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The transition from the condition of “no motion” to initial sediment moment, 

defined as sediment initiation, has been related to practical engineering (channel 

degradation, stable channel design), oceanographic (dredging, pipelines, cables), 

sedimentologic (sediment mobility, transport rates), geologic (the hydraulic 

interpretation of paleoenvironments), geochemical (pollutant transport), and gained 

considerable interest since nineteenth century.  

Shields diagram for sediment initiation in terms of critical shear stress is a classic 

problem in sediment transport, but it is still an empirical law without a simple and 

practical theory despite extensive research since the 1930s. Hence, this research 

presents a simple theoretical model for critical shear stress, which has four lumped 

parameters determined analytically and fits data from various references in the 

Shields diagram. Specifically, it first describes the hydrodynamic drag on a bed 

particle with Forchheimer's law from porous media flow; it then models the cohesive 

force between sediment particles by considering the effects of attached water film and 

electrostatics. The resulting dimensionless critical shear stress (or the critical Shields 

parameter) is a rational function of particle Reynolds number, which reproduces the 

Shields diagram by tending to two constants for small and large particle Reynolds 



  

numbers, respectively, and having a minimum value in the transitional regime. For 

applications, the proposed rational function can be solved for a critical shear stress or 

a critical sediment size analytically without numerical iterations.  

Keywords: Bedload; critical shear stress; incipient motion; sediment threshold; 

sediment transport; Shields diagram; Shields parameter 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Shields diagram is a fundamental law in sediment transport, describing the 

critical shear stress under sediment incipient (or threshold) condition (Chien and Wan 

1999; Garcia 2008; Julien 2010; Jan 2018). It is widely used in river and coastal 

engineering in selecting sediment size, estimating scour depth, and predicting bedload 

transport (Fredsoe and Deigaard 1992; Roarty and Bruno 2006, She et al. 2014); it is 

also applied in design of sewer and drainage systems in municipal engineering. 

Nevertheless, it is still an empirical law expressed by many empirical functions (Dey 

2014) without a simple and practical theory despite extensive research (Buffington 

and Montgomery 1997) since Shields (1936), because of the complicated flow at the 

water-bed interface. 

 

1.2 Research objective  

This research intends to propose a theoretical model for sediment initiation, 

which can reproduce the empirical curve in the extended Shields diagram (Mants 

1977; Yalin and Karahan 1979; Julien 2010) and help us achieve a deeper 

understanding of the nature of incipient motion of sediment transport and prediction 
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methods. To this end, it starts with a literature review on experimental facts that make 

a foundation for this research; it then sequentially discusses the definitions of 

sediment initiation, hydrodynamic drag, cohesive force, and critical shear stress. It 

also demonstrates applications of the theoretical model in solving for critical shear 

stress in sediment transport and for sediment diameter in river and coastal 

engineering. 

 

1.3 Thesis Organization 

This thesis is organized into five chapters. Chapter 2 provides a brief review of 

relevant literature sources, focusing on the critical shear stress method, and shields 

diagram. Sediment initiation fundamentals and characteristics of shields diagram are 

discussed here. Chapter 3 describes the conditions of sediment incipient motion 

studied in this research, along with the key assumptions and limitations. Three 

factors- hydrodynamic force, cohesive force, and critical shear stress are defined in 

details in chapter 3. Chapter 4 contains the applications of critical shear stress for 

sediment transport and stable channel design of channel bed. Chapter 5 includes a 

brief summary of the theoretical model for the shields diagrams. Finally, the 

appendices present detailed steps for generalization of shields diagram and graphical 

analysis.  
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CHAPTER 2  

LITERATURE REVIEW ON 

EXPERIMENTAL FACTS 

2.1 Introduction 

Sediment initiation was extensively studied in literature in terms of a critical 

velocity (Xie 1980; Han and He 1999) and a critical shear stress (Buffington 1999). 

The critical velocity method correlates sediment initiation to an average flow velocity 

by a resistance law, whereas the critical shear stress method correlates the initiation to 

a bed shear stress. Both methods are still far from complete because of poor 

understanding of the water-sediment interactions (drag and lift) and 

sediment-sediment interactions (adhesion and cohesion) at the bed. 

In the context of this research, the following review is limited to the shear stress 

method, highlighting the experimental data, which are fundamental in the 

development of the Shields diagram.  

2.2 Mathematical Modeling of Critical Shear Stress 

First, the concept of the critical shear stress τc was introduced by Du Boys (1879) 

who expressed unit bedload transport rate qb as (Hager 2005): 

qb∝τo(τo-τc)     (2.1) 
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where τo is shear stress applied on bed sediment, and τo-τc is called the excess shear 

stress. Eq. (2.1) states that sediment starts to move only if τo ≥ τc. Since Du Boys 

(1879), the excess shear stress, τo-τc, has been used in many of bedload transport 

formulas (Chien and Wan 1999). Therefore, the determination of the critical shear 

stress τc is necessary in predicting sediment transport. 

