prefer 

warmer temperatures (Table 2.3). Water-based cooling systems are not usually used for pre-

nursery or nursery pigs. In nursery barns, warming is often of greater concern than cooling, 

depending on the climate. 
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 Grow-Finish Cooling 

Grow-finish barns may use sprinkler/mister cooling, evaporative pad cooling (cool cells) 

or a combination of the two technologies. The body heat from grow pigs can significantly 

increase the barn temperature. Larger pigs need more cooling to stay healthy. 

 Manure Management Systems and Washing Water 

Facility washing, which is the third largest area of water consumption in a live swine 

production facility, accounts for 7% of the water used (Figure 2.5).  In order to maintain a 

sanitary environment for the pigs, the manure must be removed or flushed from production 

areas, and the stalls must be cleaned and sanitized.  The following sections discuss the types of 

manure management and cleaning systems currently used in swine production facilities. 

 Types of Manure Management Systems 

Manure management varies from operation to operation.  In most swine operations, a 

slatted floor with sub pits collect pig excrement and wasted food and water.  In a typical 

application, the water required to flush and maintain a manure management system is recycled 

from a previous application or is drawn directly from a storage lagoon.  The only additional 

water consumed in manure management is associated with the cleaning and sanitization of pig 

space.  Hoop barns make use of dry collection methods and use no additional washing water.  

The two most common types of sub pits include subfloor to lagoon or formed (above or in-

ground) storage structures and deep pits. 
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 Subfloor to Lagoon System 

This manure management technique involves the periodic flushing or scraping of 

subfloor pits into lagoons or formed (above or in-ground) storage structures.  Pig manure is 

excreted in a highly liquid form, and the additional urine and drinking water wastage keep 

subfloor pits in a liquid state.  The flushing of a subfloor pit is often initiated by the removal of a 

sub pit plug and followed by cycling recycled lagoon water through the pit. There are also 

systems that use shallow below building pits and mechanical scrapers rather than flushing 

manure with recycled water to the lagoon or storage system. Using data for manure 

management systems from the EPA (2011) and farm demographics from NASS Census (2007) 

data, we were able to estimate that anaerobic lagoons are the second most common manure 

management system and are used in the production of approximately 35% of the pigs produced 

in the U.S. 

 Deep Pit 

This method of manure management utilizes deep subfloor pits to collect and store 

manure until removal for land application and does not require additional water. The manure 

can be removed by physical methods and is often land applied. Deep pits are estimated to be 

the most common method and account for over 40% of manure management systems (NASS 

Census, 2007, EPA, 2011).  

 Dry Cleanup Techniques 

This technology is best for removing solid manure that has collected on bedding or 

shelter flooring.  The manure and bedding is usually removed by a skid loader, tractor bucket 

and is most often land applied. Generally dry cleanup techniques will be used to remove the 
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bulk of bedding and manure and then a presoak (to soften dried manure) followed by power 

washing can be used to remove the remainder of residues. The initial dry bedding/manure 

removal can significantly reduce the quantity of water needed to power wash a barn or 

transport vehicle.  

 Factors Affecting Washing Water Use Requirements 

It is commonly known that water temperature, presoaking, cleaning agents, water 

pressure and flow rate all affect washing time and water consumption. A study by Hurnik (2005) 

compared different washing techniques and concluded that hot water reduced washing times 

by an average of 22%, presoaking reduced washing time by an average of 50%, and cleaning 

agents (soap) reduced washing time by an average of 8%.  The study did not report actual water 

consumption values. Variation between washing techniques is common, but for this study we 

adopted an industry average as shown in Table 2.4. 

All-in, all-out facilities, where pigs enter a barn and are sent to market as a cohort at the 

same time, are increasingly common in the pork industry.  Facility washing is much more 

efficient when the entire facility can be washed between cycles of pigs rather than washing 

each pig space individually as in a continuous flow barn. 

A Veterinary Infectious Diseases Organization (VIDO, 1998) survey of western Canadian 

swine barns reported a wide range of wash water usage due to differences in washing and 

presoaking practices. Iowa State University conducted a survey (Muhlbauer et al., 2010) of 160 

large swine operations that showed a smaller range of values than the VIDO study that had 

more variance in washing practices. Averages of the values from both surveys are shown in 

Table 2.4. 
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Table 2.4. Average wash water usage by pork production phase used to parameterize the 
PPEFC. 

Production phase 
Average wash water usage1 

(l/pigspace/wash) 
Range (l/pigspace/wash) 

Gestation/farrowing 136 85 - 318 

Nursery 12 6 - 26 

Grow-Finish 28 16 - 38 

Finishing 80 21 - 242 

1The water usage per wash was calculated using averages from VIDO (1998) and Mulhbauer 
et al. (2010). 

 

 Wash Water Requirements by Life Phase 

 Sow Barn Washing 

Breeding/gestation barns and farrowing barns are less likely to be all-in all-out facilities 

and therefore require each stall to be cleaned individually when the sow transitions between 

the gestation barn and farrowing barn.  Both gestation barns and farrowing barns are washed 

about 2.5 times per year if each stall is washed between each sow. 

 Nursery Barn Washing 

Nursery barns have a much higher turnover than sow and finishing barns; therefore, the 

nursery barns get washed about 6 times per year-with each new cycle of nursery pigs.  The 

wash water per pig space is less than grow and sow barns, but the ratio of floor space to wash 

water is consistent.  

