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ABSTRACT

Two-Refinement by Pillowing for Structured
Hexahedral Meshes

J. Bruce Malone
Department of Civil and Environmental Engineering, BYU

Master of Science

A number of methods for adaptation of existing all-hexahedral grids by localized refine-
ment have been developed; however, none ideally fit all refinement needs. This thesis presents
the structure to a method of two-refinement developed for conformal, structured, all-hexahedral
grids that offers flexibility beyond what has been offered to date. The method is fundamentally
based on pillowing pairs of sheets of hexes. This thesis also suggests an implementation of the
method, shows the results of examples refined using it and compares these results to results from
implementing three-refinement on the same examples.

Keywords: hexahedral meshing, pillowing, two refinement, eight refinement, finite element analy-
sis preprocessing, adaptive meshing, mesh improvement
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1 MOTIVATION

1.1 Adaptation of Hexahedral Meshes for Finite Element Analysis

A number of physical problems in physics and engineering may be modelled mathemati-

cally as partial differential equations. The solutions to these governing equations are the continu-

ous functions from which the derivatives are taken [1]. In general, closed-form solutions to these

equations cannot be determined. Instead, numerical techniques are used. They return approximate

evaluations of the continuous-function solutions of these governing equations on a finite domain

of points. These evaluations are the solutions to the numerical approach to solving differential

equations [2].

One numerical method, finite element analysis, was initially developed for use by civil en-

gineers. Finite element analysis relies on a physical problem having been modelled mathematically

with a set of governing differential equations; modelled physically with geometric entities; given

boundary conditions and material properties; and discretized into a mesh of some finite number

of smaller regions—elements—that give the method its name. These elements form the points at

which the solutions to the finite element analysis are taken [3] [4].

While many such elements exist, this thesis will focus on hexahedrons (also referred herein

as hexes) and their two-dimensional counterparts, quadrilaterals (also referred herein as quads).

Hexes are box-shaped elements formed by at least eight nodes at the corners (higher-order hexes
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contain more nodes on the faces, edges and interior, but this distinction is beyond the scope of this

thesis).

1.1.1 Advantages and Challenges of Uniformly Hexahedral Meshes

Hexahedral mesh elements are general three-dimensional elements that may be chosen in

order to produce numerically reliable results from a finite element analysis with relatively low

computational cost. For example, a finite element analysis over a mesh consisting of hexahedral

mesh elements is expected to yield numerically acceptable results with significantly fewer elements

than would be required with a mesh composed of the more popular pyramid-shaped tetrahedral el-

ements [5] [6]. This fewer number of elements is desirable because potentially, it significantly

lessens the processing time during finite element analysis; computational demand from finite ele-

ment analysis increases significantly with the number of elements in the mesh [7].

However, creation of hexahedral meshes is much less automatic than creation of tetrahedral

meshes [5] [8]. Methods for creating and adapting hexahedral meshes are heuristic in nature [9];

hence developing all-encompassing solutions is difficult. The development of two-refinement for

this thesis was likewise a heuristic process.

Mesh element uniformity is desirable. Exploring all reasons for this desirability is beyond

the scope of this thesis. One reason, however, is that not all finite-element solvers can operate

on mixed-element meshes [10]. Moreover, despite controversy over whether hexahedral-based

meshes are always superior to their tetrahedral-based counterparts [11], the numerical results of

finite element analyses over some real physical phenomena are not reliable when performed over a

mesh with tetrahedrons due to a phenomenon called tet-locking [8], as explained in [12]. As hexes
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form a viable alternative [13], this thesis adds to the quest to develop useful tools for generating

and adapting meshes composed entirely of hexahedrons.

1.1.2 Finite Element Analysis Requires a Quality Mesh

In order for hexahedral meshes to give the finite element method reliable results, each

hexahedron must be well-shaped. For example, a hexahedron formed by its eight corner nodes

into the shape of a tetrahedron will lose its computational advantage of being a hexahedron. On

the other hand, perfectly shaped hexahedrons (i.e. cubes) usually cannot be confined adequately

to some geometric shape. Most elements will form some compromise between perfectly-shaped

hexahedrons and poorly shaped ones, leaning as far toward the perfectly-shaped ones as possible.

For example, consider an overlay grid of quads over a circle. An overlay grid is an inde-

pendent mesh of perfectly-shaped elements that is placed to overlay some geometry (Figure 1-2(a)

on page 11) and then adapted to conform to the geometry (Figure 1-2(b) and Figure 1-2(c)—note

that an extra layer of quads was added in order to improve quality) [14]. In the middle of the

circle, the quads can be perfect squares. But on the circle boundary, nodes must be moved in order

to conform to the boundary of the circle, forming more poorly shaped elements. Smoothing then

can be used to adjust all quads, slightly reducing the quality of those nearest the center but overall

increasing the quality of the quads.

