Accuracy of a Simplified Analysis Model for Modern Skyscrapers

Jacob Scott Lee
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Civil and Environmental Engineering Commons

BYU ScholarsArchive Citation

Lee, Jacob Scott, "Accuracy of a Simplified Analysis Model for Modern Skyscrapers" (2013). All Theses and Dissertations. 4055.
https://scholarsarchive.byu.edu/etd/4055

Accuracy of a Simplified Analysis Model

for Modern Skyscrapers

Jacob S. Lee

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science

Richard J. Balling, Chair Paul W. Richards

Fernando S. Fonseca

Department of Civil and Environmental Engineering

Brigham Young University

June 2013

Copyright © 2013 Jacob S. Lee
All Rights Reserved

ABSTRACT
Accuracy of a Simplified Analysis Model
for Modern Skyscrapers

Jacob S. Lee
Department of Civil and Environmental Engineering, BYU
Master of Science

A new simplified skyscraper analysis model (SSAM) was developed and implemented in a spreadsheet to be used for preliminary skyscraper design and teaching purposes. The SSAM predicts linear and nonlinear response to gravity, wind, and seismic loading of "modern" skyscrapers which involve a core, megacolumns, outrigger trusses, belt trusses, and diagonals. The SSAM may be classified as a discrete method that constructs a reduced system stiffness matrix involving selected degrees of freedom (DOF's). The steps in the SSAM consist of: 1) determination of megacolumn areas, 2) construction of stiffness matrix, 3) calculation of lateral forces and displacements, and 4) calculation of stresses. Seven configurations of a generic skyscraper were used to compare the accuracy of the SSAM against a space frame finite element model. The SSAM was able to predict the existence of points of contraflexure in the deflected shape which are known to exist in modern skyscrapers. The accuracy of the SSAM was found to be very good for displacements (translations and rotations), and reasonably good for stress in configurations that exclude diagonals. The speed of execution, data preparation, data extraction, and optimization were found to be much faster with the SSAM than with general space frame finite element programs.

Keywords: Jacob S. Lee, skyscraper, structural analysis, optimization, preliminary design

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to my advisor, Dr. Richard J. Balling, for his help and dedication that went into our research. I am grateful for his motivation and encouragement in stretching my mind in ways I never thought possible. I was blessed with the opportunity he gave me to explore an area of structural engineering that inspires me and share that experience alongside him. I am indeed indebted to him for making it possible to travel to China to study the skyscrapers there and collaborate with the engineers behind their designs as part of his Megastructures class. That unforgettable experience has given me a wider perspective of what structural engineering has to offer and excites me about my future career aspirations in engineering. I would also like to thank my committee members, Dr. Paul W. Richards and Dr. Fernando S. Fonseca, who have truly been inspirational professors to me in my academic life at BYU.

I would like to thank my family and friends who have supported me throughout this endeavor and my graduate degree, and who have instilled in me the values of one who strives to emulate the pure love of Christ. I would also like to thank my fellow colleagues for their hard work and insight during this project.

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES x
1 Introduction 1
2 Literature review 13
2.1 Continuum Methods for Low/Medium-Rise Buildings 13
2.2 Continuum Method for Framed Tubes 16
2.3 Inherent Problems with Continuum Methods 17
2.4 Discrete Outrigger Methods 20
2.5 Discrete Substructuring Methods 22
3 Simplified Skyscraper Analysis Model 24
3.1 Determination of Megacolumn Areas 24
3.2 Construction of the Stiffness Matrix 27
3.3 Calculation of Lateral Forces/Displacements 39
3.4 Calculation of Stresses 44
3.5 Rapid Trial-and-Error Optimization 52
4 Space frame model 54
4.1 Nodes 54
4.2 Members 55
4.3 Supports 58
4.4 Loads 59
4.5 Output 59
5 Results 60
5.1 Configuration \#1 - core+megacolumns 61
5.2 Configuration \#2 - core+megacolumns+outriggers 65
5.3 Configuration \#3 - core+megacolumns + belts 68
5.4 Configuration \#4 - core+megacolumns+diagonals 72
5.5 Configuration \#5 - core + megacolumns+outriggers+belts 76
5.6 Configuration \#6 - core+megacolumns+outriggers+belts+diagonals 81
5.7 Configuration \#7- core+megacolumns+outirgger at one level only 85
6 Conclusions 89
REFERENCES 91
APPENDIX A. SSAM Excel Spreadsheet (Configuration \#6) 95

LIST OF TABLES

Table 3-1: Stiffness matrix - contribution of the core and megacolumns 29
Table 3-2: Stiffness matrix - contribution of outriggers 32
Table 3-3: Stiffness matrix - contribution of the belt trusses. 35
Table 3-4: Stiffness matrix - contribution of diagonals 37
Table 5-1: Configuration \#1-design variables and calculated megacolumn areas 61
Table 5-2: Configuration \#1-lateral core translation (m) 62
Table 5-3: Configuration \#1 - core rotation (rad) 62
Table 5-4: Configuration \#1 - vertical megacolumn translation minus vertical core translation. 63
Table 5-5: Configuration \#1 - core stress (KPa) 63
Table 5-6: Configuration \#1-megacolumn stress (KPa) 64
Table 5-7: Configuration \#2 - design variables and calculated megacolumn areas 65
Table 5-8: Configuration \#2 - lateral core translation (m) 65
Table 5-9: Configuration \#2 - core rotation (rad) 65
Table 5-10: Configuration \#2 - vertical megacolumn translation minus vertical core translation 66
Table 5-11: Configuration \#2 - core stress (KPa) 66
Table 5-12: Configuration \#2-megacolumn stress (KPa) 67
Table 5-13: Configuration \#2 - outrigger stress under lateral load only (KPa) 67
Table 5-14: Configuration \#3 - design variables and calculated megacolumn areas. 68
Table 5-15: Configuration \#3 - lateral core translation (m). 69
Table 5-16: Configuration \#3 - core rotation (rad) 69
Table 5-17: Configuration \#3 - vertical megacolumn translation minus vertical core translation 70
Table 5-18: Configuration \#3 - core stress (KPa) 70
Table 5-19: Configuration \#3-megacolumn stress (KPa) 71
Table 5-20: Configuration \#3 - belt truss stress under lateral load only (KPa) 71
Table 5-21: Configuration \#4 - design variables and calculated megacolumn areas 72
Table 5-22: Configuration \#4 - lateral core translation (m). 73
Table 5-23: Configuration \#4 - core rotation (rad) 73
Table 5-24: Configuration \#4 - vertical megacolumn translation minus core vertical translation. 73
Table 5-25: Configuration \#4 - core stress (KPa) 74
Table 5-26: Configuration \#4-megacolumn stress (KPa) 74
Table 5-27: Configuration \#4-diagonal stress (KPa) 75
Table 5-28: Configuration \#5 - design variables and calculated megacolumn areas 76
Table 5-29 Configuration \#5: - lateral core translation (m). 77
Table 5-30: Configuration \#5 - core rotation (rad) 77
Table 5-31: Configuration \#5 - vertical megacolumn translation minus core vertical translation 78
Table 5-32: Configuration \#5 - core stress (KPa) 78
Table 5-33: Configuration \#5 - megacolumn stress (KPa) 79
Table 5-34: Configuration \#5 - outrigger stress under lateral load only (KPa) 79
Table 5-35: Configuration \#5 - belt truss stress under lateral load only (KPa) 80
Table 5-36: Configuration \#6 - design variables and calculated megacolumn areas 81
Table 5-37: Configuration \#6 - lateral core translation (m). 81
Table 5-38: Configuration \#6 - core rotation (rad) 81
Table 5-39: Configuration \#6 - vertical megacolumn translation minus vertical core translation. 82
Table 5-40: Configuration \#6 - core stress (KPa) 82
Table 5-41: Configuration \#6 - megacolumn stress (KPa) 83
Table 5-42: Configuration \#6 - outrigger stress under lateral load only (KPa) 83
Table 5-43: Configuration \#6 - belt truss stress under lateral load only (KPa) 84
Table 5-44: Configuration \#6 - diagonal stress (KPa) 84
Table 5-45: Configuration \#7-design variables and calculated megacolumn areas 85
Table 5-46: Configuration \#7 - lateral core translation (m) 86
Table 5-47: Configuration \#7 - core rotation (rad) 86
Table 5-48: Configuration \#7-vertical megacolumn translation minus vertical core translation. 87

LIST OF FIGURES

Figure 1-1: Jin Mao Tower - Shanghai, China 2
Figure 1-2: Jin Mao Tower - structural system elevation view (Choi et al. 2012) 3
Figure 1-3: Jin Mao Tower - typical framing plan (Choi et al. 2012) 3
Figure 1-4: Two International Finance Centre (IFC2) - Hong Kong, China 4
Figure 1-5: IFC2 - typical floor plan. 5
Figure 1-6: IFC2 - typical layout of outrigger and belt trusses (Emporis.com) 5
Figure 1-7: Shanghai Tower 6
Figure 1-8: Shanghai Tower - isometric of core, megacolumns, outrigger, and belt trusses 7
Figure 1-9: Guangzhou International Finance Center 8
Figure 1-10: Shanghai World Financial Center (WFC) 9
Figure 1-11: Shanghai WFC structural system - core, megacolumns, outrigger truss, belttruss, and megadiagonal (Katz et al. 2008)9
Figure 1-12: Shanghai WFC structural system elevation views (http://www4.kke.co.jp)... 10
Figure 1-13: Generic skyscraper elevation and plan views 11
Figure 1-14: Generic skyscraper - outrigger truss, belt truss, and diagonal systems. 12
Figure 2-1: One Liberty Place deflected shape. 17
Figure 2-2: Contraflexure in core created by cap truss (Taranath 2005) 19
Figure 2-3: Behavior of system with outrigger located at $\mathrm{z}=\mathrm{L}$ (Taranath 2005) 19
Figure 2-4: Behavior of system with outrigger located at $\mathrm{z}=0.75 \mathrm{~L}$ (Taranath 2005) 19
Figure 2-5: Behavior of system with outrigger located at $\mathrm{z}=0.5 \mathrm{~L}$ (Taranath 2005) 20
Figure 2-6: Behavior of system with outrigger located at $\mathrm{z}=0.25 \mathrm{~L}$ (Taranath 2005) 20
Figure 3-1: Displaced core with location of DOF's 28
Figure 3-2: Typical outrigger truss subject to unit load 30
Figure 3-3: Two-member outrigger truss subject to unit load 31
Figure 3-4: Unit upward vertical displacement (top) and unit clockwise core rotation (bottom) 33
Figure 3-5: Eight-member belt truss subject to unit load 33
Figure 3-6: Belt truss in generic skyscraper subject to unit load 34
Figure 3-7: Unit displacement at megacolumns A (top) and D (middle), and a unit core rotation (bottom) 36
Figure 3-8: Diagonal in generic skyscraper subject to unit load 37
Figure 3-9: Unit vertical displacements at megacolumns A (left), D (middle), and E (right) 38
Figure 3-10: Interval with a wind/seismic force at a particular story k 41
Figure 3-11: Interval and a P-delta moment at a particular story k 44
Figure 3-12: Typical outrigger member subject to unit load 47
Figure 3-13: Two-member outrigger truss subject to unit load 47
Figure 3-14: Eight-member belt truss subject to unit load 49
Figure 3-15: Belt truss in generic skyscraper subject to unit load 49
Figure 3-16: Diagonal in generic skyscraper subject to unit load 51
Figure 4-1: Space frame model - all members without floors 57
Figure 4-2: Space frame model - single floor configurations between intervals and at intervals 58
Figure 5-1: Configuration \#1 - lateral displacement and interstory drift 64
Figure 5-2: Configuration \#2 - lateral displacement and interstory drift 68
Figure 5-3: Configuration \#3 - lateral displacement and interstory drift 72
Figure 5-4: Configuration \#4 - lateral displacement and interstory drift 76
Figure 5-5: Configuration \#5 - lateral displacement and interstory drift 80
Figure 5-6: Configuration \#6 - lateral displacement and interstory drift 85
Figure 5-7: Configuration \#7 - lateral displacement and interstory drift 88

1 INTRODUCTION

A new simplified skyscraper analysis model (SSAM) is described herein. The model can be implemented on a spreadsheet. The accuracy of the SSAM has been compared to results from sophisticated space frame and finite element analysis models. Those results will be presented and discussed in this thesis. The SSAM is intended to be used in the preliminary design phase of skyscrapers where a fast, reasonably-accurate model is needed in design iterations. The model can also be used in an educational setting where senior/graduate students are introduced to the behavior and design of skyscrapers.

The SSAM predicts the linear and nonlinear response of "modern" skyscrapers subject to gravity, wind, and seismic loads. Modern skyscrapers are defined herein to be third generation skyscrapers. First generation skyscrapers such as the Empire State Building in New York City consisted of steel braced and unbraced frames. Such skyscrapers had many interior columns obstructing the space. Fazlur Khan is regarded as the father of second generation skyscrapers characterized as framed tubes or tube-in-tube skyscrapers such as the former World Trade Center in New York City. These skyscrapers possess an interior core tube that encloses elevator shafts, and a perimeter tube with many columns. There are no columns in between the core tube and perimeter tube, thus providing unobstructed space. By moving the columns to the perimeter, a system with maximum moment of inertia is created to resist lateral loads. The third generation of skyscrapers coalesces perimeter columns into a few megacolumns to provide an unobstructed view to the outside. Such megacolumns are usually composite members made from steel
sections encased in high-stiffness, high-strength concrete. To provide the necessary moment of inertia to resist lateral loads, the megacolumns and core are periodically connected with outrigger trusses, belt trusses, and diagonals. The SSAM is used to analyze core-megacolumn-outrigger-belt-diagonal systems. Some examples of core-megacolumn-outrigger-belt-diagonal skyscrapers will now be given.

The 88 -story Jin Mao Tower (see Figure 1-1), completed in 1999 in Shanghai, China, consists of an octagonal concrete core and eight composite steel/concrete megacolumns. Steel outrigger trusses connect the core and megacolumns at stories 25, 54, and 86 (see Figure 1-2 and Figure 1-3). A belt truss is located at the top of the tower, which is typically called a cap truss.

Figure 1-1: Jin Mao Tower - Shanghai, China © SOM

Figure 1-2: Jin Mao Tower - structural system elevation view (Choi et al. 2012)

Figure 1-3: Jin Mao Tower - typical framing plan (Choi et al. 2012)

Hong Kong's 2 International Finance Centre is an excellent example of a core-mega column-outrigger-belt system (see Figure 1-4). This 88 -story skyscraper completed in 2004 has a core with eight megacolumns shown in red in Figure 1-5. Outrigger and belt trusses are located at stories 33,55 , and 67 . The 24 m spacing between megacolumns provides unobstructed view to the outside for offices on the perimeter. A typical outrigger-belt truss configuration is shown in Figure 1-6. Belt trusses transfer loads from secondary corner columns to the megacolumns (Choi et al. 2012).

Figure 1-4: Two International Finance Centre (IFC2) - Hong Kong, China © Antony Wood/CTBUH

Figure 1-5: IFC2 - typical floor plan ©Arup

Figure 1-6: IFC2 - typical layout of outrigger and belt trusses (Emporis.com)

The Shanghai Tower is a 126 -story 632 m tall skyscraper scheduled for completion in 2014 (see Figure 1-7). Even though the exterior facade has a twisting irregular shape that significantly reduces wind load, the core is square and the composite megacolumns are arranged in a regular circular pattern whose diameter decreases with height (see Figure 1-8). The outrigger trusses and circular belt trusses occur at nine levels separated by 12 to 15 stories (Mass et al. 2010). Radial trusses extend outward from the megacolumns to support the irregular twisting facade. The space between the perimeter megacolumns and the exterior facade will be used as atria open to the public.

Figure 1-7: Shanghai Tower
© Gensler

Figure 1-8: Shanghai Tower - isometric of core, megacolumns, outrigger, and belt trusses (C) Thornton Tomasetti

The Guangzhou International Finance Center is a 440m high skyscraper with 73 stories of office space and 30 stories of hotel space (see Figure 1-9). The structure consists of a central core and perimeter diagonals arranged in what is known as a diagrid system. There are no vertical megacolumns, outriggers, or belt trusses in the diagrid system. The diagonals are concrete-filled steel tubes.

Figure 1-9: Guangzhou International Finance Center (C) Christian Richters

The Shanghai World Financial Center includes core, megacolumns, outrigger trusses, belt trusses, and megadiagonals (see Figures 1-10, 1-11, and 1-12). This mixed lateral load-resisting system was motivated by the need to reduce weight in the structure (Katz et al. 2008). Note that two of the megacolumns split part way up so that there are four megacolumns at the base and six megacolumns after the split.

Figure 1-10: Shanghai World Financial Center (WFC)
© Kohn Pederson Fox Associates/CTBUH

Figure 1-11: Shanghai WFC structural system - core, megacolumns, outrigger truss, belt truss, and megadiagonal (Katz et al. 2008)

Figure 1-12: Shanghai WFC structural system elevation views (http://www4.kke.co.jp)
The generic skyscraper in Figures 1-13 and 1-14 will be used throughout this thesis for analysis comparison. The concrete core is shown in yellow, the 16 concrete megacolumns are shown in red, the two-member steel outrigger trusses are shown in green, the 8 -member steel belt trusses are shown in blue, and the steel diagonals are shown in black. Multiple configurations of this generic skyscraper will be considered in the thesis:

1) core + megacolumns
2) core + megacolumns + outriggers
3) core + megacolumns + belts
4) core + megacolumns + diagonals
5) core + megacolumns + outriggers + belts
6) core + megacolumns + outriggers + belts + diagonals

The remainder of the thesis is divided into five chapters. Chapter 2 reviews the literature on related approximate analysis methods. Chapter 3 describes the SSAM. Chapter 4 describes the sophisticated linear space frame and nonlinear ADINA models. Chapter 5 presents results from the SSAM, the space frame model, and the ADINA model for the six configurations of the generic skyscraper. Chapter 6 submits conclusions based on the results. The appendix includes a copy of the spreadsheet implementation of the SSAM for the generic skyscraper.

Figure 1-13: Generic skyscraper elevation and plan views

Figure 1-14: Generic skyscraper - outrigger truss, belt truss, and diagonal systems

2 LITERATURE REVIEW

The literature on approximate analysis methods for tall buildings can be subdivided into continuum methods and discrete methods. Continuum methods model tall buildings as vertical cantilevers, and approximate displacements as continuous functions of vertical position using flexure/shear beam theory. Discrete methods construct stiffness or flexibility matrices for the system. The finite element method is an example of a discrete method. Some of the approximate discrete methods surveyed enforce compatibility conditions at the discrete locations of outrigger and belt trusses. Other approximate discrete methods construct reduced system stiffness matrices through the use of substructuring or super-elements. The SSAM is a discrete method that constructs a reduced system stiffness matrix.

2.1 Continuum Methods for Low/Medium-Rise Buildings

Bozdogan and Ozturk (2009) proposed an approximate method based on the continuum method idealizing low-rise wall-frame and tube-in-tube structures of 11 stories and 15 stories, respectively, as sandwich beams. Their sandwich beam consists of two vertical Timoshenko cantilever beams attached by horizontal connecting beams in parallel. One beam consists of the sum of the flexural and shear rigidities of shear walls and columns. The second beam consists of the sum of shear rigidities of frames and connecting beams. By solving a set of differential equations for the shear force equilibrium in both beams, continuous equations for displacement
and rotation with respect to vertical position are obtained. Bozdogan (2009) also applied this method to dynamic analyses on the same example wall-frame structure.

Potzta and Kollar (2003) discussed the development of replacement beams as sandwich beams in simplifying the analysis of low-rise buildings with combinations of shear walls, coupled shear walls, frames, and trusses. Again, the sandwich beam applies the continuum method by representing the system as a Timoshenko beam that is supported laterally by a beam with bending stiffness. Each lateral load-resisting system is replaced by a continuous cantilever beam with connecting beams between them. The strain energy of the sandwich beam is presented as the strain energies of a Timoshenko beam and of a beam with bending deformation only. An example 7 -story building with two coupled shear walls and a frame is used to demonstrate this method. This same procedure is used by Kaviani et al. (2008) who extends the method to structures of variable cross-section.