Water Used to Wash Pig Transportation Vehicles 
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Another consideration for water usage lies with cleaning the vehicles used to transport 

live animals. Live swine transportation vehicles are washed after every load of pigs. The 

transportation wash station can be physically located either on or off the swine farm.   

Pig transportation systems require proper cleaning agents and techniques to minimize 

the spread of disease.  Generally, swine transport trucks are washed after every load. The 

current biosecurity practice requires cleaning of all swine related vehicles (including veterinary 

and maintenance vehicles).  Each of these vehicles must be cleaned and care taken to ensure 

the biosecurity of each facility, including gilt development sites, and gestation/farrowing sites. 

In an Iowa State University survey, Muhlbauer et al. (2010) concluded that to clean the 

average 185-200 pig capacity transport vehicle requires approximately 15 l/pig/transport.  A 

system that relied partially on scraping and shoveling in addition to recycling other waste water 

would reduce water use.  However, in order to maintain biosecurity it is important to continue 

using fresh water for final disinfection.   

For consistency between scenarios, the live swine transport water use has not been 

assigned to the swine farm operation. 

 Wasted Water 

There are many techniques which could be used to reduce water usage (Froese, 2001) 

but some of them fall beyond the scope of this report since the stated goal was to find the most 

common water consumption practices and associated values for each scenario. Beyond the 

typical amounts of water use and waste, improper installation and poor design can lead to large 

yearly wastage of water.  Some of this can be managed by simple, routine maintenance. 
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 Current Gaps in Knowledge 

Since crop production is expected to make up a large percentage of the water footprint, 

there is a critical need for comprehensive LCAs to be established on all feed inputs. The advent 

of least cost formulation of swine feed has created constantly changing feed compositions that 

make it challenging to quantify feed impacts beyond common feed configurations. The 

challenge is the lack of a uniform and consistent feed formulation reporting system across the 

pork industry. As more feed production LCAs are completed, the ability to more accurately 

estimate water footprints of animal products will be greatly increased. 
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3.  METHODS OF PORK WATER LCA 

 Goal 

The primary goal was to perform a detailed assessment of water use in the pork supply 

chain in the U.S., from cradle to farm gate.  The primary audience of this LCA is the pork 

producers who may use the results to identify opportunities to reduce water use, and in the 

support of other internal decisions for increasing the efficiency, profitability and security of the 

U.S. pork supply chain.  This LCA is a field-to-gate detailed water footprint analysis of three 

production strategies at three scales across 10 regions.   

 Functional Unit 

The functional unit for the LCA was defined as the volume of water embodied in a 

kilogram of swine (live weight) at the farm gate. 

 System Boundaries and Scope 

This life cycle assessment was a field (crop production for feed) to gate (live swine ready 

for transport to processing) analysis of the water footprint of U.S. pork production. The system 

boundaries began with feed production, and ended with swine at the farm gate ready for 

transport.  Three swine production categories were included in this analysis: 

1. Sow (Breeding/Gestation/Lactation) 

2. Nursery 

3. Growing/Finishing 
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Production practices included bedded hoop, total confinement/tunnel ventilated, and 

total confinement/drop curtains.  Production categories and practices were analyzed for three 

production scales (100, 1200, and 2500 head barn capacity) across ten production regions 

(Figure 3.1, Table 3.1).  It was assumed that all barns from a single scenario were located at a 

single facility and that there was an insignificant water footprint associated with the movement 

of pigs between barns. Effects embodied in infrastructure (e.g., water emissions associated with 

manufacture of new equipment necessary for farm equipment, which would be amortized over 

the expected life of the equipment) were not included in the analysis. Boar water footprints 

were not considered since boar-to-sow ratios are nearly 1:50 and each sow produces nearly 25 

piglets per year, which would make for an annual boar to market hog ratio of 1:1250, and 

would fall below the 1% contribution threshold. Where data were incomplete, surrogate unit 

operations were identified from the EcoInvent database. 

 Scenario Development 

The literature review and discussion with industry representatives including NPB 

representatives helped refine the selected matrix of scenarios to be analyzed. The Pig 

Production Environmental Footprint Calculator (PPEFC) Version 2.0 was used to establish the 

on-farm feed usage and water usage which were used as life cycle inventory for the SimaPro 

LCA barn unit processes. Separate models were created for the sow, nursery and grow-finish 

barns. The combined analyses of production strategies, production scales, production life 

stages, and production regions yielded a total of 240 scenarios that were developed and 

analyzed; not all strategies applied to all scales or life stages (Table 3.2).



   

  
 

 

Figure 3.1. Swine Production Regions used in this analysis. The Distribution of hogs is from the 2007 NASS Census.

3
4 



   

 35 
 

Table 3.1. Scenario matrix of Live Swine Production Detailed LCA of Water Use. The sow life 
stage includes breeding, gestation and lactation. 

Production Strategy Production Scale Life Stage Production Region 

Drop Curtain  100 Sow R1 (CT ME NH VT MA RI) 

Tunnel Ventilated 1200 Nursery R2 (NY NJ) 

Hoop Barn 2500 Growing/Finishing R3 (DE MD PA WV VA) 

   R4 (AL FL GA KY MS NC SC TN) 

   R5 (IL IN MI MN OH WI) 

   R6 (AR LA NM OK TX) 

   R7 (IA KS MO NE) 

   R8 (CO MT ND SD UT WY) 

   R9 (AZ CA HI NV) 

   R10 (AK ID OR WA) 

 

Table 3.2. Scenario matrix of the production strategies that were analyzed for each scale. An "x" 
indicates that the combination was analyzed. 

