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ABSTRACT 

Crash Prediction Modeling for Curved Segments of Rural  
Two-Lane Two-Way Highways in Utah 

 
Casey Scott Knecht 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
 This thesis contains the results of the development of crash prediction models for curved 
segments of rural two-lane two-way highways in the state of Utah.  The modeling effort included 
the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as 
the development of Utah-specific models developed using negative binomial regression.  The 
data for these models came from randomly sampled curved segments in Utah, with crash data 
coming from years 2008-2012.  The total number of randomly sampled curved segments was 
1,495.   
 
 The HSM predictive model for rural two-lane two-way highways consists of a safety 
performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific 
calibration factor.  For this research, two sample periods were used: a three-year period from 
2010 to 2012 and a five-year period from 2008 to 2012.  The calibration factor for the HSM 
predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year 
period.  These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. 
 
 A negative binomial model was used to develop Utah-specific crash prediction models 
based on both the three-year and five-year sample periods.  A backward stepwise regression 
technique was used to isolate the variables that would significantly affect highway safety.  The 
independent variables used for negative binomial regression included the same set of variables 
used in the HSM predictive model along with other variables such as speed limit and truck traffic 
that were considered to have a significant effect on potential crash occurrence.  The significant 
variables at the 95 percent confidence level were found to be average annual daily traffic, 
segment length, total truck percentage, and curve radius.  The main benefit of the Utah-specific 
crash prediction models is that they provide a reasonable level of accuracy for crash prediction 
yet only require four variables, thus requiring much less effort in data collection compared to 
using the HSM predictive model.  
 

 

 

 

 
Keywords: Highway Safety Manual, safety performance functions, crash modification factors, 
negative binomial, empirical Bayes, safety, horizontal curvature 
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1 INTRODUCTION 

Highway safety is a top priority for everyone.  It is important for the governmental 

agencies that plan, construct, and maintain the highways.  It is also important to everyone who 

uses them.  Since the economy of the nation is significantly dependent on an efficient 

transportation system, it could be argued that highway safety affects everyone, as a crash on a 

highway does not only affect the people involved in the crash, but also others who are affected 

by the ensuing delays.  Understanding and being able to identify the reasons behind crashes and 

resolving potential causes are paramount.  To do so, researchers have developed crash prediction 

models that are based on historical crash data to estimate the number of future crashes under 

prevailing conditions that can be used to evaluate the contributions of physical attributes to crash 

occurrence.   

One of the procedures for crash prediction modeling is using a safety performance 

function (SPF). SPFs are regression models that estimate average crash frequency for a specific 

site type as a function of annual average daily traffic (AADT) and segment length (AASHTO 

2010, Lord and Persaud 2004).  SPFs can be used for predicting the level of safety of a roadway 

by estimating the number of crashes that might occur given prevailing roadway conditions.  The 

Highway Safety Manual (HSM), which is published by the American Association of State 

Highway and Transportation Officials (AASHTO), contains an 18-step method for predicting 

average crash frequencies on rural two-way two-lane highways (AASHTO 2010).  The full 

1 



process is referred to as the Predictive Method.  Within the Predictive Method are predictive 

models that use SPFs along with other factors to predict the number of crashes on a given 

roadway segment.  The SPFs in the HSM were created based on data from Minnesota, 

Washington, Michigan, Texas, and California.  The result is not necessarily a nationwide average 

crash prediction model; rather, it is an average crash prediction model based on the five states 

from which the data were collected.  Thus, the predictive model requires a calibration factor that 

adjusts the SPF for local conditions.   

 Previous research (Saito et al. 2011) developed calibration factors specific to the state of 

Utah, for the Utah Department of Transportation (UDOT).  The calibration factors that were 

developed were specific to tangent segments of two-lane two-way rural highways in Utah 

because at the time of their research, no data were available for horizontal curvature.  Since that 

research, UDOT has performed an inventory of all highway curvature within the state of Utah as 

part of its Light Detection and Ranging (LiDAR) asset management program.  With this 

additional data, UDOT is desirous to calibrate the HSM predictive model specifically for curved 

segments of two-lane two-way rural highways in Utah.  Similarly, UDOT has requested the 

creation of Utah-specific crash prediction models for two-lane two-way highways exclusive of 

the HSM predictive model.   

This chapter presents the purpose and need for this research as well as the organization of 

this report.   

1.1 Purpose and Need 

The purpose of this research is to develop crash prediction models for curved segments of 

rural two-lane two-way highways in Utah using historical crash data and facility data recently 

collected as part of UDOT’s LiDAR asset management program.  This will be accomplished by 
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calibrating the HSM crash prediction model for rural two-lane two-way highways as well as by 

creating Utah-specific models.  The crash data come from years 2008-2012, and were assigned to 

two data groups: a three-year dataset from years 2010-2012, and also the full five-year dataset.  

These models allow UDOT to better understand the way highway curvature affects crash 

occurrences.  The models will identify which factors play the largest role in crash prediction.  

With this information, UDOT can focus its efforts on the improvements that will make the most 

difference in safety.   

The need for this research comes from the risk that is present every time someone drives 

an automobile.  Operating an automobile is inherently dangerous and is something to which most 

people do not give a second thought.  For the government agencies that are charged with 

designing, building, and maintaining highways, safety is a top priority.  The most important 

reason to put safety first is the value of human life.  Fatalities from crashes on U.S. highways are 

far too common.  In 2012, there were 33,561 crash-related fatalities in the U.S., 200 of which 

were in Utah (NHTSA 2013).  That is one death nearly every 15 minutes in the U.S. because of a 

crash.  In Utah, crashes on rural roads are 3.3 times more likely to result in a death than crashes 

on urban roads (UDOT 2013).  If an improvement can be made that saves even one life, it is 

worth it.  The main obstacle to improvements that many government agencies face is the lack of 

funding.  Many projects and improvements are shelved due to insufficient funds.  With crash 

prediction modeling, agencies can focus on the most cost-effective measures to improve highway 

safety.   

1.2 Report Organization 

This chapter presented an overview of the report along with a stated purpose and need for 

this research.  Chapter 2 presents a literature review of topics related to this research.  Chapter 3 
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discusses the data preparation necessary for accurate and complete modeling, and Chapter 4 

addresses the methodology for crash prediction modeling.  Chapter 5 presents and evaluates the 

results of the modeling effort, followed by Chapter 6 which contains conclusions and 

recommended use of models and further research needs.  
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2 LITERATURE REVIEW 

This literature review contains topics related to highway geometry and safety as well as 

the acquisition and analysis of data, including LiDAR, highway curvature, SPFs, CMFs, 

calibration factors, and statistical methods. 

2.1 Light Detection and Ranging (LiDAR) 

LiDAR data are well-suited for transportation applications.  LiDAR is especially useful 

when combined with geographic information system (GIS) technology to determine accurate 3D 

surface representations and characteristics (Pradhan and Rasdorf 2009). 

Using LiDAR technology to inventory highway facilities is a practice that many 

government agencies and private companies are incorporating as one of their tools for asset 

management (Ellsworth 2013).  Manual surveying and observation used to be the only methods 

available until aerial photography progressed to a point such that horizontal curves and lane 

widths could be measured with relative ease directly from the imagery.  Digital elevation models 

(DEM) created from aerial photographs and satellite imagery have become widely available and 

they are generally accurate to +/- 7 meters (Rasdorf et al. 2004).   

LiDAR is capable of providing information at high spatial resolutions and accuracies.  

Pradhan and Rasdorf (2009) discussed the accuracy of LiDAR data, and in 1999, LiDAR data 

were found to be accurate to +/- 15 centimeters.  Figure 2-1 shows a sample LiDAR capture 
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which exemplifies the accuracy level of LiDAR compared to the image captured by Roadview 

Explorer.  

Figure 2-1:  LiDAR Capture (Ellsworth 2013) 

Many transportation agencies are utilizing mobile vehicles to collect a wide variety of 

asset data (Findley et al. 2013).  In 2011, UDOT commenced a project that would eventually 

collect highway infrastructure data for every state road in Utah using LiDAR.  The data have an 

average accuracy of +/-3 centimeters (Ellsworth 2013).   

As the technology improves and the machinery becomes more sophisticated, accuracy 

naturally improves with it.  LiDAR employs a significantly higher concentration of data points 
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than surveying or DEM (Findley et al. 2012).  Thus less interpolation is required and the points 

create a redundancy to reduce error.   

LiDAR data are an excellent supplement to existing highway data inventories as they 

provide a validation of existing data (Findley et al. 2012).  And as previously explained the 

accuracy of asset data can greatly improve as its technology advances.   

2.2 Highway Curvature 

 Highway curvature will play an important role in this research.  A previous study by 

Saito et al. (2011) focused on straight segments because curvature data were not available.  

However, because of the availability of curvature data from UDOT’s LiDAR project, this 

research was able to study the effect of horizontal and vertical alignment on SPFs.   

Curves can be found on almost every highway in the U.S.  They require careful design 

and implementation to maintain a high level of safety.  Yet even with the extra precautions taken, 

approximately 25 percent of all fatal crashes in the United States in 2002 occurred on horizontal 

curves (Khan et al. 2012).  This does not include crashes that occurred on vertical curve 

segments.   Previous research has identified curvature as one of the most significant predictors of 

crashes (Easa and You 2009, Lord et al. 2010). 

Curves can be very different in appearance and design.  There are horizontal curves, 

vertical curves, and curves that are both horizontal and vertical.  For horizontal curves, the most 

apparent distinguishing factor is how sharp the curve is.  Sharpness is really a measure of radius 

or curvature.  As expected, there are more crashes on sharper curves, yet that is not the only 

factor.  Narrower curve width, lack of spiral transitions, and increased superelevation deficiency 

all contribute to higher crash rates on curves (Zegeer et al. 1992).  Approximately 70 percent of 

curve-related fatal crashes were single-vehicle crashes in which the vehicle left the roadway and 
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struck a fixed object or overturned (Srinivasan et al. 2009).  Curves are inherently more 

dangerous than straight sections because drivers are required to maneuver rather than simply 

maintain their course.   

In some studies, road segments must have a minimum degree of curvature to be classified 

as a curve.  Khan et al. (2012) determined that 3.45° was a good break point for what segments 

behaved like straight sections versus curved sections.  Segments with less than 3.45° curvature 

behaved similarly to straight sections.   

Determining segmentation of highway curves can prove difficult as well.  Srinivasan et 

al. (2009) used global positioning system (GPS) coordinates to track horizontal alignments.  The 

data were then used to determine where tangents, arcs, and spirals began and ended. 

All else being equal, higher traffic volumes and longer curves were also associated with 

significantly higher number of curve-related crashes. Ranges of crash reductions for horizontal 

curves improvements were determined for flattening curves, widening lanes, widening paved 

shoulders, adding unpaved shoulders, adding a spiral transition, and improving superelevation 

(Zegeer et al. 1992). 

 There are several factors that can affect safety on curves including signage, pavement 

markings, and roadside hazards (Labi 2006, Zegeer et al. 1992, Khan et al. 2012).  In a study on 

rural two-lane roads in Indiana, Labi (2006) found that many of the roads observed had 

deficiencies in signage and markings.  Also cited in the study was a sobering statistic:  the death 

rate for motorists on rural roads was more than 2.5 times the rate for driving on all other roads.  

Any remediation or added measure of safety that reduces that number of crashes would be a 

move in the right direction.   
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When looking at all factors that can affect safety, some have been shown to cause little if 

any change.  For highway segments with a degree of curvature greater than 3.45, the use of 

advisory signs is not a significant factor (Khan et al. 2012).  So on sharper curves, other 

influencing factors must take over.  Hauer (1999) discarded lane width as a factor, specifically 

11-foot versus 12-foot lanes.  It would seem that a larger lane would be safer, but in the research 

presented by Hauer, there were more crashes in the 12-foot lanes than the 11-foot lanes.   

All of this information shows that modeling crashes involves various factors.  The most 

important of these factors is the human factor which is very difficult to quantify and describe.  

The best thing that can be done to remedy this is to collect more data and create jurisdiction-

specific calibrations of crash prediction models. 

2.3 Safety Performance Functions (SPFs) 

 SPFs are regression models that estimate average crash frequency for a specific site type 

as a function of AADT and segment length (AASHTO 2010, Lord and Persaud 2004).  SPFs 

developed in a specific jurisdiction or on a general level can be recalibrated for a different 

jurisdiction.  The HSM contains SPFs and there are documented calibrations that have already 

been performed (Fitzpatrick et al. 2008). 

 The HSM contains an SPF for rural two-lane two-way road segments as shown in 

Equation 2-1. 