Shields (1936) pioneered the study of quantifying τc by applying similarity 

principles and turbulent boundary layer theory to bedload transport (Rouse 1939; 

Kennedy 1995; Buffington 1999; Guo 2002). Because the flow at the water-bed 

interface is very complicated, it is very difficult to unify laminar and turbulent flows, 

including velocity distributions and friction factors, into a simple single equation 

(even today). Hence, Shields could not formulate a specific function for sediment 

initiation; he expressed his results only in a similarity law: 

𝜏𝑐

(ϒ𝑠−ϒ)𝐷
= 𝑓(

𝑢∗𝑐𝐷

𝜈
)              (2.2) 

Where ϒs= specific weight of sediment, ϒ= specific weight of water, D= diameter of 

sediment, ν=kinematic water viscosity, and 𝑢∗𝑐 = √𝜏𝑐/𝜌  is the critical shear 

velocity with ρ=water density. The left-hand side of Eq. (2.2) is called the 

dimensionless critical shear stress or the critical Shields parameter, denoted as  

𝜏∗𝑐 =
𝜏𝑐

(ϒ𝑠−ϒ)𝐷
                (2.3) 

which expresses the ratio of the hydrodynamic force to the resistance due to gravity. 

The right-hand side of Eq. (2.2) states that the critical Shields parameter τ*c is a 

function of the particle Reynolds number, denoted as 𝑅∗𝑐 =
𝑢∗𝑐𝐷

𝜈
, which represents 
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the ratio of the sediment diameter D to the viscous thickness 
𝜈

𝑢∗𝑐
 . Eq. (2.2) then 

becomes  

𝜏∗𝑐 = 𝑓(𝑅∗𝑐)              (2.4) 

 

 

Figure 2.1: Shields Diagram for Sediment Initiation [adopted from Buffington 

(1999)] 

Shields determined this functional relationship experimentally. He did a series of 

experiments with different particle diameters, specific weights and flow conditions. 

He then plotted his data according to Eq. (2.4), together with those from references, in 

Fig. 2.1, which is now called the Shields diagram. 

By analogy to the effect of roughness on turbulent boundary layer flow, Shields 

divided Fig. 2.1 into three regimes: smooth (𝑅∗𝑐 ≤ 2), transitional (2 ≤ 𝑅∗𝑐 ≤ 500), 

and turbulent (𝑅∗𝑐 ≥ 500). In the smooth regime, sediment is completely embedded 

in viscous sublayer, Shield analytically predicted  

𝜏∗𝑐 =
0.1

𝑅∗𝑐
                (2.5) 
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which implies that the dimensional value of 𝜏𝑐 is independent of D (Shields 1936; 

Chien and Wan 1999). Yet, he did not have enough data in this regime. In the rough 

turbulent regime, the flow is independent of viscosity; Shields concluded that 𝜏∗𝑐 

must tend to a constant of 0.06 (this research takes it as 0.055 below). In the 

transitional turbulent regime, 𝜏𝑐 has a minimum value 0.033 at 𝑅∗𝑐 ≃ 10 （this 

research takes it as 14 below） , meaning that when sediment diameter D is 

approximately the viscous sublayer thickness 11.6𝜈/𝑢∗𝑐, sediment starts to move 

easily. 

Mants (1977) extended the Shields diagram by adding experimental data in the 

laminar regime (𝑅∗𝑐 ≤ 2). He found that the measured data in this regime are 

significantly less than those predicted by Eq. (2.5), and 𝜏𝑐  in this regime does 

depend on D. Yalin and Karahan (1979) enriched the data in the smooth turbulent 

flow regime, and confirmed Mants' findings. They further compiled data from many 

sources in Fig. 2.2, which is often called the extended Shields diagram, which shows 

three characteristics: 

(1) For smaller R*c, 𝜏∗𝑐 tends to a constant of 0.25, meaning  

𝜏∗𝑐(𝑅∗𝑐→ 0) ≃ 1/4               (2.6) 

(2) For very large R*c, 𝜏∗𝑐 tends to a constant of 0.056, meaning  

𝜏∗𝑐(𝑅∗𝑐→ ∞) ≃ 1/18 (2.7) 

(3) At 𝑅∗𝑐 ≃ 14, 𝜏∗𝑐 reaches a minimum value of 0.033, meaning  

𝜏∗𝑐(𝑅∗𝑐 ≃ 14) ≃ 1/30 (2.8) 
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𝑑𝜏∗𝑐

𝑑𝑅∗𝑐
(𝑅∗𝑐 ≃ 14) = 0 (2.9) 

Eqs. (2.6)-(2.9) are restrictions for establishing any empirical or theoretical model for 

sediment initiation. 