Numerous metrics, or measures, exist for determining the quality of shape of a hexahedron.

The metric used by this thesis will be the minimum scaled Jacobian determinant, or simply the
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scaled Jacobian. The following algorithm demonstrates how to calculate the scaled Jacobian given

a hexahedron as input.

S← set of size 8 of scalars in R1;
for Each node, n, of the 8 hexahedron nodes do

V ← set of size three of vectors, V1,V2,V3, in R3;
for Each edge, e of the 3 hexahedron edges sharing n do

Normalize (as a unit vector) the vector from n to its opposite node with respect to e,
and add this normalized vector to V ;

end
Add |V1,V2,V3| to S; [This is the determinant of the scaled Jacobian]

end
return minS;

Figure 1-1: Computing the scaled Jacobian

The values of the scaled Jacobian range from -1 to 1. However, an accepted minimum value

for this metric is typically no less than 0.2; the closer it is to 1, the better the hexahedron [15] [16].

The motivation behind the scaled Jacobian metric is that during finite element analysis “a necessary

and sufficient condition for a valid finite element solution to exist is that the Jacobian determinant

. . . be non-negative at every point in the parametric space” [17]; the shape of the element is an

indicator of how well that parametric space is modelled. A motive of the algorithm proposed by

this thesis is to keep the scaled Jacobian relatively close to 1.

1.1.3 Localized Refinement Helps Adapt a Mesh

In general, an initial mesh will not initially be adequate for reliable numerical results during

a finite element analysis. For example, some regions may critically need accurate approximations

compared to other regions; the required mesh density may be unknown before analysis. In fact,
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the error analysis resulting from finite element analysis will reveal critical areas [18] such as those

of high physical gradient [19]—for example, a high rate of change of stresses—in a region of a

physical model. Such areas may need more elements in order for a finite element analysis to yield

acceptable values.

Likewise, geometric features such as those that are small or having high curvature may

require a finer mesh in order to be captured [20] [21]. A coarse mesh may not yield enough

resolution through nodes to capture these boundary features [22], similar to how a low-resolution

photograph may not correctly capture complex details. Also, a coarse hexahedron may need to be

warped significantly in order to match boundary details. Subdivision of hexes into smaller hexes

may be ideal in order to capture geometry.

The mesh may be adapted—modified—to have more hexes in the critical areas where more

are needed (refinement) or fewer where they are not needed (coarsening). In general, the goal of

adaptation is to produce a mesh with as few elements as possible but yielding an adequate solution

from a finite element analysis in order to optimize computational efficiency during finite element

analysis.

One may simply adapt via refinement the entire mesh to the density of elements needed at

critical locations. However, doing so may significantly yet unnecessarily increase the computation

time of the analysis due to the increased size of the mesh.

Instead, only the critical regions of the mesh may be refined locally [23], leaving the rest

of the mesh alone. This type of refinement is called localized refinement, and it is preferable

to refining the entire mesh because it yields fewer elements. Fewer elements may significantly

decrease computational time during finite element analysis [10].
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For example, consider in the overlay-grid example in Section 1.1.2 a relatively coarse over-

lay grid placed over a circle. In order to help conform to the circle’s boundary, the conforming

quads could be adapted through refinement to give a higher resolution of conforming quads [14].

1.2 Three Refinement May Over-refine

One commonly implemented technique for localized refinement is 3-refinement. After

hexes requiring refinement are selected, this technique divides each hex by three in each of the

three Cardinal directions, forming a total of 27 new hexes.

In addition, an outside layer of hexes, referred to herein as the transition zone, also sub-

divides hexes. This subdivision occurs in a way to maintain conformal connectivity between the

hexes selected for refinement and the rest of the mesh. Conformal in this context means that each

face of each hex shares exactly one face of another hex unless on a geometric boundary. Other-

wise, the mesh connectivity can introduce inaccuracies in the finite element solution [6] (assuming

the finite element software could accept such a mesh; many require conformal meshes [10]). The

transition zone is the challenge to implementing conformal, localized refinement.