 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 365 × 10−6 × 𝑒𝑒−0.312 (2-1) 

 

 where,  Nspf  =  number of predicted annual crashes, 
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 AADT  =  average annual daily traffic, and  

 L  =  segment length (mi). 

 

 This model assumes that the annual number of predicted crashes is directly proportional 

to the amount of vehicles that travel through the highway segment.  By converting AADT to an 

annual value (multiplying by 365) and changing the order of magnitude (multiplying by 10-6), 

the annual number of predicted crashes becomes million vehicles miles traveled (VMT), which is 

used as a surrogate of exposure.   

 The HSM was released in 2010 after much research and preparation.  Consequently, very 

few studies have been published on the HSM crash prediction models for rural two-lane two-way 

highways since its publication.  In 2011, a study was performed on calibrating the HSM to 

predict total crashes on highways in Oregon (Xie et al. 2011).  In this particular study, the 

guidelines for calibration set forth in the HSM were followed.  The study mentioned specifically 

the difficulty in preparing the data set and the local adjustments made such as adjusting sample 

sizes for underrepresented facility types.  The target number of 100 crashes per year could not be 

achieved at low-volume intersections.  The study shows that sample size estimation procedures 

were applied to determine how many crashes could reasonably be expected, and then the target 

number of crashes was modified.  Also, some minor road AADT values were difficult to come 

by.  In certain regions, the locally maintained roads carried more traffic than the state highways.  

Because of this, a model was created to estimate AADT on rural highways.  The model used 

variables including population, income, and distance from freeway, along with geometric design 

information.  These variables allowed the AADT to be estimated in a manner consistent with the 

rest of the state highway system. 
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 Any number of variables can be used in a model.  The key is choosing the variables that 

are most appropriate and affect the SPF the most.  Data collection costs increase as the number 

of variables increases.  The HSM model (AASHTO 2010) uses several variables for rural two-

lane two-way highways including lane and shoulder widths, curvature, driveway density, and 

roadside hazards.  There are certain base conditions that the HSM lays out such as 12-foot lanes, 

six-foot paved shoulders, five driveways per mile, a roadside hazard rating of three, and an 

absence of curvature, rumble strips, passing lanes, two-way left-turn lanes (TWLTL), lighting, 

and automated speed enforcement.  Deviations from this can still be modeled with crash 

modification factors (CMFs) which are multiplied to the number of predicted annual crashes 

found by the base crash prediction model.  The HSM specifies that SPFs should incorporate 

traffic volume and crash frequency, while geometric design and traffic control features should be 

incorporated through CMFs. 

 SPFs tend to be simplistic because they often contain predictive rather than actual causal 

factors (Lord and Persaud 2004).  As described above, causal factors including human errors are 

very difficult to model.  Hence there is a need to adjust SPFs by way of CMFs, which will be 

discussed next.   

2.4 Crash Modification Factors (CMFs) 

 CMFs represent the relative change in crash frequency due to a change in one specific 

condition, estimating the effect of a particular geometric design or traffic control or the 

effectiveness of a particular treatment or condition (AASHTO 2010).  CMFs were originally 

referred to as Accident Modification Factors (AMFs), but were updated in the final version of the 

HSM to be CMFs.  As such, CMF will be used exclusively in this thesis.  CMFs are often 
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preferred by transportation safety analysts because they allow base-line models to be recalibrated 

for different jurisdictions.   

 For rural two-lane two-way highway segments, the HSM model has CMFs for 12 design 

and control features:  lane width, shoulder width and type, horizontal curve length and radius, 

horizontal curve superelevation, grade, driveway density, centerline rumble strips, passing lanes, 

two-way left-turn lanes, roadside design, lighting, and automatic speed enforcement (AASHTO 

2010).   

 CMFs are developed with two variables: location and time.  By keeping time constant, a 

cross-sectional analysis can be performed.  Keeping location constant will render a before-after 

analysis (Gross et al. 2010).  For example, a study on similar roads in California and Texas at the 

same time can be classified as a cross-sectional analysis.  If the road in California is observed 

this year and compared to same road last year, it can be classified as a before-after analysis.  

Research from Gross et al. (2010) states that before-after analyses are preferred to cross-sectional 

analyses because an actual change can be observed.   

In many instances, multiple CMFs can be used (Gross et al. 2010).  Care must be taken, 

however, if two or more CMFs are used simultaneously because their effect may be compounded 

if there is any correlation among them (AASHTO 2010, Fitzpatrick et al. 2008, Gross et al. 2010, 

Lord et al. 2010).  As mentioned above, variables need to be independent of each other if they 

are to be used together.   

When changes are made to highway geometry and/or segmentation, the calibration of 

CMFs will need to be performed.  Hauer (1997) claimed that driver behavior can be affected any 

time there is a change.  For example, a road that is repaved may provide an increased sense of 

safety even if the actual highway geometry is identical.  This increased sense of safety is in 
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addition to the actual increase in safety that comes from replacing pavement that is in poor 

condition (Labi 2006).  Because of the increased sense of safety, drivers may increase speed, 

thus altering the condition that had existed in previous data.  Before-after analyses become 

cloudy when multiple variables change simultaneously, especially when driver behavior is 

involved.  While a longer study period may help to account for natural variability and regression 

to the mean, a longer study period increases the likelihood that site conditions have changed.  

The HSM (AASHTO 2010) recommends estimating expected crash frequency for each year in a 

study period as a way to address this limitation.   

2.5 Calibration Factors 

 As part of the predictive model developed in the HSM, a calibration factor is multiplied 

with the crash frequency predicted by the SPF to account for differences between the jurisdiction 

and time period for which the predictive models were developed and the jurisdiction and time 

period to which they are applied (AASHTO 2010).  These calibration factors can adjust for 

climate, animal population, driver population, crash reporting threshold, and crash reporting 

practices.  The HSM recommends new calibration factors every two to three years.  The 

calibration procedure includes identifying facility types, selecting sites, obtaining data, applying 

the predictive model to predict total crash frequency at each site, and computing calibration 

factors.  The computation is simply a ratio of the sum of the observed crashes at all sites to the 

sum of the predicted crashes at all sites.  The calibration factor will vary for each facility type.  

 Calibration for rural two-lane two-way highways requires several data elements such as 

segment length, AADT, horizontal curve length and radius, lane width, shoulder type and width, 

and the presence of two-way left-turn lanes (AASHTO 2010).  Other data such as spiral 

transition presence, superelevation, percent grade, lighting presence, driveway density, passing 
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lane presence, short four-lane presence, centerline rumble strip presence, and roadside hazard 

rating are desirable, but not required.  For these optional data, assumptions can be made if the 

actual data are not available (AASHTO 2010).  The assumptions are laid out in the HSM, with 

most defaulting to the agency design policy. 

2.6 Statistical Methods 

 Choosing a statistical method for analysis will depend on the jurisdiction and what 

variables and factors are important to include.  Poisson regression is one of the most suitable 

techniques for crash prediction modeling because highway crashes are discrete rare events and 

crash counts are non-negative integer variables (Labi 2006).  Labi goes on to explain that the 

Poisson approach has a crucial weakness, that is, the assumption that the mean and the variance 

of crash distribution are equal (Labi 2006).  This is rarely the case with crash analysis.  

 The negative binomial (NB) model allows for additional variance representing the effect 

of omitted variables.  Fitzpatrick et al. (2010) used NB regression models to determine the 

effects of independent variables on crashes on rural four-lane highways in Texas.  Srinivasan et 

al. (2009) used an empirical Bayes (EB) before-after analysis to account for potential selection 

bias and regression-to-the-mean.  The HSM includes the EB model, and has thus established it as 

the standard method for road safety analysis (AASHTO 2010, Labi 2006).  Another benefit of 

the EB model for safety analysis is that it automatically corrects for the regression-to-the-mean 

effect (Labi 2006). 

2.7 Literature Review Summary 

 Using LiDAR data to account for highway geometry and conditions is a new approach 

that will be of benefit to any transportation agency.  Understanding how curved and straight 
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sections affect crash data will allow for better planning and implementation of new roads and 

changes to existing roads.  Since curves tend to be more dangerous than straight segments, 

proper analysis needs to be performed so as to show differences between curved segments and 

straight segments.   

 The predictive model laid out in the HSM includes an SPF to predict crash frequency 

with base conditions, one or more CMFs to account for site-specific conditions, and a calibration 

factor to adjust the prediction to local conditions at the site.   

 Curved segments provide an entirely new variable when creating SPFs and CMFs.  

Proper segmentation of curves and tangents will ensure that calibrations are accurate and 

reliable.  Understanding the characteristics of variables and the relationship they have with each 

other will prevent redundancy and overestimation of a CMF.  The proper statistical method and 

approach may be difficult to choose, but with the right variables and analysis period, SPFs and 

CMFs obtained through the calibration process can be useful for crash prediction and analysis. 
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3 DATA PREPARATION 

The first step of data collection was to randomly select segments that were 

representatives of rural two-way two-lane highways in Utah.  Once the segments for further 

analysis were selected, the next step was to gather sufficient data on the components of the 

selected segments that would affect the predictive power of the crash prediction models (i.e., 

variables in the predictive models included in the HSM). While the segments do not need to meet 

the base conditions, one must know the values of the components so as to determine the value of 

an appropriate CMF. 

This chapter presents the scope of data collection the Horizontal Alignment Finder 

(HAF), the resources used for data collection, the limitations of the data and the data collection 

resources, proper sampling, facility data, and crash data.  A summary will conclude the chapter. 

3.1 Scope of Data Collection 

The task for this study included an analysis of tangent segments and curved segments.  

The tangent segments were selected from the previous research of Saito et al. (2011) in which 

rural two-way two-lane highways in Utah were randomly selected.  The selection was limited to 

homogeneous tangent sections due to data limitations, especially curve-related data, as well as 

the scope of the research.  Therefore, the main data collection effort of this study was focused on 

finding curve related data such as curve radius, point of curvature (PC) and point of tangent (PT).  
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3.2 Horizontal Alignment Finder 

The HSM crash prediction models consist of a set of variables describing the conditions 

of the segments selected, of which curve radii are one of the most important information that 

needs to be available to analyze rural two-lane two-way highways. This piece of information, 

however, has been difficult to collect and hence has not been available previously.  For this 

reason, the previous research done by Saito et al. (2011) focused on tangent segments of the rural 

two-way two-lane highways. Now that data for curved segments became available through 

UDOT’s LiDAR program it became possible to analyze curve segments in addition to tangent 

segments.  Curve segments have more variation in their attributes and are more prone to 

variation in their classifications and accuracy (Findley 2011).  Despite the highway asset data 

available from the LiDAR project, the highway geometric dataset provided by the LiDAR 

program was inadequate for this research, mostly because it did not clearly and accurately 

identify the PC, PT, or other attributes of the curve.  The major issue was that the dataset 

obtained from the LiDAR project segmented more than half of all curves in the UDOT-owned 

highways into more than one segment.  In other words, one curve was classified as having 

multiple PCs and PTs, creating the appearance of multiple curves of varying length and type.  

This segmentation would not accurately reflect the reality of the curves, and would therefore 

produce inconsistent results in the analysis of crash data.  A method was needed to combine the 

curve segments within the same curve identified by the LiDAR program as curves into one 

single section.  This method proved to be a crucial ancillary effort on this project.  

The algorithm developed in this study is called the HAF and it provided a method by 

which the curve segments were combined to a reasonably high success rate (85 percent or 

better).  The algorithm is described in more detail in a separate paper (Cook et al. 2015).  The 
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dataset provided by the LiDAR program included tabulated data for each segment, including the 

milepost.  The algorithm uses this tabulated data to compare attributes of each consecutive 

segment and then combines the segments that have sufficiently similar geometry.  It performs 

this combination task by identifying each segment as either a tangent, part of a unique curve, or a 

unique curve all on its own.  It then combines all partial segments to make unique curves from 

each of these sets of partial segments.  After this manipulation a combined curve segment 

extends from the beginning of the first combined segment to the end of the last combined 

segment.  It also has a filter to catch and remove erroneous curves which often appear in areas 

near intersections.  These three steps—Identification, Combination, and Removal—are the basic 

idea behind the procedure. Figure 3-1 presents the segmentation process used by this algorithm. 

The Identification and Combination steps are conceptually separated, but the 

implementation of the two are closely connected by the mechanism by which the HAF algorithm 

associates them.  The identification step works by classifying each segment as either a tangent or 

a curve.  Each curved segment is assigned a curve number, which is unique for each curve, but 

not necessarily for each segment. In other words, a curve with three constituent segments would 

have each of those segments assigned the same curve number.  This is done by comparing each 

segment to the segment immediately prior, that is, curved segments sufficiently similar are given 

the same curve number.  In the combination step, all segments with the same curve number are 

grouped into one larger segment which represents the full curve, and have their attributes 

combined in various ways as discussed below. These two steps are presented visually in Figure 

3-2. 
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Figure 3-1:  The HAF Algorithm Segmentation Steps 

 

The attributes are combined according to the number of segments in each curve number.  