An approximate hand calculated method for asymmetric wall-frame structures was proposed by Rutenberg and Heidebrecht (1975). Lateral loads from wind or earthquakes produce both lateral deflections and twisting in asymmetric configurations. The flexural walls and frames are modeled as vertical flexural and shear cantilevers where torsional behavior is treated in addition. Coupled torsion-bending differential equations governing the static equilibrium of the structure are solved to obtain continuous functions for story displacements and rotations with height. Their method is applied to a 16 -story wall-frame structure.

A new concept to increase the lateral stiffness of wall-frame tall building structures by stiffening a story of the frame system was proposed by Nollet and Smith (1997). The wall-frame structure is modeled using the continuum theory by representing the system as two cantilever beams in parallel by connecting beams. The shear wall, with a modified flexural rigidity, is
connected to and constrained to have the same deflected shape as the frame by axially rigid connecting links. The rigid links that provide horizontal rigidity represent a continuum between the wall and frame. A continuous displacement function with respect to height was then obtained by modifying and solving the differential equation for bending moment of a cantilever with the added stiffness parameter. An example 20 -story wall-frame structure with shear walls and four moment resisting frames was analyzed to verify the method.

Abergel and Smith (1983) developed an approximate method of analysis for non-twisting medium-rise structures composed of shear walls, cores, and identical coupled walls. An alternative to previous approximations is made based on the differential equations of deflection of a cantilever beam. By replacing the coupled wall with a comparable structure where the connecting beams are treated as a continuous medium with equivalent bending and shear properties, a differential equation relating the horizontal loading is derived. The differential equation relating horizontal loading was developed from two previously derived equations for shear walls. A 20 -story building with four coupled walls, two shear walls, and a core is used as an example.

Heidebrecht and Smith (1973) present a simple hand method for the static and dynamic analysis of uniform low to medium-rise structures consisting of interacting shear walls and frames. The mathematical model consists of a combination of flexural and shear vertical cantilever beams deforming either in shear or bending and is very similar to other methods where the governing differential equations for flexural and shear beams subject to lateral load are solved. Differently from other approximations, their method has application to nonuniform shear wall-frame structures. The method is applied to a 12 -story wall-frame building. Similarly, Hoenderkamp et al. (1984) and Toutanji (1997) use variations of this method by modeling
medium-rise buildings with coupled walls and shear walls with frames as flexural and shear vertical cantilevers.

2.2 Continuum Method for Framed Tubes

Kwan (1994) developed a simple hand calculation method for the analysis of framed tube structures accounting for shear lag effects. This method assumes that framed tube structures can primarily behave like cantilevered box beams. The framed tube structure is modeled as two web panels and two flange panels. It is assumed that there is uniform stiffness throughout the structure and the differential equation of moment equilibrium in a cantilever beam was solved to obtain continuous functions of displacement and rotation with respect to height. Two examples of a 40 -story high-rise and a 15 -story low-rise composed of framed tubes are presented. Rahgozar and Sharifi (2009) applied a variation of Kwan's (1994) method on 30, 40, and 50story framed tube buildings with shear cores and belt trusses.

Takabatake (2012) refers to the one-dimensional rod theory as a method in the preliminary design stage that is most suitable when replacing a high rise structure as a continuous member. This extended rod theory includes the Timoshenko beam theory effects along with longitudinal deformation and shear-lag effects by replacing the structure with an equivalent stiffness distribution. The theory is extended to two-dimensional extended rod theory by considering structural components with different stiffness and mass distributions that are continuously connected. They are modeled as several parallel beams. Governing equations are solved for shear and flexure in a cantilever beam where a continuous displacement function is obtained that satisfies continuity conditions between the parallel beams. A 30-story framed tube is used as an example. Kobayashi et al. (1995) applied Takabatake's (2012) method to a 30 story tube-in-tube example building.

2.3 Inherent Problems with Continuum Methods

Note that none of the continuum models surveyed thus far have been applied to buildings with outriggers. This is because continuum models based on cantilever beam theory cannot reproduce the points of contraflexure exhibited in the deflected shapes of tall buildings with outriggers as shown in Figure 2-1 taken from Choi et al. (2012). The bending moment in a cantilever beam loaded laterally in one direction does not change sign, and therefore, points of contraflexure do not exist. Many studies have recognized the possibility that points of contraflexure exist in tall buildings with outriggers.

Figure 2-1: One Liberty Place deflected shape
© Thornton Tomasetti

Choi et al. (2012) explain the outrigger-core coupling as follows: "When laterally loaded the outriggers resist core rotation by using perimeter columns to push and pull in opposition, introducing a change in slope of the vertical deflection curve, a portion of the core overturning moment is transferred to the outriggers and, in turn, tension in windward columns and compression in leeward columns... Analysis and design of a complete core-and-outrigger system is not that simple: distribution of forces between the core and the outrigger system depends on the relative stiffness of each element. One cannot arbitrarily assign overturning forces to the core and the outrigger columns. However, it is certain that bringing perimeter structural elements together with the core as one lateral load resisting system will reduce core overturning moment." Kowalczyk et al. (1995) explain the function of outriggers with the following: "...outriggers serve to reduce the overturning moment in the core that would otherwise act as a pure cantilever, and to transfer the reduced moment to columns outside the core by way of a tension-compression couple, which takes advantage of the increased moment arm between these columns." Stafford Smith and Coull (1991) state that, "the outrigger-braced structure, with at most four outriggers, is not strictly amenable to a continuum analysis and has to be considered in its discrete arrangement."

Figure 2-2 through Figure 2-6 were taken from a study by (Taranath 2005) about the relationship between outrigger location and the existence of points of contraflexure. In Figure 24, the tie-down action of the cap truss generates a restoring couple at the building top, resulting in a point of contraflexure in its deflection curve. Figure 2-3, Figure 2-4, Figure 2-5, and Figure 2-6 show deflected shape and bending moment diagrams for different vertical locations of a single outrigger truss.

Figure 2-2: Contraflexure in core created by cap truss (Taranath 2005)

Figure 2-3: Behavior of system with outrigger located at $\mathbf{z}=\mathbf{L}$ (Taranath 2005)

Figure 2-4: Behavior of system with outrigger located at $\mathbf{z}=\mathbf{0 . 7 5 L}$ (Taranath 2005)

Figure 2-5: Behavior of system with outrigger located at $\mathbf{z}=\mathbf{0 . 5 L}$ (Taranath 2005)

Figure 2-6: Behavior of system with outrigger located at $\mathbf{z}=\mathbf{0 . 2 5 L}$ (Taranath 2005)

2.4 Discrete Outrigger Methods

Hoenderkamp and Bakker (2003) wrote about analyzing high-rise braced frames with outriggers. Three stiffness parameters are considered which represent the frame wall, outriggers and columns at the single story where the outrigger is present. Two degrees of freedom for the braced frame are taken as a rotation and a translation about the vertical axis. The rotation equation assumes the rotation of a free cantilever with respect to height subject to a uniformly distributed load. A third degree of freedom comes from the rotation of the outrigger that produces a restraining moment in the frame. The total rotation of the braced frame at the outrigger level becomes a product of the cantilever rotation reduced by the moment rotation
created by the outriggers. The horizontal deflection at the top of the structure is then determined by a compatibility equation for the rotation at the interface of the braced frame and outrigger. The method was tested on three braced-frame-outrigger high-rise buildings of $57.5 \mathrm{~m}, 72 \mathrm{~m}$, and 93.6 m in height. Hoenderkamp (2008) applies the method to high-rises with outriggers at two levels, and Hoenderkamp (2004) applies the method to high-rises with outriggers and flexible foundations.

Taranath (2005) conceptualizes outriggers as restraining springs located on the cantilever. The ratio of the outrigger moment to the outrigger stiffness is equated to the rotation of a uniformly loaded cantilever beam with constant stiffness. The resulting deflection is obtained by superposing the deflection of the cantilever and the moment induced by the spring. Rahgozar et al. (2010) apply a similar method to 45 -story and 55 -story buildings composed of framed tube, shear core, belt truss, and an outrigger where the belt truss, outrigger, and shear core are considered as a bending spring with constant rotational stiffness acting as a concentrated moment where the belt truss and outrigger are located.

Stafford Smith and Coull (1991) created compatibility equations for each outrigger level to equate the rotation of the core to the rotation of the outrigger. The rotation of the core is expressed in terms of its bending deformation and that of the outrigger in terms of the axial deformations of the columns and the bending of the outrigger. The top drift of the structure may then be determined from the resulting bending moment diagram for the core by using the moment-area method. Furthermore, this same method of analysis can be applied to structures with more than two outriggers by expressing them as restraining moments in the equation of horizontal deflection for a cantilever beam. These multiple restraining moments can be expressed in matrix form for simultaneous solution of multiple equations. This method of
compatibility was published earlier by Smith and Salim (1981) which was then improved upon by Stafford Smith and Coull (1991).

Wu and Li (2003) take this compatibility approach as well for multi-outrigger-braced tall buildings with an additional application to their dynamic characteristics. Rutenberg (1987) made a parametric study for this method investigating the effect of outrigger location, ratio of perimeter column to core stiffness, and stiffness variation along the height on the horizontal displacement at roof level.

2.5 Discrete Substructuring Methods

Lin et al. (1994) presented an approximate approach called the finite story method (FSM) to analyze the displacement and natural frequencies of tall framed tube buildings. The method reduces the system stiffness matrix to involve horizontal displacements and rotations about the vertical axis. It is based on the displacements of two-story substructures to approximate shear, bending, and torsion components of global deformations. A 30-story framed tube building is used as an example.

De Llera and Chopra (1995) developed a new simplified model for analysis and design of multistory buildings. The model is based on a single super-element per building story that is capable of representing the elastic and inelastic properties of the story. This is done by matching the stiffness matrices and ultimate yield surface of the story with that of the element. The analysis consists of multistory buildings with rigid diaphragms where the masses are lumped together and where lateral resistance is provided by resisting planes in both horizontal directions composed of elasto-plastic elements. A single fictitious structural super-element per story has three degrees of freedom, two horizontal translations and the rotation of the floor connected by
the element, where a reduced stiffness matrix is created. This method was applied to a small building with 4 stories.

3 SIMPLIFIED SKYSCRAPER ANALYSIS MODEL

The steps of the simplified skyscraper analysis model (SSAM) consist of: 1) determination of megacolumn areas, 2) construction of stiffness matrix, 3) calculation of lateral forces and displacements, and 4) calculation of stresses. The SSAM was implemented on a spreadsheet. The spreadsheet can be used for rapid trial-and-error optimization of the skyscraper. Such usage will be addressed at the end of this chapter.

3.1 Determination of Megacolumn Areas

The SSAM subdivides the skyscraper vertically into intervals. Outrigger and belt trusses are located at interval boundaries. It will be assumed that the cross-sectional areas of the core, megacolumns, and diagonals remain constant in each interval. It will also be assumed that the cross-sectional areas of composite steel/concrete cores and megacolumns are the cross-sectional areas of the transformed all-concrete sections where steel area has been multiplied by the ratio of steel elastic modulus to concrete elastic modulus. Define the following terms:

[^0]$\mathrm{k}_{\mathrm{i}}^{\text {diag }}=$ vertical stiffness of all diagonals in interval i
$\mathrm{F}_{\mathrm{i}}{ }^{\text {core }}=$ axial force in core at base of interval i excluding interval i self weight
$\mathrm{F}_{\mathrm{i}}{ }^{\text {colj }}=$ axial force in megacolumn j at base of interval i excluding interval i self weight
$\gamma=$ concrete unit weight (core and megacolumns)
$\varepsilon_{\mathrm{i}}=$ axial strain at bottom of interval i
$\mathrm{E}=$ concrete modulus of elasticity (core and megacolumns)
$\mathrm{E}^{\mathrm{s}}=$ steel modulus of elasticity (diagonals, outriggers, belts)
$\mathrm{A}_{\mathrm{T}}{ }^{\text {core }}=$ core tributary area
$\mathrm{A}_{\mathrm{T}}{ }^{\text {colj }}=$ tributary area for megacolumn j
$\mathrm{P}_{\mathrm{T}}{ }^{\text {colj }}=$ tributary perimeter for megacolumn j
$\mathrm{L}^{\text {dead }}=$ floor dead load per area
$\mathrm{L}^{\text {live }}=$ floor live load per area
$\mathrm{L}^{\text {clad }}=$ cladding load per area
$\mathrm{T}_{\mathrm{i}}{ }^{\text {core }}=$ outrigger truss weight in interval i supported by the core
$\mathrm{T}_{\mathrm{i}}{ }^{\text {colj }}=$ outrigger-belt-diagonal truss weight in interval i supported by megacolumn j
Assume that intervals are numbered with $\mathrm{i}=1$ being the top interval and increasing downward. Assume that $\mathrm{h}_{0}=\mathrm{A}_{0}{ }^{\text {core }}=\mathrm{A}_{0}{ }^{\text {colj }}=0$ in the following formulas. Assume that the weight of any pinnacle or cap on top of the skyscraper is distributed appropriately among the core and megacolumns to get values for $\mathrm{F}_{0}{ }^{\text {core }}$ and $\mathrm{F}_{0}{ }^{\text {colj }}$. The core and megacolumn axial forces excluding interval self weight are calculated from Equations 3-1 and 3-2:
\[

$$
\begin{align*}
& \mathrm{F}_{\mathrm{i}}^{\text {core }}=\mathrm{F}_{\mathrm{i}-1}^{\text {core }}+\gamma \mathrm{h}_{\mathrm{i}-1} \mathrm{~A}_{\mathrm{i}-1}^{\text {core }}+\mathrm{n}_{\mathrm{i}} \mathrm{~A}_{\mathrm{T}}^{\text {core }}\left(\mathrm{L}^{\text {dead }}+\mathrm{L}^{\text {live }}\right)+\mathrm{T}_{\mathrm{i}}^{\text {core }} \tag{3-1}\\
& \mathrm{F}_{\mathrm{i}}^{\text {colj }}=\mathrm{F}_{\mathrm{i}-1}^{\text {colj }}+\gamma \mathrm{h}_{\mathrm{i}-1} \mathrm{~A}_{\mathrm{i}-1}^{\text {colj }}+\mathrm{n}_{\mathrm{i}} \mathrm{~A}_{\mathrm{T}}^{\text {colj }}\left(\mathrm{L}^{\text {dead }}+\mathrm{L}^{\text {live }}\right)+\mathrm{h}_{\mathrm{i}} \mathrm{P}_{\mathrm{T}}^{\text {colj }} \mathrm{L}^{\text {clad }}+\mathrm{T}_{\mathrm{i}}^{\text {colj }} \tag{3-2}
\end{align*}
$$
\]

Given the cross-sectional area of the core, the cross-sectional areas of the megacolumns are determined from the principle that the axial strain in the megacolumns must be the same as the axial strain in the core under gravity loads in order to prevent unacceptably large differential vertical displacements from accumulating in the upper floors of the skyscraper. If there are no diagonals, then at the base of interval i, the axial strain in the core is equated to the axial strain in each megacolumn j in Equation 3-3,

$$
\begin{equation*}
\varepsilon_{\mathrm{i}}=\frac{\mathrm{F}_{\mathrm{i}}^{\text {core }}+\gamma \mathrm{h}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}^{\text {core }}}{\mathrm{EA}_{\mathrm{i}}^{\text {core }}}=\frac{\mathrm{F}_{\mathrm{i}}^{\text {colj }}+\gamma \mathrm{h}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}^{\text {colj }}}{\mathrm{EA}_{\mathrm{i}}^{\text {colj }}} \tag{3-3}
\end{equation*}
$$

This can be solved for the area of megacolumn j in interval i in Equation 3-4:

$$
\begin{equation*}
A_{i}^{\text {colj }}=A_{i}^{\text {core }} \frac{F_{i}^{\text {colj }}}{F_{i}^{\text {core }}} \tag{3-4}
\end{equation*}
$$

The above formula must be modified if diagonals are present because diagonals contribute to the support of gravity loads. The vertical stiffness of all diagonals in interval i is calculated in Equation 3-5:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}^{\text {diag }}=\frac{\mathrm{E}^{s}\left(\sum_{\mathrm{j}} \mathrm{~A}_{\mathrm{i}}^{\text {diag }}\right)\left(\mathrm{S}_{\mathrm{i}}^{\text {diag }}\right)^{2}}{L_{i}^{\text {diag }}}=\frac{\mathrm{E}^{s}\left(\sum_{j} A_{i}^{\text {diag }}\right)\left(S_{i}^{\text {diag }}\right)^{3}}{h_{i}} \tag{3-5}
\end{equation*}
$$

The sum of diagonal areas in interval i can be calculated from the volume of diagonal members in interval i from Equation 3-6:

$$
\begin{equation*}
\sum_{j} A_{i}^{\text {diagj }}=V_{i}^{\text {diag }} \frac{S_{i}^{\text {diag }}}{h_{i}} \tag{3-6}
\end{equation*}
$$

At the base of interval i, the axial strain in the core is equated to the axial strain in all the megacolumns and diagonals together by Equation 3-7:

$$
\begin{equation*}
\varepsilon_{i}=\frac{F_{i}^{\text {core }}+\gamma h_{i} A_{i}^{\text {core }}}{E A_{i}^{\text {core }}}=\frac{\left(\sum_{j} F_{i}^{\text {colj }}\right)+\gamma h_{i}\left(\sum_{j} A_{i}^{\text {colj }}\right)}{E\left(\sum_{j} A_{i}^{\text {colj }}\right)+E^{s}\left(\sum_{j} A_{i}^{\text {diagj }}\right)\left(S_{i}^{\text {diag }}\right)^{3}} \tag{3-7}
\end{equation*}
$$

This can be solved for the sum of megacolumn areas in interval i in Equation 3-8:

$$
\begin{align*}
\sum_{j} A_{i}^{\text {colj }} & =A_{i}^{\text {core }} \frac{\sum_{j} F_{i}^{\text {colj }}}{F_{i}^{\text {core }}}-\left(\sum_{j} A_{i}^{\text {diag }}\right)\left(S_{i}^{\text {diag }}\right)^{3} \frac{E^{s}}{E}\left(1+\frac{\gamma h_{i} A_{i}^{\text {core }}}{F_{i}^{\text {core }}}\right) \tag{3-8}\\
& =A_{i}^{\text {core }} \frac{\sum_{j} F_{i}^{\text {colj }}}{F_{i}^{\text {core }}}-\frac{V_{i}^{\text {diag }}}{h_{i}}\left(S_{i}^{\text {diag }}\right)^{4} \frac{E^{s}}{E}\left(1+\frac{\gamma h_{i} A_{i}^{\text {core }}}{F_{i}^{\text {core }}}\right)
\end{align*}
$$

The area of megacolumn j in interval i is solved for in Equation 3-9:

$$
\begin{align*}
A_{i}^{\text {colj }} & =\frac{F_{i}^{\text {colj }}}{\sum_{j} F_{i}^{\text {colj }}} \sum_{j} A_{i}^{\text {colj }} \tag{3-9}\\
& =A_{i}^{\text {core }} \frac{F_{i}^{\text {colj }}}{F_{i}^{\text {core }}}-\frac{V_{i}^{\text {diag }}}{h_{i}}\left(S_{i}^{\text {diag }}\right)^{4} \frac{F_{i}^{\text {colj }}}{\sum_{j} F_{i}^{\text {colj }}} \frac{E^{s}}{E}\left(1+\frac{\gamma h_{i} A_{i}^{\text {core }}}{F_{i}^{\text {core }}}\right)
\end{align*}
$$

The above formula is used in the spreadsheet. Note that if the area of the diagonals is big enough, the megacolumn areas may drop to zero resulting in a diagrid skyscraper.