Three refinement is robust and well-established, and it can be used to refine unstructured

meshes. Its disadvantage lies in the dramatic 1-to-27 change in hex density. When this large

amount of adaptation is required, three refinement is a working solution. However, when signif-

icantly less adaptation is required, the analyst is left with too many hexes—similar to when the

entire mesh is refined. Also, Edgel [24] shows that some of the commonly-used three-refinement

templates developed by Schneiders contain elements lacking in quality with respect to the scaled

Jacobian.
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The aim of two-refinement is to provide meshers and analysts another tool for localized

mesh refinement—one that will not over-refine when only a slight refinement is required and one

that will provide relatively high-quality elements. With both two- and three-refinement algorithms

at hand, an analyst or mesher has greater control over the localized refinement levels of a hexahe-

dral mesh.

1.3 Two Refinement Produces Fewer Hexes than Three Refinement

Two refinement divides a hex into 8 sub-hexes instead of 27, or less than a third as many

as three-refinement. From this stand point, refining via two-refinement can help keep the compu-

tational cost resulting from refinement, during finite element analysis, to a minimum.

We acknowledge previous work done on conformal two refinement for hexahedral meshes.

The juxtaposition of challenges and advantages given by two-refinement have made for research

by a number of meshing researchers; but none have yet found an all-encompassing solution. While

this thesis also does not give such a solution, it addresses a need that has not previously been

resolved.

Edgel [24] describes a method for two-refinement using templates to modify structured,

hexahedral meshes. While his method may successfully and efficiently be applied to any region of

selected hexes that is convex and carries an even number of hexes in all three directions, his solution

to concavities requires large templates containing many, low-quality elements. His method uses

two refinement zones.

Ebeida et al [25] also developed twin techniques based on two-refinement templates and a

framework developed by Schneiders. These techniques boast the capacity to do two-refinement on

unstructured hexahedral meshes with high-quality hexes, previously not accomplished. Moreover,
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through use of an octree, they allow multiple levels of localized two-refinement to be applied. This

control over the amount of refinement in a localized region will result in an effective subdivision

per direction of 2l+1 where l is the level of localized refinement (l = 1 corresponds to halving each

hex in each direction, for eight hexes). However, these flexible methods are intended for heavy

refinement of an initially coarse mesh: before any localized refinement can be applied, the entire

mesh must be two-refined. Therefore, if the techniques are applied at level l = 1 to some localized

region, the hexes of that region have effectively been subdivided into
(
21+1)3

= 64 hexes instead of

8. For applications where 3-refinement over-refines, these techniques clearly are not the solution.

While the capacity to refine unstructured meshes offers tremendous flexibility with an al-

gorithm, the capacity to refine structured meshes only is not without application. For example,

meshes generated from an overlay grid are inherently structured. This work has been designed to

target the overlay grid method as described in [26].

1.3.1 The Pairing Rule Binds the Size of Transition Zones in Two Refinement

Two refinement methods refine mesh elements in pairs in order to maintain connectivity in

the transition zones [24]. We refer to this requirement as the pairing rule. While the pairing rule

does not bind the shape of the region requested for refinement, it does limit how few hexes may

be used as part of a transition zone. The pairing rule also has limited the scope of this thesis to

structured grids.

By observation, for any uniform refinement method (i.e. a method that subdivides each hex

selected for refinement in one way), at a minimum, each modified face of the hexes selected for

refinement—the uniform refinement zone or ΩURZ—on the surface formed by these hexes must
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touch another hex that is not in ΩURZ, unless it is at a geometric boundary. Let us call these

transition zone hexes not in ΩURZ that share faces with ΩURZ, Ωmin
TZ .

If the mesh elements selected for two-refinement do not satisfy the pairing rule, meaning

that sufficient pairs of hexes cannot be identified from ΩURZ∪Ωmin
TZ (or, equivalently, that Ωmin

TZ

is insufficient for maintaining conformal, all-hexahedral connectivity with the rest of the mesh),

additional hex elements outside of ΩURZ∪Ωmin
TZ will be required.

For example, consider a two-dimensional case with quads instead of hexes (and edges

instead of faces). If a region selected for refinement perfectly satisfies the pairing rule, such as a

2×2 region of quads, as given in Figure 1-3 on page 11, then the minimum number of transition

zone quads required is the number of outside edges (analogous to faces of hexes), or the size of

Ωmin
TZ . However, in Figure 1-4, not only is one transition zone quad necessary for each edge of

ΩURZ, but an additional 2 quads are necessary in the transition zone—a transition zone requiring

quads besides those in Ωmin
TZ . Hence, 6 quads are necessary for refinement. Again, consider Figure

1-5. Besides a transition quad necessary for each of the 6 outside edges, two more are needed in

order to satisfy the pairing rule, for a total of 8 quads—the same number necessary for the 2× 2

case!