If there is only one constituent segment, the attributes of the segment become the attributes of the 

curve.  If there is more than one segment, the attributes are combined from all the constituent 

segments.  A detailed breakdown of how these are separated is shown in Figure 3-3. 
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Figure 3-2:  Representation of Identification and Combination of the HAF Algorithm 

 

Four parameters were used to determine if each segment should be classified as a partial 

curve, a unique curve, or a tangent.  The parameters include Segment Length, Segment Radius, 

In-Curve Radius/Length Ratio, and Curve Length.  The first three are used in identification and 

combination, while the fourth is used in the Removal stage.  The algorithm compares each 

segment’s attributes to those of the previous segment and these parameters.  These comparisons 

become the inputs for a weighting scale from -7 to +7, including 0.  The weighting scale is how 

the algorithm classifies each section as a curve or tangent, and the range of the scale was 

arbitrarily selected for convenience.  A positive weight will classify the segment as a curve, and 

a negative will classify it as a tangent.  A zero weight is reserved for cases in which the road is in 

a curve, yet the next segment is obviously not part of the same curve for reasons other than the 
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radius of curvature (e.g., the route changes, the direction of travel reverses, or the direction of 

curvature reverses).  No segment is permanently assigned a zero weight; the HAF algorithm will 

only force the segment to be analyzed without the previous segment’s attributes and force a new 

curve number if the segment is a curve.  

 

 

Figure 3-3:  Combination Schema for Each Segment 

 

An analysis of the curves produced by the HAF resulted in a success rate of the locations 

of the curves being successfully identified of 84.4 – 92.9 percent and a success rate of correctly 

placing the PC and PT in the proper location of 78.7 – 89.9 percent. Although these are not 
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perfect, they are as good as or better than any other model.  It is believed that the randomization 

of the curve selection and the buffering of the curve to include superelevation runoff and tangent 

runout mitigated the margin of error in most of the problematic curves. 

3.3 Resources 

The collection of data came from various sources throughout the process.  The 

availability and accessibility of data online allowed for a widespread survey of segments across 

the state.  In many cases, the different resources had redundant features which allowed for 

verification and validation of different data.  The resources used in the data collection process 

included Google Earth, Roadview Explorer, the UDOT Data Portal, and the UDOT Crash 

Database.   

3.3.1 Google Earth 

Google Earth (Google 2014) was the source of all aerial imagery used in the data 

collection.  Aerial imagery was used to obtain lane width, lane configuration (including passing 

ability), and driveway count data.  The lane widths were obtained by using the measure tool built 

into the software.  Google Earth was also used to verify shoulder width and the presence of 

rumble strips and lighting where possible.  In addition to the collection of specific attributes, 

Google Earth was used to gain a general understanding of the segment and the surrounding 

features.  It was during this preliminary observation that many segments were removed from the 

dataset of randomly selected curved segments.  The criteria for segment removal will be 

discussed later in this chapter.   
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3.3.2 Roadview Explorer 

For the attributes that required street-level imagery, Roadview Explorer (UDOT 2012) 

was the principal resource.  This included rumble strip presence and lighting.  It was also used to 

confirm other attributes such as passing ability, driveway count, and lane and shoulder widths.  

Roadview Explorer is a Java platform application consisting of searchable and navigable 

imagery taken from a vehicle, mounted with cameras, while driving on every state and federal 

road in Utah.  The program has the ability to jump to a specific milepost, down to the thousandth 

of a mile, on any road included in the system.  It also has the ability to virtually travel the road 

by advancing the images in a slideshow format, giving the illusion of driving the road.  This 

feature was especially helpful in navigating the road from start to finish for each of the segments 

selected for analysis.  The navigation can move forward and backward for both directions of 

travel. 

3.3.3 UDOT Data Portal 

The UDOT Data Portal (UDOT 2014a) contains a large volume of data available for 

download in a variety of formats.  The formats include shapefiles for use in GIS software, KML 

files for use in Google Earth, spreadsheets, and text files.  The data for this project that were 

gathered from the UDOT Data Portal included the actual roadway file, speed limits, shoulder 

widths, AADT, and truck percentages. These datasets were brought into a GIS map as shapefiles, 

and from that point, the attributes could be tied to the segments.   

3.3.4 UDOT Crash Database 

The UDOT Crash Database (UDOT 2013) contains all recorded data pertaining to every 

crash on Utah state roads.  Most of the data come from police reports and crash investigators.  
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The data recorded for each crash include date and time, route and milepost, weather conditions, 

cause, vehicles involved, passengers involved, severity, light conditions, work zone conditions, 

and road surface conditions.  The Crash Database is not accessible online.  Special permission 

must be granted to access the specific files. 

3.4 Data Limitations 

After consideration of the crashes attributed to curve segments, it was observed that many 

crashes occurred just before the start of the curve or just past the end of the curve.  This could 

indicate that the entrance or exit of a curve is dangerous in its own right.  Frequently, however, 

the crash reporting by law enforcement contains various levels of precision and accuracy and 

may not correctly identify the location of the crash.  Some site investigators use a portable 

measuring wheel to measure from the nearest milepost.  Others use a reporting device that is 

equipped with GPS receiver to pinpoint the site of crash.  But unless the reporting takes place at 

the actual site of the crash, the GPS coordinates will not be accurate.  If the reporting takes place 

in a vehicle parked near the site, then the crash may be recorded at the parking location near the 

site.  Because of these inconsistencies, it was decided to add superelevation runoff and tangent 

runout lengths to both ends of the curve regardless of the actual presence of these elements.  The 

calculations for these lengths are found in the Facility Data subsection of this chapter. 

3.5 Proper Sampling 

Some segments were removed from the dataset at various points in the data compilation 

process.  Duplicate or overlapping segments were removed immediately based on route number 

and mileposts.  Segments that were in urban areas or residential areas were removed.  Segments 

with speed limits lower than 30 mph were removed.  The reasoning for this is because speed 
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limits lower than 30 mph are generally associated with high pedestrian traffic, residential areas, 

and/or vehicles stopping for roadside attractions (such as the waterfall on the right side of Figure 

3-4).  While these conditions are not necessarily grounds for removal, they do not fit the purpose 

of identifying truly rural segments.   

 

 

Figure 3-4:  Example of Segment with High Pedestrian Traffic (UDOT 2012) 

 

If the lanes were not striped or if they were less than 9 feet wide, the segment was 

removed.  Segments that contained a stop sign, signal, or other traffic control device for the main 

directions of traffic were removed since their inclusion would be better suited for an intersection 
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analysis.  In some areas, the segment included a 90° or near-90° turn from one cardinal direction 

to another with a very small curve radius.  This was encountered where a route traveled on an 

east/west roadway and then the route designation changed to a north/south roadway.  Thus, the 

change was usually at a four-way intersection where the two legs of the designated route 

received preference.  These segments were removed regardless of the presence of traffic control 

devices.  Several segments were within national and state parks and recreation areas.  While that 

did not merit immediate removal, most of the segments within these park and recreational areas 

were near on-road services such as toll booths, information booths, boat launches, ranger 

stations, and recreation vehicle dump stations.  These on-road services prevent free-flow 

operation, and therefore the segments that contained or were near any of these services were 

removed from the dataset.   

3.6 Facility Data 

The facility data that were collected include curve radius, degree, and class; curve buffer; 

grade; speed limit; rumble strip presence; lane and shoulder width; driveway density; passing 

ability; lighting; AADT; and truck percentage.  Most of these factors are the variables used in the 

HSM predictive models while others, such as speed limit and truck percentage, were selected due 

to their perceived effect on highway safety. 

3.6.1 Curve Radius, Degree, and Class 

Each segment was analyzed to determine the curve radius, curve degree, and curve class.  

ArcGIS (ESRI 2012) was used to measure the radius (in feet) and the degree of curvature (in 

degrees) for each curve.  The curve class was determined from the definition in the Highway 
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Performance Monitoring System (HPMS) (FHWA 2014).  The classification breakdown is 

shown in Table 3-1. 

 

Table 3-1:  HPMS Curve Classification Breakdown (FHWA 2014) 

 

3.6.2 Curve Buffer 

As discussed previously, it is possible that not all curve-related crashes are recorded 

between the point of curvature and point of tangency.  This could be due to inaccurate recording 

or simply because the crash occurred just before entering or just after exiting a curve.  It was 

determined that the full length of superelevation runoff and tangent runout should be added to 

the length of the curve on both ends as a buffer.  With this curve buffer, crashes in the immediate 

vicinity of the curve would be included.   

Superelevation runoff is the length required to transition the cross slope of a road from 

zero percent on the outer lane, (the location of adverse crown) to a superelevated position on a 

curve.  A cross slope of zero percent on the outer lane is a level surface while the inner lane still 

has the cross slope value.  Superelevation runoff includes a portion within the curve and a 

portion outside the curve, with the PC or PT denoting the start and end of a curve, respectively.  

The proportion of runoff length in the tangent section varies from 0.6 to 0.8, with most agencies 

Curve 
Classification

Range of Values

A Under 3.5 degrees (i.e., 0.061 radians)
B 3.5 - 5.4 degrees (i.e., 0.061 - 0.094 radians)
C 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians)
D 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians)
E 14.0 -27.9 degrees (i.e., 0.244 - 0.487 radians)
F 28 degrees (i.e., 0.489 radians) or more
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using 0.67 for all street and highway curves (AASHTO 2011).  This research is based on the 

same assumption, and for convenience, a proportion of two-thirds (2/3) was used.  Equation 3-1 

shows how to calculate superelevation runoff (AASHTO 2011). 

 

 𝐿𝐿𝑟𝑟 = (𝑤𝑤𝑛𝑛1)𝑒𝑒𝑑𝑑
∆

 (3-1) 

 

 where,  Lr  =     minimum length of superelevation runoff, ft.; 

  w    =     width of one traffic lane, ft.; 

  n1    =    number of lanes rotated; 

  ed    =    design superelevation rate, percent; and 

  Δ     = maximum relative gradient, percent. 

 

Without knowing the design superelevation rate, a value of six percent was assumed.  

This is the maximum design superelevation rate in the state of Utah, as specified by UDOT 

(2008).  The maximum relative gradient comes from AASHTO (2011) and is shown in Table 

3-2.  Tangent runout is the length required to transition the cross slope of a road from normal 

cross slope to zero percent.  Equation 3-2 shows how to calculate tangent runout (AASHTO 

2011).  For this study, a normal cross slope rate of two percent was assumed.  The design 

superelevation rate of six percent was already assumed for the superelevation runoff calculations, 

and those same calculations determine the final variable of the equation.   
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Table 3-2:  Maximum Relative Gradient (AASHTO 2011) 

 

 

 𝐿𝐿𝑡𝑡 = 𝑒𝑒𝑁𝑁𝑁𝑁
𝑒𝑒𝑑𝑑
𝐿𝐿𝑟𝑟 (3-2) 

 

 where,  Lt  = minimum length of tangent runout, ft.; 

 eNC   =    normal cross slope rate, percent; 

 ed    =    design superelevation rate, percent; and 

 Lr    =    minimum length of superelevation runoff, ft. 

 

Design 
Speed 
(mph)

Maximum 
Relative 

Gradient (%)

Equivalent 
Maximum 

Relative Slope
15 0.78 1:128
20 0.74 1:135
25 0.70 1:143
30 0.66 1:152
35 0.62 1:161
40 0.58 1:172
45 0.54 1:185
50 0.50 1:200
55 0.47 1:213
60 0.45 1:222
65 0.43 1:233
70 0.40 1:250
75 0.38 1:263
80 0.35 1:286
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3.6.3 Grade 

All segments were evaluated for grade.  The most reliable data came from ArcGIS 

analysis which included latitude, longitude, and elevation data for each start and end point.  The 

difference in elevation was divided by the length of the segment, as measured in ArcGIS.  The 

absolute value of the quotient became the decimal value for the grade.  The grade was converted 

to a percentage to be consistent with standard reporting. 

3.6.4 Speed Limit 

Speed limit data were obtained from UDOT (2014b) and verified whenever possible via 

Roadview Explorer (UDOT 2012).  

3.6.5 Rumble Strip Presence 

The rumble strip presence data available from UDOT proved unreliable.  It was used as a 

base for analysis; however, each segment was analyzed based on the information obtained in 

Roadview Explorer (UDOT 2012) for the actual conditions.  Rumble strip presence was recorded 

for centerline (interior) and shoulder (exterior) implementation. 