 

Figure 2.2: Extended Shields diagram by Mants (1977) and Yalin and Karahan 

2.3 Summary 

Many empirical functions and theoretical formulations have been proposed for 

Eq. (2.4) in the literature (Buffington and Montgomery 1997; Cheng and Chiew 1999; 

Armanini 2005; Cao et al. 2006; She et al. 2006; Lamb et al. 2008; Miedema 2010; 

Julien 2010; Bravo et al. 2014; Simoes 2014; Roušar et al. 2016). Empirical functions, 

though convenient in applications, lack physical meanings, while theoretical 

formulations are still limited by turbulence knowledge at the water-bed interface 

because the modeling of roughness effects on turbulent flow (Nikuradse diagram for 

friction factor) does not change much since Shields (1936). Particularly, most of 

theoretical formulations assumed that (1) sediment is cohesionless, and (2) a turbulent 
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boundary layer velocity distribution law can be extended into the porous bed (at least 

near the bed surface), which is then used to model the hydrodynamic drag and lift on 

a sediment particle. No matter how good or bad these assumptions are, the resulting 

Shields diagram seldom meets all of the restrictions defined by Eqs. (2.6)-(2.9). 

Furthermore, the results are often too complicated to apply in practice. 

In what follows, this research presents a theoretical model that is physically based 

on the porous bed flow instead of the channel boundary layer flow, mathematically 

meets Eqs. (2.6)-(2.9) and fits the data in the Shields diagram (Fig. 2.2), and 

practically has analytical solutions for critical shear stress or sediment size. 
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CHAPTER 3  

EVAULATION OF FACTORS OF 

SEDIMENT INCIPIENT MOTION 

3.1 Introduction: Definition of Sediment Incipient Motion  

Suppose there is a horizontal channel flow over a porous bed with uniform 

sediment particles (Fig. 3.1a). If all particles of the first layer are under incipient 

condition (general motion), a particle bears the following forces (Fig. 3.1b): (1) the 

submerged weight W; (2) the hydrodynamic drag Fd and lift Fl ; (3) the cohesion Fc in 

both horizontal and vertical directions, which is a stretch force working like an 

adhesive tape; and (4) the friction Ff, and the bed support force Fn. Note that (1) the 

effect of hydrostatic pressure (or buoyancy) has been considered through the 

submerged weight W; (2) the absolute hydrostatic pressure on fine particles (Xie 

1980) is not considered in this research because even for fine sediment, there is 

always a porous bed flow; and (3) the first layer particles are loose in horizontal 

because of the water-bed interactions.  

A sediment particle starts to move only if one of the following three conditions 

satisfies: 

(1) If the driving moment with respect to point O [(Fig. 3.1(b)) due to Fd and Fl 

exceeds the restoring moment due to W and Fc, the particle starts to roll. 



10 

(2) If the drag Fd overcomes the resistance due to the friction Ff and the horizontal 

cohesion Fc, the particle starts to slide. 

 

 

Figure 3.1: River flow with (a) velocirty profile over a within porous bed; (b) 

forces on a bed particle 

 

 (3) If the lift Fl overcomes the submerged particle weight W and the vertical 

cohesion Fc, the particle starts to leap. Note that in this mode Fn = 0 but Fc ≠ 0 

because of cohesion. 

These three modes make sediment incipient criterion nonunique. This explains 

why the data in the Shields diagram (Figs. 2.1 and 2.2) fall into a belt instead of a 

line. For simplicity, this research derives an incipient criterion based on the sliding 

mode, which requires [Fig. 3.1(b)] 

Fd ≥ Fc + Ff      (3.1) 

Considering Fd =(W- Fl )tanϕ where ϕ =sediment friction angle, Eq. (3.1) becomes  

Fd ≥ Fc + (W- Fl )tanϕ      (3.2) 

Note that Fc in the vertical does not contribute to Ff because it acts only if a sediment 
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particle leaves bed. 

   Equation. (3.2) can be rearranged as  

Fd + Fl tanϕ≥ Fc +Wtanϕ      (3.3) 

where the left-hand side can be combined as a resultant hydrodynamic force Fd 

including Fl tanϕ . Therefore, Eq. (3.3) reduces to 

Fd ≥ Fc + Wtanϕ       (3.4) 

which states that the key to finding the critical shear stress 𝜏𝑐 for sediment incipient 

motion is to accurately model the hydrodynamic force Fd and the cohesive force Fc, 

which are discussed below. 

 

3.2 Hydrodynamic Force 

The hydrodynamic force Fd in Eq. (3.4) includes the lift effect. This force is 

conventionally correlated to the near-bed boundary layer velocity profile [Fig. 3.1(a)] 

and the boundary friction factor. Yet, the current knowledge of boundary layer flow, 

such as Moody's diagram, cannot unify laminar and turbulent flows into a general law. 

Therefore, from the near-bed boundary layer flow theory; it is impossible to formulate 

a general sediment incipient equation that covers all the three regimes in Fig. 2.1 or 

the data in Fig. 2.2 for 0 ≤ 𝑅∗𝑐 ≤ ∞ 

This research then considers sediment incipient motion a part of the porous bed 

flow [Fig. 3.1(a)], where the hydrodynamic drag is described by Forchheimer's law 
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(Guo and Zhang 2016):  

𝐹𝑑 =
𝐶𝑑

2
𝜌𝑉2(

𝜋𝐷2

4
)            (3.5) 

where V= bulk velocity through the first layer particles [Fig. 3(a)], and Cd = drag 

coefficient described by 

𝐶𝑑 =
𝐴

𝑅
+ 𝐵              (3.6) 

where (A,B)= undetermined constants, and 𝑅 =
𝑉𝐷

𝜈
 is a Reynolds number. The first 

term on the right-hand side of Eq. (3.6) expresses the viscous effect, and the second 

term is the inertia effect. 