Scale 
Production Strategies 

Drop Curtain Tunnel Ventilated Hoop Barn 

100 - - x 

1200 x x x 

2500 x x - 

 

 Production Strategies 

There are distinct production methods within the swine industry.  These facilities range 

from low cost hoop barns to more costly confinement operations.  The key differentiating 

factor between production methods is the structure of the swine housing.  Each of the methods 
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studied provide moderate to substantial protection from the elements, but must be well suited 

for the geographic location of the operation.  An important consideration in the structure 

would be cooling capacity; due mainly to pig’s inadequate ability to dissipate their heat.  With 

this in mind, many production strategies may include extra measure to cool pigs (e.g. drip 

cooling systems or cooling pads).  There are many combinations and possibilities for pig 

production in the US.  For this research, the most common production structures were selected 

to be tunnel ventilated, drop curtain ventilated, and hoop barn. 

 Tunnel Ventilated 

Tunnel ventilated operations are the most common production structures and typically 

coincide with confinement swine production.  In this method the close proximity of each pig 

requires an intricate flooring system.  This flooring system typically consists of concrete with 

openings or slates allowing pig waste to fall through to a swine lagoon.  Using slated flooring 

allows pig waste to be managed without extra labor or removal of pigs.  The main structure 

consists of a tunnel open on both ends.  These openings often have fans that can be adjusted to 

regulate temperature and fresh air required to keep pigs healthy.  Another feature is solid side 

walls which are often insulated to help maintain a livable climate with less energy input.   

 Drop Curtain 

Drop curtain operations are another strategy often related to confinement swine 

production.  This structure also works to increase the number of pigs per area and utilizes the 

same flooring system as tunnel ventilated (i.e. slated concrete).  This also allows for pig waste 

removal with minimal labor inputs.  The main difference between drop curtain structures and 
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tunnel ventilated structure would be the side wall setup.  Each side has an adjustable insulated 

curtain surrounding the building, this allows for climate management through altering the 

curtain coverage.  In addition, to adjustable curtains drop structures also use fans to help 

facilitate fresh air to the pigs.  Drop curtain structures are well suited to environments that 

require maximum ventilation to aid in heat dispersal from the pigs. 

 Hoop Barn (open front) 

Hoop barns are often the simplest structures, tented barns placed on even ground.  

These structures are low cost but do not deliver the same level of efficiency per land area as the 

previous strategies.  The flooring method used in hoop barns is deep bedding which collects 

waste while also helping increase the thermal efficiency of this structure.  Since the bedding 

must be changed, the pigs must be moved and the waste bedding must be relocated and 

managed.  This structure is often less expensive to set-up and with proper management 

strategies can be an efficient swine production strategy. 

 Regional Analysis 

Water scarcity varies greatly with location throughout the United States.  The two 

overarching factors that affect water scarcity are supply and demand of water. Scenarios were 

generated for 10 swine production regions in the U.S. (Figure 3.1).  Baseline scenarios for the 

sow, nursery and grow barns for each were region were primarily derived from a prior project 

Pork Management LCA (Thoma et al., 2013). Ten archetypal counties were selected to 

represent the regions. The selected counties were obtained by geospatially overlaying the 2007 

USDA NASS hog and pig inventory map onto the production region boundaries and choosing 
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counties that would represent the average swine production within the region (Table 3.3; 

Figure 3.1). 

Table 3.3. Archetypal swine production regions. NASS 2007 Survey data was used to 
calculate “Total Head”. 

  Archetypical Climate Region 

Region Total Head (1000) State County 

1 24 M Hampshire 

2 194 NY Cayuga 

3 2,335 PA Perry 

4 14,912 NC Wake 

5 32,800 IN Jasper 

6 5,621 OK Texas 

7 44,277 IA Hardin 

8 4,349 SD Edmunds 

9 238 CA Stanislaus 

10 94 OR Clackamas 

 

 Production Scales 

Production scale was defined as the approximate number of head in a single barn (sow, 

nursery or grow) at any given moment. The most common barn size has been established to be 

1200 head in a single barn.  To provide better resolution three barn sizes where selected; 100 

head, 1200 head and 2500 head.  Barn sizes as large as 2500 head do exist but are uncommon.  
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 Pig Production Environmental Footprint Calculator (PPEFC) 

The Pig Production Environmental Footprint Calculator (PPEFC) was used to develop the 

scenarios which served as the life cycle inventory data for the analysis. The PPEFC uses 

mathematical relationships to simulate growth, feed intake and water consumption, electricity 

and natural gas use, manure handling, and greenhouse gas emissions during each production 

cycle of pig. Separate model were created for the sow, nursery and grow-finish barns. 

Depending on model input parameters, the grow barn model can simulate nursery, feeder-to-

finish, or wean-to-finish barns. 

The on farm water calculations within the PPEFC were accomplished by integrating the 

literature review of swine production water use into the PPEFC. This included equations for 

drinking water, cooling water and wash water use:  

Wash water per pig per yr = f(number of cycles per yr, barn infrastructure) 

Drinking water = f(pig weight) 

Cooling water = f(climate, barn thermodynamic properties, evaporative pad, sprinkler or drip) 

The PPEFC is now able to calculate the volume of water consumed by the pigs per year, 

the water consumed in cooling cells, the water required for barn washing and the volume of 

water required for evaporative pad, drip or sprinkler systems in the barn infrastructure. The 

drinking water model used during this study did not link drinking water to feed intake.  Future 

iterations of the PPEFC will include algorithms that connect drinking water to feed intake and 

will be responsive to environmental conditions.   