3.6.6 Lane Width 

Lane width was measured via Google Earth (Google 2014).  Each road was measured 

from shoulder line to shoulder line and divided by two.  Certain roads had asymmetrical 

arrangements, and in those cases, the average lane width was recorded.  Using Google Earth had 

its limitations, especially when the roadway was adjacent to mountainous or rolling terrain.  The 

software would sometimes assume that the roadway followed the general slope instead of being 

on a level surface made possible by cut and fill techniques.  Even still, the measuring feature on 
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Google Earth would show the map distance and the ground distance.  The map distance is based 

on latitude and longitude values while ground distance accounts for variations in elevation.  The 

ground distance measurement is almost always larger than the map distance since slope is 

included in the measurement.  The ground distance was always chosen for consistency.  Google 

Earth was the most cost effective means of obtaining the lane width data since the data were not 

available from UDOT while this study was underway.  The HSM predictive model requires all 

lane widths to be rounded to the nearest whole number.  Figure 3-5 shows how the lane width 

data were collected in Google Earth.  The line spanning the width of the highway is the ruler tool 

within the software.  Taking the measurement of the full width allowed an average lane width to 

be calculated with only one measurement rather than one per lane.   

 

 

Figure 3-5:  Lane Width Measurement in Google Earth 
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3.6.7 Shoulder Width 

Shoulder width data were obtained from UDOT (2014a).  However, the shoulder widths 

were verified on Google Earth (Google 2014) at the same time as the lane width.  The 

measurements were taken from the edge of pavement to the shoulder line.  This was done for 

both sides and an average was calculated.   

3.6.8 Driveway Density 

Driveways were counted using Roadview Explorer (UDOT 2012) and Google Earth 

(Google 2014).  The HSM predictive model specifies that a driveway should only be counted if 

at least one vehicle uses it per day (AASHTO 2010).  This requirement relies on a very 

subjective evaluation since driveway counts were not available.  Residential accesses were 

always assumed to be used at least once per day, and were thus counted.  Farm and other 

accesses required an evaluation of tire tracks and markings to determine the frequency of use.  

When tire tracks and markings were plentiful, it was assumed that the driveway in question was 

used at least once per day.  Driveways on opposing sides were counted separately, even if they 

were aligned like a four-way intersection.  Accesses to off-street rest areas were counted.  

Turnouts and extended shoulders for view areas were treated as one driveway unless there were 

defined accesses.  A driveway that served two or more properties was still treated as one 

driveway.  Side-by-side driveways were treated as separate driveways unless they merged into 

one driveway before accessing the road.  Driveway density was calculated by dividing the 

number of driveways along the segment by the length of the segment.  The units of driveway 

density are the number of driveways per mile.   
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3.6.9 Passing Ability 

The HSM predictive model allows for segments with conventional passing or climbing 

lanes, provided that the additional lanes are for a limited distance.  Similarly, short four-lane 

sections are allowed under the same stipulation.  The data collected specified how many 

directions had passing ability: zero, one, or two.  However, passing ability was also collected on 

segments with permitted passing zones that did not have additional lanes but instead had a 

broken centerline.  A single yellow broken line was treated as a two-directional passing zone.  A 

double yellow line with one solid and one broken was treated as a one-directional passing zone.  

A solid double yellow line was treated as a zero-directional passing zone.   

3.6.10 Lighting 

The presence of lighting was observed for each segment.  This was done in Roadview 

Explorer.  Overhead street lighting was the only lighting that would qualify.  Additionally, the 

lighting did not need to be present for the majority of the segment like the other geometric 

attributes—one light would suffice.  However, not a single segment in the study had overhead 

lighting.  This is most likely due to the rural location of each segment.    

3.6.11 AADT 

AADT data were obtained from UDOT (UDOT 2011).  The data were collected for the 

years 2008 to 2012—the most recent five years of data available.   

3.6.12 Truck Percentage 

 The data for truck percentage are divided into single-unit (single) and combination unit 

(combo) truck percentages.  The definition for single and combo trucks is found in the Traffic 
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Monitoring Guide from the Federal Highway Administration (FHWA) (2013), and is shown in 

Table 3-3.  The FHWA vehicle category classifications and numbers are shown in Table 3-4. 

 The vehicle classification data were collected by UDOT at various recording stations 

across the state and then interpolated throughout UDOT’s highway system so that every segment 

has an associated single and combo truck percentage. 

 

Table 3-3:  HPMS/FHWA Vehicle Classes (FHWA 2013) 

 

3.7 Crash Data 

As mentioned previously, crash data were obtained from the UDOT Crash Database for 

the years 2008 to 2012 (UDOT 2013).  Once the segments were randomly selected and the curve 

buffer was added, the segment data were cross-referenced with the crash data to extract only the 

crashes that occurred on the segments in the dataset.   

 

HPMS Summary Table 
Vehicle Class Group

FHWA 13 Vehicle 
Category Classification 

Number

Group 1: Motorcycles (MC) 1

Group 2: Passenger Vehicles 
equal to or under 102" (PV) 2

Group 3: Light trucks over 
102" (LT) 3

Group 4: Buses (BS) 4

Group 5: Single-unit vehicles 
(SU) 5, 6, 7

Group 6: Combination Unit 
(CU) 8, 9, 10, 11, 12, 13
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Table 3-4:  FHWA Vehicle Category Classifications (FHWA 2013) 

Code Description 

1 

Motorcycles (Optional): All two- or three-wheeled motorized vehicles. Typical 
vehicles in this category have saddle type seats and are steered by handlebars rather 
than a wheel. This category includes motorcycles, motor scooters, mopeds, motor-
powered bicycles, and three-wheeled motorcycles. This vehicle type may be reported at 
the option of the State, but should not be reported with any other vehicle type. 

2 

Passenger Cars: All sedans, coupes, and station wagons manufactured primarily for the 
purpose of carrying passengers and including those passenger cars pulling recreational 
or other light trailers. Vehicles registered as passenger cars that are pickups, panels, 
vans, etc. (described as vehicle type "3") should be reported as vehicle type "3". 

3 

Other Two-Axle, Four-Tire, Single-Unit Vehicles: All two-axle, four-tire vehicles, 
other than passenger cars. Included in this classification are pickups, panels, vans, and 
other vehicles such as campers, motor homes, ambulances, hearses, and carryalls. Other 
two-axle, four-tire single-unit vehicles pulling recreational or other light trailers are 
included in this classification. 

4 

Buses: All vehicles manufactured as traditional passenger-carrying buses with two-
axles, six-tires and three or more axles. This category includes only traditional buses 
(including school buses) functioning as passenger-carrying vehicles. All two-axle, four-
tire minibuses should be classified as other two-axle, four-tire, single-unit vehicles 
(type "3"). Modified buses should be considered as trucks and be appropriately 
classified. 

5 
Two-Axle, Six-Tire, Single-Unit Trucks: All vehicles on a single frame including 
trucks, camping and recreational vehicles, motor homes, etc., having two axles and 
dual rear wheels. 

6 Three-Axle, Single-Unit Trucks: All vehicles on a single frame including trucks, 
camping and recreational vehicles, motor homes, etc., having three axles. 

7 Four-or-More Axle, Single-Unit Trucks: All vehicles on a single frame with four or 
more axles. 

8 Four-or-Less Axle, Single-Trailer Trucks: All vehicles with four or less axles 
consisting of two units, one of which is a tractor or straight truck power-unit. 

9 Five-Axle, Single-Trailer Trucks: All five-axle vehicles consisting of two units, one of 
which is a tractor or straight truck power-unit. 

10 Six-or-More Axle, Single-Trailer Trucks: All vehicles with six or more axles consisting 
of two units, one of which is a tractor or straight truck power-unit. 

11 Five-or-Less Axle, Multi-Trailer Trucks: All vehicles with five or less axles consisting 
of three or more units, one of which is a tractor or straight truck power-unit. 

12 Six-Axle, Multi-Trailer Trucks: All six-axle vehicles consisting of three or more units, 
one of which is a tractor or straight truck power-unit. 

13 Seven-or-More Axle, Multi-Trailer Trucks: All vehicles with seven or more axles 
consisting of three or more units, one of which is a tractor or straight truck power-unit. 
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The crash data were tabulated to create totals for the most recent three years (2010-2012) 

and the most recent five years (2008-2012) on each segment.  

3.8 Data Preparation Summary 

The purpose of data preparation was to randomly select segments that represented a cross 

section of rural two-way two-lane highways with curves in Utah.  The segments were selected 

and the facility data pertaining to the selected segments were collected to allow subsequent crash 

prediction modeling.  The justification for the specific variables collected comes from the HSM 

predictive model, which outlines the base conditions of any given segment.  With the completion 

of data preparation, the variables that were required for calibration of the HSM predictive model, 

along with the additional variables, were used for modeling and further analysis. 
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4 METHODOLOGY 

 This chapter discusses the process for creating and analyzing the various models that are 

used in this research.  This includes models based on the HSM predictive model, models specific 

to this research for analyzing both curved and tangent segments, and Utah-specific NB models 

for curved segments.  

4.1 HSM Model 

This section discusses the development of the predictive models for rural two-lane two-

way highways in Utah, as explained in the HSM.  The crash prediction model incorporates SPFs, 

CMFs, and a calibration factor.  The calibration factor is what makes the model jurisdiction-

specific since it compares the predicted values to the actual values observed on the selected 

segments within the state.   

4.1.1 SPF 

 The HSM outlines process for developing an SPF for rural two-lane two-way highway 

segments.  The SPF predictive model that was introduced in Equation 2-1 is repeated below as 

Equation 4-1 (AASHTO 2010). 
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 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 365 × 10−6 × 𝑒𝑒−0.312 (4-1) 

 

 where, Nspf  = predicted total crash frequency for roadway segment base 
conditions 

 
  AADT = average annual daily traffic volume (vehicles per day), and 
 
  L = length of roadway segment (miles). 

 

 As illustrated in Equation 4-1 above, the SPF is based on segment length and AADT, that 

is, daily VMT.  This calculation will stay similar from year to year since the only parameter that 

fluctuates is AADT.  The HSM crash prediction model uses this SPF model to show that the 

number of crashes on a given segment is directly proportional to the exposure (AADT multiplied 

by segment length).  The multiplier 365 is included to convert AADT from a daily measurement 

to an annual measurement.  The multiplier 10-6 is to convert the overall units to number of 

crashes per million VMT.  The full model, including the exponential, is based on data from 

studies performed in the United States (AASHTO 2010).   

4.1.2 CMFs 

 As illustrated in the SPF model, the only parameters that vary from segment to segment 

are AADT and segment length.  The SPF equation assumes a base condition for each road 

segment.  The base conditions for rural two-lane two-way highways are shown in Table 4-1. 

 When a segment does not meet the base condition for any one of the 13 listed in Table 4-

1, a CMF must be multiplied to the predicted number of crashes calculated by the SPF model.  

This will adjust the prediction by incorporating more of the actual parameters.  The new 

prediction model is shown as Equation 4-2 (AASHTO 2010).  
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Table 4-1:  Base Conditions for Rural Two-Lane Two-Way Highways 

Lane Width 
Shoulder Width 
Shoulder Type 
Roadside Hazard Rating 
Driveway Density 
Horizontal Curvature 
Vertical Curvature 
Centerline Rumble Strips 
Passing Lanes 
Two-way left-turn lanes 
Lighting 
Automated Speed Enforcement 
Grade Level 

12 feet 
6 feet 
Paved 

3 
5 driveways per mile 

None 
None 
None 
None 
None 
None 
None 

0% 
 

 𝑁𝑁 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (4-2) 

 

 where, N = predicted number of crashes accounting for non-base conditions, 

  Nspf = number of predicted crashes determined for base conditions, and 

  CMFi = crash modification factor. 

 

 The model in Equation 4-2 shows that CMFs directly affect the predicted number of 

crashes for a given segment.  A CMF with a value greater than 1 will increase the predicted 

number of crashes, while a CMF with a value less than 1 will decrease the predicted number of 

crashes.  Independent CMFs can be created and multiplied to an SPF; however, there are 12 

CMFs that the HSM has identified as the most relevant to crash prediction (shoulder width and 

type are combined into one CMF).  

 Deviations from the base conditions assumed in the SPF model are expected on almost all 

rural two-lane two-way highway segments.  One of the frequently unmet base conditions is the 
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zero percent grade specification.  Many jurisdictions do not allow roads to be constructed with a 

zero percent grade as drainage can be compromised (AASHTO 2010).  Thus, a CMF will almost 

always be calculated for grade.  The base conditions are not necessarily ideal conditions; rather, 

they are a starting point for further analysis.   