At the water-bed interface [Fig. 3.1(a)], considering V∝𝑢∗𝑐 and inserting Eq. (3.6) 

into Eq. (3.5) results in 

𝐹𝑑 = (
𝐴

𝑅∗𝑐
+ 𝐵)(

1

2
𝜌𝑢∗𝑐

2)(
𝜋𝐷2

4
)         (3.7) 

where (A,B) = new lumped parameters.  

3.3 Cohesive Force 

Except for the hydrodynamic force Fd, the cohesive force Fc is also required in 

Eq. (3.4). Referring to Fig. 3.2(a), a spherical sediment particle in water has a 

sediment core with diameter D and an attached water film with a thickness δ due to 

the molecular force between sediment and water. The attached water film serves as a 

surface glue to stick two or more sediment particles together. Strictly, the molecular 

force between a sediment core and its attached water is called the adhesive force (or 

adhesion); the molecular force between two sediment cores is called the cohesive 
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force. For simplicity, this research calls the resultant force as the cohesive force or 

cohesion. 

 

Figure 3.2: Cohesion between two sediment particles: (a) in water; (b) in air 

 

Hamaker (1937) studied the cohesion between two particles in air [Fig. 3.2(b)]. 

He hypothesized that (1) each particle consists of many molecules; and the cohesive 

force is the sum of the molecular forces between two particles; and (2) the molecular 

force is described by the Van der Waals Force. 

Based on these two hypotheses, Hamaker (1937) theoretically obtained the 

cohesive force Fc between two particles in air as: 

𝐹𝑐 ∝
1

𝑡2

𝐷1𝐷2

𝐷1+𝐷2
              (3.8) 

where (𝐷1,𝐷2)= diameters of two particles, and t= distance between two particle 

surfaces [Fig. 4(b)] and t<<(D1,D2). For two identical particles, D1=D2=D, Eq. (3.8) 

reduces to 

𝐹𝑐 ∝
𝐷

𝑡2               (3.9) 

which states that cohesion increases linearly with increasing particle diameter D, but 

quickly decreases as the separate distance t increases. 
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When applying Eq. (3.9) for study of sediment incipient motion, the effect of the 

attached water film must be considered. Several researchers (Xie 1980; Han and He 

1999) then assumed 

𝐹𝑐 = 𝑓(δ, water and sediment properties)D    (3.10) 

where the function f reflects the effects of the attached water film and sediment-water 

properties. The thickness δ in all previous studies is assumed to be constant, which is 

not reasonable because as the water kinematic viscosity ν increases, δ should become 

thicker, and the attached water should become stickier. 

Therefore, this research hypothesizes that: (1) The attached water film serves as a 

surface glue to stick two or more sediment particles together. Therefore, the adhesion 

between two sediment particles increases as the sticky water film thickness t [Fig. 

3.2(a)] increases, i.e., 

𝐹𝑐 ∝ 𝑡𝑚 ∝ (𝛼𝛿)𝑚            (3.11) 

where t= 𝛼𝛿, 1≤𝛼≤2, and m > 0.   

(2) The adhesion between two sediment particles is proportional to the contact 

area Ac [Fig. 4(a)]. This is derived from the experience of an adhesive tape for which 

adhesion is proportional to the contact area. For sediment with an attached water film, 

the contact area Ac[Fig. 3.2(a)] increases as the submerged sediment weight,  𝑊 =

(
𝜋

6
)(𝛾𝑠 − 𝛾)𝐷3, increases. Therefore, it is assumed  

𝐹𝑐 ∝ 𝐴𝑐 ∝ (
𝜋

6
)(𝛾𝑠 − 𝛾)𝐷3            (3.12) 

(3) The cohesion between two sediment particles due to electric charges is 
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described by Coulomb's law, inversely proportional to the square of distance between 

two particles. For two identical sediment particles, the distance between the two 

particle centers [Fig. 3.2(a)] is D+t so that  

𝐹𝑐 ∝
1

(𝐷+𝑡)2 ≈
1

𝐷(𝐷+2𝑡)
=

1

𝐷(𝐷+2𝛼𝛿)
         (3.13) 

where t<<D and the second order magnitude t2 is negligible. 