As with all models, the PPEFC is a useful tool but has limitations.  With further iterations 

of the model, the complex relationships between pigs and their environment will become more 
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integrated.  For example, the Version 2.0 PPEFC model has assumed linear relationships for 

scaling and pig crowding.  The simplification of the complex processes within the live swine 

facility is intrinsic to modeling and produces outputs that should be viewed with these 

shortcomings in mind. Metabolic and thermodynamic algorithms have been included in the 

Barn Model to account for the additional cooling needed to compensate for large pig 

quantities.  Since hoop barns provide pigs 50% more space per pig than confinement pigs 

(Purdue Handbook, 2008), less cooling water is likely to be needed. 

 SimaPro LCA Model 

The SimaPro software platform was used for calculating the final water footprint for 

each of the 240 analysis scenarios. Data obtained from the literature review was used to create 

all of the input files and water algorithms for the PPEFC.  Next, aspects of the PPEFC output 

were used in a life cycle inventory for the life cycle analysis model developed in SimaPro V7.3 

(Pre’ Consultants, The Netherlands). The two models were used to produce cradle-to-grave 

water footprints for all 240 scenarios (Figure 3.2) 
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Figure 3.2. Network diagram showing the links between the Pig Production Footprint Model and the SimaPro model. 

4
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Figure 3.3. Sow barn Pig Production Environmental Footprint Calculator scenario in detail. 
 
 

 
Figure 3.4. Nursery barn Pig Production Environmental Footprint Calculator scenario in detail. 
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Figure 3.4. Grow barn Pig Production Environmental Footprint Calculator scenario in detail.  
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 Life Cycle Inventory 

The literature review, Ecoinvent unit processes and the previously conducted Pork 

Carbon Footprint LCA (Thoma et al., 2011) served as the basis for much of the life cycle 

inventory data which was generated through the PPEFC.  Also, additional discussions with 

industry representatives and other experts helped fill in the data gaps. The production system 

encompassed activities performed in support of pork production up to the farm gate.   The 

PPEFC was run for three separate barns: the nursery and grow barns (Table 3.4) and the sow 

barn (Table 3.5). 
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Table 3.4. Nursery and grow barn PPEFC parameter examples for assessing the tunnel 
ventilated, 1200 head scale water footprint of U.S. pork production. 

Parameter Nursery Grow/Finish Units 

Barn infrastructure 
Tunnel 
Ventilated 

Tunnel 
Ventilated 

NA 

Pigs in per cycle 1200 1200 pig/cycle 

Age entering 19 54 days 

Weight entering  11 50.1 lbs 

Weight leaving  50 275 lbs 

Pig death per cycle 35 47 pig/cycle 

Mortality  2.9 3.9 % 

Mortality disposal method Composting Composting NA 

Time to clean between cycles 5 5 days 

Barn area 3600 11375 ft2 

Heat source Natural Gas Natural Gas NA 

Outside temp to activate cooling 
cells 

85 80 F 

Outside temp to activate sprinkler no sprinkler 85 F 

Sprinkler cooling water no sprinkler 0.1 gal/pigspace/hr 

Manure system Deep Pit Deep Pit NA 

Drinking water 0.93 1.87 gal/pig/day 

Washing water 3.17 7.41 gal/pigspace/wash 
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Table 3.5. Sow barn PPEFC parameter examples for assessing the tunnel ventilated, 1200 head 
scale water footprint of U.S. pork production. 

Parameter Sow Barn Units 

Barn infrastructure Tunnel Ventilated NA 

Adult sows 1200 pigs 

Gilts 660 gilts/year 

Avg. age gilt 180 days 

Culled sows 600 sows/year 

Sow deaths 60 pigs/year 

Mortality  3.9 % 

Disposal method Composting NA 

Piglets per liter after weaning 9.3 piglets/liter 

Death per liter before weaning 2 piglets/liter 

Age piglets removed 21 days 

Piglet cycle 16 days 

Barn area 26500 ft2 

Heat source Natural Gas NA 

Heating pads run for 5 days 

Outside temp to activate cooling cells 85 F 

Outside temp to activate drip cooling 80 F 

Drip cooling water 0.77 gal/pigspace/hr 

Manure system Deep Pit NA 

Drinking water 6.4 gal/pig/day 

Washing water 31.6 gal/pigspace/wash 
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 Allocation of Co-Products 

In LCAs involving systems with multiple products or co-products of economic value, it is 

necessary to allocate a fraction of the environmental burden of production to each co-product.  

However, in practice, it can be difficult to determine the most appropriate scheme for 

allocating environmental impacts.  ISO standards recommend system separation as the highest 

allocation priority. When joint production of products cannot be independently varied, system 

expansion takes priority. In system expansion, a “credit” is applied to the system for the 

production of each co-product that is equivalent to other products on the market.  The credit is 

based on the amount of environmental burden associated with the equivalent products.  Other 

approaches include mass and economic allocation.  Mass-based allocation involves applying the 

weight ratios associated with co-products to their impacts, while economic allocation is based 

on the relative revenue of each of the co-products (Thoma et al., 2011). 