Though in two dimensions two-refinement is simple (even if the ΩURZ does not naturally

fit the pairing rule, e.g. n× n quads where n is even), in three dimensions, regions that do not

naturally satisfy the pairing rule (e.g. n× n× n hexes where n is even) do not render themselves

easily solvable. Connectivities through the third dimension encounter obstacles that inhibit an

approach that simply extends the method applied in two dimensions into three dimensions in all

cases.
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These obstacles stem directly from the fact that the newly created nodes at the outside

faces of the original hexes have others nodes they must connect to in the third dimension. In

reviewing Figures 1-3, 1-4 and 1-5, imagine looking straight-on at a region of hexes. On top of

these, immediately outside of the page, is another transition zone of hexes. If the quads drawn

in these figures are the outside faces of a ΩURZ that extends into the page, no known method,

in general, can simply connect the nodes to the transition layer out of the page and maintain a

conformal, all-hexahedral mesh.

1.3.2 What this Thesis Resolves to Contribute

This thesis presents the framework for a class of implementations of conformal two-refinement

on arbitrary structured, all-hexahedral meshes. Moreover, it demonstrates and provides details

about a recommended implementation that is heuristically demonstrated to yield mesh elements of

desirable quality.

The basic framework potentially could be implemented more efficiently using templates.

The framework and its implementation were created as a general approach with such further re-

search in mind. However, such research is beyond the scope of this document.

As given in this document, the basic framework consists of a refinement technique, pillow-

ing, serially applied three times. While this repetition may make the presented algorithm unattrac-

tive from a computational standpoint, the implementation given was designed so that much of the

remaining computational work could, potentially, be programmed to take advantage of parallel

processing. Also, the technique presented may offer flexibility in level of refinement; the refine-

ment technique could be only done once or repeated twice instead of thrice, for example, resulting

in a less-refined mesh.
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(a) Geometry to mesh with overlay
grid

(b) Selecting overlay grid quads (c) Overlay grid conforming to geom-
etry

Figure 1-2: Demonstration of overlay-grid

Figure 1-3: A 2×2 region of quads selected for two refinement (shaded). The bold lines indicate the
original grid.
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Figure 1-4: A 1×1 region of quads selected for two refinement (shaded). The bold lines indicate the
original grid.

Figure 1-5: A 2×1 region of quads selected for two refinement (shaded). The bold lines indicate the
original grid.
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2 OVERVIEW OF ALGORITHM

This chapter demonstrates graphically the structure for doing two-refinement that this the-

sis suggests. It does so through step-by-step figures on an example showing the recommended

implementation for the two-refinement algorithm. Figures in this chapter were created using the

meshing software Cubit developed by Sandia National Laboratories.

2.1 Explanation of Pillowing

Pillowing simply is inserting a sheet, or pillow, of hexes between selected hexes and their

neighboring hexes. This process is effectively accomplished by shrinking the selected hexes—

known as a shrink-set—and connecting the nodes pulled inward to the nodes in their original

positions, as shown in Figure 2-1 on the following page (for simplicity, quads are used instead of

hexes).

A nice property of pillowing is that it conformally retains element uniformity—it will pil-

low a quad mesh with quads and a hex mesh with hexes. A topology operation, pillowing combined

with smoothing generally produces elements of sufficient quality [27].

2.2 Demonstration in Two Dimensions

We first present the two-refinement procedure using a two-dimensional example in order to

facilitate understanding of the algorithm in three dimensions.
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(a) Select elements for refinement (b) Shrink elements (c) Connect nodes pulled inward to
original nodes

Figure 2-1: Process of pillowing

2.2.1 Pillowing in the X1 Direction

We will begin with a few quads selected for refinement from a domain of quads:

Figure 2-2: Two-dimensional example of quads to be refined. The shaded region is the quads selected
for refinement or the Uniform Refinement Zone.

Figure 2-3 on the next page shows how a quality two-dimensional two-refining algorithm

such as the one in Cubit would refine this region. It utilized 95 quads in the transition zone (12
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more than minimally necessary by a generic uniform refinement algorithm as described in Section

1.3.1 on page 8) and produced 279 new quads within the transition zones. The method that will

be presented is less efficient in terms of how many quads it produces, but it will work in the three-

dimensional case, unlike the method used to produce Figure 2-3.

Figure 2-3: Two-dimensional example two-refined by Cubit

Let us define the X1 direction as going from left to right and the X2 direction from top to

bottom. Going from the left of the region to the right, we will select two columns of quads at a

time and pillow them. Figure 2-4 on the next page shows the first pair of columns selected for

refinement based on the ΩURZ, or quads selected for refinement. Notice that the region selected for

pillowing extends beyond the ΩURZ by one quad in the positive and negative X2 direction.