Combining Eqs. (3.11)-(3.12) results in  

𝐹𝑐

(
𝜋

6
)(𝛾𝑠−𝛾)𝐷3

=
𝛼𝛿𝑚

𝐷(𝐷+2𝛼𝛿)
             (3.14) 

where the dimensional homogeneity requires m=2. Therefore, Eq (3.14) becomes 

𝐹𝑐

(
𝜋

6
)(𝛾𝑠−𝛾)𝐷3

=
𝛼2𝛿2

𝐷(𝐷+2𝛼𝛿)
=

𝛼2

(
𝐷

𝛿
)(

𝐷

𝛿
+2𝛼)

         (3.15) 

which reduce to 𝐹𝑐 ∝ 𝐷 in Eq. (3.10) as δ→ 0.  

The thickness δ in Eq. (3.15) is still unknown. Because it increases as water 

kinematic viscosity ν increases. In still water, a dimensional analysis requires  

𝛿 ∝ [
𝜈2

(𝛥−1)𝑔
]1/3               (3.16) 

where𝛥 = 𝜌𝑠/𝜌is the specific gravity of sediment. Eq. (3.16) states that δ decreases as 

g increases, agreeing with the common understanding of the effect of gravity. In 

flowing water, except for Eq. (3.16), there is another viscous length scale, ν/u*c , i.e. 

𝛿 ∝
𝜈

𝑢∗𝑐
                 (3.17) 

which implies that as the shear velocity 𝑢∗𝑐 (or the shear stress) on a sediment 

surface increases, the value of δ decreases. 

Both length scales involve in sediment incipient motion because 𝜏∗𝑐 can be 

written as  
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𝜏∗𝑐＝
𝑅∗𝑐

2

𝐷∗
3                 (3.18) 

with  

𝐷∗ = [
(𝛥−1)𝑔

𝜈2 ]1/3𝐷              (3.19) 

where D is scaled by Eq. (3.16), and D* = dimensionless sediment diameter. Yet, in 

the critical particle Reynolds number R*c in Eq.(3.18), D is scaled by Eq. (3.17). In 

flowing water, this research assumes that δ is dominated by Eq. (3.17) so that it is 

assumed 

𝛿 = 𝛽
𝜈

𝑢∗𝑐
                 (3.20) 

where β = undetermined parameter.  

Inserting Eq. (3.17) into Eq. (3.15) yields  

𝐹𝑐

(
𝜋

6
)(𝛾𝑠−𝛾)𝐷3

=
𝛼2

(
1

𝛽

𝐷𝑢∗𝑐
𝜈

)(
1

𝛽

𝐷𝑢∗𝑐
𝜈

+2𝛼)
=

(𝛼𝛽)2

𝑅∗𝑐(𝑅∗𝑐+2𝛼𝛽)
      (3.21) 

which simplifies to  

𝐹𝑐

(
𝜋

6
)(𝛾𝑠−𝛾)𝐷3

=
𝐶

𝑅∗𝑐(𝑅∗𝑐+2√𝐶)
            (3.22) 

where = (𝛼𝛽)2 . Mathematically, Eq. (3.22) states that as 𝑅∗𝑐 (or D) increases to 

infinity, the ratio of the cohesion to the gravity quickly decreases to zero; but as 𝑅∗𝑐 

(or D) decreases to zero, the ratio tends to infinity. Physically, this implies that the 

cohesion is negligible for coarse sediment, but the gravity is negligible for fine 

sediment. These properties agree with the general understanding of the topic. 

Eq. (3.22) with Eq. (3.7) is used below to find the critical shear stress for sediment 

incipient motion. 
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3.4 Critical Shear Stress 

According to Eq. (3.4), the critical condition for sediment incipient motion is  

𝐹𝑑 = 𝐹𝑐 + 𝑊𝑡𝑎𝑛𝜙              (3.23) 

Inserting Eqs. (3.7) and (3.22) into Eq. (3.23) results in  

(
𝐴

𝑅∗𝑐
+ 𝐵)(

1

2
𝜌𝑢∗𝑐

2)(
𝜋𝐷2

4
)= 

𝐶

𝑅∗𝑐(𝑅∗𝑐+2√𝐶)
(

𝜋

6
) (𝛾𝑠 − 𝛾)𝐷3 +

(
𝜋

6
)(𝛾𝑠 − 𝛾)𝐷3𝑡𝑎𝑛𝜙                (3.24) 

which, divided by the friction term, is rearranged as  

3

4𝑡𝑎𝑛𝜙
(

𝐴

𝑅∗𝑐
+ 𝐵)

𝜌𝑢∗𝑐
2

(𝛾𝑠−𝛾)𝐷3 =
𝐶/𝑡𝑎𝑛𝜙

𝑅∗𝑐(𝑅∗𝑐+2√𝐶)
+ 1       (3.25) 

Considering  

𝜏∗𝑐 =
𝜌𝑢∗𝑐

2

(𝛾𝑠−𝛾)𝐷
               (3.26) 

and redefining the lumped constants as 

3𝐴

4𝑡𝑎𝑛𝜙
 →A, 

3𝐵

4𝑡𝑎𝑛𝜙
 →B, 

𝐶

𝑡𝑎𝑛𝜙
 →C, 2√C→ E     (3.27) 

Eq. (3.25) becomes 

(
𝐴

𝑅∗𝑐
+ 𝐵) 𝜏∗𝑐 =

𝐶

𝑅∗𝑐(𝑅∗𝑐+𝐸)
+ 1            (3.28) 

which gives  

𝜏∗𝑐 =

𝐶

𝑅∗𝑐(𝑅∗𝑐+𝐸)
+1 

𝐴

𝑅∗𝑐
+𝐵

              (3.29) 

where the four lumped parameters (A, B,C,E) are determined by Eqs. (2.6)-(2.9). 