 Water Use for Crop Production 

Water usage for crop production was estimated for each of the ten regions (regional 

footprints) and for the entire U.S. (commodity footprint).  It was assumed that the feed crops 

were produced in the continental United States and standard U.S. agricultural practices were 

used in their production. Two main sources of agricultural data were used to estimate regional 

blue water usage in the production of corn grain, soybeans, and wheat in 2007: crop production 

data from the 2007 Census of Agriculture on a state-by-state basis from the USDA National 

Agricultural Statistics Service (NASS), and the 2008 USDA NASS Farm and Ranch Irrigation 

Survey (FRIS).  State-level data for acres harvested and average yield for irrigated and non-

irrigated acres were obtained from the USDA NASS 2007 Census of Agriculture.  The average 
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irrigation amount applied (acre-feet) for irrigated production for each state was obtained from 

the USDA NASS 2008 Farm and Ranch Irrigation Survey (FRIS).  Total irrigation water usage and 

total harvest mass was calculated from these values.  Total irrigation water usage was divided 

by total harvest mass to obtain a volume of water usage per mass of harvest.  These values 

were aggregated for each region. Missing yield data from the 2007 Census was supplemented 

using yield data from the 2008 FRIS.  Missing irrigation data for states in the 2008 FRIS were 

supplemented using regional averages. Using the same data, a single commodity feed footprint 

that could be applied the entire U.S. was compiled using weighted averages. All ten regions 

were modeled with both their respective regional feed footprint and the U.S. commodity feed 

footprint. It must be noted that in the regional footprints we assumed that pigs in a region were 

fed feed from crops that were grown in that particular region. 

Feed crop life cycle inventories directly correlated with the Pork Management LCA 

(Thoma et al., 2012), with the same feed compositions for each growth phase but focused on 

water usage in crop production. Those feed compositions were applied uniformly across all 

production strategies, regions and scales.  The feed compositions are not assumed to be correct 

for all scenarios, but clearly documented differences between regional feed compositions are 

not available. Thus, use of region-specific rations would introduce additional uncertainty that 

would not facilitate well informed decision making. The relationship between pig water 

consumption and environmental conditions and housing is not well established in the 

literature.  In this LCA, growth curves and water requirement algorithms were assumed to be 

consistent between production facilities. The values for the national average water footprint for 

corn and soybean meal were approximately 50 l/kg and 60 l/kg, respectively.  These commodity 



   

49 
 

water footprints were used for all scenarios throughout the LCA. This approach does not 

account for variation by region in animal rations.  The information about this variation is very 

limited and often anecdotal. 
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4.  RESULTS AND DISCUSSION 

The pork water footprint varied with infrastructure type and region. Total water use was 

greatest in the tunnel ventilated barn (0.153±0.002 m3 of water per kilogram live weight at 

farm gate; Figure 4.1). However, there was very little difference between the total water use of 

tunnel ventilated barns compared to the hoop barns (0.151±0.000 m3/kg live weight) and drop 

curtain barns (0.152±0.001 m3/kg live weight).  Hoop barns did not have a standard deviation 

because the hoop barn footprint does not vary by region alone (Figure 4.2).  Version 2.0 of the 

PPEFC did not have comprehensive enough algorithms to model complex climatic effects on pig 

performance or water consumption. As a result, barns with water based cooling systems (drop 

curtain and tunnel ventilated) use more water in warmer climates.  The hoop barn uses less 

water for cooling systems, but the climate inside the barn may adversely affect pig 

performance. The variation from the region is due to heating and cooling within the barns, but 

hoop barns were modeled with no heating or cooling systems that require additional resources. 
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Figure 4.1. Total water use by barn type: drop curtain ventilated (D), hoop barn (H), and tunnel 
ventilated (T). The three totals are 1200 head scenarios averaged over all 10 regions. 

Regionally, total water use per pound of live weight showed consistent trends (Figure 

4.2). The tunnel ventilated barn water footprint was consistently higher, followed by the drop 

curtain and then the hoop barn in each of the regions. In region one, all three of the footprints 

were nearly the same since the colder climate does not have as many high temperature days, 

so cooling water is not necessary. The driving differences between regional footprints were 

climate, since all regions were using commodity sourced feed in this analysis.  Variation in 

production strategies between regions was not accounted for other than in the heating and 

cooling technologies required to compensate for outside temperatures and relative humidity. 

Since the hoop barn doesn’t use cooling systems, the water footprint remained steady from 
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region to region.  Tunnel ventilated barns had the most climate control, and as a result, the 

greatest reaction to climate fluctuations.   

 

 

Figure 4.2. Total water use across for each barn type in each region. These totals have been 
averaged from the 1200 head scenarios. 
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Over the swine production life stages, the greatest water use comes from the grow 

barn, while the sow and nursery barn had much smaller water footprints in all three barn 

infrastructures (Figure 4.3). The higher grow barn footprint can be attributed to the longer 

period of time and larger increase in pig weight in the grow barn than the nursery barn.  Sows 

consume three to four times as much water per pig space than a grow/finish pig, but that 

footprint gets distributed over all of the piglets (8 – 10 piglets/litter) they produce. 

The box whisker plots in Figure 4.3 have boxes representing the 25th and 75th 

percentiles and dots at the 5th and 95th percentile points. Some of the model outputs (hoop 

barn) have so little variation in the data that the 25th to 75th percentile boxes look more like 

lines. 