Figure 2-5 on page 17 shows the second pair of columns of quads selected. Note that

in order again to extend the region selected for pillowing beyond the ΩURZ by one quad in the

positive and negative X2 directions, a rectangular, or convex, set of quads was chosen despite the
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X1

X2

Figure 2-4: First pair of columns of quads selected in the X1 direction

concavities of the ΩURZ in these two columns. Figure 2-6 on the next page shows pillowing in the

X1 direction completed.

2.2.2 Pillowing in the X2 Direction

We now proceed with the same procedure in the X2 direction, as follows.

Figure 2-7 on page 18 shows the first pair of columns pillowed in the X2 direction, and

Figure 2-8 shows the first two pairs of columns pillowed in the X2 direction. Note that only all

ΩURZ quads modified by pillowing in the X1 direction have been added to the set of ΩURZ quads.

Figure 2-9 on page 19 shows the finished product.

Note on pillowing through a transition zone Note the zoom-in of Figures 2-10 and 2-11 on

page 20. In order to pillow some regions in the X2 direction, quads resulting from a pillow in the
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X1

X2

Figure 2-5: Two pairs of columns refined in the X1 direction

X1

X2

Figure 2-6: All columns refined in the X1 direction
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X1

X2

Figure 2-7: First pair of columns refined in the X2 direction

X1

X2

Figure 2-8: Two pairs of columns refined in the X2 direction
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Figure 2-9: All pairs of columns refined in the X1 and X2 directions

X1 direction had to be included in the shrink set. Ironically, this necessity produced quads with

more elements than those being refined; that is, some of the original quads ended up with 5 or even

7—nearly double the target refinement—instead of 4.

Note on number of hexes refined

In counting quads from the final product of the current example, one will count 111 quads

selected and 99 original quads used for the transition zone, or four more than were used in pro-

ducing Figure 2-3. Other algorithms for 2-D meshes certainly could accomplish this refinement
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Figure 2-10: Heavy refinement zone in 2-D with 5 quads

Figure 2-11: Heavy refinement zone in 2-D with 7 quads

without the use of the heavy transition-zone hexes; but this algorithm is designed for three dimen-

sions.

In this example, of the 99 original transition zone hexes, 2 (2%) became 2 hexes; 40 (41%)

became 3 hexes; 35 (35%) became 4 hexes; 20 (20%) became 5 hexes; and 2 (2%) became 7 hexes,

for a total of 279 new hexes in the transition zone, or 78 more (26.4% more) than created for Figure

2-3. In other words, just over a fifth of the original transition zone hexes became heavy transition
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zone regions. Other examples would produce different results, but this example suggests that the

algorithm used is prone to producing heavy transition zone regions as a minority compared to the

rest of the transition zones. Though such transitions are not ideal, they are unavoidable using the

pillowing approach, and as-is, they are acceptable.

2.3 Implementing in Three Directions

Let us consider Figure 2-9 on page 19 such that the X3 direction is into the page. Shown

is a cross-section taken from a domain of hexes that has been refined in two directions. Selecting

the sheet of hexes in the current view and an identical sheet immediately behind it, then pillowing

the appropriate ΩURZ, would result in Figure 2-12 on the following page, which is then shown in

Figure 2-13 on page 23 after smoothing in order to visually indicate the quality of the resulting

grid in terms of both element shape and gradient of element sizes. Note that the selection criteria

differs from that used in the X2 direction: all new hexes from previous refinement are included as

part of ΩURZ, whereas in the X2 direction only the hexes replacing the original ΩURZ were included

in ΩURZ.

If, instead, Figure 2-3 on page 15 were viewed as a cross-section taken from a domain of

hexes, the hex connectivity with hexes in the third dimension would not be conformal. However,

using the pillowing approach shown in the previous section resulting in Figure 2-9, the hexahedral

mesh remains conformal and is ready for refinement in the third direction.

2.3.1 Pillowing in the X1 Direction

Using a simple geometry (the green volume in the domain of hexes of Figure 2-14 on

page 24), we will begin at the origin (least-positive hex, of the entire domain, with respect to the
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Figure 2-12: Pillowing the current sheet in the X3 direction
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Figure 2-13: Pillowing the current sheet in the X3 direction, smoothed

coordinate axes) and work our way down the X1 direction, grabbing two sheets of hexes at a time.

The first pair of sheets having hexes selected for refinement is given by Figure 2-15 on page 25.