3.2 Construction of the Stiffness Matrix

Lateral load analysis in the SSAM is performed by constructing a stiffness matrix in the spreadsheet for the skyscraper. The degrees of freedom (DOF's) consist of the horizontal displacement of the core at the top of each interval, the rotation of the core at the top of each interval, and the vertical displacements of each of the megacolumns at the top of each interval. Figure 3-1 below shows a laterally displaced core (thick line), a single megacolumn B (thin line), and outrigger trusses at the top of each interval (dotted lines). The dashed lines show the undisplaced position of the structure. The DOF's are identified in Figure 3-1 where subscripts correspond to story numbers. Symmetry is exploited if possible. The generic skyscraper is doubly symmetric so that only one quarter of the skyscraper is included in the model. The model consists of one-fourth of the core, one-half of megacolumns C and E , and a full portion of
megacolumns A, B, and D. Assume that the lateral load is perpendicular to the wall containing megacolumns A, B, and C. Since the vertical displacement in megacolumn E is zero under lateral loading, only the vertical displacements for megacolumns $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D will be counted as DOF's. Thus, there are 6 DOF's at the top of each interval for a total of 30 DOF's.

Figure 3-1: Displaced core with location of DOF's

The moment of inertia of the core must be calculated for each interval. This is done by dividing the core into thin rectangles where it is assumed that all rectangles have the same thickness in Equation 3-10:
$\mathrm{I}_{\mathrm{i}}{ }^{\text {core }}=$ moment of inertia of the core in interval i
$t_{i}=$ core wall thickness in interval i
$\mathrm{d}_{\mathrm{i}}^{\mathrm{j}}=$ length of rectangle j in interval i
$y_{i}{ }^{j}=$ distance from centroid of rectangle j to neutral axis in interval i
$\alpha_{i}^{j}=$ angle from neutral axis to axis parallel to length of rectangle j in interval i

$$
\begin{equation*}
I_{i}^{\text {core }}=t_{i} \sum_{j}\left(d_{i}^{j}\left(y_{i}^{j}\right)^{2}+\frac{\left(d_{i}^{j}\right)^{3}\left(\sin \alpha_{i}^{j}\right)^{2}}{12}\right) \tag{3-10}
\end{equation*}
$$

The local moments of inertia of the megacolumns are much less than the core moment of inertia, and may be calculated from the megacolumn areas in Equation 3-11:
$I_{i}{ }^{\text {colj }}=$ local moment of inertia of megacolumn j in interval i
$A_{i}{ }^{\text {colj }}=$ cross-sectional area of megacolumn j in interval i
$\eta=12$ for solid square and 4π for solid circle
$I_{i}^{\text {colj }}=\frac{\left(A_{i}^{\text {colj }}\right)^{2}}{\eta}$
For the generic skyscraper, the contribution of the core and megacolumns to the first 12 rows and columns of the stiffness matrix is shown in Table 3-1 with Equations 3-12 to 3-20:

$$
\begin{align*}
& I_{i}=\frac{I_{i}^{\text {core }}}{4}+I_{i}^{\text {colA }}+I_{i}^{\text {colB }}+\frac{I_{i}^{\text {colC }}}{2}+I_{i}^{\text {colD }}+\frac{I_{i}^{\text {colE }}}{2} \tag{3-12}\\
& k_{i}^{\text {corl }}=\frac{12 E I_{i}}{h_{i}^{3}} \quad k_{i}^{\text {cor2 }}=\frac{6 E I_{i}}{h_{i}^{2}} \quad k_{i}^{\text {cor3 }}=\frac{4 E I_{i}}{h_{i}} \quad k_{i}^{\text {cor4 }}=\frac{2 E I_{i}}{h_{i}} \tag{3-13,3-14,3-15,3-16}\\
& k_{i}^{\text {colA }}=\frac{E A_{i}^{\text {colA }}}{h_{i}} k_{i}^{\text {colB }}=\frac{E A_{i}^{\text {colB }}}{h_{i}} \quad k_{i}^{\text {colC }}=\frac{E A_{i}^{\text {colC }}}{2 h_{i}} k_{i}^{\text {colD }}=\frac{E A_{i}^{\text {colD }}}{h_{i}} \tag{3-17,3-18,3-19,3-20}
\end{align*}
$$

Table 3-1: Stiffness matrix - contribution of the core and megacolumns

	Δ_{100}	θ_{100}	A_{100}	B_{100}	C_{100}	D_{100}	Δ_{80}	θ_{80}	A_{80}	B_{80}	C_{80}	D_{80}
Δ_{100}	$\mathrm{k}_{1}{ }^{\text {corl }}$	$-\mathrm{k}_{1}{ }^{\text {cor } 2}$					$-\mathrm{k}_{1}^{\text {corl }}$	$-\mathrm{k}_{1}^{\text {cor2 }}$				
θ_{100}	$-\mathrm{k}_{1}{ }^{\text {cor2 }}$	$\mathrm{k}_{1}{ }^{\text {cor3 }}$					$\mathrm{k}_{1}{ }^{\text {cor2 }}$	$\mathrm{k}_{1}^{\text {cor4 }}$				
A_{100}			$\mathrm{k}_{1}{ }^{\text {colA }}$						$-\mathrm{k}_{1}{ }^{\text {colA }}$			
B_{100}				$\mathrm{k}_{1}^{\text {colb }}$						$-\mathrm{k}_{1}{ }^{\text {colB }}$		
C_{100}					$\mathrm{k}_{1}{ }^{\text {colC }}$						$-\mathrm{k}_{1}^{\text {colc }}$	
D_{100}						$\mathrm{k}_{1}^{\text {coll }}$						$-\mathrm{k}_{1}{ }^{\text {colD }}$
Δ_{80}	$-\mathrm{k}_{1}{ }^{\text {corl }}$	$\mathrm{k}^{\text {cor2 }}$					$\begin{aligned} & \mathrm{k}_{1}^{\text {corl }} \\ & +\mathrm{k}_{2}{ }^{\text {corl }} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k}_{1}^{\mathrm{cor} 2} \\ & \mathrm{-k}_{2}{ }^{\mathrm{cor} 2} \\ & \hline \end{aligned}$				
θ_{80}	$-\mathrm{k}_{1}{ }^{\text {cor2 }}$	$\mathrm{k}^{\text {cor4 }}$					$\begin{aligned} & \begin{array}{l} \mathrm{k}_{1}^{\mathrm{cor} 2} \\ \mathrm{c}_{2}{ }^{\mathrm{ocr} 2} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{k}_{1}^{\mathrm{cor} 3} \\ +\mathrm{k}_{2}{ }^{\text {cor } 3} \\ \hline \end{gathered}$				
A_{80}			$-\mathrm{k}_{1}^{\mathrm{colA}}$						$\begin{gathered} \mathrm{k}_{1}^{\mathrm{colA} A} \\ +\mathrm{k}_{2}{ }^{\mathrm{colA}} \\ \hline \end{gathered}$			
B_{80}				$-\mathrm{k}_{1}{ }^{\text {colB }}$						$\begin{aligned} & \mathrm{k}_{1}{ }^{\text {colB }} \\ & +\mathrm{k}_{2}{ }^{\text {colB }} \\ & \hline \end{aligned}$		
C_{80}					$-\mathrm{k}_{1}^{\text {colc }}$						$\begin{gathered} \mathrm{k}_{1}^{\text {colc }} \\ +\mathrm{k}_{2} \end{gathered}$	
D_{80}						$-\mathrm{k}_{1}^{\text {colD }}$						$\begin{gathered} \mathrm{k}_{1}^{\text {colD }} \\ +\mathrm{k}_{2} \\ \hline \end{gathered}$

The shear stiffness of a typical outrigger truss as shown in Figure 3-2 is the reciprocal of the vertical tip displacement due to a unit load.

$$
\begin{aligned}
& \mathrm{L}_{1}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~L}_{2}=\sqrt{\mathrm{w}^{2}+(\mathrm{h} / 2)^{2}}
\end{aligned}
$$

Figure 3-2: Typical outrigger truss subject to unit load

Assume that the cross-sectional area of each member of the outrigger truss is proportional to the magnitude of the axial force F indicated in the figure above as in Equation 3-21. Let C be the constant of proportionality:

$$
\begin{equation*}
\mathrm{A}=\mathrm{C}|\mathrm{~F}| \tag{3-21}
\end{equation*}
$$

The total volume of N outrigger trusses at the top of an interval is calculated in Equation 3-22:

$$
\begin{equation*}
\mathrm{V}=\mathrm{N} \sum \mathrm{AL}=\mathrm{NC} \sum|\mathrm{~F}| \mathrm{L} \tag{3-22}
\end{equation*}
$$

The stiffness of any outrigger truss is the reciprocal of the tip displacement as determined by the principle of virtual forces in Equation 3-23:

$$
\begin{equation*}
\mathrm{k}^{\text {out }}=\frac{1}{\sum \frac{\mathrm{~F}^{2} \mathrm{~L}}{\mathrm{EA}}}=\frac{\mathrm{CE}}{\sum|\mathrm{~F}| \mathrm{L}}=\frac{\mathrm{EV}}{\mathrm{~N}\left(\sum|\mathrm{~F}| \mathrm{L}\right)^{2}} \tag{3-23}
\end{equation*}
$$

For the outrigger truss in Figure 3-2 its stiffness is calculated from Equations 3-24 and 3-25:

$$
\begin{align*}
& \sum|\mathrm{F}| \mathrm{L}=\frac{\mathrm{w}^{2}}{\mathrm{~h}}+\frac{2 \mathrm{w}^{2}}{\mathrm{~h}}+\frac{\mathrm{L}_{1}^{2}}{\mathrm{~h}}+\frac{2 \mathrm{~L}_{2}^{2}}{\mathrm{~h}}+\frac{\mathrm{h}}{2}=\frac{6 \mathrm{w}^{2}+2 \mathrm{~h}^{2}}{\mathrm{~h}} \tag{3-24}\\
& \mathrm{k}^{\text {out }}=\frac{E h^{2} \mathrm{~V}}{\mathrm{~N}\left(6 \mathrm{w}^{2}+2 \mathrm{~h}^{2}\right)^{2}} \tag{3-25}
\end{align*}
$$

The shear stiffness of each of the 8 two-member outrigger trusses per interval in the generic skyscraper is shown in Figure 3-3 and calculated in Equation 3-26:

$$
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+(\mathrm{h} / 2)^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{2 \mathrm{~L}}
\end{aligned}
$$

Figure 3-3: Two-member outrigger truss subject to unit load
$\mathrm{k}_{\mathrm{i}}{ }^{\text {out }}=$ shear stiffness of an outrigger truss at top of interval i
$\mathrm{V}_{\mathrm{i}}^{\text {out }}=$ volume of all outrigger trusses at top of interval i
$\mathrm{S}_{\mathrm{i}}{ }^{\text {out }}=$ sine of angle from horizontal of members of outrigger truss at top of interval i
$\mathrm{h}_{\mathrm{i}}{ }^{\text {out }}=$ height of outrigger truss at top of interval i $(16 \mathrm{~m}$ for generic skyscraper)
$\mathrm{E}^{\mathrm{s}}=$ steel modulus of elasticity

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}^{\text {out }}=\frac{E V}{\mathrm{~N}\left(\sum|F| L\right)^{2}}=\frac{E V}{8\left(2\left(\frac{1}{2 S}\right)\left(\frac{\mathrm{h}}{2 S}\right)\right)^{2}}=\frac{\mathrm{E}^{s}\left(\mathrm{~S}_{\mathrm{i}}^{\text {out }}\right)^{4} V_{i}^{\text {out }}}{2\left(\mathrm{~h}_{\mathrm{i}}^{\text {out }}\right)^{2}} \tag{3-26}
\end{equation*}
$$

For the generic skyscraper, the contribution of the outriggers to the first 12 rows and columns of the stiffness matrix is shown in Table 3-2. Since there are no outriggers at story 100 in the generic skyscraper, $\mathrm{k}_{1}{ }^{\text {out }}=0$, but it is retained in the table to illustrate the pattern.

Table 3-2: Stiffness matrix - contribution of outriggers

	Δ_{100}	θ_{100}	$\mathrm{~A}_{100}$	$\mathrm{~B}_{100}$	C_{100}	D_{100}	Δ_{80}	θ_{80}	$\mathrm{~A}_{80}$	$\mathrm{~B}_{80}$	C_{80}	D_{80}
Δ_{100}												
θ_{100}		$12.5^{2} \mathrm{k}_{1}$ out $+25^{2} \mathrm{k}_{1}{ }^{\text {out }}$		$-25 \mathrm{k}_{1}{ }^{\text {out }}$		$-12.5 \mathrm{k}_{1}{ }^{\text {out }}$						
A_{100}												
$\mathrm{~B}_{100}$		$-25 \mathrm{k}_{1}{ }^{\text {out }}$		$\mathrm{k}_{1}{ }^{\text {out }}$								
C_{100}												
D_{100}		$-12.5 \mathrm{k}_{1}{ }^{\text {out }}$				$\mathrm{k}_{1}{ }^{\text {out }}$						
Δ_{80}												
θ_{80}								$12.5^{2} \mathrm{k}_{2}{ }^{\text {out }}$ $+25^{2} \mathrm{k}_{2}{ }^{\text {out }}$		$-25 \mathrm{k}_{2}{ }^{\text {out }}$		$-12.5 \mathrm{k}_{2}{ }^{\text {out }}$
A_{80}												
$\mathrm{~B}_{80}$												
C_{80}								$-25 \mathrm{k}_{2}{ }^{\text {out }}$		$\mathrm{k}_{2}{ }^{\text {out }}$		
D_{80}								$-12.5 \mathrm{k}_{2}{ }^{\text {out }}$				

Note that there is coupling between the vertical displacements of megacolumns B and D and the rotation of the core. To understand this coupling, Figure 3-4 shows the left half of the core in solid black and a two-member outrigger truss extending from the core to megacolumn B . The top part of the figure shows a unit upward vertical displacement at megacolumn B and the bottom part of the figure shows a unit clockwise core rotation.

Figure 3-4: Unit upward vertical displacement (top) and unit clockwise core rotation (bottom)

The shear stiffness of each of the 16 eight-member belt trusses per interval in the generic skyscraper is shown in Figure 3-5 and calculated in Equation 3-27:

$$
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
$$

Figure 3-5: Eight-member belt truss subject to unit load
$k_{i}^{\text {belt }}=$ shear stiffness of a belt truss at top of interval i
$\mathrm{V}_{\mathrm{i}}^{\text {belt }}=$ volume of all belt trusses at top of interval i
$\mathrm{S}_{\mathrm{i}}{ }^{\text {belt }}=$ sine of angle from horizontal of members of belt truss at top of interval i
$\mathrm{h}_{\mathrm{i}}^{\text {belt }}=$ height of belt truss at top of interval i (8 m for generic skyscraper)
$\mathrm{E}^{\mathrm{s}}=$ steel modulus of elasticity

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}^{\text {belt }}=\frac{\mathrm{EV}}{\mathrm{~N}\left(\sum|\mathrm{~F}| \mathrm{L}\right)^{2}}=\frac{\mathrm{EV}}{16\left(\frac{4 \mathrm{w}^{2}}{2 \mathrm{~h}}+\frac{4 \mathrm{~L}}{2 \mathrm{~S}}\right)^{2}}=\frac{\mathrm{E}^{\mathrm{s}}\left(\mathrm{~S}_{\mathrm{i}}^{\text {belt }}\right)^{4} \mathrm{~V}_{\mathrm{i}}^{\text {belt }}}{64\left(\mathrm{~h}_{\mathrm{i}}^{\text {belt }}\right)^{2}\left(2-\left(\mathrm{S}_{\mathrm{i}}^{\text {belt }}\right)^{2}\right)^{2}} \tag{3-27}
\end{equation*}
$$

If it is assumed that the horizontal members of the belt truss consist of infinitely stiff floor diaphragms, then the shear stiffness of each of the belt trusses in the generic skyscraper is increased as shown in Figure 3-6 and calculated in Equation 3-28:

$$
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
$$

Figure 3-6: Belt truss in generic skyscraper subject to unit load

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}^{\text {belt }}=\frac{E V}{\mathrm{~N}\left(\sum|\mathrm{~F}| \mathrm{L}\right)^{2}}=\frac{E V}{16\left(4\left(\frac{1}{2 S}\right)\left(\frac{h}{S}\right)\right)^{2}}=\frac{\mathrm{E}^{s}\left(\mathrm{~S}_{\mathrm{i}}^{\text {belt }}\right)^{4} V_{\mathrm{i}}^{\text {belt }}}{64\left(\mathrm{~h}_{\mathrm{i}}^{\text {belt }}\right)^{2}} \tag{3-28}
\end{equation*}
$$

For the generic skyscraper, the contribution of the belts to the first 12 rows and columns of the stiffness matrix is shown in Table 3-3. Since there are no belts at story 100 in the generic skyscraper, $\mathrm{k}_{1}{ }^{\text {belt }}=0$, but it is retained in the table to illustrate the pattern.

Table 3-3: Stiffness matrix - contribution of the belt trusses

	Δ_{100}	θ_{100}	A_{100}	B_{100}	C_{100}	D_{100}	Δ_{80}	θ_{80}	A_{80}	B_{80}	C_{80}	D_{80}
Δ_{100}												
θ_{100}		$\begin{gathered} 2\left(12.5^{2}\right) \\ \mathrm{k}_{1}^{\text {belt }} \end{gathered}$	$-12.5 \mathrm{k}_{1}^{\text {belt }}$									
A_{100}		$-12.5 \mathrm{k}_{1}^{\text {belt }}$	$2 \mathrm{k}_{1}^{\text {belt }}$	$-\mathrm{k}_{1}^{\text {belt }}$		$-\mathrm{k}_{1}^{\text {belt }}$						
B_{100}			$-\mathrm{k}_{1}{ }^{\text {belt }}$	$2 \mathrm{k}_{1}^{\text {belt }}$	$-\mathrm{k}_{1}{ }^{\text {belt }}$							
C_{100}				$-\mathrm{k}_{1}{ }^{\text {belt }}$	$\mathrm{k}_{1}^{\text {belt }}$							
D_{100}			$-\mathrm{k}_{1}{ }^{\text {belt }}$			$2 \mathrm{k}_{1}^{\text {belt }}$						
Δ_{80}												
θ_{80}								$\begin{gathered} 2\left(12.5^{2}\right) \\ k_{2} \text { belt } \end{gathered}$	$-12.5 \mathrm{k}_{2}^{\text {bett }}$			
A_{80}								$-12.5 \mathrm{k}_{2}^{\text {belt }}$	$2 \mathrm{k}_{2}^{\text {belt }}$	$-\mathrm{k}_{2}{ }^{\text {belt }}$		$-\mathrm{k}_{2}{ }^{\text {belt }}$
B_{80}									$-\mathrm{k}_{2}{ }^{\text {belt }}$	$2 \mathrm{k}_{2}^{\text {belt }}$	$-\mathrm{k}_{2}^{\text {belt }}$	
C_{80}										$-\mathrm{k}_{2}{ }^{\text {belt }}$	$\mathrm{k}_{2}^{\text {belt }}$	
D_{80}									$-\mathrm{k}_{2}{ }^{\text {belt }}$			$2 \mathrm{k}_{2}^{\text {bett }}$

Note that there is coupling between the vertical displacement of megacolumn A and the rotation of the core. To understand this coupling, Figure 3-7 shows belt trusses spanning between megacolumn A on the left, megacolumn D in the middle, and megacolumn E on the right. The top part of the figure shows a unit vertical displacement at megacolumn A, the middle part of the figure shows a unit vertical displacement at megacolumn D, and the bottom part of the figure shows a unit core rotation. It is assumed that the rotation of all megacolumns is the same as the rotation of the core because the core and megacolumns are connected with axially rigid floor diaphragms at every story.