First, Applying Eq. (2.7) in Eq. (3.29) results in B=18. Second, applying Eq. (2.6) 

gives A= 4C/E. Eq. (3.29) then has only two parameters C and E, which are 
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determined by Eqs. (2.8) and (2.9), leading to C=90 , E=1, and A=360 . Therefore, Eq. 

(3.29) is specified as 

𝜏∗𝑐 =

90

𝑅∗𝑐(𝑅∗𝑐+1)
+1 

360

𝑅∗𝑐
+18

              (3.30) 

  This equation has clear physical meanings. The numerator expresses the 

resistance with the first term from the cohesion and the second term from the friction. 

The denominator expresses the hydrodynamic driving force with the first term from 

the viscous drag and the second term from the inertia drag.  

Eq. (3.30) simplifies to  

𝜏∗𝑐 =
5

19

1

𝑅∗𝑐+1
−

235

171

1

𝑅∗𝑐+20
+

1

18
         (3.31) 

which is mathematically simpler than all pervious empirical equation (Jan 2018), and 

physically agrees with the data in Fig 2.2.  
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CHAPTER 4  

APPLICATIONS 

4.1 Introduction  

Eq. (3.31) has two immediate applications: (1) Given a sediment diameter D, the 

critical shear stress τc can be solved analytically for sediment transport; and (2) given 

a bed shear stress τ0, the critical (minimum) sediment size D can be solved 

analytically for riprap design. 

4.2 Critical shear stress for sediment transport 

The critical shear stress τc (or τ*c) is required in many bedload transport equations 

(Chien and Wan 1999; Julien 2010; Jan 2018) and is governed by Eq. (3.31), which is 

solved analytically as follows: 

First, applying Eq. (27) in Eq. (40) results in  

𝑅∗𝑐
2

𝐷∗
3 =

5

19

1

𝑅∗𝑐+1
−

235

171

1

𝑅∗𝑐+20
+

1

18
          (4.1) 

where τc involves only in R*c. Eq. (4.1) can be rearranged as a quartic equation, 

18𝑅∗𝑐
4 + 378𝑅∗𝑐

3 + (360 − 𝐷∗
3)𝑅∗𝑐

2 − 𝐷∗
3𝑅∗𝑐 − 90𝐷∗

3 = 0 (4.2) 

which has four roots mathematically (Fig. 4.1), but only one of them is physically 

true, which is 

𝑅∗𝑐= max (𝑟𝑒𝑎𝑙 ([𝑅∗𝑐1, 𝑅∗𝑐2]))         (4.3) 
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Figure 4.1: Graphical interpretation for solution of Eq. (4.2) 

where  

𝑅∗𝑐1 = √
𝑝

2
±

𝑞

4𝑀
− 𝑀2 −

21

4
± 𝑀          (4.4) 

𝑝 =
𝐷∗

3

18
+

1163

8
                (4.5) 

𝑞 =
19𝐷∗

3

13
+

7581

8
                                                  (46) 

𝑀 =
1

2
√

2

3
𝑝 +

1

3
(𝑁 +

∆0

𝑁
 (4.7) 

𝑁 =
√∆1+√∆1

2−4∆0
3

2

3

 (4.8) 

∆0=
1

324
𝐷∗

6 −
1057

18
𝐷∗

3 + 400 (4.9) 

∆1= −
1

2916
𝐷∗

9 −
1087

54
𝐷∗

6 −
156775

3
𝐷∗

3 + 16000    (4.10) 

 

 

Figure 4.2 : Explicit Shields diagram in terms of τ*c= f (D*) 
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Once R*c is found, the critical Shields parameter τ*c follows from Eq. 3.18). 

Therefore, the explicit solution of the Shields diagram is found in terms of τ*c= f (D*), 

shown in Fig. 4.2. 

Practically, Eq. (4.3) can be replaced by mathematics software with 

𝑅∗𝑐 = max (𝑟𝑒𝑎𝑙 ([𝑅∗𝑐1, 𝑅∗𝑐2, 𝑅∗𝑐3, 𝑅∗𝑐4]))             (4.11) 

For example, using the Matlab function “roots.m”, R*c is found with the following 

sentences: 

R_starc = roots([18, 378, 360-D_star.^3, -D_star.^3, -90*D_star.^3]); 

R_starc = max(real(R_starc)); 

Alternatively, R*c is obtained from Eq. (4.1) by the following iterative equation:  

𝑅∗𝑐 = 𝐷∗
3/2

√
5

19

1

𝑅∗𝑐+1
−

235

171

1

𝑅∗𝑐+20
+

1

18
        (4.12) 

which converges rapidly with an initial guess, 𝑅∗𝑐 = √𝐷∗
3/30 , corresponding to 

τ*cmin = 0.033. 