The second pair of sheets and corresponding shrink-set are given by Figure 2-16, and the final

two are given by Figures 2-17 and 2-18 on pages 25–26. Figure 2-19 slightly shrinks the hexes of

the first slice-pair in the X1 direction in order to show results after pillowing. The shrink sets are
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X1 X2

X3

Figure 2-14: Initial example region to be pillowed in three directions

generally composed of all hexes immediately surrounding the volume in the X2 and X3 directions.

However, note that in all pictures of the shrink-set, each slice-pair of hexes has uniform shape in

the X1 direction. For example, in Figure 2-16(c), the size of the volume on the rear slice of the

shrink-set is smaller than the size of the volume on the front slice, yet the shape of the rear slice

matches the front slice because additional hexes outside the volume are selected. In this case, these

extra hexes are necessary so that the uniform refinement zone is completely surrounded within the

slice-pair by hexes; otherwise, pillowing will produce unwanted hexes within the ΩURZ. This

requirement for additional hexes in order to make both sheets congruent is also necessary in order

to prevent the production of low-quality hexes from concavities orthogonal to the direction that

determines the sheets of hexes (currently X1), as shown in Figure 3-1 on page 34.

2.3.2 Pillowing in the X2 Direction

Pillowing in the X2 direction is identical to pillowing in the X1 direction except that the

relative directions change. During pillowing in the X2 direction, the hexes that replace those in the

original ΩURZ are added to the ΩURZ, and those that replace those hexes in the transition zones
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(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-15: First slice-pair in X1 direction

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-16: Second slice-pair in X1 direction

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-17: Third slice-pair in X1 direction
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(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-18: Fourth slice-pair in X1 direction

Figure 2-19: First slice-pair in X1 direction after pillowing

are simply considered part of the rest of the mesh. The sequence of sets of hexes gathered for

pillowing are illustrated in order by Figures 2-20, 2-21 and 2-22 on the next page.

2.3.3 Pillowing in the X3 Direction

Pillowing in the X3 direction is a little different than pillowing in the X2 direction. All hexes

created in the X1 and X2 directions—regardless of if they were in the ΩURZ or if they were in the

transition zone—are counted as part of the ΩURZ. Of course, the relative directions also change.
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(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-20: First slice-pair in X2 direction

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-21: Second slice-pair in X2 direction

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-22: Third slice-pair in X2 direction
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As shown in Chapter 3, this change in procedure increases mesh quality, though it does create more

hexes than would following the procedure as given for the X2 direction.

Figures 2-23 to 2-25 on pages 28–29 show the sequence of gathering shrink-sets for the X3

direction. Upon shrinking, the algorithm is done, though the user likely will want to smooth the

resulting mesh (Figure 2-26 on the next page).

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-23: First slice-pair in X3 direction

(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-24: Second slice-pair in X3 direction
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(a) Front of slice-pair (b) Rear of slice-pair (c) Shrink set

Figure 2-25: Third slice-pair in X3 direction

Figure 2-26: The finished mesh. The cut-away shown includes the lowest-quality hex (by the scaled-
Jacobian metric), outlined in yellow.
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Comparison to two dimensions In two dimensions, a 2× n region of hexes was selected for

pillowing; this region may be thought of as two identically-shaped, adjacent columns of hexes, and

they formed a rectangularly-shaped region. In three directions, however, two sheets instead were

selected. While again both sheets were identically-shaped, they did not need to be rectangular (i.e.

convex): concavities parallel to the direction of travel were permitted.

2.4 Recommended Algorithm

The algorithm as shown is open to a variety of implementations. A logical sequence of

primary operations is shown in Figure 2-27. The diagram refers to traversing over hexes. This idea

is simply to take a hex and designate opposite pairs of faces as corresponding to directions X1, X2

and X3, respectively. Traversing in some direction is to get the face of a current hex corresponding

to that direction, to grab the hex sharing that face and to change the current hex to it.
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Get input
hexes

Loop d = 1,2,3

Find starting hex
for traversing mesh

in direction Xd

Traverse in Xd direction
in order to discretize
the domain of hexes
into pairs of sheets

For each pair of
sheets of hexes,

obtain shrink
set based on

hexes selected for
refinement (may be

done in parallel)

Prepare each shrink
set for pillowing (may

be done in parallel)

Pillow each shrink
set (may be

done in parallel)

Update lists of hexes
representing those

selected for refinement
or transition zones

Output hexes

aft
er

loop

Figure 2-27: Flow chart of algorithm
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3 DERIVATION OF ALGORITHM

3.1 Alternatives

The basic structure of the algorithm is to pillow consecutive pairs of sheets of hexes cho-

sen for refinement in each of three directions. However, finding an implementation employed in

selecting shrink sets offers numerous alternatives.