In this analysis, drinking water and food consumption algorithms were assumed to 

remained constant between all scenarios, because data were not available to support precise 

variances.  Since the ration (75%) and drinking water (21%) footprints makeup 96% of the field-

to-gate footprint, those assumptions do not allow for much variation in the model outputs 

(Figure 4.).  Cooling water and washing water contribute about 10% of the facility footprint with 

the remainder from drinking water. It is clear that drinking water consumption and delivery 

play a relevant role in the water use efficiency of swine production.   Resources put into higher 

efficiency drinking systems would be much more valuable in terms of water reduction than 

cooling and washing systems. The “other” water in the pie chart below represents everything 

from water embodied in infrastructure to water used in the energy production.  This category 

of water consumption is made up of many small fractions of water throughout the supply chain.  

The “other” category is not an easy target for water reductions.



   

 
 

 

 

Figure 4.3. Total water use across swine production stages for each barn infrastructure type.

5
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Figure 4.4. Field-to-gate water footprint contribution to U.S. pork production, averaged from all 
240 field-to-gate scenarios. 
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Figure 4.5. Breakdown of contributions to the on-farm water footprint in U.S. pork production, 
averaged from all 240 field-to-gate scenarios."Other" is mostly made up of water embodied in 

barn intrastructure and energy. 

 Sensitivity and Uncertainty Analysis 

 Sensitivity Analysis 

A sensitivity test of the model inputs was conducted to evaluate the robustness of the 

study’s conclusions. Table 4.1 lists the model input parameters which were individually 

analyzed to gauge the sensitivity of the model output (water footprint). Each of the parameters 

was varied, ceteris paribus, by an increase and decrease of 10% to quantify the effect on the 

field-to-gate water footprint. The first iteration of the sensitivity analysis was an upper-level 

analysis that showed swine rations to have the most significant effect on the model output.  We 

Drinking Water 
81% 

Washing Water 
7% 

Cooling Water 8% 

Other 4% 
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followed this with individual sensitivity analysis on all of the significant ration components to 

determine which ones had the greatest effect on the model output. 

 

Table 4.1. Pig Production input parameters tested for sensitivity. 

Upper Level Parameters Ration Parameters 

Piglet heaters Drinking water Limestone Ronozyme 

Fans Ration Monocalcium Phosphate Tallow 

Lights Washing water Sodium Chloride Plasma 

Barn infrastructure Transportation Soybean Meal L-Lysine HCL 

Heaters Nitrous Oxide Trace Mineral Mix DDGs 

Gilt production Methane produced Vitamin Premix Corn Grain 

Manure spreading Cooling Water Dry Whey  

 

 Sensitivity Analysis Results 

Sensitivity analysis is a useful approach to help answer the question: “What information 

is most critical to collect to ensure high quality?” In the following charts, it is important to keep 

this question in mind and not to conclude that changing an operating characteristic of the 

facility to match the change in the parameter will result in an equivalent increase or reduction 

of the water footprint, but an indication of the level of accuracy required for that input into the 

LCA model to reduce the error in the model output. The swine production inputs were 

evaluated to determine the degree of influence that a 10% change in the parameter value 

would have on the final results. We used a threshold value of 0.5% or more change in impact to 

identify sensitive parameters. Parameters which were not reported were not identified as 
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sensitive since a 10% change in that input resulted in less than 0.5% change in water footprint. 

Not surprisingly, the feed ration and their associated production processes (corn grain, soybean 

mean, and dry whey) had the greatest impacts (Figure 4.6), which is similar to findings reported 

in the literature review.   

 

Figure 4.6. Tornado diagram showing the sensitivity of parameters to uncertainty in the water 
footprint for a 10% increase and decrease in parameter value. The "% Change" refers to the 

variation in the field-to-gate water footprint due to the parameter variation. 

 Uncertainty Analysis 

We used stochastic methods to quantify and characterize uncertainty in the LCA results. 

It is important to understand that all of the water footprints calculated in this study were based 

on estimated values that have an associated range of uncertainty. Any conclusions from the 

results must therefore be made in the context of the uncertainties in the underlying data. This 
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analysis is crucial for establishing defensible metrics for evaluating the progress toward a more 

sustainable supply chain. 

Uncertainty is classified in two major types: knowledge-based uncertainty and process 

variability. Knowledge-based uncertainty reflects limits of what is known about a given 

parameter, while process uncertainty reflects the inherent variability within a process or 

parameter. Knowledge uncertainty can be reduced by collecting more data to decrease the 

possible range of the parameter estimate. Process uncertainty is the unexplained random 

variability which is a property of the system.  

Each output of the PPEFC was represented as either a lognormal or triangular 

distribution (Table 4.2) to serve as an input to the SimaPro model.  A 1000 run Monte-Carlo 

simulation was performed to characterize the probability distribution for the water footprint. 

Any foreground processes without an already established uncertainty distribution were 

assigned an inherent uncertainty of ±20% when used in the Monte-Carlo simulations. The result 

was a distribution for the water footprint rather than an average value. These distributions 

quantify the associated uncertainty in the results about the mean value. Uncertainty analysis 

was performed across regions, scales and production strategies. The combination of models 

used in this LCA is more useful for identifying differences between regions, production 

strategies, life phases and scales than it was for producing absolute footprints. 
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Table 4.2. Select parameter assignments for uncertainty analysis. 