Example  Find the critical shear stress τ*c for a sediment particle of D=0.72mm 

with a kinematic water viscosity ν=10-6m2s-1 . This example has 

𝐷∗ = [
(∆−10𝑔

𝑣2 ]
1/3

𝐷 = [
(2.65−(9.81)

(10−6)2 ]
1/3

(0.72*10-3)=18.213

                                                     (4.13) 

Eq. (4.3) results in R*c =14, and Eq. (3.18) gives τ*c=0.033. The corresponding 

dimensional critical shear stress is then τc =0.38Pa. 
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4.3 Stable channel design 

Riprap design of channel bed is to determine a minimum (critical) particle size that is 

unmovable, given a bed shear stress. This problem is also solved from Eq. (40), but 

τ*c needs to be rearranged as 

τ ∗𝑐 =
τ𝑐

(Υ𝑠−Υ)𝐷
=

𝑢∗𝑐
3

(∆−1)𝑔𝑣

𝑣

𝑢∗𝑐𝐷
=

𝑥

𝑅∗𝑐
        (4.14) 

where  

𝑥 =
𝑢∗𝑐

3

(∆−1)𝑔𝑣
                (4.15) 

is a dimensionless shear velocity parameter. Thus, Eq (3.31) becomes  

𝑥

𝑅∗𝑐
=

5

19

1

𝑅∗𝑐+1
−

235

171

1

𝑅∗𝑐+20
+

1

18
            (4.16) 

which can be rearranged as a cubic equation,  

𝑅∗𝑐
2 + (1 − 18𝑥)𝑅∗𝑐

2 + (90 − 378𝑥)𝑅∗𝑐 − 360𝑥 = 0    (4.17) 

which has three roots with the physical solution as:  

 

Figure 4.3: Analytical solution for riprap design from Eq. (58) 
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𝑅∗𝑐 = 6𝑥 + 𝜆 −
1

3
+

1

𝜆
(36𝑥2 + 122𝑥 −

269

9
)          (4.18) 

where  

𝜆 = √𝑝 + √𝑞
3

               (4.19) 

𝑝 = 216𝑥3 + 1098𝑥2 − 151𝑥 +
404

27
          (4.20) 

𝑞 = −350892𝑥4 − 1353348𝑥3 + 1293777𝑥2 −
994450

3
𝑥 + 26925         

(4.21) 

Eq. (4.18) is the exact solution for riprap design in terms of 𝑅∗𝑐 = 𝑓(𝑥), shown in 

Fig. 4.3 where the two asymptotes are: 𝑅∗𝑐 = 18𝑥  as x→∞, and 𝑅∗𝑐 = 4𝑥, as x→0. 

Once 𝑅∗𝑐 is found, the particle size is determined by 𝐷 = 𝑣𝑅∗𝑐/𝑢∗𝑐. 

 If the Matlab function “ roots.m” is used, Eq.(4.17) is solved with the following 

sentences:  

R_starc = roots([1 1-18.*x 90-378.*x -360.*x]); 

R_starc = max(real(R_starc)); 
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Example  A wide loose boundary channel with clear water has bottom slope 

S0=0.001 and flow depth h=1m , find the minimum sediment size D of the bed 

material to maintain the channel stable? 

The shear velocity of this channel is  

𝑢∗𝑐 = √𝑔ℎ𝑆0 = √(9.81)(1)(0.0001) = 0.0313𝑚𝑠−1 

The x-value is then 

𝑥 =
𝑢∗𝑐

3

(∆ − 1)𝑔𝜐
=

(3.1321 ∗ 10−2)3

(2.65 − 1)(9.81)(10−6)
= 1.898 

which, from Eq. (4.18), gives 𝑅∗𝑐 = 46.87. The minimum sediment size is thus 

𝐷 =
𝜐𝑅∗𝑐

𝑢∗𝑐
=

(10−6)(46.87)

0.0313
= 0.0015𝑚 = 1.5𝑚𝑚  
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study revisited the classic problem of sediment initiation, presented a theoretical 

model for the Shields diagram, and obtained the following conclusions: 

1) Sediment initiation has three modes; sliding, rolling, and leaping. Thus, a unique 

incipient criterion or a single incipient curve in the Shields diagram does not exist. 

The Shields diagram only represents an average incipient curve for sediment 

initiation. 

2) It is impossible to generalize hydrodynamic drag on bed particles from channel 

boundary layer flow because of poor understanding of the water-bed interface 

flow. Yet, the drag can be expressed accurately by Forchheimer's law since flow 

through the first layer particles belongs to the porous bed flow. 

3) Cohesion and adhesion are of importance for fine sediment particles. They are 

determined by attached water film and particle electrostatics. The water film 

serves as surface glue and functions like an adhesive tape; and the attractive force 

due to electronics follows Coulomb's law. 