Figure 3-7: Unit displacement at megacolumns A (top) and D (middle), and a unit core rotation (bottom)

The vertical stiffness of each of the 32 diagonals per interval in the generic skyscraper is given in Figure 3-8 and calculated in Equation 3-29:

$$
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
$$

Figure 3-8: Diagonal in generic skyscraper subject to unit load
$\mathrm{k}_{\mathrm{i}}^{\text {diag }}=$ vertical stiffness of a diagonal member in interval i
$\mathrm{V}_{\mathrm{i}}^{\text {diag }}=$ volume of all diagonal members in interval i
S_{i} diag $=$ sine of angle from horizontal for diagonals in interval i
$\mathrm{h}_{\mathrm{i}}^{\text {diag }}=$ height of diagonal between adjacent megacolumns (20 m for generic skyscraper)
$\mathrm{E}^{\mathrm{s}}=$ steel modulus of elasticity

$$
\begin{equation*}
\mathrm{k}_{\mathrm{i}}^{\text {diag }}=\frac{\mathrm{EV}}{\mathrm{~N}\left(\sum|\mathrm{~F}| \mathrm{L}\right)^{2}}=\frac{E V}{32\left(\left(\frac{1}{\mathrm{~S}}\right)\left(\frac{\mathrm{h}}{\mathrm{~S}}\right)\right)^{2}}=\frac{\mathrm{E}^{\mathrm{s}}\left(\mathrm{~S}_{\mathrm{i}}^{\text {diag }}\right)^{4} \mathrm{~V}_{\mathrm{i}}^{\text {diag }}}{32\left(\mathrm{~h}_{\mathrm{i}}^{\text {diag }}\right)^{2}} \tag{3-29}
\end{equation*}
$$

For the generic skyscraper, the contribution of the diagonals to the first 12 rows and columns of the stiffness matrix is shown in Table 3-4.

Table 3-4: Stiffness matrix - contribution of diagonals

	Δ_{100}	θ_{100}	A_{100}	B_{100}	C_{100}	D_{100}	Δ_{80}	θ_{80}	A_{80}	B_{80}	C_{80}	D_{80}
Δ_{100}	$4 \mathrm{k}_{1}^{\text {diag }} / 6.4^{2}$		$-\mathrm{k}_{1}^{\text {diag }} / 6.4$				$-4 \mathrm{k}_{1}^{\text {dag }} / 6.4^{2}$		$-\mathrm{k}_{1}^{\text {diag }} / 6.4$			
θ_{100}												
A_{100}	$-\mathrm{k}_{1}^{\text {diag }} / 6.4$		$2 \mathrm{k}_{1}{ }^{\text {diag }}$	$-\mathrm{k}_{1}{ }^{\text {diag }}$		$-\mathrm{k}_{1}^{\text {diag }}$	$\mathrm{k}_{1}^{\text {diag } / 6.4}$					
B_{100}			$-\mathrm{k}_{1}{ }^{\text {diag }}$	$2 \mathrm{k}_{1}^{\text {diag }}$	$-\mathrm{k}_{1}^{\text {diag }}$							
C_{100}				$-\mathrm{k}_{1}{ }^{\text {diag }}$	$\mathrm{k}_{1}{ }^{\text {diag }}$							
D_{100}			$-\mathrm{k}_{1}{ }^{\text {diag }}$			$2 \mathrm{k}_{1}^{\text {diag }}$						
Δ_{80}	$-4 \mathrm{k}_{1}^{\text {diag } / 6.4}{ }^{2}$		$\mathrm{k}_{1}^{\text {diag }} / 6.4$				$\begin{gathered} 4 \mathrm{k}_{1}^{\text {diag } / 6.4^{2}} \\ +4 \mathrm{k}_{2}{ }^{\text {diag }} / 6.4^{2} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{k}_{1}{ }^{\text {diag } / 6.4} \\ -\mathrm{k}_{2}{ }^{\text {diag } / 6.4} / 4 \end{gathered}$			
θ_{80}												
A_{80}	$-\mathrm{k}_{1}^{\text {diag }} / 6.4$						$\begin{gathered} \mathrm{k}_{1}^{\text {diag } / 6.4} \\ -\mathrm{k}_{2}{ }^{\text {diag }} / 6.4 \\ \hline \end{gathered}$		$\begin{aligned} & 2 \mathrm{k}_{1}{ }^{\text {diag }} \\ & +2 \mathrm{k}_{2} \text { diag } \end{aligned}$	$\begin{aligned} & \hline-\mathrm{k}_{1}^{\text {diag }} \\ & -\mathrm{k}_{2} \text { diag } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { - } \begin{array}{l} \mathrm{k}_{1}^{\text {diag }} \\ -\mathrm{k}_{2} \end{array}{ }^{\text {diag }} \end{aligned}$
B_{80}									$\begin{aligned} -\mathrm{k}_{1} \text { diag } \\ -\mathrm{k}_{2} \text { diag } \\ \hline \end{aligned}$	$\begin{array}{r} 2 \mathrm{k}_{1}^{\text {diag }} \\ \\ \\ \\ \\ \end{array} \mathrm{k}_{2}{ }_{2}^{\text {diag }} .$	$\begin{aligned} & -\mathrm{k}_{1}^{\text {diag }} \\ & -\mathrm{k}_{2}{ }^{\text {diag }} \\ & \hline \end{aligned}$	
C_{80}										$\begin{aligned} & \hline-\mathrm{k}_{1}^{\text {diag }} \\ & -\mathrm{k}_{2}^{\text {diag }} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{k}_{1}{ }^{\text {diag }} \\ +\mathrm{k}_{2}{ }^{\text {diag }} \\ \hline \end{gathered}$	
D_{80}									$\begin{aligned} & -\mathrm{k}_{1}^{\text {diag }} \\ & -\mathrm{k}_{2} \text { diag } \end{aligned}$			$\begin{gathered} 2 \mathrm{k}_{1}^{\text {diag }} \\ +{ }^{\text {d }} \mathrm{k}_{2}^{\text {diag }} \\ \hline \end{gathered}$

Note that there is coupling between the vertical displacement of megacolumn A and the horizontal displacement of the core. To understand this coupling, Figure 3-9 shows diagonals and megacolumns A, D, and E in the top two intervals. The left part of the figure shows a unit vertical displacement at megacolumn A at the top of interval 2 (bottom of interval 1), the middle part of the figure shows a unit vertical displacement at megacolumn D at the top of interval 2, and the right part of the figure shows a unit horizontal displacement at the top of interval 2. It is assumed that the horizontal displacement of all megacolumns is the same as the horizontal displacement of the core because the core and megacolumns are connected with axially rigid floor diaphragms at every story.

Figure 3-9: Unit vertical displacements at megacolumns A (left), D (middle), and E (right)

3.3 Calculation of Lateral Forces/Displacements

The lateral force vectors have zero values for the DOF's corresponding to vertical displacements in the megacolumns at the top of each interval. To get the values for the DOF's corresponding to the horizontal displacements and rotations in the core at the top of each interval, the lateral forces for wind and seismic loading are determined at every story and then aggregated over the intervals. The spreadsheet includes a sheet with a row for each story in the building starting at the bottom and increasing upward (100 stories for the generic skyscraper).

For the lateral wind pressure, a formula such as Equation (3-30 taken from ASCE 7-05 could be used:
$\mathrm{P}_{\mathrm{k}}{ }^{\text {wind }}=$ wind pressure at story k in psf
$\mathrm{v}=$ design wind speed in miles per hour (123mph for the generic skyscraper)
$\mathrm{H}_{\mathrm{k}}=$ height of story k above the ground
$\mathrm{H}_{\mathrm{g}}=$ reference height parameter reflecting exposure (274 m for the generic skyscraper)
$\alpha=$ another parameter reflecting the exposure (9.5 for the generic skyscraper)
$\mathrm{P}_{\mathrm{k}}^{\text {wind }}=0.00256\left(2.01\left(\frac{\mathrm{H}_{\mathrm{k}}}{\mathrm{H}_{\mathrm{g}}}\right)^{2 / \alpha}\right) \mathrm{v}^{2}$

After getting the wind pressure at each story and converting it to the appropriate units, the wind force at each story is obtained from Equation 3-31:
$\mathrm{F}_{\mathrm{k}}{ }^{\text {wind }}=$ lateral wind force at story k
$\mathrm{s}_{\mathrm{k}}=$ story height for story k (4 m for the generic skyscraper)
$\mathrm{w}_{\mathrm{k}}=$ building width at story k (50 m for the generic skyscraper)

$$
\begin{equation*}
F_{k}^{\text {wind }}=P_{k}^{\text {wind }} s_{k} W_{k} \tag{3-31}
\end{equation*}
$$

For lateral seismic forces, the dead weight of each story must be obtained from Equation 3-32:
$\mathrm{W}_{\mathrm{k}}=$ weight of story k (excluding live load)
$\mathrm{A}_{\mathrm{k}}=$ floor area of story k
$\mathrm{P}_{\mathrm{k}}=$ building perimeter at story k
$\mathrm{s}_{\mathrm{k}}=$ story height for story k (4 m for the generic skyscraper)
$\mathrm{L}^{\text {dead }}=$ floor dead load per area
$\mathrm{L}^{\text {clad }}=$ cladding load per area
$\gamma=$ concrete unit weight
$\mathrm{A}_{\mathrm{k}}{ }^{\text {core-col }}=$ cross-sectional area of core and all megacolumns at story k
$\gamma^{\mathrm{s}}=$ steel unit weight
$\mathrm{V}_{\mathrm{k}}{ }^{\text {out-bel-diag }}=$ volume of all outriggers, belts, and diagonals at story k
$W_{k}=A_{k} L^{\text {dead }}+\mathrm{s}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \mathrm{L}^{\text {clad }}+\gamma \mathrm{s}_{\mathrm{k}} \mathrm{A}_{\mathrm{k}}^{\text {core-col }}+\gamma^{\mathrm{s}} \mathrm{V}_{\mathrm{k}}^{\text {out-belt-diag }}$

The seismic force at each story is obtained with a formula such as Equation 3-33 taken from
ASCE 7-05:
$\mathrm{F}_{\mathrm{k}}{ }^{\text {seismic }}=$ lateral seismic force at story k
$\mathrm{H}_{\mathrm{k}}=$ height of story k above the ground
$\mathrm{S}_{\mathrm{a}}=$ spectral acceleration in g (0.2 for generic skyscraper)
$\mathrm{R}=$ ductility factor (3 for generic skyscraper)
$\beta=$ seismic exponent (2 for generic skyscraper)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{k}}^{\text {seismic }}=\frac{\mathrm{W}_{\mathrm{k}}\left(\mathrm{H}_{\mathrm{k}}\right)^{\beta}}{\sum_{\mathrm{k}}\left(\mathrm{~W}_{\mathrm{k}}\left(\mathrm{H}_{\mathrm{k}}\right)^{\beta}\right) \frac{\mathrm{S}_{\mathrm{a}}}{\mathrm{R}} \sum_{\mathrm{k}} \mathrm{~W}_{\mathrm{k}}} \tag{3-33}
\end{equation*}
$$

The wind and seismic forces at each story must be aggregated over intervals to get the forces and moments at the DOF's corresponding to the horizontal displacements and rotations in the core at the top of each interval. Figure 3-10 shows a particular interval of height h_{i} and a wind or seismic lateral force F_{k} at a particular story k . In the generic skyscraper there are 20 stories in each interval. Formulas for the fixed end force and moment support reactions at the top and bottom of the interval are given in the figure. In the spreadsheet, these formulas are evaluated for every lateral force in every interval. The negative of these support reactions are the
equivalent forces and moments applied at the DOF's. The rightward force at a particular DOF corresponding to a core horizontal displacement is equal to the sum of $\mathrm{F}_{\mathrm{k}}{ }^{\text {bot }}$ for all lateral forces in the interval above the DOF plus the sum of $\mathrm{F}_{\mathrm{k}}^{\text {top }}$ for all lateral forces in the interval below the DOF. The clockwise moment at a particular DOF corresponding to a core rotation is equal to the sum of $\mathrm{M}_{\mathrm{k}}{ }^{\text {bot }}$ for all lateral forces in the interval above the DOF minus the sum of $\mathrm{M}_{\mathrm{k}}{ }^{\text {top }}$ for all lateral forces in the interval below the DOF.

Figure 3-10: Interval with a wind/seismic force at a particular story k

The stiffness matrix is inverted and multiplied by the lateral force vector for wind loading to get the core horizontal displacements, the core rotations, and the megacolumn vertical displacements at the top of each interval. The inverted stiffness matrix is multiplied by the lateral force vector for seismic loading to get these same displacements for seismic loading. The principle of superposition is used to get the lateral displacement at a particular story within an interval. Superposition begins with a cubic polynomial for the displacement due to displacements and rotations at the top and bottom of the interval, and then adds the
displacements of the fixed-fixed beam in Figure 3-11 due to all of the point loads F_{k} in the interval and calculated in Equation 3-34:
$\Delta_{\mathrm{k}}=$ lateral displacement at story k
$\mathrm{h}_{\mathrm{i}}=$ height of interval i
$\mathrm{a}_{\mathrm{k}}=$ height from bottom of interval i to story k
$\Delta_{i}=$ core lateral displacement at top of interval i
$\Delta_{i+1}=$ core lateral displacement at bottom of interval i
$\theta_{i}=$ core rotation at top of interval i
$\theta_{i+1}=$ core rotation at bottom of interval i
$\mathrm{F}_{\mathrm{m}}{ }^{\text {bot }}=$ fixed end force at bottom of interval due to point force m
$\mathrm{F}_{\mathrm{m}}{ }^{\text {top }}=$ fixed end force at top of interval due to point force m
$\mathrm{M}_{\mathrm{m}}{ }^{\text {bot }}=$ fixed end moment at bottom of interval due to point force m
$\mathrm{M}_{\mathrm{m}}{ }^{\text {bot }}=$ fixed end moment at top of interval due to point force m
$\mathrm{E}=$ concrete modulus of elasticity (core and megacolumns)
$\mathrm{I}_{\mathrm{i}}=$ moment of inertia of core and local moment of inertia of megacolumns

$$
\begin{align*}
\Delta_{\mathrm{k}}= & \left(\frac{2\left(\Delta_{\mathrm{i}+1}-\Delta_{\mathrm{i}}\right)}{\mathrm{h}_{\mathrm{i}}^{3}}+\frac{\theta_{\mathrm{i}}+\theta_{\mathrm{i}+1}}{\mathrm{~h}_{\mathrm{i}}^{2}}\right) \mathrm{a}_{\mathrm{k}}^{3}+\left(\frac{3\left(\Delta_{\mathrm{i}}-\Delta_{\mathrm{i}+1}\right)}{\mathrm{h}_{\mathrm{i}}^{2}}-\frac{\theta_{\mathrm{i}}+2 \theta_{\mathrm{i}+1}}{\mathrm{~h}_{\mathrm{i}}}\right) \mathrm{a}_{\mathrm{k}}^{2}+\theta_{\mathrm{i}+1} \mathrm{a}_{\mathrm{k}}+\Delta_{\mathrm{i}+1} \tag{3-34}\\
& -\left(\frac{\mathrm{a}_{\mathrm{k}}^{3} \sum_{\mathrm{m}>\mathrm{k}} \mathrm{~F}_{\mathrm{m}}^{\text {bot }}}{6}-\frac{\mathrm{a}_{\mathrm{k}}^{2} \sum_{\mathrm{m}>\mathrm{k}} \mathrm{M}_{\mathrm{m}}^{\text {bot }}}{2}+\frac{\left(\mathrm{h}_{\mathrm{i}}-\mathrm{a}_{\mathrm{k}}\right)^{3} \sum_{\mathrm{m} \leq \mathrm{k}} \mathrm{~F}_{\mathrm{m}}^{\text {top }}}{6}-\frac{\left(\mathrm{h}_{\mathrm{i}}-\mathrm{a}_{\mathrm{k}}\right)^{2} \sum_{\mathrm{m} \leq \mathrm{k}} \mathrm{M}_{\mathrm{m}}^{\text {top }}}{2}\right)\left(\frac{1}{E I_{i}}\right)
\end{align*}
$$

Interstory drifts can be calculated and compared to allowable values (e.g. 1/360 for wind and 1/50 for seismic) in Equation 3-35:
$\mathrm{D}_{\mathrm{k}}=$ interstory drift at story k
$\Delta_{\mathrm{k}}=$ lateral displacement at story k
$\mathrm{s}_{\mathrm{k}}=$ story height for story k (4 m for the generic skyscraper)
$\mathrm{D}_{\mathrm{k}}=\frac{\left|\Delta_{\mathrm{k}}-\Delta_{\mathrm{k}-1}\right|}{\mathrm{s}_{\mathrm{k}}}$

As the skyscraper displaces laterally under wind and seismic loads, the weight of the structure creates an additional overturning moment equal to the weight times the lateral
displacement. This moment, called the $\mathrm{P} \Delta$ effect, increases the lateral displacement, and thus, nonlinear iteration is necessary to converge to the final equilibrium position when the $\mathrm{P} \Delta$ moments no longer change:
$\mathrm{W}_{\mathrm{k}}=$ weight of story k (including live load)
$\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+1}+\mathrm{W}_{\mathrm{k}}=$ total axial force at story k
$\Delta_{\mathrm{k}}=$ lateral displacement at story k
$\mathrm{M}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}}\left(\Delta_{\mathrm{k}}-\Delta_{\mathrm{k}-1}\right)$ moment at story k due to $\mathrm{P} \Delta$ effect

The moments at each story must be aggregated over intervals to get the forces and moments at the DOF's corresponding to the horizontal displacements and rotations in the core at the top of each interval. Figure 3-11 shows a particular interval of height h_{i} and a P Δ moment M_{k} at a particular story k. Formulas for the fixed end force and moment support reactions at the top and bottom of the interval are given in the figure. In the spreadsheet, these formulas are evaluated for every $\mathrm{P} \Delta$ moment in every interval. The negative of these support reactions are the equivalent forces and moments applied at the DOF's. The rightward force at a particular DOF corresponding to a core horizontal displacement is equal to the sum of $\mathrm{F}_{\mathrm{k}}{ }^{\text {bot }}$ for all lateral forces in the interval above the DOF plus the sum of $\mathrm{F}_{\mathrm{k}}^{\text {top }}$ for all lateral forces in the interval below the DOF. The clockwise moment at a particular DOF corresponding to a core rotation is equal to the sum of $\mathrm{M}_{\mathrm{k}}{ }^{\text {bot }}$ for all lateral forces in the interval above the DOF minus the sum of $\mathrm{M}_{\mathrm{k}}{ }^{\text {top }}$ for all lateral forces in the interval below the DOF.

Figure 3-11: Interval and a P-delta moment at a particular story k

Nonlinear iteration is accomplished in the spreadsheet by creating two columns for the $\mathrm{P} \Delta$ lateral force vector -- a starting column and an ending column. The starting column is initialized to zero and is added to the wind lateral force vector. The ending column calculates the new $\mathrm{P} \Delta$ lateral force vector by the procedure described above. The values from the ending column are repeatedly pasted into the starting column until the two columns are the same. Starting and ending columns for the $\mathrm{P} \Delta$ lateral force vector are likewise created for seismic loading.