4.1.3 Calibration 

 The HSM predictive model was developed from data that was sourced from several 

regions in the United States.  The use of the HSM predictive model, however, is generally used 

in a local setting.  Overall conditions, such as winter weather and driver behavior, can vary 

greatly from state to state.  For this reason, the HSM predictive model incorporates a calibration 

factor that jurisdictions may employ to adjust the predicted value to match actual observed crash 

rates.  The full predictive model, including calibration, is shown in Equation 4-3 (AASHTO 

2010): 

 

 𝑁𝑁𝑠𝑠𝑟𝑟𝑒𝑒𝑝𝑝 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐶𝐶 × 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (4-3) 

 

 where, Npred = predicted number of crashes, 

  Nspf = number of predicted crashes determined for base conditions, 

  C = calibration factor, and 

  CMFi = crash modification factor. 

 

 The calibration factor is found by dividing the actual number of crashes by the predicted 

number of crashes as shown in Equation 4-4.   
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 C = Nactual
Npred

 (4-4) 

 

 where, C = calibration factor,  

  Nactual = actual number of crashes, and 

  Npred = predicted number of crashes. 

 

Unlike SPFs and CMFs, calibration factors are calculated from an entire set of segments 

rather than from each segment individually.  However, once a single calibration factor has been 

established, it is used for each segment.  A calibration factor greater than 1 indicates that the 

roadway segments within the set experience more crashes, on average, than the roadways that 

were used in developing the SPFs (AASHTO 2010).  Conversely, a factor less than 1 indicates 

fewer crashes, on average, than the roadways used in developing the SPFs.   

4.1.4 HSM Model Summary 

 The purpose of this subsection was to describe the process by which the HSM predictive 

model calculates the predicted number of crashes for specified roadway segments.  The HSM 

predictive model uses an SPF calculation to establish a prediction based on vehicle exposure.  

Beyond exposure, CMFs must be used to account for variations in the prescribed base 

conditions.  These will adjust the prediction for each segment up or down based on facility data.  

Similarly, the predicted number of crashes for a set of segments can be pooled and compared to 

the actual number of crashes.  This ratio will produce a calibration factor that can be multiplied 

to the SPFs and CMFs to create the full predictive model.  
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 The HSM predictive model was created to fit any jurisdiction by developing specific 

calibration factors.  However, this research will look into the development of Utah-specific 

models in the following subsections.   

4.2 Curve and Tangent Combination 

 Thus far, this research has focused on the development of SPFs and corresponding 

calibration factors for curved segments on rural two-lane two-way highways in Utah.  Previous 

research (Saito et al. 2011) has been performed on tangent segments on rural two-lane two-ways 

highways, and did not include curved segments due to the difficulty in obtaining horizontal 

curvature data.  With the recent acquisition of highway curvature data through UDOT Roadway 

Imaging/Asset Inventory project (Ellsworth 2013), this research was able to focus on curved 

segments of rural two-lane two-way highways.   

 It was hypothesized, however, that a model could be created using both tangent and 

curved segments.  Since almost all highways are a mix of curved and tangent segments, it would 

be useful to create a way for any segment to be analyzed with one all-encompassing model.  This 

section will present the approach in the HSM for incorporating both curved and tangent segments 

and also address different methods used for parameterizing horizontal curvature on segments 

including a simple indicator variable for curve or tangent, a series of indicator variables for curve 

class, a continuous variable for curve radius, and a continuous variable for the inverse 

transformation of curve radius.  
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4.2.1 HSM Approach 

 As described in the previous chapter, the HSM predictive model includes a CMF that 

specifically adjusts the SPF for horizontal alignment variations.  The equation for the CMF is 

shown below in Equation 4-5 (AASHTO 2010). 

 

 𝐶𝐶𝐶𝐶𝐶𝐶 =
(1.55×𝐿𝐿𝑐𝑐)+�80.2

𝑅𝑅 �−(0.012×𝑆𝑆)

(1.55×𝐿𝐿𝑐𝑐)
 (4-5) 

 

where,  CMF = crash modification factor for horizontal alignment; 

 Lc  = length of curve, mi.; 

 R   =    radius, ft.; and 

  S    =    1 if spiral transition curve is present; 0 if spiral transition curve 

    is not present; 0.5 if a spiral transition curve is present at one  

    but not both ends of the horizontal curve. 

 

 This model incorporates both the length and radius of a curve as well as making 

adjustments for spiral transitions.  It was assumed in this research that all curves in Utah are not 

equipped with spiral transitions.  While some CMF models allow for a result above and below 

1.0, this CMF can only increase from 1.0, which is base value for a tangent segment.  The CMF 

is inversely proportional to the curve radius, which means that the CMF approaches 1 as the 

radius increases.  Thus the sharpest curves have the highest CMFs.   
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4.2.2 Parameterization of Horizontal Curvature 

 Where the HSM incorporates horizontal curvature into a CMF, a Utah-specific model 

would need to incorporate horizontal curvature as a parameter in an NB model.  Several models 

were attempted for parameterizing horizontal curvature, including separating curves and tangents 

by a simple indicator variable; curve class as a series of indicator variables; using curve radius; 

and using an inverse transformation of curve radius. 

4.2.2.1 Simple Indicator Variable 

 The first proposed model uses an indicator variable for horizontal alignment by assigning 

0 for tangent segments and 1 for curved segments.  This model creates a simple method for 

analyzing both curves and tangents with very minimal data collection.  The data requirement is 

the mere identification of horizontal curvature.  This is the simplest model for incorporating 

horizontal curvature into a Utah-specific NB model. 

4.2.2.2 Curve Class as a Series of Indicator Variables 

 The second proposed model allows for more detail than the simple indicator variable 

model.  It assigns each curve a classification based on degree of curvature using the HPMS 

definitions introduced in Chapter 4.  The classification breakdown outlined in Table 3-1 is 

reprinted in Table 4-2 for convenience. 

Since this model involves tangent segments, the definition for curve class A is modified 

to include curves that have curvature greater than 0.0 degrees up to 3.5 degrees so that a new 

tangent classification can be introduced.  This creates a set of seven variables, each one with 

possible values of 1 (if the curve in question falls within the range) and 0 (if the curve falls 
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anywhere outside the range).  For example, a curve with a C classification would produce a value 

of 1 for the C class indicator variable, and a 0 for all other indicator variables.   

 

Table 4-2:  HPMS Curve Classification Breakdown (FHWA 2014) 

Curve Classification Degrees 
A Under 3.5 degrees (i.e., 0.061 radians) 
B 3.5 - 5.4 degrees (i.e., 0.061 - 0.094 radians) 
C 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians) 
D 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians) 
E 14.0 - 27.9 degrees (i.e., 0.244 - 0.487 radians) 
F 28 degrees (i.e., 0.489 radians) or more 

 

  

 Each class is changed from a letter to a number to allow for parameterization.  Tangent 

becomes 0, class A becomes 1, all the way through class F becoming 6.  The modified 

breakdown is shown in Table 4-3.  Each curve class is treated as a separate indicator variable.  

This model allows for isolation of specific classifications that may correlate better than other 

classifications. 

  

Table 4-3:  Modified Curve Classification Breakdown 

Curve Classification Degrees 
0 0.0 degrees (no curvature) 
1 >0.0 - 3.5 degrees (i.e., >0.000 - 0.061 radians) 
2 3.5 - 5.4 degrees (i.e.,0.061 - 0.094 radians) 
3 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians) 
4 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians) 
5 14.0 - 27.9 degrees (i.e., 0.244 - 0.487 radians) 
6 28 degrees (i.e., 0.489 radians) or more 
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This model incorporates horizontal alignment as well as groupings for the differing 

sharpness of curved segments.  This is in contrast to the simple indicator variable model, which 

classifies all curves as the same within the parameter.   

4.2.2.3 Curve Radius 

 The third proposed model uses curve radius, rather than a classification derived from 

degree of curvature.  Also, instead of grouping curves into classification bins, this model uses a 

continuous variable.  The challenge comes in assigning a radius to tangent segment.  Since radius 

increases as a curve becomes shallower, the radius of a tangent would theoretically be infinite.  

Since infinity is impractical from a modeling standpoint, an arbitrarily high radius of 10 miles is 

assigned to each tangent segment.  This model requires the radius measurement for each curved 

segment.   

4.2.2.4 Inverse Transformation of Curve Radius 

 The fourth proposed model is very similar to the Curve Radius model, and simply 

requires an algebraic transformation.  The idea for this model is that the value for tangent 

segments should not be arbitrary.  As mentioned previously, radius increases as a curve becomes 

shallower so a tangent segment would have an infinite radius.  By taking the inverse of the 

radius, the value for tangent segments is 0, with all curves having increasing values as they 

become sharper. This model creates a better distribution of values that matches the model 

outlined in the HSM (AASHTO 2010).   
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4.2.3 Curve and Tangent Combination Summary 

 This section has evaluated several models for addressing horizontal alignment in a crash 

prediction model.  Included in the evaluation were the models laid out in the HSM, as well as 

models for parameterization of horizontal alignment for use in an NB model.  The models of 

parameterization include using an indicator variable, curve class as a series of indicator 

variables, curve radius, and inverse transformation of curve radius.  Each model has strengths 

and weaknesses.  The results of their use will be discussed in Chapter 5.   

4.3 Utah-Specific Model 

 This section discusses the creation of models to predict crashes on rural two-lane two-

way highways in Utah.  Previous subsections have discussed the predictive model outlined in the 

HSM and techniques for combining curves and tangents into one model using a variety of 

parameters to properly account for horizontal alignment.  While the previous subsection 

discussed NB models, the focus was on developing a parameter for modeling horizontal 

curvature.  This section focuses on the overall development of both an NB model and an EB 

model using all independent variables that are statistically significant.   

4.3.1 Negative Binomial Development 

 The development of an NB model was performed using JMP, a statistical software 

package that is a graphical interface for SAS software (SAS 2013).  JMP will create an NB 

model with any number of independent variables and interactions of variables.  JMP will 

estimate the coefficients for each variable within a model and calculate the p-value for each.  A 

p-value is the probability that a randomized experiment will lead to a test statistic that is as 

extreme as or more extreme than the one observed (Ramsey and Schafer 2002).  Using the p-
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values, researchers were able to use a backward stepwise technique for identifying which 

variables are significant and which are not.  A backward stepwise technique allows the model to 

begin with as many variables as are entered.  These input variables are then removed one at a 

time based on their p-value—the variable with the highest p-value is eliminated because the 

value indicates much less contribution to the integrity of the model.  A new model is then created 

with the remaining variables.  This process is continued until all variables have p-values less than 

0.05, based on a 95 percent confidence level. This technique allows for every variable to be 

entered and only the relevant ones will remain after the process is completed.  The NB model 

will take the form shown in Equation 4-6 (Ramsey and Schafer 2002).  The equation can be 

rearranged by exponentiating both sides in order to solve for the number of crashes.  The number 

of independent variables will depend on the results of the backward stepwise technique.   

 

 ln(𝑁𝑁) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  (4-6) 

 

 where, N = number of crashes (predicted or observed), 

 β0 = intercept, 

 βi = coefficient for variable xi, 

 xi = independent variable, and 

 n = number of independent variables. 

 

 The input variables for the backward stepwise technique include the same variables that 

were used for the HSM predictive model and also include additional variables that were 
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hypothesized to have a potential correlation with crash prediction.  Table 4-4 shows the 

preliminary input variables in alphabetical order.   

 

Table 4-4:  Preliminary Input Variables for NB Model 

AADT 
Analysis Length 

Combo Truck Percentage 
Degree of Curvature 
Driveway Density 

Grade 
Lane Width 

Passing Lane Presence 
Radius 

Rumble Strip Presence 
Shoulder Width 

Single Truck Percentage 
Speed Limit 

Total Truck Percentage 
 

 

 The Passing Lane Presence and Rumble Strip Presence variables were simple indicator 

variables—a value of 1 if the item was present; a value of 0 if the item was not present.  Speed 

Limit was based on posted speed limit for the segment in increments of 5 miles per hour (mph).  

The Lane Width and Shoulder Width variables followed the same rounding convention discussed 

in previous chapters, with Lane Width rounding to the nearest foot, and Shoulder Width 

rounding down to the nearest multiple of two feet.  The AADT and Radius variables underwent 

transformations to create more normal distributions and to reduce the differences in variances.   

 AADT values ranged from around 300 to over 10,000 vehicles per day (vpd).  The NB 

models were created for both a three-year sample (2010-2012) and a five-year sample (2008-

2012), so each AADT value was multiplied by the number of days per year (365) and by the 

number of years in the sample (3 or 5, depending on the dataset of the model).  Once the product 

of AADT, days per year, and years of data was calculated—now more appropriately called 
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Vehicle Count—it was determined that a natural log transformation would be the best approach 

for this variable.   