A class of these alternatives deals with how the algorithm should treat hexes that replace

the shrink set. In particular: the shrink sets consist of both the hexes selected for refinement and an

outer transition zone or two. These hexes all may be replaced by smaller hexes. While the hexes

replacing those originally chosen for refinement may certainly be classified as hexes chosen for

refinement, how to classify those hexes replacing the transition zones is ambiguous.

These alternatives inherently apply only to the algorithm running in the second and third

directions. In order to choose the implementation chosen for this thesis, a number of alterna-

tives were considered and tested using Cubit. They were tried on a few sample models and then

smoothed using Cubit’s mean ratio smoother that optimizes the hexes of a mesh with respect to a

metric other than the scaled Jacobian metric; however, the testing assumed that the scaled Jacobian

would typically follow the metric of the mean ratio smoother. In reality, the scaled Jacobian would

sometimes decrease after smoothing.
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The alternatives chosen for this thesis are as follows. The referenced figures indicate the

respective shrink-sets that were each taken from identical sheets of hexes and hexes chosen for

refinement during pillowing in the third direction.

Alternative A The hexes replacing the transition zone hexes are not considered with those chosen

for refinement. Also, with respect to the domain of two sheets of hexes from which the

shrink set is taken, all hexes that are node-connected with those chosen for refinement make

up the transition zone; however, traversing in the direction perpendicular to the sheets, each

shrink-set hex is not necessarily face-connected to another hex in the domain of two sheets

of hexes. For an example, see Figure 3-1 on the following page.

Alternative B The hexes replacing the transition zone hexes are not considered with those chosen

for refinement. Also, with respect to the domain of two sheets of hexes from which the

shrink set is taken, all hexes that are node-connected with those chosen for refinement make

up the transition zone. Furthermore, traversing in the direction perpendicular to the sheets,

each shrink-set hex is face-connected to another hex in the domain of two sheets of hexes.

For an example, see Figure 3-2 on the next page.

Alternative C The hexes replacing the transition zone hexes are considered with those chosen for

refinement. In effect, a second transition zone is used. With respect to the domain of two

sheets of hexes, all hexes that are node-connected with those chosen for refinement make up

the transition zone. Furthermore, traversing in the direction perpendicular to the sheets, each

shrink-set hex is face-connected to another hex in the domain of two sheets of hexes. For an

example, see Figure 3-3 on page 35.
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Figure 3-1: Shrink-set selected by Alternative A

Figure 3-2: Shrink-set selected by Alternative B

Alternative D When traversing in the second direction, Alternative B is followed. When travers-

ing in the third direction, Alternative C is followed. This is the alternative chosen for the

presentation of this thesis.

3.2 Comparison of Approaches on Test Models

In choosing an appropriate implementation, two criteria were considered: the minimum

scaled Jacobian hex quality after running the algorithm and the number of hexes generated. We
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Figure 3-3: Shrink-set selected by Alternative C

first searched for an implementation that generates high-valued minimum scaled Jacobian hexes

and as a second priority searched for an algorithm that would generate the fewest hexes.

The approach for selecting the appropriate implementation alternative, A, B, C or D, was

entirely heuristic. Simple test regions of hexes were developed, as shown in Figures 3-4 to 3-8

on pages 37–39. The four alternatives were manually applied to each, using Cubit. Results from

the testing are tabulated in Table 3-1 on page 38. The results from using Cubit’s three-refinement

feature are also included for comparison.

In considering these results, note the following:

• No one alternative provided the largest minimum scaled Jacobian every time, before or after

smoothing.

• Before smoothing, Alternative B, Alternative D and three refinement did not generate negative-

Jacobian hexes.

• Before smoothing, only Alternative D produced a minimum scaled Jacobian greater than

three-refinement every time.
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• After smoothing, only Alternative D produced a minimum scaled Jacobian greater than

three-refinement every time.

• Before or after smoothing, Alternative D produced the largest minimum scaled Jacobian

for the experiments Simple Cube and Stair Step, only. Alternative B produced the largest

minimum scaled Jacobian for the experiment Chopped-corner, odd. Alternative C produced

the largest minimum scaled Jacobian for the remaining two experiments.

• The two-transition zone alternatives, C and D, produced more hexes than the one-transition

zone alternatives, A and B. However, Alternative D produced fewer than Alternative C.