3.4 Calculation of Stresses

Gravity load stresses are greatest at the bottom of each interval for the core, megacolumns, and diagonals. The gravity load stress is the same for the core and the megacolumns since megacolumn areas were determined earlier by equating their gravity load
strains to that of the core (see Equations 3-36 and 3-37). The gravity load stress in diagonals is also determined by equating the respective gravity load strain to that of the core in Equation 3-
38. The gravity load stress in interior diagonal members is decreased by a fraction of the relative increment in axial force for the interval in Equation 3-39:

```
\(\sigma_{i}^{\text {core_grav }}=\) gravity load stress in core at bottom of interval i
\(\sigma_{i}{ }^{\text {colj } \_ \text {grav }}=\) gravity load stress in megacolumn \(j\) at bottom of interval \(i\)
\(\sigma_{i}^{\text {outB_grav }}=\) gravity load stress in outrigger \(B\) at top of interval \(i\)
\(\sigma_{\mathrm{i}}{ }^{\text {outD_grav }}=\) gravity load stress in outrigger D at top of interval i
\(\sigma_{i}^{\text {diagAB_grav }}=\) gravity load stress in bottom diagonal AB in interval i
\(\sigma_{\mathrm{i}}^{\text {diagAD_grav }}=\) gravity load stress in bottom diagonal AD in interval i
\(\sigma_{\mathrm{i}}^{\text {diagBC_grav }}=\) gravity load stress in bottom diagonal BC in interval i
\(\sigma_{\mathrm{i}}^{\text {diagDE_grav }}=\) gravity load stress in bottom diagonal DE in interval i
\(h_{i}=\) vertical height of interval i ( 80 m for generic skyscraper)
\(\mathrm{A}_{\mathrm{i}}^{\text {core }}=\) cross-sectional area of the core in interval i
\(\mathrm{F}_{\mathrm{i}}{ }^{\text {core }}=\) axial force in core at base of interval i excluding interval i self weight
\(\gamma=\) concrete unit weight (core and megacolumns)
\(\mathrm{E}=\) concrete modulus of elasticity
\(\mathrm{E}^{\mathrm{S}}=\) steel modulus of elasticity
\(\mathrm{S}_{\mathrm{i}}{ }^{\text {out }}=\) sine of angle from horizontal of members of outrigger truss at top of interval i
\(\mathrm{S}_{\mathrm{i}}^{\text {diag }}=\) sine of angle from horizontal for diagonals in interval i
\(\sigma_{i}^{\text {core } \_ \text {grav }}=\frac{F_{i}^{\text {core }}}{A_{i}^{\text {core }}}+\gamma h_{i}\)
\(\sigma_{i}^{\text {colj_grav }}=\sigma_{i}^{\text {core_grav }}\)

The lateral load stress in the core and megacolumns at the bottom of each interval is equal to the modulus of elasticity times axial strain plus the modulus of elasticity times flexural curvature times distance from local neutral axis to outermost fiber in Equations 3-40 and 3-41. The flexural curvature is the same for core and megacolumns and is obtained by differentiating
the lateral displacement formulas twice and evaluating at \(\mathrm{a}_{\mathrm{k}}=0\) (bottom of the interval). Under lateral loading, the axial strain is zero in the core. The megacolumn axial strain is equal to the difference between vertical displacements in the megacolumn at the top and bottom of the interval divided by the interval height:
\(\sigma_{\mathrm{i}}^{\text {core } \_ \text {lat }}=\) lateral load stress in core at bottom of interval i
\(\sigma_{i}^{\text {colj } \_ \text {lat }}=\) lateral load stress in megacolumn j at bottom of interval i
\(\mathrm{h}_{\mathrm{i}}=\) height of interval i
\(\mathrm{E}=\) concrete modulus of elasticity (core and megacolumns)
\(\mathrm{I}_{\mathrm{i}}=\) moment of inertia of core and local moment of inertia of megacolumns
\(\mathrm{c}_{\mathrm{i}}{ }^{\text {core }}=\) distance to outermost fiber in core in interval i ( 12.5 m for generic skyscraper)
\(\mathrm{c}_{\mathrm{i}}{ }^{\text {colj }}=\) distance to outermost fiber in megacolumn j in interval i
\(A_{i}{ }^{\text {colj }}=\) cross-sectional area of megacolumn \(j\) in interval \(i\)
\(\mu=4\) for solid square and \(\pi\) for solid circle
\(\Delta_{i}=\) core lateral displacement at top of interval i
\(\Delta_{i+1}=\) core lateral displacement at bottom of interval i
\(\theta_{\mathrm{i}}=\) core rotation at top of interval i
\(\theta_{i+1}=\) core rotation at bottom of interval i
\(\Delta_{i}^{\text {colj }}=\) vertical displacement in megacolumn \(j\) at top of interval \(i\)
\(\Delta_{i+1}{ }^{\text {colj }}=\) vertical displacement in megacolumn \(j\) at bottom of interval \(i\)
\(\mathrm{M}_{\mathrm{m}}{ }^{\text {bot }}=\) moment at bottom of interval due to lateral force at story m within interval i
\[
\begin{align*}
& \sigma_{i}^{\text {core } \_ \text {lat }}=E_{i}^{\text {core }}\left(\frac{6\left(\Delta_{i}-\Delta_{i+1}\right)}{h_{i}^{2}}-\frac{2 \theta_{i}+4 \theta_{i+1}}{h_{i}}\right)+\frac{c_{i}^{\text {core }} \sum_{m} M_{m}^{\text {bot }}}{I_{i}}  \tag{3-40}\\
& \sigma_{i}^{\text {colj } \_ \text {lat }}=\frac{E\left(\Delta_{i}^{\text {colj }}-\Delta_{i+1}^{\text {colj }}\right)}{h_{i}}+\sigma_{i}^{\text {core } \_ \text {lat }} \frac{c_{i}^{\text {colj }}}{c_{i}^{\text {core }}} \quad \quad c_{i}^{\text {colj }}=\sqrt{\frac{A_{i}^{\text {colj }}}{\mu}} \tag{3-41}
\end{align*}
\]

For the typical outrigger truss in Figure 3-12, recall the formulas developed earlier when the stiffness of this truss was considered:
\[
\begin{aligned}
& A=C|F| \quad V=N C \sum|F| L \quad k^{\text {out }}=\frac{E V}{N\left(\sum|F| L\right)^{2}} \quad \sum|F| L=\frac{6 w^{2}+2 h^{2}}{h} \\
& L_{1}=\sqrt{w^{2}+h^{2}} \\
& L_{2}=\sqrt{w^{2}+(h / 2)^{2}}
\end{aligned}
\]

Figure 3-12: Typical outrigger member subject to unit load

To get the lateral load stress for the members of this outrigger truss, the axial forces due to a unit load must be multiplied by the stiffness \(\mathrm{k}^{\text {out }}\) times the shear displacement \(\Delta^{\text {out }}\). These axial forces must then be divided by the cross-sectional area to get stress as in Equation 3-42:
\[
\begin{equation*}
\sigma^{\text {out_lat }}=\frac{|F|}{\mathrm{A}} \mathrm{k}^{\text {out }} \Delta^{\text {out }}=\frac{\mathrm{E}}{\sum|\mathrm{~F}| \mathrm{L}} \Delta^{\text {out }}=\frac{\mathrm{Eh}}{6 \mathrm{w}^{2}+2 \mathrm{~h}^{2}} \Delta^{\text {out }} \tag{3-42}
\end{equation*}
\]

The lateral load stress in the members of each of the 8 two-member outrigger trusses per interval in the generic skyscraper is shown in Figure 3-13 and calculated in Equation 3-43:
\[
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+(\mathrm{h} / 2)^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{2 \mathrm{~L}}
\end{aligned}
\]

Figure 3-13: Two-member outrigger truss subject to unit load
\(\sigma_{i}{ }^{\text {out }}\) lat \(=\) lateral load stress in outrigger at top of interval i
\(\Delta_{\mathrm{i}}^{\text {out }}=\) shear displacement in outrigger at top of interval i
\(S_{i}{ }^{\text {out }}=\) sine of angle from horizontal of members of outrigger truss at top of interval i
\(h_{i}{ }^{\text {out }}=\) height of outrigger truss at top of interval i ( 16 m for generic skyscraper)
\(\mathrm{E}^{\mathrm{s}}=\) steel modulus of elasticity
\[
\begin{equation*}
\sigma_{\mathrm{i}}^{\text {out } \_ \text {lat }}=\frac{\mathrm{E}}{\sum|\mathrm{~F}| \mathrm{L}} \Delta^{\text {out }}=\frac{\mathrm{E}}{2\left(\frac{1}{2 \mathrm{~S}}\right)\left(\frac{\mathrm{h}}{2 \mathrm{~S}}\right)} \Delta^{\text {out }}=\frac{2 \mathrm{E}^{\mathrm{s}}\left(\mathrm{~S}_{\mathrm{i}}^{\text {out }}\right)^{2}}{\mathrm{~h}_{\mathrm{i}}^{\text {out }}} \Delta_{\mathrm{i}}^{\text {out }} \tag{3-43}
\end{equation*}
\]

The shear displacement in each outrigger is the difference between megacolumn vertical displacement and the product of core rotation and distance from core centerline to megacolumn as calculated in Equations 3-44 and 3-45. The shear displacement is greater for the upper member of the outrigger than for the lower member. The core rotation at the top of the upper member must be appropriately interpolated from the core rotation at the top of the interval and the core rotation at the top interval above:
\[
\begin{align*}
& \Delta_{i}^{\text {outB }}=\text { shear displacement in outrigger B at top of interval i } \\
& \Delta_{i}^{\text {outD }}=\text { shear displacement in outrigger D at top of interval i } \\
& \theta_{\mathrm{i}}=\text { core rotation at top of interval i } \\
& \theta_{\mathrm{i}-1}=\text { core rotation at top of interval i-1 } \\
& \Delta_{i} \text { colB }=\text { vertical displacement in megacolumn B at top of interval i } \\
& \Delta_{\mathrm{i}}^{\text {colD }}=\text { vertical displacement in megacolumn D at top of interval i } \\
& \Delta_{i}^{\text {outB }}=\left|25 m\left(\theta_{i}\right)-\Delta_{i}^{\text {colB }}\right|  \tag{3-44}\\
& \Delta_{i}^{\text {outD }}=\left|12.5 m\left(\theta_{i}\right)-\Delta_{i}^{\text {colD }}\right| \tag{3-45}
\end{align*}
\]

The lateral load stress in the members of each of the 16 eight-member belt trusses per interval in the generic skyscraper is shown in Figure 3-14 and calculated in Equation 3-46:
\[
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
\]

Figure 3-14: Eight-member belt truss subject to unit load
\(\sigma_{\mathrm{i}}^{\text {belt }}=\) lateral load stress in belt truss at top of interval i
\(\Delta_{\mathrm{i}}^{\text {belt }}=\) shear displacement in belt truss at top of interval i
\(S_{i}{ }^{\text {belt }}=\) sine of angle from horizontal of members of belt truss at top of interval \(i\)
\(h_{i}^{\text {belt }}=\) height of belt truss at top of interval i ( 8 m for generic skyscraper)
\(\mathrm{E}^{\mathrm{s}}=\) steel modulus of elasticity
\[
\begin{equation*}
\sigma_{\mathrm{i}}^{\text {belt_lat }}=\frac{\mathrm{E}}{\sum|\mathrm{~F}| \mathrm{L}} \Delta^{\text {belt }}=\frac{\mathrm{E}}{\frac{4 \mathrm{w}^{2}}{2 \mathrm{~h}}+\frac{4 \mathrm{~L}}{2 \mathrm{~S}}} \Delta^{\text {belt }}=\frac{\mathrm{E}^{\mathrm{s}}\left(\mathrm{~S}_{\mathrm{i}}^{\text {belt }}\right)^{2}}{2 \mathrm{~h}_{\mathrm{i}}^{\text {belt }}\left(2-\left(\mathrm{S}_{\mathrm{i}}^{\text {belt }}\right)^{2}\right)^{\Delta_{\mathrm{i}}}} \Delta^{\text {belt }} \tag{3-46}
\end{equation*}
\]

If it is assumed that the horizontal members of the belt truss consist of infinitely stiff floor diaphragms, then the lateral load stress in the members of each of the belt trusses in the generic skyscraper is increased in Figure 3-15 and calculated in Equation 3-47:
\[
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
\]

Figure 3-15: Belt truss in generic skyscraper subject to unit load
\[
\begin{equation*}
\sigma_{\mathrm{i}}^{\text {belt }- \text { lat }}=\frac{\mathrm{E}}{\sum|F| L} \Delta^{\text {belt }}=\frac{\mathrm{E}}{4\left(\frac{1}{2 \mathrm{~S}}\right)\left(\frac{\mathrm{h}}{\mathrm{~S}}\right)} \Delta^{\text {belt }}=\frac{\mathrm{E}^{s}\left(S_{\mathrm{i}}^{\text {belt }}\right)^{2}}{2 \mathrm{~h}_{\mathrm{i}}^{\text {belt }}} \Delta_{\mathrm{i}}^{\text {belt }} \tag{3-47}
\end{equation*}
\]

The shear displacement in belts AB and BC is the difference between the two ends of the belt of the megacolumn vertical displacements as calculated in Equations 3-48 and 3-49. The shear displacement in belt DE is the difference between megacolumn D vertical displacement and the product of core rotation and distance from core centerline to megacolumn D as calculated in Equation 3-50. The shear displacement in belt AD is the difference between the two ends of the belt of the difference between megacolumn vertical displacement and the product of core rotation and distance from core centerline to megacolumn as calculated in Equation 3-51:
\(\Delta_{i}^{\text {beltAB }}=\) shear displacement in belt AB at top of interval i
\(\Delta_{i}^{\text {beltBC }}=\) shear displacement in belt BC at top of interval i
\(\Delta_{i}^{\text {beltAD }}=\) shear displacement in belt AD at top of interval i
\(\Delta_{i}^{\text {beltDE }}=\) shear displacement in belt DE at top of interval i
\(\Delta_{i}^{\text {bolA }}=\) vertical displacement in megacolumn A at top of interval i
\(\Delta_{i}^{\text {cold }}=\) vertical displacement in megacolumn B at top of interval i
\(\Delta_{i}^{\text {cold }}=\) vertical displacement in megacolumn C at top of interval i
\(\Delta_{i}^{\text {cold }}=\) vertical displacement in megacolumn D at top of interval i
\(\theta_{\mathrm{i}}=\) core rotation at top of interval i
\[
\begin{array}{ll}
\Delta_{\mathrm{i}}^{\text {beltAB }}=\left|\Delta_{\mathrm{i}}^{\text {colA }}-\Delta_{\mathrm{i}}^{\text {colB }}\right| & \Delta_{\mathrm{i}}^{\text {beltBC }}=\left|\Delta_{\mathrm{i}}^{\text {colB }}-\Delta_{\mathrm{i}}^{\text {colC }}\right| \\
\Delta_{\mathrm{i}}^{\text {belAD }}=\left|25 \mathrm{~m}\left(\theta_{\mathrm{i}}\right)-\Delta_{\mathrm{i}}^{\text {colA }}-12.5 \mathrm{~m}\left(\theta_{\mathrm{i}}\right)+\Delta_{\mathrm{i}}^{\text {colD }}\right| & \Delta_{\mathrm{i}}^{\text {beltDE }}=\left|12.5 \mathrm{~m}\left(\theta_{\mathrm{i}}\right)-\Delta_{\mathrm{i}}^{\text {colD }}\right|
\end{array}
\]

The lateral load stress in each of the 32 diagonals per interval in the generic skyscraper is shown in Figure 3-16 and calculated in Equation 3-52:
\[
\begin{aligned}
& \mathrm{L}=\sqrt{\mathrm{w}^{2}+\mathrm{h}^{2}} \\
& \mathrm{~S}=\frac{\mathrm{h}}{\mathrm{~L}}
\end{aligned}
\]

Figure 3-16: Diagonal in generic skyscraper subject to unit load
\(\sigma_{\mathrm{i}}^{\text {diag_lat }}=\) lateral load stress in a diagonal member in interval i
\(\Delta_{\mathrm{i}}^{\text {diag }}=\) vertical displacement in diagonal members in interval i
\(\mathrm{S}_{\mathrm{i}}^{\text {diag }}=\) sine of angle from horizontal for diagonals in interval i
\(\mathrm{h}_{\mathrm{i}}^{\text {diag }}=\) height of diagonal between adjacent megacolumns ( 20 m for generic skyscraper)
\(\mathrm{E}^{\mathrm{s}}=\) steel modulus of elasticity
\[
\begin{equation*}
\sigma_{\mathrm{i}}^{\text {diag } \_ \text {lat }}=\frac{\mathrm{E}}{\sum|\mathrm{~F}| \mathrm{L}} \Delta^{\text {diag }}=\frac{\mathrm{E}}{\left(\frac{1}{\mathrm{~S}}\right)\left(\frac{\mathrm{h}}{\mathrm{~S}}\right)^{\text {diag }}}=\frac{\mathrm{E}^{\mathrm{s}}\left(\mathrm{~S}_{\mathrm{i}}^{\text {diag }}\right)^{2}}{\mathrm{~h}_{\mathrm{i}}^{\text {diag }}} \Delta^{\text {diag }} \tag{3-52}
\end{equation*}
\]

The vertical displacement in diagonals AB and BC is the difference between the two ends of the diagonal of the megacolumn vertical displacements as calculated in Equations 3-53 and 354. The vertical displacement in diagonal DE is the difference between megacolumn D vertical displacement and the product of lateral drift and distance from core centerline to megacolumn D as calculated in Equation 3-56. The vertical displacement in diagonal AD is the difference between the two ends of the diagonal of the difference between megacolumn vertical displacement and the product of lateral drift and distance from core centerline to megacolumn as calculated in Equation 3-55. In these formulas, megacolumn vertical displacements must be appropriately interpolated between the top and bottom of the interval to get values at the ends of the diagonal:
\(\Delta_{\mathrm{i}}^{\text {diag } \mathrm{AB}}=\) stress in bottom diagonal AB in interval i
\(\Delta_{\mathrm{i}}^{\text {diag } \mathrm{AD}}=\) stress in bottom diagonal AD in interval i
\(\Delta_{\mathrm{i}}^{\text {diagBC }}=\) stress in bottom diagonal BC in interval i
\(\Delta_{\mathrm{i}}^{\text {diagDE }}=\) stress in bottom diagonal DE in interval i
\(\Delta_{i}{ }^{\text {colA }}=\) vertical displacement in megacolumn A at top of interval i
\(\Delta_{i}{ }^{\text {colB }}=\) vertical displacement in megacolumn B at top of interval i
\(\Delta_{\mathrm{i}}^{\mathrm{colC}}=\) vertical displacement in megacolumn C at top of interval i
\(\Delta_{i}^{\text {colD }}=\) vertical displacement in megacolumn \(D\) at top of interval i
\(\Delta_{i+1}{ }^{\text {colA }}=\) vertical displacement in megacolumn A at bottom of interval i
\(\Delta_{i+1}{ }^{\mathrm{colB}}=\) vertical displacement in megacolumn B at bottom of interval i
\(\Delta_{i+1}{ }^{\text {colC }}=\) vertical displacement in megacolumn C at bottom of interval i
\(\Delta_{\mathrm{i}+1}{ }^{\text {colD }}=\) vertical displacement in megacolumn D at bottom of interval i
\(\mathrm{D}_{\mathrm{i}}{ }^{\text {diagAD }}=\) lateral drift at the center of diagonal AD in interval i
\(\mathrm{D}_{\mathrm{i}}{ }^{\text {diagDE }}=\) lateral drift at the center of diagonal DE in interval i
\[
\begin{equation*}
\Delta_{\mathrm{i}}^{\mathrm{diag} A B}=\left|\Delta_{\mathrm{i}+1}^{\mathrm{colA}}-.75 \Delta_{\mathrm{i}+1}^{\mathrm{colB}}-.25 \Delta_{\mathrm{i}}^{\mathrm{colB}}\right| \tag{3-53}
\end{equation*}
\]
\[
\begin{equation*}
\Delta_{\mathrm{i}}^{\mathrm{diagBC}}=\left|.75 \Delta_{\mathrm{i}+1}^{\mathrm{colB}}+.25 \Delta_{\mathrm{i}}^{\mathrm{colB}}-.5 \Delta_{\mathrm{i}+1}^{\mathrm{colC}}-.5 \Delta_{\mathrm{i}}^{\mathrm{colC}}\right| \tag{3-54}
\end{equation*}
\]
\[
\begin{equation*}
\Delta_{\mathrm{i}}^{\text {diag } A D}=\left|\mathrm{D}_{\mathrm{i}}^{\text {diag } A D}(25 \mathrm{~m}-12.5 \mathrm{~m})-\Delta_{\mathrm{i}+1}^{\mathrm{colA}}+.75 \Delta_{\mathrm{i}+1}^{\text {colD }}+.25 \Delta_{\mathrm{i}}^{\text {colD }}\right| \tag{3-55}
\end{equation*}
\]
\[
\begin{equation*}
\Delta_{\mathrm{i}}^{\mathrm{diagDE}}=\left|\mathrm{D}_{\mathrm{i}}^{\text {diagDE }}(12.5 \mathrm{~m})-.75 \Delta_{\mathrm{i}+1}^{\mathrm{colD}}-.25 \Delta_{\mathrm{i}}^{\mathrm{colD}}\right| \tag{3-56}
\end{equation*}
\]

\subsection*{3.5 Rapid Trial-and-Error Optimization}