 The Radius variable, which has been discussed in previous chapters, also underwent 

transformations.  The largest radius in the dataset was larger than the smallest radius by three 

orders of magnitude.  For this reason, it was determined that a log transformation would create a 

distribution closer to a normal distribution.  Similarly, the idea of an inverse transformation was 

proposed based on the success observed in the previous chapter.  So in all, radius, radius with 

natural log transformation, and inverse radius were all included in the model. 

 Table 4-5 shows the final input variables for the backward stepwise regression technique 

in JMP.  By performing the backward stepwise regression technique in JMP, each variable can 

be analyzed individually based on correlation and p-value, and the best variable can be chosen 

out of potentially overlapping or duplicative variables.   

 

Table 4-5:  Final Input Variable Selection for NB Model 

Analysis Length 
Combo Truck Percentage 

Degree of Curvature 
Driveway Density 

Grade 
Inverse Radius 

Lane Width 
Passing Lane Presence 

Radius 
Radius with Natural Log Transformation 

Rumble Strip Presence 
Shoulder Width 

Single Truck Percentage 
Speed Limit 

Total Truck Percentage 
Vehicle Count 

 

4.3.2 Empirical Bayes Model 

 The EB model creates a model based on the results of a crash prediction model as well as 

the actual number of crashes.  It uses a dispersion parameter to create a weight to assign to both 
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the prediction and the actual number of crashes.  The dispersion parameter is part of the output 

data on JMP when creating a NB model.  The general equation for the EB model is shown in 

Equation 4-7 (Hauer 1997). 

 

 𝑁𝑁𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑝𝑝 = 𝑤𝑤 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑤𝑤) × 𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑟𝑟𝑜𝑜𝑒𝑒𝑝𝑝 (4-7) 

  

 where, Nexpected = expected number of crashes determined by the EB method, 

  w = weight (as shown in Equation 4-8), 

  Nspf  = number of predicted crashes (previously determined), and 

 Nobserved = observed number of crashes at a site. 

 

 𝑤𝑤 = 1
1+𝑘𝑘×(𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠)

 (4-8)  

 

 where, k = dispersion parameter. 

 

 Since the EB model uses a combination of predicted and observed, it can more closely 

approximate the number of crashes.  The weight assigned to both the predicted and observed 

values will change depending on the dispersion of the crash data.  With widely dispersed crash 

data, the EB model will place more weight on the observational data.  The EB model is 

especially appropriate for before-after studies (Srinivasan et al. 2009).   
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4.4 Methodology Summary  

 This section has discussed both the NB model and the EB model, which both provide 

estimates of the number of crashes that can be expected on a road segment.  The NB model can 

use a backward stepwise regression technique that will isolate only the significant variables 

depending on a chosen confidence level.  The EB model looks at both predicted crashes and 

observed crashes to create an expected value for the number of crashes on a given segment.  This 

is done with a dispersion parameter that is given through JMP when an NB model is created.  

The dispersion determines the weight given to both the predicted values and the observed values.  

The next chapter will look at the results of the Utah-specific model as well as the HSM 

predictive model and curve and tangent combination discussed earlier in this chapter.  
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5 RESULTS 

 This chapter presents the results of the crash prediction modeling efforts, which were 

discussed in previous chapters.  The modeling efforts include the calibration of the HSM 

predictive model, the development of a model which incorporates both curved and tangent 

segments, as well as the development of a Utah-specific model.  First, a summary of data 

collection efforts will be presented.  Then, the calibration factors that were determined for the 

HSM predictive model will be discussed.  The next section will discuss the results of modeling 

horizontal alignment by combining curved segments and tangent segments into a single 

parameter.  The NB regression and EB models will then be discussed as part of the Utah-specific 

model development for curved segments.  A summary of the data collection efforts and modeling 

results will conclude this chapter. 

5.1 Data Collection Efforts 

 As discussed in Section 3.6, the data collection took place for each randomly selected 

segment that was part of the analysis datasets.  Gathering sufficient data to develop a 

comprehensive model proved to be a difficult task.  The HSM predictive model states that a 

dataset should have no fewer than 100 total crashes per year (AASHTO 2010).  However, when 

curves were randomly chosen for analysis, there was no way of knowing the number of actual 

crashes on each segment until after extensive analysis.  This is because the analysis length was 
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based on curve length plus a buffer on both ends of the curve.  The calculations for the buffer 

depended on lane width and speed limit data which needed to be gathered.   

 Originally, approximately 200 segments were randomly selected for analysis, since the 

previous research by Saito et al. (2011) had 157 segments with an average of 142 crashes per 

year.  However, the segments for that research were significantly longer since they were tangent 

segments divided into homogeneous sections.  It was not uncommon for a segment to span 

several miles.  Longer segments corresponded with an increased number of crashes, thus 

allowing the tangent dataset to achieve the 100 crash per year threshold with fewer segments.  

Curved segments, on the other hand, are significantly shorter on average than tangent segments.  

Since the number of crashes on any given segment is heavily based on vehicle exposure, it 

makes sense that more curved segments would need to be included in the dataset to reach the 100 

crashes per year threshold.   

 For the first dataset, the original group of approximately 200 randomly selected segments 

was combined with two additional groups of randomly selected segments with similar quantities.  

This combined dataset was evaluated to remove any duplicate or overlapping segments before 

any statistical analysis was performed.  In total, the dataset comprised 579 segments with an 

average of 112 crashes per year for the three-year sample and 126 crashes per year for the five-

year sample.  This satisfied the HSM requirement of at least 100 crashes per year.     

 Two subsequent datasets were assembled for validation purposes, resulting in three total 

datasets comprised of curved segments only.  Dataset 2 had 566 segments with an average of 109 

crashes per year for the three-year sample and 113 crashes per year for the five-year sample.  

Dataset 3 had 608 segments with an average of 140 crashes per year for the three-year sample 
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and 150 crashes per year for the five-year sample.  All three datasets met the HSM requirement 

of at least 100 crashes per year for both the three-year and five-year samples.   

 With three separate random datasets, this research was also able to look at a combined 

dataset of all three samples with overlapping and duplicate segments eliminated.  This combined 

dataset had 1,495 segments with an average of 319 crashes per year for the three-year sample 

and 343 crashes per year for the five-year sample. 

5.2 Calibration of the HSM Predictive Model 

 The HSM predictive model is based on an SPF, multiple CMFs, and a calibration factor 

as explained in Section 4.1.  The SPF for the base conditions on rural two-lane two-way roads is 

shown in Equation 5-1. 

 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 365 × 10−6 × 𝑒𝑒−0.312 (5-1) 

 

 where, Nspf  = predicted total crash frequency for roadway segment base 
conditions, 

 
  AADT = average annual daily traffic volume (vehicles per day), and 
 
  L = length of roadway segment (miles). 

 

 After calculating the number of predicted crashes with the SPF along with the all of the 

available CMFs outlined in the HSM, the predicted values were compared to the actual values.  

This allowed the calibration factors to be determined for each dataset along with the combined 

dataset.  The calibration factors are shown in Table 5-1.  Equations 5-2 and 5-3 present the HSM 
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SPFs for rural two-lane two-way highway segments that have been calibrated for Utah.  Equation 

5-2 is based on the three-year sample (2010-2012) and Equation 5-3 is based on the five-year 

sample (2008-2012).   

 

Table 5-1:  HSM Predictive Model Calibration Factors 

Set 3-year 
Sample 

5-year 
Sample 

1 1.42 1.58 
2 1.50 1.54 
3 1.53 1.64 

Combined 1.50 1.60 
 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠3 = 1.50 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 365 × 10−6 × 𝑒𝑒−0.312 × 𝐶𝐶𝐶𝐶𝐶𝐶1 

  × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (5-2) 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠5 = 1.60 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 365 × 10−6 × 𝑒𝑒−0.312 × 𝐶𝐶𝐶𝐶𝐶𝐶1 

  × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  (5-3) 

 

 where, Nspf3  = predicted total crash frequency for roadway segment base 
conditions using a three-year sample, 

 
  Nspf5  = predicted total crash frequency for roadway segment base 

conditions using a five-year sample, 
 
  AADT = average annual daily traffic volume (vehicles per day),  
 
  L = length of roadway segment (miles), and  

  CMFi = crash modification factor. 
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Equations 5-2 and 5-3 have been simplified to Equations 5-4 and 5-5. 

 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠3 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 4.01 × 10−4 × 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (5-4) 

 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠5 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐿𝐿 × 4.27 × 10−4 × 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (5-5) 

 

As explained above, Equations 5-4 and 5-5 represent the combination of an SPF and the 

calibration factor.  The CMFs still need to be applied to these equations as prescribed by the 

HSM predictive model for rural two-lane two-way highways.  It is interesting to note that the 

calibration factor for the three-year sample is lower than the calibration factor for the five-year 

sample.  This implies that the overall safety on the sampled highway segments improved in the 

last three years of the five-year sample.  With this implication, the tangent segments evaluated in 

previous research (Saito et al. 2011) were used to develop calibration factors with more recent 

crash data.  Since the previous research used a three-year sample, the data used for this research 

was grouped into three separate three-year samples for comparison.  The calibration factors for 

the tangent segments are shown in Table 5-2. 

 

Table 5-2:  Calibration Factors for Tangent Segment Sample 

 

Sample Period Predicted 
Crashes

Actual 
Crashes

Calibration 
Factor

2005-2007 368 426 1.16
2008-2010 403 415 1.03
2009-2011 403 374 0.93
2010-2012 422 354 0.84

59 



 It is important to remember that AADT is the only independent variable that changes 

between sample periods, based on the HSM predictive model, since geometric features are 

assumed to be the same.  While AADT has increased on almost all segments since the previous 

research, the actual number of crashes has decreased.  A decreasing calibration factor signifies 

that either the actual number of crashes is decreasing, the predicted number of crashes is 

increasing, or both.  This supports the assumption that overall safety has improved not only since 

the year 2008, but since at least the year 2005.  The improvements in safety can be seen in both 

the curved segment sample and the tangent segment sample.  This also shows that calibration 

factors need to be updated regularly, as they can change significantly within a few years’ time.   

5.3 Curve and Tangent Combination 

 This section will discuss the results of the attempts to parameterize horizontal alignment 

including both curved segments and tangent segments.  Four different approaches were 

attempted to combine segments of different horizontal alignment into the same parameter as 

outlined in Section 4.2.2.  These models included single indicator variable, curve class as a series 

of indicator variables, curve radius, and inverse transformation of curve radius.  A model was 

created for each approach and for each sample period using the backward stepwise technique 

outlined in Section 4.3.1.  The results of each model are presented in this section along with a 

discussion of the next steps in this area of research.  

5.3.1 Single Indicator Variable 

 The single indicator variable model used an indicator variable for horizontal alignment by 

assigning 0 for tangent segments and 1 for curved segments.  While this is a very simple model 

with minimal data collection, the results were inconclusive.  Since the variable only allowed for 
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two possibilities, all curved segments were treated as equal as were all tangent segments.  Any 

variation in curve radius or degree of curvature was ignored by this model.  The parameter 

estimates are shown in Table 5-3 and 5-4  for the three-year and five-year samples, respectively.  

 

Table 5-3:  Parameter Estimates for Three-year Sample Using Single Indicator Variable 

 

Table 5-4:  Parameter Estimates for Five-year Sample Using Single Indicator Variable 

 

 

 Tables 5-3 and 5-4 include the Wald statistic in the fourth column.  The Wald statistic is a 

comparison of the maximum likelihood estimate of the parameter and the proposed value (SAS 

2013).  The statistic is then compared to a chi-squared distribution to produce a p-value shown in 

the fifth column.  The variables in the shown in Table 5-3 and 5-4 in addition to the Curve 

Presence variable are the only variables whose p-values were less than 0.05 for these models.  