Alternative D was chosen because it reliably produced relatively high-quality hexes. Fur-

thermore, the number of hexes it produced was a compromise between Alternative B and Alterna-

tive C.
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Figure 3-4: Simple Cube: A simple, convex test region for testing two-refinement implementations

Figure 3-5: Stair-step: A test region for two refinement featuring concavity in one direction

Figure 3-6: Triple-axis: A test region with multiple concavities in one direction
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Table 3-1: Results from alternatives
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Simple
Cube

Alt. A 1

8

64 216 0.4243 0.5141
Alt. B 1 64 216 0.4243 0.5141
Alt. C 2 64 288 0.3959 0.5249
Alt. D 2 64 264 0.3959 0.5536
3-ref 1 216 384 0.3076 0.2839

Stair
Step

Alt. A 1

48

384 694 0.1489 0.4266
Alt. B 1 384 696 0.3919 0.3703
Alt. C 2 384 988 -0.2475 0.4813
Alt. D 2 384 864 0.3919 0.5169
3-ref 1 1296 1248 0.2365 0.4316

Triple
Axis

Alt. A 1

32

256 622 0.1489 0.4091
Alt. B 1 256 630 0.3919 0.3472
Alt. C 2 256 972 -0.2475 0.4446
Alt. D 2 256 808 0.3919 0.3652
3-ref 1 864 1056 0.1399 0.2880

Chopped
Corner,
Odd

Alt. A 1

189

1512 1575 0.0000 0.4242
Alt. B 1 1512 1575 0.2484 0.4556
Alt. C 2 1512 1991 0.3957 0.4394
Alt. D 2 1512 1835 0.2838 0.4121
3-ref 1 5103 2916 0.1159 0.3382

Chopped
Corner,
Even

Alt. A 1

448

3584 2644 -0.0710 0.3202
Alt. B 1 3584 2644 0.1106 0.3715
Alt. C 2 3584 3348 0.3959 0.2547
Alt. D 2 3584 3096 0.2112 0.3867
3-ref 1 3584 5040 0.1159 0.3098
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Figure 3-7: Chopped-corner, odd: A test region with a concavity in two directions and an odd number
of hexes

Figure 3-8: Chopped-corner, even: A test region with a concavity in two directions and an even
number of hexes
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4 EXAMPLES AND CONCLUSIONS

We coded the algorithm described in Chapter 2 into Cubit and ran test models through

it and Cubit’s three-refining algorithm in order to compare results and ensure that the algorithm

proposed by this thesis works as predicted. Parallel processing was not utilized in our code.

The uniform refinement zones of two test models are given by Figures 4-1 and 4-2 on

pages 41–42.

Results from testing are tabulated in Table 4-1 on page 44. From the table, the following

remarks may be made:

• Both this thesis’ two-refinement algorithm and Cubit’s three-refinement algorithm produced

topologically conformal meshes that could be smoothed into better-quality meshes.

• Before and after smoothing, the two-refinement implementation yielded a higher quality

mesh.

• The two-refinement algorithm yielded fewer elements by greater than a factor of 2.

In other words, the two-refinement algorithm proposed by this thesis compares well with

the current available option for refinement in Cubit. Because it yields relatively high-quality re-

sults and produces relatively few hexes, it meets the objectives proposed by this thesis. To our

knowledge, no other two-refinement algorithm has demonstrated as effectively the ability to han-

dle concavities in structured meshes while maintaining relatively-low refinement density.
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Figure 4-1: Test case A: with concavities on corner

Cutaway sections after running each refinement method and smoothing are illustrated in

Figures 4-3 to 4-6. They show that the transition from refined hexes to unrefined hexes is smoother

in the two-refinement case because the change in hex-density is lower.

The framework of the algorithm provides the basis for further research. Examples of such

research include more efficient methods of implementation through templates and handling the

case of unstructured meshes. The current algorithm is intended to further meshing research involv-

ing overlay-grids by helping adapt them to geometries.
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Figure 4-2: Test case B: with concavities all over

Figure 4-3: Cutaway from test case A after applying 3-refinement
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Figure 4-4: Cutaway from test case A after applying 2-refinement

Figure 4-5: Cutaway from test case B after applying 3-refinement

Figure 4-6: Cutaway from test case B after applying 2-refinement
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Table 4-1: Results of tests

Test
A B

Thesis
algorithm
(2-refinement)

Increase in number of hexes 6432 26472
Scaled Jacobian before

smoothing
0.2182 0.0000

Scaled Jacobian after
smoothing

0.4999 0.3810

Smoothing methods
employed

mean ratio
untangle,

mean ratio

Cubit
algorithm
(3-refinement)

Increase in number of hexes 17236 72444
Scaled Jacobian before

smoothing
-0.07213 -0.07230

Scaled Jacobian after
smoothing

0.2981 0.2659

Smoothing methods
employed

untangle,
mean ratio

untangle,
mean ratio,
condition
number
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