Now that the description of the SSAM is complete, the spreadsheet can be used to optimize the skyscraper design. The design variables are the core thickness at each interval, the outrigger truss volume at each interval, the belt truss volume at each interval, and the diagonal volume at each interval. The objective is the minimization of structural cost which is the total volume of concrete in the core and megacolumns multiplied by the specified concrete cost per unit volume plus the total volume of steel in the outrigger trusses, belt trusses, and diagonals
multiplied by the specified steel cost per unit volume. The constraints to be satisfied include lateral drift in every story under wind loading, lateral drift in every story under seismic loading, stress in every member under combined gravity and wind loading, and stress in every member under combined gravity and seismic loading. For each of these types of constraints, the spreadsheet calculates a constraint ratio of actual value to allowable value. For example, the constraint ratio for wind lateral drift is equal to the maximum drift over the 100 stories divided by the specified allowable such as \(1 / 360\) or \(1 / 400\). The constraint ratio for wind + gravity belt stress is equal to the maximum wind+ gravity stress over all belt truss members in all intervals divided by the allowable stress for steel. Design constraints are satisfied when the constraint ratios are less than or equal to one. The design variables, design objective, and design constraints are located together on the spreadsheet to facilitate rapid trial-and-error optimization. This process was carried out for all six configurations of the generic skyscraper.

\section*{4 SPACE FRAME MODEL}

A 3D, skeletal, linear, static, small-displacement, space frame model was developed to compare the accuracy of the SSAM. The space frame model was executed on a program written by Balling (1991) as well as on the commercial program, ADINA. Both programs gave the same results for linear analysis. The ADINA program was also executed to get nonlinear (largedisplacement) results for one configuration of the space frame model. The space frame model will be described in five sections: nodes, members, supports, loads, and output.

\subsection*{4.1 Nodes}

There were a total of 1877 nodes in the space frame model. The \(y\)-axis was taken as the vertical axis of the building located in the center of the core. There were 101 "core-center" nodes with \(\mathrm{x}=\mathrm{z}=0\) equally spaced every 4 m in the y -direction corresponding to the 100 stories of the generic skyscraper. Likewise, there were 101 "megacolumn" nodes for each of the 16 megacolumns. For a particular megacolumn, the x and z -coordinates were constant and depended on the location of the megacolumn in the plan, and the y-coordinates were equally spaced every 4 m . Four "core-corner" nodes were located at each of stories \(18,22,38,42,58,62\), 78 , and 82 with horizontal coordinates \(\mathrm{x}= \pm 12.5 \mathrm{~m}\) and \(\mathrm{z}= \pm 12.5 \mathrm{~m}\). Outrigger members connected core-corner nodes with megacolumn nodes. Sixteen "belt" nodes were located midway between
megacolumn nodes at each of levels \(19,21,39,41,59,61,79\), and 81 . Belt truss members connected belt nodes to megacolumn nodes.

\subsection*{4.2 Members}

There were a total of 5668 members in the space frame model (see Figure 4-1), including 100 core members (yellow), 1600 megacolumn members (red), 64 outrigger members (green), 256 belt truss members (light blue), 160 diagonal members (black), 32 rigid link members (dark blue), and 3456 floor members (not shown in Figure 4-1, but shown in Figure 4-2). Shear deformation was neglected in all members, and the Poisson's ratio was assumed to be 0.25 .

Core members connect core-center nodes, and megacolumn members connect megacolumn nodes. Core and megacolumn members possess axial, flexural, and torsional stiffness. The modulus of elasticity and cross-sectional areas were set equal to the values used in the SSAM. Both the strong and weak core moments of inertia were set equal to the values used in the SSAM. The torsion constant was arbitrarily set to \(1000 \mathrm{~m}^{4}\), and it was verified that this did not impact the results because of the symmetry of the structure and loading, and the axial rigidity of the floor diaphragms. Both ends of core and megacolumn members were connected rigidly.

Outrigger, belt truss, and diagonal members were modeled as truss members that only possess axial stiffness. The outrigger members connect between core-corner nodes and adjacent megacolumn nodes. The belt truss members connect between megacolumn nodes and belt nodes. The diagonal members connect between megacolumn nodes. Since these members possess axial stiffness only, their moments of inertia and torsion constants were set to zero, and both ends were hinge-connected. The modulus of elasticity was set equal to the value used in the SSAM. The cross-sectional areas were calculated by dividing the volumes used in the SSAM by the number of members and member length.

Rigid link members connect core-center nodes located at the intersection of intervals to core-corner nodes. They model the finite size of the core. Rigid link members possess infinite axial, flexural, and torsional stiffness. Infinite stiffness was obtained by setting the modulus of elasticity to \(10^{12} \mathrm{KPa}\). The moments of inertia and torsion constant were arbitrarily set to \(1000 \mathrm{~m}^{4}\). Both ends of the rigid link members were connected rigidly.

Floor members extend radially from core-center nodes to megacolumn and belt nodes in the same horizontal plane. Additional floor members connect circumferentially between megacolumn and belt nodes in the same horizontal plane (see Figure 4-2). These members model the axially rigid floor diaphragms. They were modeled as truss members where their moments of inertia and torsion constants were set to zero, and both ends were hinge-connected. Axial rigidity was obtained by setting the modulus of elasticity to \(10^{12} \mathrm{KPa}\). The cross-sectional areas were arbitrarily set to \(1000 \mathrm{~m}^{2}\). Choi et al. (2012) mentioned that if a belt truss is used, a stiff floor diaphragm is required at the top and bottom chord of each belt truss in order to transfer the core bending moment, in the form of floor shear and axial forces, to the belt wall and eventually to the columns. Also, improperly modeled diaphragms will result in misleading behaviors and load paths, and incorrect member design forces.


Figure 4-1: Space frame model - all members without floors


Figure 4-2: Space frame model - single floor configurations between intervals and at intervals

\subsection*{4.3 Supports}

Supports restrained some of the DOF's. Each of the 1877 nodes in the space frame model had six displacement DOF's: three translations \(\left(\Delta_{x}, \Delta_{y}\right.\), and \(\left.\Delta_{z}\right)\) and three rotations \(\left(\theta_{\mathrm{x}}, \theta_{\mathrm{y}}\right.\), and \(\theta_{z}\) ). A total of 486 restraints were needed in this model. The core-center node and the sixteen megacolumn nodes at the base of the structure were fixed-supported to create \(6 \times 17=102\) restraints. The rotational DOF's of the 128 belt nodes had to be supported for stability since the belt members were hinge-connected. This created \(3 \times 128=384\) restraints. The number of unrestrained DOF's in the space frame model was \(6 \times 1877-486=10,776\). Note that this is far greater than the 30 DOF's of the SSAM.

\subsection*{4.4 Loads}

Both point loads and distributed loads were included in this model. A downward point load was applied at each of the core-center and megacolumn nodes representing the external dead, live, and cladding loads ( 1700 point loads). Horizontal point loads in the positive x direction were applied to each core-center node representing the lateral loads (100 point loads). Downward distributed loads were applied to core, megacolumn, outrigger, belt truss, and diagonal members representing member self-weight (2180 distributed loads). The magnitudes for all of these loads were obtained from the SSAM.

\subsection*{4.5 Output}

Output from the space frame program consisted of nodal displacements and member end forces. These output files were imported into a macro-enabled Excel spreadsheet. The macro in the spreadsheet extracted appropriate data and calculated the following for comparison with the results from the SSAM:
core lateral translations
core rotations
core stresses
megacolumn stresses
outrigger stresses
belt truss stresses
diagonal stresses

\section*{5 RESULTS}

Results from the SSAM and the space frame model (Sframe) are compared in the following tables for the six configurations of the generic skyscraper. For each configuration, the first table gives values of the design variables and calculated megacolumn areas for each interval. In the remaining tables for each configuration, the term "ratio" is the ratio of the SSAM value over the Sframe value. The "max error" given as a percentage below each table is equal to 100 times the maximum absolute value of the ratio minus one. The values in all tables are for linear analysis only with the exception of Table 5-2 and Table 5-3 (Configuration \#1) where values are given for both linear and nonlinear analysis. All tables give results for combined gravity and lateral loading with the exception of tables for outrigger and belt stresses where the results are for lateral loading only.

It was observed in the space frame model, for configurations involving belt trusses, that the stress in the megacolumn located inside belt trusses was much greater than the stress in the megacolumn located outside belt trusses. It was assumed that the megacolumn cross-sectional area for an interval refers to the megacolumn outside belt trusses. The Sframe megacolumn stress reported in the following tables is the value for the member just above the belt truss at the bottom of the interval.

The lateral displacement and interstory drift are also plotted after the comparison tables for each configuration. Recall that interstory drift is defined as the difference in lateral displacement
between the top and bottom of the story divided by the story height. Since rotation is the derivative of lateral displacement, interstory drift is effectively a finite difference approximation of rotation. The interstory drift that is plotted in the figures that follow has been normalized by the allowable value so that when the normalized value is less than one, the drift constraint is satisfied. Points of contraflexure are also indicated on the plots. They are located at points where the drift is vertical because that is the point where the rotation changes from increasing to decreasing with height. Points of contraflexure also correspond to points where curvature changes in the plot of lateral displacement. However, the curvature changes are too subtle to observe in the lateral displacement plots for the six configurations. A seventh configuration was added with outriggers located only at interval 2 . Here the points of contraflexure are observable in both the plot of drift and the plot of lateral displacement.

\subsection*{5.1 Configuration \#1 - core+megacolumns}

Table 5-1: Configuration \#1 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.5 & 0 & 0 & 0 & 1.7318 & 3.1207 & 3.1207 \\
2 & 0.9 & 0 & 0 & 0 & 3.1172 & 5.6172 & 5.6172 \\
3 & 1.4 & 0 & 0 & 0 & 4.8490 & 8.7379 & 8.7379 \\
4 & 1.8 & 0 & 0 & 0 & 6.2344 & 11.2344 & 11.2344 \\
5 & 2.3 & 0 & 0 & 0 & 7.9662 & 14.3551 & 14.3551 \\
\hline
\end{tabular}

Table 5-2: Configuration \#1 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & \begin{tabular}{c} 
Linear \\
SSAM
\end{tabular} & \begin{tabular}{c} 
Linear \\
Sframe
\end{tabular} & \begin{tabular}{c} 
Linear \\
Ratio
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
SSAM
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
Sframe
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
Ratio
\end{tabular} \\
\hline 1 & 0.693991 & 0.693624 & 1.0005 & 0.749785 & 0.748866 & 1.0012 \\
2 & 0.491343 & 0.49108 & 1.0005 & 0.530263 & 0.529674 & 1.0011 \\
3 & 0.302933 & 0.302771 & 1.0005 & 0.326322 & 0.326006 & 1.0010 \\
4 & 0.146485 & 0.146407 & 1.0005 & 0.157324 & 0.157196 & 1.0008 \\
5 & 0.039743 & 0.039722 & 1.0005 & 0.042491 & 0.042464 & 1.0006 \\
\hline
\end{tabular}
\(\max\) linear error \(=0.05 \quad \max\) nonlinear error \(=0.12\)

Table 5-3: Configuration \#1 - core rotation (rad)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & \begin{tabular}{c} 
Linear \\
SSAM
\end{tabular} & \begin{tabular}{c} 
Linear \\
Sframe
\end{tabular} & \begin{tabular}{c} 
Linear \\
Ratio
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
SSAM
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
Sframe
\end{tabular} & \begin{tabular}{c} 
Nonlinear \\
Ratio
\end{tabular} \\
\hline 1 & 0.002554 & 0.002553 & 1.0004 & 0.002767 & 0.002763 & 1.0015 \\
2 & 0.002473 & 0.002472 & 1.0004 & 0.002678 & 0.002675 & 1.0013 \\
3 & 0.002175 & 0.002174 & 1.0006 & 0.002353 & 0.002350 & 1.0011 \\
4 & 0.001672 & 0.001671 & 1.0005 & 0.001803 & 0.001801 & 1.0008 \\
5 & 0.000930 & 0.000929 & 1.0007 & 0.000997 & 0.000996 & 1.0005 \\
\hline
\end{tabular}
\(\max\) linear error \(=0.07 \% \quad \max\) nonlinear error \(=0.15 \%\)

Table 5-4: Configuration \#1 - vertical megacolumn translation minus vertical core translation
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
2 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
3 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
4 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
5 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{3}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
2 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
3 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
4 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
5 & 0.0000 & 0.0000 & 1.000 & 0.0000 & 0.0000 & 1.000 \\
\hline
\end{tabular}
\[
\max \text { error }=0.00 \%
\]

Table 5-5: Configuration \#1-core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 7128.8693 & 7127.8425 & 1.0001 \\
2 & 10325.5788 & 10321.9861 & 1.0003 \\
3 & 12330.3395 & 12324.8866 & 1.0004 \\
4 & 15100.3036 & 15091.9960 & 1.0006 \\
5 & 16965.2776 & 16961.2986 & 1.0002 \\
\hline
\end{tabular}
max error \(=0.06 \%\)

Table 5-6: Configuration \#1 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|cc|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megacolumn A } & \multicolumn{4}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 5622.3807 & 5642.2829 & 0.9965 & 5654.9521 & 5680.3098 & 0.9955 \\
2 & 7184.8934 & 7229.1492 & 0.9939 & 7278.0048 & 7337.1414 & 0.9919 \\
3 & 8010.7539 & 8062.0372 & 0.9936 & 8173.9692 & 8242.4494 & 0.9917 \\
4 & 9375.9937 & 9452.1382 & 0.9919 & 9624.9249 & 9726.8335 & 0.9895 \\
5 & 10301.7301 & 10301.6533 & 1.0000 & 10634.8049 & 10634.4231 & 1.0000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{4}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 5654.9521 & 5681.6678 & 0.9953 & 5654.9521 & 5681.6678 & 0.9953 \\
2 & 7278.0048 & 7337.4124 & 0.9919 & 7278.0048 & 7337.4124 & 0.9919 \\
3 & 8173.9692 & 8242.8105 & 0.9916 & 8173.9692 & 8242.8105 & 0.9916 \\
4 & 9624.9249 & 9727.1394 & 0.9895 & 9624.9249 & 9727.1394 & 0.9895 \\
5 & 10634.8049 & 10634.7010 & 1.0000 & 10634.8049 & 10634.7010 & 1.0000 \\
\hline
\end{tabular}
\[
\max \text { error }=1.05 \%
\]


Figure 5-1: Configuration \#1 - lateral displacement and interstory drift

\subsection*{5.2 Configuration \#2 - core+megacolumns+outriggers}

Table 5-7: Configuration \#2 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megaolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megaolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megaolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.2 & 0 & 0 & 0 & 0.6927 & 1.2483 & 1.2483 \\
2 & 0.3 & 39 & 0 & 0 & 1.0353 & 1.8792 & 1.8656 \\
3 & 0.5 & 65 & 0 & 0 & 1.7208 & 3.1406 & 3.1008 \\
4 & 0.7 & 78 & 0 & 0 & 2.4045 & 4.4051 & 4.3329 \\
5 & 1 & 58 & 0 & 0 & 3.4332 & 6.2962 & 6.1866 \\
\hline
\end{tabular}

Table 5-8: Configuration \#2 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.693383 & 0.692891 & 1.0007 \\
2 & 0.491356 & 0.491007 & 1.0007 \\
3 & 0.306254 & 0.306038 & 1.0007 \\
4 & 0.152420 & 0.152315 & 1.0007 \\
5 & 0.043712 & 0.043683 & 1.0007 \\
\hline
\end{tabular}
\[
\max \text { error }=0.07 \%
\]

Table 5-9: Configuration \#2 - core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002577 & 0.002576 & 1.0005 \\
2 & 0.002375 & 0.002373 & 1.0007 \\
3 & 0.002066 & 0.002065 & 1.0006 \\
4 & 0.001599 & 0.001598 & 1.0009 \\
5 & 0.000945 & 0.000944 & 1.0011 \\
\hline
\end{tabular}
\(\max\) error \(=0.11 \%\)

Table 5-10: Configuration \#2 - vertical megacolumn translation minus vertical core translation
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megaolumn A } & \multicolumn{3}{c|}{ Megaolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.0000 & 0.0532 & 0.0531 & 1.0007 \\
2 & 0.0000 & 0.0000 & 1.0000 & 0.0532 & 0.0531 & 1.0007 \\
3 & 0.0000 & 0.0000 & 1.0000 & 0.0454 & 0.0453 & 1.0007 \\
4 & 0.0000 & 0.0000 & 1.0000 & 0.0328 & 0.0327 & 1.0007 \\