Term Estimate Standard 
Error

Wald 
χ2

Probability 
> χ2

Lower 
95%

Upper 
95%

Intercept -8.9068 0.8798 102.5 < 0.0001 -10.6311 -7.1825
Analysis Length (mi) 0.6817 0.1113 37.5 < 0.0001 0.4636 0.8998
Total Truck Percentage -0.0165 0.0051 10.3 0.0013 -0.0265 -0.0064
Ln(3 year Vehicle Count) 0.6430 0.0580 123.1 < 0.0001 0.5294 0.7565
Curve Presence [1] -0.4494 0.1594 8.0 0.0048 -0.7618 -0.1370
Dispersion 0.9360 0.1288 52.8 < 0.0001 0.6836 1.1885

Term Estimate Standard 
Error

Wald 
χ2

Probability 
> χ2

Lower 
95%

Upper 
95%

Intercept -8.1664 0.7303 125.0 < 0.0001 -9.5978 -6.7350
Analysis Length (mi) 0.6602 0.1033 40.8 < 0.0001 0.4576 0.8627
Total Truck Percentage -0.0169 0.0043 15.8 < 0.0001 -0.0253 -0.0086
Ln(5 year Vehicle Count) 0.6400 0.0483 175.2 < 0.0001 0.5424 0.7348
Curve Presence [1] -0.5229 0.1382 14.3 0.0002 -0.7939 -0.2520
Dispersion 0.8525 0.0937 82.7 < 0.0001 0.6687 1.0362
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Using curve presence as a single indicator variable is shown to be significant at a 95 percent 

confidence level, with a p-value of 0.0002.  Of particular interest is the sign for the indicator 

variable estimate.  The interpretation of this model is that the presence of curves reduces the 

overall number of crashes, which is counterintuitive.  This idea will be discussed further in 

Section 5.3.5.  This model groups all curves and tangents into two homogeneous classifications.  

The model, therefore, does not account for sharpness of each curve.  Due to this limitation, this 

model was rejected. 

5.3.2 Curve Class as a Series of Indicator Variables 

 This model involved assigning a classification to each curve based on degree of curvature 

using the HPMS definitions introduced in Chapter 3.  Each classification was changed from a 

letter to a number to allow for parameterization.  Tangent became 0, A became 1, B became 2, 

and so forth, all the way through F becoming 6, as outlined in Table 4-3.  Each classification was 

treated as a separate indicator variable.  This created a set of seven variables, each one with 

possible values of 1 (if the curve in question fell within the range) and 0 (if the curve fell 

anywhere outside the range).  For example, a curve with a C classification produced a value of 1 

for the C class indicator variable, and a 0 for all other indicator variables.  In the JMP model, the 

F (or 6) classification became the base group; hence, only six indicator variables are listed in the 

model output.  Tables 5-5 and 5-6 show the parameter estimates for the three-year and five-year 

samples, respectively. 
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Table 5-5:  Parameter Estimates for Three-year Sample Using Curve Class 

 

 

Table 5-6:  Parameter Estimates for Five-year Sample Using Curve Class 

 

 

 The results for this model were inconclusive.  The model rejected each classification 

indicator variable based on p-values greater than 0.05.  Further analysis observed that the 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -0.9858 1.1417 74.6 < 0.0001 -12.0959 -7.6204
Analysis Length (mi) 0.6895 0.1116 38.2 < 0.0001 0.4709 0.9081
Total Truck Percentage -0.0158 0.0052 9.4 0.0022 -0.0260 0.0057
Numeric Class [0] 0.7444 0.8334 0.8 0.3718 -0.8891 2.3779
Numeric Class [1] 0.2163 0.8250 0.1 0.7932 -1.4007 1.8333
Numeric Class [2] 0.3398 0.8295 0.2 0.6820 -1.2859 1.9656
Numeric Class [3] 0.3386 0.8368 0.2 0.6857 -1.3014 1.9786
Numeric Class [4] 0.6686 0.8482 0.6 0.4306 -0.9939 2.3311
Numeric Class [5] 0.3046 0.9447 0.1 0.7471 -1.5469 2.1562
ln(3 year Vehicle Count) 0.6551 0.0587 124.7 < 0.0001 0.5402 0.7701
Dispersion 0.9260 0.1276 52.7 < 0.0001 0.6759 1.1761

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -9.7737 1.0456 87.4 < 0.0001 -11.8229 -7.7244
Analysis Length (mi) 0.6668 0.1036 41.4 < 0.0001 0.4638 0.8699
Total Truck Percentage -0.0169 0.0043 15.5 < 0.0001 -0.0253 -0.0085
Numeric Class [0] 1.4691 0.8189 3.2 0.0728 -0.1359 3.0742
Numeric Class [1] 0.8807 0.8115 1.2 0.2778 -0.7097 2.4712
Numeric Class [2] 0.9474 0.8150 1.4 0.2451 -0.6500 2.5447
Numeric Class [3] 1.0711 0.8190 1.7 0.1909 -0.5341 2.6763
Numeric Class [4] 1.1930 0.8294 2.1 0.1503 -0.4326 2.8185
Numeric Class [5] 1.0503 0.8895 1.4 0.2377 -0.6931 2.7937
ln(5 year Vehicle Count) 0.6488 0.0489 176.1 < 0.0001 0.5530 0.7446
Dispersion 0.8443 0.0929 82.6 < 0.0001 0.6622 1.0264
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samples did not contain an equal distribution across classifications.  This has to do with the 

actual distribution of all curves within the state.  There simply are not as many sharp curves as 

there are shallow curves.  For all of these reasons, this model was rejected. 

5.3.3 Curve Radius 

 The curve radius model used curve radius, rather than a classification derived from 

degree of curvature.  The main advantage to this model seemed to be the use of a continuous 

variable rather than an indicator or a grouping.  The challenge, however, came from assigning a 

radius value to each tangent segment.  Since radius increases as a curve becomes shallower, the 

radius of a tangent would theoretically be infinite.  Since infinity is impractical from a modeling 

standpoint, an arbitrarily high radius was assigned to each tangent segment.  A value of 10 miles 

was assigned as the radius for each tangent segment.  Tables 5-7 and 5-8 show the parameter 

estimates for the three-year and five-year samples, respectively. 

 

Table 5-7:  Parameter Estimates for Three-year Sample Using Curve Radius 

 

 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -9.3748 0.8374 125.3 < 0.0001 -11.0160 -7.7336
Analysis Length (mi) 0.6879 0.1118 37.8 < 0.0001 0.4687 0.9070
Total Truck Percentage -0.0164 0.0580 10.2 0.0014 -0.0264 -0.0063
Ln(3 year Vehicle Count) 0.6429 0.0580 122.7 < 0.0001 0.5291 0.7567
Radius10 (mi) 0.0453 0.0167 7.4 0.0066 0.0126 0.0780
Dispersion 0.9374 0.1290 52.8 < 0.0001 0.6846 1.1902
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Table 5-8:  Parameter Estimates for Five-year Sample Using Curve Radius 

 

 

 The variable for Curve Radius had a very low p-value in each model, signifying strong 

evidence of a relation to crash prediction.  The estimate for the Radius variable can be 

interpreted as an increase in crashes as the radius increases.  Similar to the Single Indicator 

Variable Model results, this is counterintuitive as a sharper curve would be expected to have 

more crashes than a shallow curve or even a tangent.  This will be discussed further in Section 

5.3.5.   

 Assigning an arbitrary radius of 10 miles to each tangent segment resulted in a wide 

range, with all tangents at the extreme upper end of the range and all curves at the lower end of 

the range.  It was determined that a value would have to be identified as the dividing point, and 

all segments with radii greater than the dividing point would be classified as tangents and 

assigned the value of the dividing point.  A one-mile radius was preliminarily discussed as a 

possibility for such a dividing point.  However, since attempting to undertake the task of defining 

what is and isn’t a curve will require significantly more research, it was deemed beyond the 

scope of this research. 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -8.7093 0.6946 157.2 < 0.0001 -10.0708 -7.3479
Analysis Length (mi) 0.6672 0.1039 41.2 < 0.0001 0.4635 0.8709
Total Truck Percentage -0.0168 0.0043 15.6 < 0.0001 -0.0252 -0.0085
Ln(5 year Vehicle Count) 0.6397 0.0484 174.5 < 0.0001 0.5448 0.7346
Radius10 (mi) 0.0528 0.0144 13.4 0.0003 0.0245 0.0811
Dispersion 0.8542 0.0939 82.8 < 0.0001 0.6902 1.0383
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5.3.4 Inverse Transformation of Curve Radius 

 This model is very similar to the Curve Radius model, and simply required an algebraic 

transformation.  The impetus for this model was difficulty in assigning an arbitrary radius to 

tangent segments.  As mentioned previously, radius increases as a curve becomes shallower so a 

tangent segment would have an infinite radius.  By taking the inverse of the radius, the value for 

tangent segments became 0, with all curves having increasing values as they became sharper. 

This model was the easiest to conceptualize: tangent segments have a value of 0; the shallowest 

of curves would have values close to 0; and as the curves become sharper, the value would 

increase.  Tables 5-9 and 5-10 show the parameter estimates for the three-year and five-year 

samples, respectively.  Unfortunately, the results were inconclusive as the p-value for the Inverse 

Radius variable was very high in both the three-year and five-year samples.     

 

Table 5-9:  Parameter Estimates for Three-year Sample Using Inverse Curve Radius 

 

 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -9.7996 0.8376 136.9 < 0.0001 -11.4412 -8.1580
Analysis Length (mi) 0.8769 0.1018 47.3 < 0.0001 0.6775 1.0764
Total Truck Percentage -0.0137 0.0051 7.2 0.0073 -0.0238 -0.0037
Ln(3 year Vehicle Count) 0.6725 0.0577 135.9 < 0.0001 0.5594 0.7855
Inverse Radius (mi) -0.0022 0.0110 0.0 0.8385 -0.0238 0.0193
Dispersion 0.9681 0.1314 54.3 < 0.0001 0.7105 1.2256
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Table 5-10:  Parameter Estimates for Five-year Sample Using Inverse Curve Radius 

 

   

5.3.5 Discussion 

 One of the observations during this process is that most of the tangent segments had 

significantly longer analysis lengths than the curved segments.  This is to be expected since the 

length of each curved segment was determined by the PC and PT plus a buffer based on 

superelevation runoff and tangent runout.  The segmentation for tangent stretches of roadway 

was not as limited.  In fact, the tangent segments were identified based on sections of 

homogeneous facility features, such as speed limit, lane width, and rumble strip presence.  In 

some regions, rural highways can go on for several miles without any disruptions in 

homogeneity.  Since segment length is a major factor in vehicle exposure, which is a major 

factor in the number of crashes on a segment, it is possible that a model would place too much 

weight on segment length thus assigning an unusually high number of crashes to longer 

segments.  While longer segments should have a higher number of crashes due to higher 

exposure values, if all tangent segments are longer than curved segments on average, the model 

may falsely assume that tangency is a strong indication of a high number of crashes.   

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -9.1010 0.7015 168.3 < 0.0001 -10.4760 -7.7260
Analysis Length (mi) 0.8978 0.0970 85.6 < 0.0001 0.7076 1.0879
Total Truck Percentage -0.0136 0.0042 10.5 0.0012 -0.0218 -0.0058
Inverse Radius (mi) -0.0085 0.0102 0.7 0.4049 -0.0285 0.0115
Ln(5 year Vehicle Count) 0.6675 0.0486 188.5 < 0.0001 0.5722 0.7627
Dispersion 0.8873 0.0963 84.8 < 0.0001 0.6984 1.0761
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 Due to these observations, the interaction of curve presence and segment length was 

tested to see if the disparity in segment lengths was affecting the output of the different models.  

The results the analyses are shown in Tables 5-11 and 5-12. 

 

Table 5-11:  Interaction of Curve Presence and Segment Length for Three-year Sample 

 

 

Table 5-12:  Interaction of Curve Presence and Segment Length for Three-year Sample 

 

 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -8.6258 0.8768 96.8 <.0001 -10.3443 -6.9072
Analysis Length (mi) 0.6054 0.1046 33.5 <.0001 0.4003 0.8104
Total Truck Percentage -0.0174 0.0051 11.9 0.0006 -0.0274 -0.0075
ln_3yr_Veh_count 0.6313 0.0576 120.3 <.0001 0.5185 0.7441
Curve Presence[1] -0.9524 0.2180 19.1 <.0001 -1.3796 -0.5251
Analysis Length (mi) 
*Curve Presence[1]

1.8256 0.5568 10.8 0.0010 0.7344 2.9168

Dispersion 0.8835 0.1247 50.2 <.0001 0.6392 1.1279

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -7.8338 0.7260 116.4 <.0001 -9.2567 -6.4110
Analysis Length (mi) 0.5693 0.0956 35.4 <.0001 0.3819 0.7568
Total Truck Percentage -0.0178 0.0042 17.9 <.0001 -0.0260 -0.0095
ln_5yr_Veh_count 0.6252 0.0478 171.1 <.0001 0.5315 0.7189
Curve Presence[1] -1.0243 0.1870 30.0 <.0001 -1.3909 -0.6578
Analysis Length (mi) 
*Curve Presence[1]

1.7931 0.4734 14.3 0.0002 0.8653 2.7208

Dispersion 0.8016 0.0907 78.1 <.0001 0.6238 0.9793
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 The p-value for the interaction term is very low for both the three- and five-year samples.  