Type Units Distribution Average SD2 Min Max 

Gestating Sow 
Drinking 

l /pig/day Lognormal 181, 2, 4, 7 1.27 13 24 

Lactating Sow Drinking l /pig/day Lognormal 261, 2, 4, 7 1.32 18 37 

Nursery Drinking l /pig/day Lognormal 31, 7, 9 1.15 3 4 

Grow Drinking l /pig/day Lognormal 61, 5, 6, 7, 8 1.56 5 8 

Finisher Drinking l /pig/day Lognormal 81, 3, 4, 6, 8, 12 1.42 5 15 

Sow Washing l /pigspace/wash Triangle 13510, 13  85 318 

Nursery Washing l /pigspace/wash Triangle 1210, 13  6 26 

Grow Washing l /pigspace/wash Triangle 2810, 13  16 40 

Live Transport 
Washing 

l /pig/wash Triangle 1510  
14 15 

Sprinkler Cooling l /pig/hr Lognormal 0.511 1.51   

Drip System Cooling l /pig/hr Lognormal 311 1.51   

All Rations  Lognormal  1.2   

1Almond, 1995 
 2Almond, 2002 
 3Amornthewaphat et al., 2000 
 4Brumm, 1999 
 5Brumm, 2006 
 6Christiansen, 2002 
 7Froese, 2001 
 8Li, 2005 
 9Margowen, 2007 
 10Muhlbauer, 2010 
 11MWPS, 1991 
12Rantanen, 1994 
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 Uncertainty Analysis Results 

Figure 4.7, Figure 4.8, and Figure 4.9 summarize the results of the 1000 Monte Carlo 

runs for the uncertainty analysis as box and whisker plots. The boxes define the 25th and 75th 

percentiles, the line within the box represents the median, and the blue dash line represents 

the mean of the 1000 Monte Carlo runs. The lower and upper error bars (whiskers) define the 

10th and 90th percentiles respectively. Dots below and above the error bars represent the 

outlying points. 

As an example, in Region 7 (Figure 4.7), the 25th percentile was approximately equal to 

0.169 m3/kg live weight 75th percentile was approximately equal to 0.142 m3/kg live weight. 

The interpretation of this result is that we can state with 75% confidence that swine produced 

in region 4 will have a water footprint between 0.169 m3/kg live weight and 0.142 m3/kg live 

weight. 
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Figure 4.7. Estimated potential change in water footprint for U.S. Swine production across 10 
regions. 
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Figure 4.8. Estimated potential change in water footprint for three U.S. swine production 
strategies. 
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Figure 4.9. Estimated potential change in water footprint for three U.S. swine production scales. 

 

A similar conclusion can be drawn from the swine production strategy scenarios (Figure 

4.8). The swine produced using a tunnel ventilated infrastructure were estimated to have a 

slightly higher water footprint than the drop curtain and the hoop barn. When considering the 

scale of production, the 1200 and 100 head facilities had higher water footprints than the 2500 

head production scale (Figure 4.9). One prevalent factor causing the 2500 head scale to have a 

lower water footprint per mass of pig is the higher ratio of piglets per litter in larger operations 

(NASS, 2013).  Due to economy of scale, it is intuitive that larger farms would be more efficient, 

but this model could not account for most of those effects. 
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 Statistical Analysis of Hypothesis Statements 

Multiple statistical tests including an analysis of variance and least squares means T-

tests were conducted for all data with the assistance of JMP Pro 11.0 (SAS Institute, 2013) 

statistical software. The analysis of variance was used to test differences of means as well as 

statistical significance in water footprints due to main effects and/or interaction effects 

(Appendix A). The least squares means tests were used to identify mean comparison effects of 

the different levels for each variable (Appendix B, C and D). 

In Chapter 1, three hypothesis statements were established: 

H(0)1:  All swine production strategies have approximately the same water footprint. 

H(A)1: Some swine production strategies have a larger footprint than others. 

H(0)2: All swine production facility scales have approximately the same water footprint.  

H(A)2: Larger scale swine production facilities often have a smaller water footprint than small 

scale facilities. 

H(0)3: All regions of swine production have approximately the same water footprint. 

H(A)3:  Water footprints vary with the region of production.  

The results of the assessment of the three hypotheses showed that production 

strategies, production scale and region of production affected water use. This may seem self-

evident, but these processes have not been quantified at this scale prior to this analysis.  

Analysis of variance of the water footprint across production strategies provided 

evidence to reject the Null Hypothesis and conclude that some swine production strategies 

require more water than others (Appendix A). The effect of the production strategy on the 

water footprint was statistically significant (p < 0.0001). The production practice that required 
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the most water (M = 154 l/kg) was tunnel ventilated facilities while hoop barn facilities have the 

smallest footprint (M = 152 l/kg) (Appendix B).  The larger footprint in tunnel ventilated and 

drop curtain facilities is a consequence of their climate control systems. The greater climate 

control likely increases pig growth and reduces health issues, but the model algorithms could 

not account for those interactions. 

Analysis of variance of the water footprint across production scales provided evidence 

to reject the Null Hypothesis and conclude that some swine production scales require more 

water than others (Appendix A). The effect of the production scale on the water footprint was 

statistically significant (p < 0.0001). The production scale water footprint was the largest (M = 

155 l/kg) in the 100 head scale and the smallest (M = 151 l/kg) in the 2500 head scale (Appendix 

C). The water footprint variance is due to economies of scale and reduced piglet mortality as 

operations increase in scale.  