5 & 0.0000 & 0.0000 & 1.0000 & 0.0160 & 0.0160 & 1.0007 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megaolumn C } & \multicolumn{3}{c|}{ Megaolumn D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.0000 & 0.0266 & 0.0266 & 1.0007 \\
2 & 0.0000 & 0.0000 & 1.0000 & 0.0266 & 0.0266 & 1.0007 \\
3 & 0.0000 & 0.0000 & 1.0000 & 0.0227 & 0.0227 & 1.0007 \\
4 & 0.0000 & 0.0000 & 1.0000 & 0.0164 & 0.0164 & 1.0007 \\
5 & 0.0000 & 0.0000 & 1.0000 & 0.0080 & 0.0080 & 1.0007 \\
\hline
\end{tabular}
\[
\max \text { error }=0.07 \%
\]

Table 5-11: Configuration \#2 - core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 15222.8996 & 15222.3633 & 1.0000 \\
2 & 21864.9112 & 21865.3745 & 1.0000 \\
3 & 21975.7891 & 21977.1556 & 0.9999 \\
4 & 23249.1280 & 23247.5511 & 1.0001 \\
5 & 23745.7850 & 23742.1704 & 1.0002 \\
\hline
\end{tabular}
\(\max\) error \(=0.02 \%\)

Table 5-12: Configuration \#2 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megaolumn A } & \multicolumn{4}{c|}{ Megaolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11364.7174 & 11291.8259 & 1.0065 & 11416.2780 & 11343.5559 & 1.0064 \\
2 & 15869.4783 & 15784.6825 & 1.0054 & 20208.4572 & 20113.5529 & 1.0047 \\
3 & 15343.2403 & 15258.0034 & 1.0056 & 22324.7656 & 22227.5752 & 1.0044 \\
4 & 15715.2110 & 15691.9781 & 1.0015 & 25008.8354 & 24964.6820 & 1.0018 \\
5 & 15051.2138 & 15050.8507 & 1.0000 & 24011.6734 & 24000.1864 & 1.0005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megaolumn C } & \multicolumn{4}{c|}{ Megaolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11416.2780 & 11348.1467 & 1.0060 & 11416.2780 & 11348.0227 & 1.0060 \\
2 & 15968.2890 & 15883.1312 & 1.0054 & 18089.0756 & 17996.3230 & 1.0052 \\
3 & 15486.1556 & 15401.4515 & 1.0055 & 18907.2497 & 18812.9495 & 1.0050 \\
4 & 15909.3327 & 15878.1430 & 1.0020 & 20462.2415 & 20421.4768 & 1.0020 \\
5 & 15322.8929 & 15322.4036 & 1.0000 & 19671.9816 & 19663.6635 & 1.0004 \\
\hline
\end{tabular}
\[
\max \text { error }=0.65 \%
\]

Table 5-13: Configuration \#2 - outrigger stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ B } & \multicolumn{3}{c|}{ D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 44984.3482 & 44953.9263 & 1.0007 & 22492.1741 & 22477.7412 & 1.0006 \\
3 & 45745.6419 & 45710.9210 & 1.0008 & 22872.8209 & 22855.8147 & 1.0007 \\
4 & 52494.2377 & 52457.3896 & 1.0007 & 26247.1189 & 26229.1351 & 1.0007 \\
5 & 55408.6325 & 55373.9057 & 1.0006 & 27704.3162 & 27687.3060 & 1.0006 \\
\hline
\end{tabular}
\(\max\) error \(=0.08 \%\)


Figure 5-2: Configuration \#2 - lateral displacement and interstory drift

\subsection*{5.3 Configuration \#3 - core+megacolumns+belts}

Table 5-14: Configuration \#3 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & Core \(\mathrm{t}(\mathrm{m})\) & \begin{tabular}{c} 
Outrig \\
\(\mathrm{V}\left(\mathrm{m}^{3}\right)\)
\end{tabular} & Belt \(\mathrm{V}\left(\mathrm{m}^{3}\right)\) & Diag \(\mathrm{V}\left(\mathrm{m}^{3}\right)\) & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.2 & 0 & 0 & 0 & 0.6927 & 1.2483 & 1.2483 \\
2 & 0.3 & 0 & 102 & 0 & 1.0747 & 1.9080 & 1.9080 \\
3 & 0.4 & 0 & 143 & 0 & 1.4611 & 2.5723 & 2.5723 \\
4 & 0.6 & 0 & 171 & 0 & 2.2222 & 3.8888 & 3.8888 \\
5 & 0.8 & 0 & 34 & 0 & 2.9436 & 5.1658 & 5.1658 \\
\hline
\end{tabular}

Table 5-15: Configuration \#3 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.704044 & 0.699316 & 1.0068 \\
2 & 0.517826 & 0.514667 & 1.0061 \\
3 & 0.341883 & 0.34002 & 1.0055 \\
4 & 0.182970 & 0.182244 & 1.0040 \\
5 & 0.056885 & 0.056722 & 1.0029 \\
\hline
\end{tabular}
\[
\max \text { error }=0.68 \%
\]

Table 5-16: Configuration \#3 - core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002380 & 0.002360 & 1.0084 \\
2 & 0.002177 & 0.002171 & 1.0028 \\
3 & 0.002035 & 0.002032 & 1.0014 \\
4 & 0.001713 & 0.001713 & 0.9998 \\
5 & 0.001237 & 0.001235 & 1.0019 \\
\hline
\end{tabular}
\[
\max \text { error }=0.84 \%
\]

Table 5-17: Configuration \#3 - vertical megacolumn translation minus vertical core translation
\begin{tabular}{|c|l|l|l|l|l|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0411 & 0.0413 & 0.9960 & 0.0367 & 0.0369 & 0.9948 \\
2 & 0.0411 & 0.0411 & 1.0006 & 0.0367 & 0.0367 & 1.0003 \\
3 & 0.0360 & 0.0360 & 1.0015 & 0.0313 & 0.0313 & 1.0020 \\
4 & 0.0260 & 0.0259 & 1.0034 & 0.0212 & 0.0211 & 1.0045 \\
5 & 0.0124 & 0.0124 & 1.0015 & 0.0094 & 0.0094 & 1.0002 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|l|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{3}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0353 & 0.0354 & 0.9944 & 0.0198 & 0.0199 & 0.9953 \\
2 & 0.0353 & 0.0352 & 1.0003 & 0.0198 & 0.0198 & 1.0004 \\
3 & 0.0298 & 0.0297 & 1.0022 & 0.0172 & 0.0171 & 1.0017 \\
4 & 0.0197 & 0.0196 & 1.0046 & 0.0120 & 0.0119 & 1.0044 \\
5 & 0.0087 & 0.0087 & 1.0001 & 0.0054 & 0.0054 & 1.0001 \\
\hline
\end{tabular}
max error \(=0.56 \%\)
Table 5-18: Configuration \#3 - core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 15222.8996 & 14755.1687 & 1.0317 \\
2 & 20687.4577 & 20126.3594 & 1.0279 \\
3 & 25164.8733 & 24542.8792 & 1.0253 \\
4 & 24475.7970 & 23895.0744 & 1.0243 \\
5 & 29080.7494 & 29051.5824 & 1.0010 \\
\hline
\end{tabular}
\(\max\) error \(=3.17 \%\)

Table 5-19: Configuration \#3 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{4}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11364.7174 & 11192.4457 & 1.0154 & 11416.2780 & 10839.4043 & 1.0532 \\
2 & 18530.1441 & 18352.4852 & 1.0097 & 18786.8899 & 18355.1234 & 1.0235 \\
3 & 23964.7985 & 23781.4997 & 1.0077 & 24128.3034 & 23770.5900 & 1.0150 \\
4 & 24842.0815 & 24586.8684 & 1.0104 & 24041.3592 & 23755.9853 & 1.0120 \\
5 & 24518.0750 & 24515.2250 & 1.0001 & 23192.4124 & 23200.8980 & 0.9959 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megacolumn C } & \multicolumn{4}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11416.2780 & 10842.9054 & 1.0529 & 11416.2780 & 10842.9045 & 1.0529 \\
2 & 18825.0708 & 18396.9926 & 1.0233 & 17297.8410 & 16867.5663 & 1.0255 \\
3 & 24076.7192 & 23722.7410 & 1.0149 & 21464.9875 & 21106.5570 & 1.0170 \\
4 & 23649.9418 & 23357.7009 & 1.0125 & 21225.5716 & 20940.8840 & 1.0136 \\
5 & 22796.1558 & 22801.6575 & 0.9998 & 21000.2127 & 21008.4266 & 0.9996 \\
\hline
\end{tabular}
\[
\max \text { error }=5.32 \%
\]

Table 5-20: Configuration \#3 - belt truss stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AB } & \multicolumn{3}{c|}{ BC } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 34091.8555 & 34100.2843 & 0.9998 & 11462.0951 & 11464.4492 & 0.9998 \\
3 & 36617.7339 & 36862.7669 & 0.9934 & 12008.4000 & 12039.1857 & 0.9974 \\
4 & 37160.7101 & 37498.0444 & 0.9910 & 11270.3162 & 11456.9165 & 0.9837 \\
5 & 23372.9232 & 24320.5346 & 0.9610 & 5669.7787 & 6002.3570 & 0.9446 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AD } & \multicolumn{3}{c|}{ DE } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 46071.0865 & 46434.0904 & 0.9922 & 57218.1212 & 57581.8362 & 0.9937 \\
3 & 51061.3895 & 52528.7085 & 0.9721 & 64111.4385 & 65809.9134 & 0.9742 \\
4 & 57366.3489 & 60005.8780 & 0.9560 & 73373.8281 & 76281.9196 & 0.9619 \\
5 & 65316.2096 & 67916.3240 & 0.9617 & 78480.1129 & 80588.9503 & 0.9738 \\
\hline
\end{tabular}
\(\max\) error \(=5.54 \%\)


Figure 5-3: Configuration \#3 - lateral displacement and interstory drift

\subsection*{5.4 Configuration \#4 - core+megacolumns+diagonals}

Table 5-21: Configuration \#4 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig \\
\(\mathrm{V}\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.1 & 0 & 0 & 43 & 0.3021 & 0.5369 & 0.5369 \\
2 & 0.2 & 0 & 0 & 214 & 0.4718 & 0.8184 & 0.8184 \\
3 & 0.4 & 0 & 0 & 255 & 1.1710 & 2.0082 & 2.0082 \\
4 & 0.5 & 0 & 0 & 301 & 1.5033 & 2.5575 & 2.5575 \\
5 & 0.7 & 0 & 0 & 35 & 2.5503 & 4.3708 & 4.3708 \\
\hline
\end{tabular}

Table 5-22: Configuration \#4 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.700961 & 0.701863 & 0.9987 \\
2 & 0.504953 & 0.506065 & 0.9978 \\
3 & 0.326486 & 0.32738 & 0.9973 \\
4 & 0.172002 & 0.172012 & 0.9999 \\
5 & 0.054124 & 0.053793 & 1.0061 \\
\hline
\end{tabular}
\[
\max \text { error }=0.61 \%
\]

Table 5-23: Configuration \#4 - core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002450 & 0.002448 & 1.0010 \\
2 & 0.002356 & 0.002367 & 0.9954 \\
3 & 0.002076 & 0.002092 & 0.9924 \\
4 & 0.001734 & 0.001751 & 0.9904 \\
5 & 0.001152 & 0.001144 & 1.0070 \\
\hline
\end{tabular}
\[
\max \text { error }=0.96 \%
\]

Table 5-24: Configuration \#4-vertical megacolumn translation minus core vertical translation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0524 & 0.0513 & 1.0224 & 0.0497 & 0.0479 & 1.0380 \\
2 & 0.0498 & 0.0489 & 1.0194 & 0.0475 & 0.0457 & 1.0390 \\
3 & 0.0420 & 0.0419 & 1.0041 & 0.0389 & 0.0376 & 1.0357 \\
4 & 0.0316 & 0.0318 & 0.9958 & 0.0283 & 0.0276 & 1.0249 \\
5 & 0.0166 & 0.0179 & 0.9265 & 0.0126 & 0.0123 & 1.0212 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C} & \multicolumn{3}{c|}{ Megacolumn D} \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0488 & 0.0463 & 1.0535 & 0.0257 & 0.0251 & 1.0234 \\
2 & 0.0467 & 0.0440 & 1.0622 & 0.0246 & 0.0239 & 1.0260 \\
3 & 0.0379 & 0.0354 & 1.0713 & 0.0205 & 0.0200 & 1.0247 \\
4 & 0.0272 & 0.0255 & 1.0634 & 0.0152 & 0.0150 & 1.0125 \\
5 & 0.0115 & 0.0109 & 1.0588 & 0.0072 & 0.0068 & 1.0634 \\
\hline
\end{tabular}
\[
\max \text { error }=7.35 \%
\]

Table 5-25: Configuration \#4 - core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 24491.3087 & 24076.1019 & 1.0172 \\
2 & 24652.5844 & 23783.7907 & 1.0365 \\
3 & 20901.6996 & 20278.8252 & 1.0307 \\
4 & 24710.9186 & 24565.4534 & 1.0059 \\
5 & 30260.4110 & 30190.1385 & 1.0023 \\
\hline
\end{tabular}
\[
\max \text { error }=3.65 \%
\]

Table 5-26: Configuration \#4 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megaolumn A } & \multicolumn{4}{c|}{ Megaolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 22188.1356 & 24343.4592 & 0.9115 & 22004.7379 & 21960.3607 & 1.0020 \\
2 & 25884.2484 & 25718.5434 & 1.0064 & 26334.6572 & 31532.2974 & 0.8352 \\
3 & 23073.5915 & 23758.6810 & 0.9712 & 23276.7999 & 25267.4646 & 0.9212 \\
4 & 27781.5777 & 25460.0655 & 1.0912 & 28229.3729 & 34199.6648 & 0.8254 \\
5 & 28129.5845 & 31497.4134 & 0.8931 & 26213.8365 & 25813.6650 & 1.0155 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megaolumn C } & \multicolumn{4}{c|}{ Megaolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 21957.6201 & 21857.8058 & 1.0046 & 21446.7176 & 20791.3225 & 1.0315 \\
2 & 26462.4989 & 31584.0125 & 0.8378 & 23891.2614 & 26418.0173 & 0.9044 \\
3 & 23320.0463 & 25376.9671 & 0.9189 & 20350.6673 & 20866.5435 & 0.9753 \\
4 & 28195.7336 & 32223.3218 & 0.8750 & 24067.8469 & 28997.8631 & 0.8300 \\
5 & 25645.7292 & 24450.5625 & 1.0489 & 23294.9342 & 22886.4234 & 1.0178 \\
\hline
\end{tabular}
\(\max\) error \(=17 \%\)

Table 5-27: Configuration \#4 - diagonal stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{AB} & \multicolumn{4}{c|}{BC} \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 81313.2121 & 97191.2950 & 0.8366 & 53515.7579 & 53745.4289 & 0.9957 \\
2 & 78286.8973 & 64893.0101 & 1.2064 & 70972.4314 & 66846.3767 & 1.0617 \\
3 & 62204.8291 & 57484.1797 & 1.0821 & 63507.8966 & 58387.9340 & 1.0877 \\
4 & 64801.9911 & 36811.8336 & 1.7604 & 79792.3507 & 72844.7126 & 1.0954 \\
5 & 83113.2553 & 80962.9631 & 1.0266 & 75733.4648 & 68248.1244 & 1.1097 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{AD} & \multicolumn{4}{c|}{DE} \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 105912.1905 & 123399.1864 & 0.8583 & 94579.5296 & 96004.8275 & 0.9852 \\
2 & 115143.6822 & 103985.5454 & 1.1073 & 105799.9883 & 102856.8695 & 1.0286 \\
3 & 110160.4497 & 105055.9993 & 1.0486 & 103968.4388 & 100529.9374 & 1.0342 \\
4 & 122931.4833 & 83483.3273 & 1.4725 & 120278.9758 & 112236.7924 & 1.0717 \\
5 & 92421.3678 & 89841.3784 & 1.0287 & 95533.6065 & 89181.8488 & 1.0712 \\
\hline
\end{tabular}
\(\max\) error \(=76 \%\)


Figure 5-4: Configuration \#4 - lateral displacement and interstory drift

\subsection*{5.5 Configuration \#5 - core+megacolumns+outriggers+belts}

Table 5-28: Configuration \#5 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.2 & 0 & 0 & 0 & 0.6927 & 1.2483 & 1.2483 \\
2 & 0.3 & 41 & 43 & 0 & 1.0501 & 1.8945 & 1.8802 \\
3 & 0.4 & 58 & 33 & 0 & 1.4008 & 2.5355 & 2.5051 \\
4 & 0.6 & 74 & 20 & 0 & 2.0962 & 3.8090 & 3.7497 \\
5 & 0.7 & 59 & 14 & 0 & 2.4416 & 4.4440 & 4.3695 \\
\hline
\end{tabular}

Table 5-29 Configuration \#5: - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.637650 & 0.637058 & 1.0009 \\
2 & 0.465645 & 0.465354 & 1.0006 \\
3 & 0.303810 & 0.303700 & 1.0004 \\
4 & 0.159402 & 0.159369 & 1.0002 \\
5 & 0.049382 & 0.049371 & 1.0002 \\
\hline
\end{tabular}
\[
\max \text { error }=0.09 \%
\]

Table 5-30: Configuration \#5 - core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002202 & 0.002198 & 1.0019 \\
2 & 0.001999 & 0.001999 & 1.0002 \\
3 & 0.001860 & 0.001860 & 0.9999 \\
4 & 0.001525 & 0.001526 & 0.9994 \\
5 & 0.001023 & 0.001024 & 0.9993 \\
\hline
\end{tabular}
\(\max\) error \(=0.19 \%\)

Table 5-31: Configuration \#5 - vertical megacolumn translation minus core vertical translation
\begin{tabular}{|c|l|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0434 & 0.0435 & 0.9970 & 0.0438 & 0.0437 & 1.0019 \\
2 & 0.0434 & 0.0433 & 1.0022 & 0.0438 & 0.0438 & 0.9989 \\
3 & 0.0371 & 0.0369 & 1.0035 & 0.0393 & 0.0394 & 0.9984 \\
4 & 0.0254 & 0.0253 & 1.0046 & 0.0301 & 0.0302 & 0.9983 \\
5 & 0.0131 & 0.0130 & 1.0051 & 0.0170 & 0.0170 & 0.9985 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{3}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0395 & 0.0395 & 0.9990 & 0.0224 & 0.0224 & 1.0005 \\
2 & 0.0395 & 0.0393 & 1.0054 & 0.0224 & 0.0224 & 0.9988 \\
3 & 0.0326 & 0.0324 & 1.0069 & 0.0201 & 0.0201 & 0.9984 \\
4 & 0.0214 & 0.0212 & 1.0077 & 0.0153 & 0.0153 & 0.9983 \\
5 & 0.0106 & 0.0106 & 1.0079 & 0.0086 & 0.0086 & 0.9984 \\
\hline
\end{tabular}

Max error \(=0.79 \%\)

Table 5-32: Configuration \#5 - core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 15222.8996 & 14754.8100 & 1.0317 \\
2 & 20722.3915 & 20143.2498 & 1.0288 \\
3 & 25345.5702 & 24983.7534 & 1.0145 \\
4 & 24767.1003 & 24608.8396 & 1.0064 \\
5 & 30466.8330 & 30469.8923 & 0.9999 \\
\hline
\end{tabular}
\(\max\) error \(=3.17 \%\)

Table 5-33: Configuration \#5 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megacolumn A } & \multicolumn{4}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11364.7174 & 10819.1557 & 1.0504 & 11416.2780 & 10871.5529 & 1.0501 \\
2 & 19235.2364 & 18822.7648 & 1.0219 & 18310.6594 & 17917.6110 & 1.0219 \\
3 & 24935.0696 & 24612.5733 & 1.0131 & 23727.1676 & 23390.6889 & 1.0144 \\
4 & 24286.7997 & 24033.8655 & 1.0105 & 24880.0275 & 24615.4035 & 1.0108 \\
5 & 27004.3520 & 26998.3974 & 1.0002 & 29436.5226 & 29421.2024 & 1.0005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megacolumn C } & \multicolumn{4}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 11416.2780 & 10875.9508 & 1.0497 & 11416.2780 & 10875.8908 & 1.0497 \\
2 & 19607.8206 & 19217.9597 & 1.0203 & 17160.4669 & 16762.9066 & 1.0237 \\
3 & 24831.5393 & 24507.1229 & 1.0132 & 21318.4127 & 20985.2979 & 1.0159 \\
4 & 23592.7490 & 23325.9078 & 1.0114 & 21385.8312 & 21124.1238 & 1.0124 \\
5 & 25968.9250 & 25946.5362 & 1.0009 & 24881.8330 & 24868.6022 & 1.0005 \\
\hline
\end{tabular}
\(\max\) error \(=5.04 \%\)
Table 5-34: Configuration \#5-outrigger stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ B } & \multicolumn{3}{c|}{ D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 45035.2256 & 44577.5789 & 1.0103 & 18919.8601 & 18665.0165 & 1.0137 \\
3 & 51945.4870 & 51564.8600 & 1.0074 & 23095.2281 & 22900.8217 & 1.0085 \\
4 & 58063.3030 & 57824.4431 & 1.0041 & 27352.3210 & 27226.2807 & 1.0046 \\
5 & 62190.0087 & 62060.0618 & 1.0021 & 30264.2007 & 30193.9614 & 1.0023 \\
\hline
\end{tabular}
\(\max\) error \(=1.37 \%\)

Table 5-35: Configuration \#5 - belt truss stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{AB} & \multicolumn{3}{c|}{BC} \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 3232.7632 & 3017.2696 & 1.0714 & 33405.4233 & 34238.7440 & 0.9757 \\
3 & 17629.0634 & 17844.8855 & 0.9879 & 51982.8703 & 52978.4759 & 0.9812 \\
4 & 36793.7220 & 36402.7207 & 1.0107 & 67828.6849 & 67465.0595 & 1.0054 \\
5 & 30804.0766 & 31010.3883 & 0.9933 & 49485.4582 & 50678.8492 & 0.9765 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AD } & \multicolumn{3}{c|}{ DE } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 31137.7201 & 33000.5671 & 0.9436 & 20216.3696 & 22017.0424 & 0.9182 \\
3 & 48456.3261 & 51825.2521 & 0.9350 & 24677.8604 & 27699.4054 & 0.8909 \\
4 & 69609.2164 & 73130.1273 & 0.9519 & 29226.6765 & 33110.0471 & 0.8827 \\
5 & 64917.6447 & 67511.1317 & 0.9616 & 32338.0968 & 36489.2712 & 0.8862 \\
\hline
\end{tabular}
\(\max\) error \(=11.7 \%\)


Figure 5-5: Configuration \#5 - lateral displacement and interstory drift

\subsection*{5.6 Configuration \#6 - core+megacolumns+outriggers+belts+diagonals}

Table 5-36: Configuration \#6 - design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.1 & 0 & 0 & 12 & 0.3341 & 0.5998 & 0.5998 \\
2 & 0.2 & 37 & 37 & 0 & 0.7010 & 1.2625 & 1.2535 \\
3 & 0.4 & 56 & 33 & 0 & 1.4023 & 2.5350 & 2.5054 \\
4 & 0.5 & 67 & 17 & 0 & 1.7479 & 3.1721 & 3.1249 \\
5 & 0.7 & 57 & 7 & 0 & 2.4408 & 4.4394 & 4.3676 \\
\hline
\end{tabular}

Table 5-37: Configuration \#6 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.695754 & 0.695147 & 1.0009 \\
2 & 0.500956 & 0.500729 & 1.0005 \\