4) The Shields diagram can be theoretically derived as a rational function of the 

particle Reynolds number. It fits data well and tends to two constants for small 
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and large particle Reynolds numbers, respectively. It has a minimum value in the 

transitional regime. 

5) The theoretical Shields diagram has two immediate applications: (1) Given a 

sediment size, the critical shear stress can be analytically solved in terms of 

dimensionless diameter for sediment transport; and (2) given a shear stress, the 

critical particle size can be analytically solved for riprap design. These 

applications are useful in river and coastal engineering, and sewer and drainage 

systems design. 

 

5.2 Significance of model 

The imitation of motion is involved in many geomorphic and hydraulic 

problems such as local scour, slope stability, stable channel design, etc. The Shields 

diagram empirically shows the dimensionless critical shear stress (i.e. the 

dimensionless shear stress required for the initiation of motion) is a function of a 

particular form of the particle Reynolds number, or Reynolds number related to the 

particle. This theoretical model would help us get better understanding on sediment 

initiation and transport. Sediment transport and initiation is applied to solve many 

environmental, geotechnical, and geological problems. Measuring or quantifying 

sediment transport and initiation or erosion is therefore important for costal 

engineering. Sediment transport and initiation is important in the fields of 
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sedimentary geology, geomorphogy, civil engineering and environmental 

engineering. Knowledge of sediment transport and initiation is most often used to 

determine whether erosion or deposition will occur, the magnitude of this erosion or 

deposition, and the time and distance over which it will occur. 

5.3 Recommendations for future work 

 This research involved several hypotheses that have not tested directly with 

laboratory data and are recommended for future studies. 

(1) The Forcheimer equation is used to model the hydrodynamic force on a 

sediment particle. This equation was derived from flow within porous media. 

It is recommended to test its applicability by measuring drag on a sediment 

particle over a channel bed. 

(2) The cohesive force is assumed to be a combination of Hamaker’s cohesive 

force in air and an analogy to cohesive tape. This hypothesis was not tested 

with direct data in this research. It should be carefully examined in future 

studies.  
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Appendix I 

Generalization of Shields Diagram 

When the Shields diagram is extended to bottom wave boundary lay flow, 

because water oscillations increase sediment mobility, the dimensionless critical shear 

stress τ*c for large particle Reynolds number, 𝑅∗𝑐→∞, is measured to be 0.045 (You 

1998; and Yin 2006) instead of 0.056, In such a case, the four model parameter in Eq. 

(3.30) are determined as follows:  

 Referring to Fig. 5.1, supposed the four restriction conditions are  

𝜏∗𝑐(𝑅∗𝑐→ 0) =𝜏∗𝑐∞                (1) 

𝜏∗𝑐(𝑅∗𝑐→ 0) =𝜏∗𝑐0                                            (2) 

𝜏∗𝑐(𝑅∗𝑐=𝑅∗𝑚𝑖𝑛) =𝜏∗𝑐𝑚𝑖𝑛             (3) 

𝑑𝜏∗𝑐

𝑑𝑅∗𝑐
(𝑅∗𝑐 =𝑅∗𝑚𝑖𝑛) = 0              (4) 

 

 

 

 

Figure 5.1: Generalization of Shields diagram 
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First, applying Eq. (1) in Eq. (3.30) gives 

𝐵 =
1

𝜏∗∞
                 (5) 

Second, applying Eq. (3) in Eq. (39) gives  

𝐴 =
𝐶

𝜏∗𝑐0𝐸
                    (6) 

Third, Eq, (3.30) gives 

𝐶

(𝑅∗𝑚𝑖𝑛(𝑅∗𝑚𝑖𝑛+𝐸)
+1

1

𝑅∗𝑚𝑖𝑛

𝐶

𝜏∗𝑐0
+

1

𝜏∗𝑐∞

= 𝜏∗𝑐𝑚𝑖𝑛              (7) 

Eq. (4) results in  

𝐶

𝐸
+

𝜏∗∞
2

𝜏∗𝑐0
+(𝜏∗𝑐0−𝜏∗𝑐∞)𝐸

(𝑅∗𝑚𝑖𝑛+
𝐶

𝐸

𝜏∗∞
2

𝜏∗𝑐0
)2

=
𝜏∗𝑐0𝐸

(𝑅∗𝑚𝑖𝑛+𝐸)2            (8) 

Solving Eqs. (7) and (8) simultaneously for C and E results in 

𝐸

𝑅∗𝑐
= (1 −

𝜏∗𝑐𝑚𝑖𝑛

𝜏∗𝑐0
)−1/2 − 1             (9) 

𝐶

𝑅∗𝑚𝑖𝑛𝐸
= (1 −

𝜏∗𝑐𝑚𝑖𝑛

𝜏∗𝑐∞
)(

𝜏∗𝑐𝑚𝑖𝑛

𝜏∗𝑐0
−

1

1+
𝑅∗𝑚𝑖𝑛

𝐸

)−1
        (10) 

Once C and E are found from Eqs. (9) and (10) , A follows from Eq. (6). 
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