Analysis of variance of the water footprint across production regions provided evidence 

to reject the Null Hypothesis and conclude that some swine production regions require more 

water per head than others (Appendix A). The effect of the region of production on the water 

footprint was statistically significant (p < 0.0001). However, paired t-tests (α=0.05) calculated 

between regions confirm that not all regions are statistically different from one another 

(Appendix D).  Regions 4, 6 and 9 (the southern U.S.) are significantly different and have a larger 

footprint than the other seven regions. There are not significant differences within the two 

groups of regions. In other words, there is not a statistically significant difference between 

Regions 4, 6 and 9, but there is a statistically significant difference between Region 4 and the 

other seven regions or Region 6 and the other seven regions.  
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The production region that required the most water was Region 6 (M = 154 l/kg) 

(Appendix D).  Region 6 contains Texas and its surrounding states which are all very hot 

climates in comparison to the rest of the states. Since the model activated cooling systems 

based on outside temperature, regions with the most days above the threshold cooling system 

activation temperatures will have the most cooling water.  That attribute was what caused 

Region 6 to have the largest blue water footprint. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

The intent of this study was to analyze water use across a range of regions, scales and 

practices of the U.S. pork industry. A Life Cycle Analysis of the water footprint of U.S. pork 

production was conducted from cradle to farm gate.  A comprehensive literature review was 

used to design and propagate algorithms for the National Pork Board Pig Production 

Environmental Footprint Calculator (version 2.0). The outputs from the calculator were used to 

generate lifecycle inventory inputs for unit processes in SimaPro (Pre’ Consultants, The 

Netherlands), an LCA modeling program. There were 240 different scenarios analyzed that were 

a combination of ten regions, three production strategies and three scales. Integrating a 

mixture of modeling and life cycle assessment proved to be a powerful method for simulating 

pork production scenarios. 

The results of these analyses showed water use ranged 150-155 l/kg live weight for each 

production strategy across the regions. Overall the results show that feed rations account for 

approximately 89% of the cradle-to-gate water footprint.  On-farm activities are the second 

largest contributors to the water foot print with drinking water contributing 9% of the total 

cradle-to-gate water footprint and 81% of the water use at the farm. Barn washing and cooling 

water contribute about 3% of the total water footprint. The grow/finish barn phase of the on 

farm water footprint requires approximately five times as much water as the sow and nursery 

barns irrespective of the barn infrastructure.    

Although the hoop barn has been shown to use less water in hot regions, it is misleading 

because pig health and performance would likely decline during periods of extremely hot 

weather without dedicated cooling systems.  Extension of the model to account for these 



   

 69 
 

complex in vivo tradeoffs is important to fully understand the impacts and tradeoffs associated 

with using hoop barns as opposed to other housing systems. 

The analysis of variance concluded that production strategies, production scale and 

region of production were all significant (p < 0.0001) and affected the blue water footprint. This 

may seem self-evident, but these processes have not been quantified at this scale prior to this 

analysis.  The production practice that required the most water (154 l/kg) was tunnel ventilated 

facilities while hoop barn facilities have the smallest footprint (152 l/kg). The larger footprint in 

tunnel ventilated and drop curtain facilities is a consequence of their climate control systems. 

The production scale water footprint was the largest (155 l/kg) in the 100 head scale and the 

smallest (151 l/kg) in the 2500 head scale. The water footprint variance is due to reduced piglet 

mortality as operations increase in scale. Regions 4, 6 and 9 (the southern U.S.) are significantly 

different and have a larger footprint than the other seven regions due to their warmer climates 

and subsequent cooling requirements. 

This analysis showed the power and limitations of model-linked LCA in addressing 

sustainability metrics for animal agriculture. The most critical challenge continues to be data 

availability.  The type of data that could most improve this assessment would be more accurate 

water footprints for swine feed (particularly corn and soybeans) with a greater geographic 

resolution.  Other types of data that could improve the algorithms of the model would include 

the ration’s effect on pig growth, drinking water’s effect on pig growth, climatic effects on pig 

growth and other unforeseen relationships between the applied treatments and the resulting 

effect on pork yield. In addition to higher quality data, a more clearly documented production 

life cycle would help the model pull from the correct data sources for the correct scenarios and 



   

 70 
 

subsequently increase the accuracy of this model.  The model has been designed to 

accommodate new data as is becomes available in an effort to increase resolution and accuracy 

in future iterations. 

Finally, this project not only met our goal of analyzing water use throughout the U.S. 

pork industry but more importantly created a benchmark and resource that the pork industry 

can utilize to make informed decisions regarding water use. The U.S. pork industry’s forward 

thinking life cycle assessments will lead to reductions in their impacts while setting a precedent 

for the rest of the agricultural community. Removing all environmental impacts from the 

agricultural sector is not a realistic goal, but significant reductions in environmental impacts can 

be both attainable and profitable. 
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 Appendix A: ANOVA Test for All Treatments 
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 Appendix B: Least Square Means Plot and T-tests Between Production Strategies 
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 Appendix C: Least Square Means Plot and T-tests Between Production Scales 
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 Appendix D: Least Square Means Plot and T-tests Between Regions of Production 

 



   

 81 
 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2013

	A Cradle to Farm Gate Life Cycle Analysis of Water Use in U.S. Pork Production
	Eric Boles
	Recommended Citation


	tmp.1481559126.pdf.UBqQ8