3 & 0.322717 & 0.322649 & 1.0002 \\
4 & 0.168275 & 0.168239 & 1.0002 \\
5 & 0.050341 & 0.050327 & 1.0003 \\
\hline
\end{tabular}
\[
\max \text { error }=0.09 \%
\]

Table 5-38: Configuration \#6 - core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002507 & 0.002501 & 1.0022 \\
2 & 0.002199 & 0.002199 & 0.9998 \\
3 & 0.001977 & 0.001979 & 0.9991 \\
4 & 0.001659 & 0.001659 & 0.9997 \\
5 & 0.001047 & 0.001047 & 1.0002 \\
\hline
\end{tabular}
\(\max\) error \(=0.22 \%\)

Table 5-39: Configuration \#6 - vertical megacolumn translation minus vertical core translation
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0503 & 0.0506 & 0.9946 & 0.0484 & 0.0483 & 1.0021 \\
2 & 0.0486 & 0.0485 & 1.0033 & 0.0486 & 0.0487 & 0.9974 \\
3 & 0.0394 & 0.0392 & 1.0050 & 0.0419 & 0.0420 & 0.9976 \\
4 & 0.0273 & 0.0271 & 1.0050 & 0.0328 & 0.0329 & 0.9982 \\
5 & 0.0122 & 0.0122 & 1.0038 & 0.0173 & 0.0173 & 0.9992 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|l|l|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{3}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0460 & 0.0460 & 1.0017 & 0.0250 & 0.0250 & 0.9985 \\
2 & 0.0446 & 0.0441 & 1.0107 & 0.0249 & 0.0249 & 0.9967 \\
3 & 0.0347 & 0.0343 & 1.0103 & 0.0214 & 0.0214 & 0.9975 \\
4 & 0.0231 & 0.0229 & 1.0095 & 0.0166 & 0.0167 & 0.9981 \\
5 & 0.0101 & 0.0100 & 1.0080 & 0.0087 & 0.0088 & 0.9989 \\
\hline
\end{tabular}
\(\max\) error \(=1.07 \%\)
Table 5-40: Configuration \#6 - core stress (KPa)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 27387.9184 & 26620.0518 & 1.0288 \\
2 & 29424.0492 & 28598.3007 & 1.0289 \\
3 & 24363.6381 & 24021.8767 & 1.0142 \\
4 & 28732.2483 & 28628.6999 & 1.0036 \\
5 & 29877.1437 & 29878.9769 & 0.9999 \\
\hline
\end{tabular}
\(\max\) error \(=2.89 \%\)

Table 5-41: Configuration \#6 - megacolumn stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{4}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 21791.9345 & 20759.1685 & 1.0497 & 20844.1869 & 20402.7193 & 1.0216 \\
2 & 26938.6898 & 26633.5447 & 1.0115 & 25664.4886 & 25126.2786 & 1.0214 \\
3 & 24301.7041 & 24016.8300 & 1.0119 & 22770.2188 & 22454.1357 & 1.0141 \\
4 & 28161.3801 & 27880.5510 & 1.0101 & 28609.3859 & 28295.8382 & 1.0111 \\
5 & 25815.4518 & 25816.0029 & 1.0000 & 28861.1466 & 28846.3621 & 1.0005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{4}{c|}{ Megacolumn C } & \multicolumn{4}{c|}{ Megacolumn D } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 21700.8457 & 21626.6607 & 1.0034 & 20989.5741 & 20134.0916 & 1.0425 \\
2 & 27428.7821 & 26662.3160 & 1.0287 & 23918.2093 & 23353.7580 & 1.0242 \\
3 & 24135.6608 & 23774.5607 & 1.0152 & 20410.8066 & 20095.4986 & 1.0157 \\
4 & 27235.3554 & 26896.6907 & 1.0126 & 24485.4249 & 24176.4379 & 1.0128 \\
5 & 24930.3514 & 24896.2452 & 1.0014 & 24210.6468 & 24198.4173 & 1.0005 \\
\hline
\end{tabular}
\(\max\) error \(=4.97 \%\)

Table 5-42: Configuration \#6 - outrigger stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ B } & \multicolumn{3}{c|}{ D } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 46261.5351 & 45510.2512 & 1.0165 & 19093.0546 & 18564.0411 & 1.0285 \\
3 & 54787.1379 & 54326.4558 & 1.0085 & 24328.4516 & 24070.2618 & 1.0107 \\
4 & 62792.5224 & 62541.1241 & 1.0040 & 29685.5489 & 29536.8798 & 1.0050 \\
5 & 64374.0247 & 64284.4537 & 1.0014 & 31554.6433 & 31492.5186 & 1.0020 \\
\hline
\end{tabular}
\(\max\) error \(=2.85 \%\)

Table 5-43: Configuration \#6 - belt truss stress under lateral load only (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{AB} & \multicolumn{3}{c|}{BC} \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 242.9812 & 2937.2585 & 0.0827 & 30852.7526 & 34012.3290 & 0.9071 \\
3 & 19429.7002 & 20427.1005 & 0.9512 & 56116.9603 & 58352.3398 & 0.9617 \\
4 & 43192.0741 & 42899.3472 & 1.0068 & 75696.5409 & 75563.9430 & 1.0018 \\
5 & 39531.7217 & 39606.8331 & 0.9981 & 56116.1896 & 57445.9654 & 0.9769 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AD } & \multicolumn{3}{c|}{ DE } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 2 & 28787.2568 & 32665.9935 & 0.8813 & 20401.4326 & 22984.5134 & 0.8876 \\
3 & 51975.6100 & 56562.4222 & 0.9189 & 25995.5923 & 29401.6620 & 0.8842 \\
4 & 78567.7486 & 82673.7412 & 0.9503 & 31719.7921 & 36072.7633 & 0.8793 \\
5 & 74600.0965 & 77105.0059 & 0.9675 & 33716.9688 & 38158.8394 & 0.8836 \\
\hline
\end{tabular}
\[
\max \text { error }=91.7 \%
\]

Table 5-44: Configuration \#6 - diagonal stress (KPa)
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AB } & \multicolumn{3}{c|}{ BC } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 69067.7863 & 55893.0411 & 1.2357 & 74604.5230 & 59454.8293 & 1.2548 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ AD } & \multicolumn{3}{c|}{ DE } \\
\hline \begin{tabular}{c} 
Bottom of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 105123.4311 & 92455.7701 & 1.1370 & 91890.2709 & 81635.0762 & 1.1256 \\
\hline
\end{tabular}
\[
\max \text { error }=25.5 \%
\]


Figure 5-6: Configuration \#6 - lateral displacement and interstory drift

\subsection*{5.7 Configuration \#7 - core+megacolumns+outirgger at one level only}

Table 5-45: Configuration \#7-design variables and calculated megacolumn areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c} 
Core t \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Outrig V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Belt V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Diag V \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumn A \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns B/D \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Megacolumns C/E \\
Area \(\left(\mathrm{m}^{2}\right)\)
\end{tabular} \\
\hline 1 & 0.2 & 0 & 0 & 0 & 0.6927 & 1.2483 & 1.2483 \\
2 & 0.3 & 100 & 0 & 0 & 1.0295 & 1.8897 & 1.8551 \\
3 & 0.5 & 0 & 0 & 0 & 1.7204 & 3.1412 & 3.1002 \\
4 & 0.7 & 0 & 0 & 0 & 2.4118 & 4.3919 & 4.3461 \\
5 & 1 & 0 & 0 & 0 & 3.4482 & 6.2691 & 6.2136 \\
\hline
\end{tabular}

Table 5-46: Configuration \#7 - lateral core translation (m)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.940770 & 0.939826 & 1.0010 \\
2 & 0.737032 & 0.736291 & 1.0010 \\
3 & 0.505269 & 0.504765 & 1.0010 \\
4 & 0.256719 & 0.256467 & 1.0010 \\
5 & 0.071406 & 0.071338 & 1.0010 \\
\hline
\end{tabular}
\[
\max \text { error }=0.10 \%
\]

Table 5-47: Configuration \#7-core rotation (rad)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio \\
\hline 1 & 0.002599 & 0.002596 & 1.0011 \\
2 & 0.002396 & 0.002394 & 1.0008 \\
3 & 0.003211 & 0.003208 & 1.0011 \\
4 & 0.002822 & 0.002819 & 1.0011 \\
5 & 0.001637 & 0.001636 & 1.0009 \\
\hline
\end{tabular}
\[
\max \text { error }=0.11 \%
\]

\section*{Table 5-48: Configuration \#7-vertical megacolumn translation minus vertical core translation}
\begin{tabular}{|c|c|c|c|c|c|c|}
\cline { 2 - 7 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn A } & \multicolumn{3}{c|}{ Megacolumn B } \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.0000 & 0.0529 & 0.0528 & 1.0010 \\
2 & 0.0000 & 0.0000 & 1.0000 & 0.0529 & 0.0528 & 1.0010 \\
3 & 0.0000 & 0.0000 & 1.0000 & 0.0302 & 0.0302 & 1.0010 \\
4 & 0.0000 & 0.0000 & 1.0000 & 0.0166 & 0.0166 & 1.0010 \\
5 & 0.0000 & 0.0000 & 1.0000 & 0.0068 & 0.0068 & 1.0011 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{1}{c|}{} & \multicolumn{3}{c|}{ Megacolumn C } & \multicolumn{3}{c|}{ Megacolumn D} \\
\hline \begin{tabular}{c} 
Top of \\
Interval
\end{tabular} & SSAM & Sframe & Ratio & SSAM & Sframe & Ratio \\
\hline 1 & 0.0000 & 0.0000 & 1.0000 & 0.0264 & 0.0264 & 1.0010 \\
2 & 0.0000 & 0.0000 & 1.0000 & 0.0264 & 0.0264 & 1.0010 \\
3 & 0.0000 & 0.0000 & 1.0000 & 0.0151 & 0.0151 & 1.0010 \\
4 & 0.0000 & 0.0000 & 1.0000 & 0.0083 & 0.0083 & 1.0010 \\
5 & 0.0000 & 0.0000 & 1.0000 & 0.0034 & 0.0034 & 1.0011 \\
\hline
\end{tabular}
\(\max\) error \(=0.11 \%\)


Figure 5-7: Configuration \#7 - lateral displacement and interstory drift

\section*{6 CONCLUSIONS}

The SSAM was developed, implemented, and tested. The SSAM was able to predict the existence of points of contraflexure in the deflected shape of configurations involving outriggers, belts, and diagonals, as verified by the space frame model. Such points of contraflexure cannot be predicted with continuum models.

The accuracy of the SSAM was compared against the space frame model. For all configurations that exclude diagonals, the maximum error was \(1 \%\) for linear and nonlinear lateral translations, \(1 \%\) for linear and nonlinear rotations, and \(1 \%\) for vertical translations. Furthermore, the maximum error in stress was \(3 \%\) for the core, \(3 \%\) for the megacolumns, \(1 \%\) for outriggers, and \(12 \%\) for belts. For configurations that included diagonals, the maximum error was \(1 \%\) for linear lateral translations, \(1 \%\) for linear rotations, and \(7 \%\) for vertical translations. Additionally, the maximum error in stress was \(4 \%\) for the core, \(17 \%\) for the megacolumns, \(3 \%\) for the outriggers, \(92 \%\) for the belts, and \(76 \%\) for the diagonals. Thus, the accuracy of the SSAM is very good for translations and rotations, and reasonably good for stress in configurations that exclude diagonals. Stress formulas for configurations that include diagonals need further development.

The speed of execution, data preparation, data extraction, and optimization is much faster with the SSAM than with general space frame programs, both that of Balling (1991) and ADINA. Execution of the SSAM is instantaneous since it only involves 30 DOF's for the generic skyscraper. Execution of the space frame model of the generic skyscraper with 10,776

DOF's on the space frame program from Balling (1991) required about 25 minutes on a computer. Preparation of data for the SSAM spreadsheet on a new skyscraper will take some time. But preparation/extraction of data for general space frame and finite element programs for a skyscraper involving 5668 members and 1877 nodes will take more time. Rapid trial-and-error optimization is possible with the SSAM spreadsheet, but not possible with general space frame and finite element programs. The SSAM appears to be ideal for preliminary skyscraper design and educational purposes for students learning about the behavior and design of modern skyscrapers.

\section*{REFERENCES}

Abergel, D. P., and Smith, B. S. (1983). "Approximate analysis of high-rise structures comprising coupled walls and shear walls." Building and Environment, 18(1), 91-96.

American Society of Civil Engineers (ASCE). (2006). "Minimum design loads for buildings and other structures." ASCE 7-05, New York.

Bakker, M. C. M., Hoenderkamp, J. C. D., and Snijder, H. H. (2003). "Preliminary design of high-rise outrigger braced shear wall structures on flexible foundations." HERON, 48(2), 81-98.

Balling, R. J. (1991). Computer Structural Analysis, BYU Academic Publishing, Provo, UT.

Bozdogan, K. B. (2009). "An approximate method for static and dynamic analyses of symmetric wall-frame buildings." The Structural Design of Tall and Special Buildings, 18(3), 279290.

Bozdogan, K. B., and Ozturk, D. (2009). "An approximate method for lateral stability analysis of wall-frame buildings inculding shear deformations of walls." Indian Academy of Sciences, 35(3), 241-253.

Choi, H. S., Ho, G., Joseph, L., and Mathias, N. (2012). "Outrigger Design for High-Rise Buildings: An output of the CTBUH Outrigger Working Group."

De Llera, J. C. L., and Chopra, A. K. (1995). "A simplified model for analysis and design of asymmetric-plan buildings." Earthquake engineering \& structural dynamics, 24, 21.

Heidebrecht, A. C., and Smith, B. S. (1973). "Approximate analysis of tall wall-frame structures." Journal of the Structural Division, 99(2), 199-220.

Hoenderkamp, J. C. D. (2004). "Shear wall with outrigger trusses on wall and column foundations." The Structural Design of Tall and Special Buildings, 13(1), 73-87.

Hoenderkamp, J. C. D. (2008). "Second outrigger at optimum location on high-rise shear wall." The Structural Design of Tall and Special Buildings, 17(3), 619-634.

Hoenderkamp, J. C. D., and Bakker, M. C. M. (2003). "Analysis of high-rise braced frames with outriggers." The Structural Design of Tall and Special Buildings, 12(4), 335-350.

Hoenderkamp, J. C. D., Kuster, M., and Smith, B. S. (1984). "Generalized method for estimating drift in high-rise structures." Journal of Structural Engineering, 110(7), 1549-1562.

Inc., K. K. E. "Structural Design for High-rise Building."
<http://www4.kke.co.jp/stde/en/consulting/highrise_bldg.html>.

Katz, P., Robertson, L. E., and See, S. (2008). "Case Study: Shangai World Financial Center." CTBUH Journal, 1(2), 10-14.

Kaviani, P., Rahgozar, R., and Saffari, H. (2008). "Approximate analysis of tall buildings using sandwich beam models with variable cross-section." The Structural Design of Tall and Special Buildings, 17(2), 401-418.

Kian, P. S., and Siahaan, F. T. (2001). "The Use of Outrigger and Belt Truss System for HighRise Concrete Buildings." Dimensions of Civil Engineering, 3(1), 6.

Kobayashi, M., Takabatake, H., and Takesako, R. (1995). "A simlified analysis of doubly symmetric tube structures." The Structural Design of Tall Buildings, 4, 137-153.

Kwan, A. K. H. (1994). "Simple method for approximate analysis of framed tube structures." Journal of Structural Engineering, 120(4), 1221-1239.

Lin, L., Pekau, O. A., and Zielinski, Z. A. (1994). "Displacement and natural frequencies of tall building structures by finite story method." Computers \& Structures, 54(1), 1-13.

Mass, D. C., Poon, D., and Xia, J. (2010). "Case Study: Shanghai Tower." CTBUH Journal, 1(2), 12-18.

Nollet, M.-J., and Smith, B. S. (1997). "Stiffened-story wall-frame tall building structure." Computers \& Structures, 66(2-3), 225-240.

Potzta, G., and Kollar, L. P. (2003). "Analysis of building structures by replacement sandwich beams." International Journal of Solids and Structures, 40, 535-553.

Rahgozar, R., and Sharifi, Y. (2009). "An approximate analysis of combined system of framed tube, shear core and belt truss in high-rise buildings." The Structural Design of Tall and Special Buildings, 18(6), 607-624.

Rahgozar, R., Ahmadi, A. R., and Sharifi, Y. (2010). "A simple mathematical model for approximate analysis of tall buildings." Applied Mathematical Modelling, 34(9), 24372451.

Rutenberg, A. (1987). "Lateral load response of belted tall building structures." Engineering Structures, 9(1), 53-67.

Rutenberg, A., and Heidebrecht, A. C. (1975). "Approximate analysis of asymmetric wall-frame structures." Building Science, 10(1), 27-35.

Stafford Smith, B., and Coull, A. (1991). Tall building structures: analysis and design, John Wiley \& Sons, Inc., New York.

Smith, B. S., and Salim, I. (1981). "Parameter Study of Outrigger-Braced Tall Building Structures." Journal of the Structural Division, 107(ST10), 2001-2013.

Takabatake, H. (2012). "A Simplified Analytical Method for High-Rise Buildings."

Taranath, B. S. (2005). Wind and earthquake resistant buildings: sturctural analysis and design, Marcel Dekker, New York.

Toutanji, H. A. (1997). "The effect of foundation flexibility on the interaction between shear walls and frames." Engineering Structures, 19(12), 1036-1042.

Wong, V. (June 2002). "Concrete core detail." <http://www.emporis.com/images/list/building/two-international-finance-centre-hong-kong-china/8>.

Wu, J. R., and Li, Q. S. (2003). "Structural performance of multi-outrigger-braced tall buildings." The Structural Design of Tall and Special Buildings, 12(2), 155-176.

\section*{APPENDIX A. SSAM EXCEL SPREADSHEET (CONFIGURATION \#6)}

The SSAM was executed on an Excel spreadsheet. A typical spreadsheet has five sheets:
1) Properties sheet, 2) Design sheet, 3) Matrices sheet, 4) Lateral sheet, and 6) Stress sheet. An example will follow with Configuration \#6.

Properties Sheet
\begin{tabular}{|l|r|}
\hline Concrete & \\
\hline allowable stress (KPa) & 48000 \\
\hline modulus (KPa) & 43400000 \\
\hline density (KN/m^3) & 21.7 \\
\hline cost (\$/m^3) & 157 \\
\hline Steel & \\
\hline allowable stress (KPa) & 207000 \\
\hline modulus (KPa) & 200000000 \\
\hline density (KN/m^3) & 77 \\
\hline cost (\$/KN) & 70 \\
\hline Weight Data & \\
\hline floor dead load (KPa) & 4.34 \\
\hline floor live load (KPa) & 2.4 \\
\hline cladding weight (KPa) & 1.3 \\
\hline Wind Data & \\
\hline speed (mph) & \\
\hline reference height (m) & 123 \\
\hline exponent alpha & 274 \\
\hline drift allowable & 9.5 \\
\hline Seismic Data & 360 \\
\hline spectral acceleration (g) & \\
\hline ductility factor & 0.2 \\
\hline exponent k & 3 \\
\hline drift allowable & 2 \\
\hline & 50 \\
\hline
\end{tabular}

Stress Sheet```


[^0]:    $\mathrm{n}_{\mathrm{i}}=$ number of stories in interval i (20 for generic skyscraper)
    $h_{i}=$ vertical height of interval i (80m for generic skyscraper)
    $\mathrm{A}_{\mathrm{i}}{ }^{\text {core }}=$ cross-sectional area of the core in interval i
    $\mathrm{A}_{\mathrm{i}}{ }^{\mathrm{colj}}=$ cross-sectional area of megacolumn $j$ in interval i
    $A_{i}^{\text {diagj }}=$ cross-sectional area of diagonal $j$ in interval $i$
    $\mathrm{V}_{\mathrm{i}}^{\text {diag }}=$ volume of all diagonal members in interval i
    $\mathrm{S}_{\mathrm{i}}{ }^{\text {diag }}=$ sine of angle from horizontal for diagonals in interval i
    $\mathrm{L}_{\mathrm{i}}{ }^{\text {diag }}=$ length of diagonals in interval i