This means that there is strong evidence of a relationship between the analysis length and the 

presence of a curve.  In other words, the curved and tangent samples used in this analysis should 

not be combined into a single model due to the disparity in average segment lengths.  Future 

research should attempt to set limits on segment lengths, or at least attempt to have samples of 

tangents and curves that have similar average lengths.    

 Overall, it is recommended that this idea of a combining curves and tangents in the same 

model receive further analysis and study.  Specifically, a definition for what constitutes a curved 

segment should be defined based on curve radius and segment length.  Using curve radius as a 

continuous variable that included both curved and tangent segments seems to be the most 

promising approach for incorporating horizontal alignment.  Since this research is focused on 

curved segments, it was determined that these ideas should not receive further attention in this 

research.  Thus, the modeling continued only for curved segments. 

5.4 Utah-Specific Model for Curved Segments 

 This section will address the development of a crash prediction model specifically for 

rural two-lane two-way highways within the state of Utah.  The results of the NB and EB models 

will be discussed and final models will be presented.  

5.4.1 Negative Binomial Model 

 The development of an NB model took place using JMP, a statistical software package 

that is a graphical interface for SAS software.  JMP can create an NB model with any number 

independent variables and interactions of variables.  This research was able to use a backward 

stepwise technique for identifying which variables were significant and which were not.  A 
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backward stepwise technique involves adding as many variables as are available and then 

removing the variables one at a time based on their p-value—the variable with the highest p-

value was eliminated and a new model was created for the remaining variables.  This process 

was continued until all variables had p-values less than 0.05, based on a 95 percent confidence 

interval.  The variables that remained after the backward stepwise technique was performed were 

segment length, AADT, total truck percentage, and curve radius.  This was the case for both the 

three-year and five-year samples.   

 This process was performed on the first dataset, and the other two datasets were used for 

validation purposes.  When the model used the data from the second set, it overpredicted the 

number of crashes by about 5.5 percent for the three-year sample and 13.8 percent for the five-

year sample.  For the third dataset the model underpredicted the number of crashes by about 6.7 

percent for the three-year sample and 3.7 percent for five-year sample.   

A chi-squared test for goodness of fit was performed on the second and third datasets for 

both the three-year and five-year samples.  The critical value for the right-tailed chi-square 

distribution for the second dataset was 670.7.  This number was calculated with a 95% 

probability and 612 degrees of freedom.  The degrees of freedom are calculated by taking the 

difference of the data entries (615) and the estimated parameters (2), and then subtracting by 1.  

The chi-squared statistic for the three-year sample was 2217.4, and was 2360.4 for the five-year 

sample.  Both of these values were greater than the critical value, indicating that there is no 

evidence that the distribution of the second dataset approximates a negative binomial 

distribution.  The third dataset also was tested for goodness of fit.  The critical value was found 

to be 663.3 for the third dataset, based on a 95% probability and 605 degrees of freedom.  The 

chi-squared statistic was 1021.8 for the three-year sample and 1277.1 for the five-year sample.  
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Similar to the second dataset, these values were greater than the critical value, indicating a lack 

of evidence that the third dataset approximates a negative binomial distribution.   

 With this information, it was decided that the combined dataset would be used for the NB 

model.  As shown in Figure 5-1, the randomly selected study segments are distributed across the 

state.  The inherent problem is that with only one dataset, there is not a separate dataset for 

validation.  For this reason, the combined dataset was randomly divided into a model set and a 

validation set, with 75 percent of the segments assigned to create the model and 25 percent of the 

segments assigned to validate the model.  Thus, the modeling proceeded with a random sample 

of the combined random samples.  The NB model takes the form shown in Equation 4-6, 

repeated in Equation 5-6 (Ramsey and Schafer 2002). 

 

 ln(N) = β0 + ∑ βixin
i=1  (5-6) 

 

 where, N = number of crashes (predicted or observed), 

 β0 = intercept, 

 βi = coefficient for variable xi, 

 xi = independent variable, and 

 n = number of independent variables. 

 

This is rearranged and shown in Equation 5-7, isolating the predicted number of crashes. 

 

 N = exp [β0 + ∑ βixi]n
i=1  (5-7) 
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Figure 5-1:  Combined Dataset of Curved Segments 
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 The final three NB regression outputs from JMP using the backward stepwise technique 

are shown in Tables 5-13, 5-14, and 5-15 for the three-year sample.  Tables 5-16, 5-17, and 5-18 

show the outputs for the five-year sample.   

 

Table 5-13:  Third-from-Final Parameter Estimates for Three-year Sample 

 

 

Table 5-14:  Second-from-Final Parameter Estimates for Three-year Sample 

 

 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -11.9486 0.8480 198.5 <.0001 -13.6106 -10.2865
Grade 0.0236 0.0201 1.4 0.24 -0.0158 0.0629
Rounded Shoulder Width -0.0201 0.0223 0.8 0.3675 -0.0638 0.0236
Analysis Length (mi) 2.5030 0.4101 37.2 <.0001 1.6992 3.3069
ln 3yr Veh Count 0.9009 0.0518 302.4 <.0001 0.7994 1.0025
Total Truck % -0.0120 0.0046 6.6 0.0099 -0.0211 -0.0029
Log Radius -0.2105 0.0657 10.3 0.0014 -0.3393 -0.0817
Dispersion 0.641965 0.105336 37.142 <.0001 0.435509 0.84842

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -11.8085 0.8330 201.0 <.0001 -13.4411 -10.1759
Grade 0.0230 0.0201 1.3 0.25 -0.0165 0.0624
Analysis Length (mi) 2.4845 0.4104 36.7 <.0001 1.6802 3.2888
ln 3yr Veh Count 0.8867 0.0493 323.9 <.0001 0.7902 0.9833
Total Truck % -0.0120 0.0047 6.6 0.0101 -0.0211 -0.0028
Log Radius -0.2092 0.0658 10.1 0.0015 -0.3381 -0.0802
Dispersion 0.6472 0.1056 37.5 <.0001 0.4402 0.8542
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Table 5-15:  Final Parameter Estimates for Three-year Sample 

 

Table 5-16:  Third-from-Final Parameter Estimates for Five-year Sample 

 

 

Table 5-17:  Second-from-Final Parameter Estimates for Five-year Sample 

 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -11.5570 0.8018 207.8 <.0001 -13.1284 -9.9855
Analysis Length (mi) 2.4465 0.4089 35.8 <.0001 1.6450 3.2480
ln 3yr Veh Count 0.8833 0.0491 323.0 <.0001 0.7870 0.9796
Total Truck % -0.0127 0.0046 7.6 0.0059 -0.0218 -0.0037
Log Radius -0.2236 0.0647 11.9 0.0006 -0.3505 -0.0968
Dispersion 0.6491 0.1058 37.7 <.0001 0.4418 0.8564

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -12.2296 0.8091 228.5 <.0001 -13.8153 -10.6439
Rounded Shoulder Width -0.0242 0.0192 1.6 0.2060 -0.0618 0.0133
Rounded Lane Width 0.0963 0.0437 4.8 0.0277 0.0106 0.1820
Analysis Length (mi) 2.5204 0.3427 54.1 <.0001 1.8487 3.1920
ln 5yr Veh Count 0.8570 0.0431 396.2 <.0001 0.7726 0.9413
Total Truck % -0.0146 0.0038 14.7 0.0001 -0.0220 -0.0071
Log Radius -0.2061 0.0532 15.0 0.0001 -0.3105 -0.1018
Dispersion 0.554861 0.072403 58.72943 <.0001 0.412953 0.696768

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -11.9591 0.7800 235.1 <.0001 -13.4878 -10.4303
Rounded Lane Width 0.0848 0.0430 3.9 0.0485 0.0006 0.1690
Analysis Length (mi) 2.5048 0.3440 53.0 <.0001 1.8306 3.1790
ln 5yr Veh Count 0.8425 0.0415 413.0 <.0001 0.7613 0.9238
Total Truck % -0.0147 0.0038 14.8 0.0001 -0.0222 -0.0072
Log Radius -0.2040 0.0533 14.6 0.0001 -0.3085 -0.0995
Dispersion 0.5620 0.0727 59.8 <.0001 0.4196 0.7044
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Table 5-18:  Final Parameter Estimates for Five-year Sample 

 

 

A Bayesian Information Criterion (BIC) was given for each model in the JMP output.  

BIC is a model selection statistic which measures the lack of fit of a model and adds a penalty 

for the number of terms in the model (Ramsey and Schafer 2002).  When multiple models are 

available, the model with the smallest BIC is chosen.  BIC is determined from Equation 5-8 

(Ramsey and Schafer 2002).   

 

 𝐵𝐵𝐵𝐵𝐶𝐶 = 𝑛𝑛 × ln(𝑅𝑅𝑅𝑅𝑅𝑅) + 𝑝𝑝 × ln(n) (5-8) 

 

 where, BIC = Bayesian information criterion, 

  n = number of observations, 

  RSS = sum of squared residuals, and 

  p = number of independent variables. 

 

The BIC for each of the final three models for both the three-year and five-year samples are 

presented in Table 5-19. 

Term Estimate Standard 
Error Wald χ2 Probability 

> χ2
Lower 
95%

Upper 
95%

Intercept -11.2040 0.6794 271.9 <.0001 -12.5357 -9.8723
Analysis Length (mi) 2.5753 0.3466 55.2 <.0001 1.8960 3.2545
ln 5yr Veh Count 0.8606 0.0409 443.7 <.0001 0.7805 0.9407
Total Truck % -0.0148 0.0038 15.0 0.0001 -0.0223 -0.0073
Log Radius -0.2082 0.0534 15.2 <.0001 -0.3129 -0.1034
Dispersion 0.5755 0.0734 61.4 <.0001 0.4316 0.7195
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Table 5-19:  BIC Comparison 

 

 

The final outputs for both the three-year and five-year samples have the lowest BIC, in 

addition to having variables that are significant at a 95 percent confidence level.  Models based 

on the final output of the backward stepwise technique are represented in Equations 5-9 and 5-10 

for the three-year and five-year samples, respectively. 

 

 N3-year  =  exp[-11.5570 + (2.4465)(L) + (0.8833)(ln(VC))  (5-9) 

                   – (0.0127)(TT) – (0.2236)(ln(R))] 

 

 N5-year  =  exp[-11.2040 + (2.5757)(L) + (0.8606)(ln(VC))  (5-10) 

                            – (0.0148)(TT) – (0.2082)(ln(R))] 

 

 where, L = length, mi; 

 VC = vehicle count = (AADT)(365)(number of years in sample); 

 TT = total truck percentage, percent; and 

 R = radius, ft. 

  

Output Three-year Sample Five-year Sample
Third-from-Final 2129.8 2818.1
Second-from-Final 2123.6 2812.7
Final 2117.9 2809.5

76 



Simplifying the logarithms and coefficients yields Equations 5-11 and 5-12 for the three-year 

and five-year samples, respectively.   

 

 N3-year  =  483.8542 * AADT0.8833 * R-0.2236 * exp[-11.5570  (5-11) 

                 + (2.4465)(L) – (0.0127)(TT)]  

 

 N5-year  =  640.6824 * AADT0.8606 * R-0.2082 * exp[-11.2040  (5-12) 

                   + (2.5757)(L) – (0.0148)(TT)] 

  

Unlike the HSM predictive model, these models are complete and do not rely on CMFs 

or any other modification to create a full model.  The plots of actual total crashes versus 

predicted total crashes are shown in Figures 5-2 and 5-3 for three-year and five-year samples, 

respectively.   

 The sign for each coefficient shows the general effect of each variable.  A positive 

coefficient means that the predicted number of crashes will increase as the value of the variable 

increases.  A negative coefficient signifies a reduction in the predicted number of crashes as the 

value of the variable increases.  For example, the predicted number of crashes increases as the 

AADT and segment length increases.  This result is expected—more exposure should equate to a 

higher crash frequency.  The predicted number of crashes decreases as the curve radius increases 

(becomes shallower).  This is also expected as sharper curves are perceived as more dangerous.  

The predicted number of crashes decreases as the total truck percentage increases, which is the 
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same result observed in the previous study performed on tangent segments of rural two-lane two-

way highways in Utah (Saito et al. 2011).  This could be explained by the fact that truck drivers 

receive training beyond the average automobile driver and generally have significantly more 

experience behind the wheel of a vehicle.  The increased training and experience of professional 

truck drivers equate to lower crash frequencies on highway segments with increased truck traffic.   

 After the model development, both models were used on the validation dataset—the 25 

percent of segments that were set aside from the combined dataset.  A chi-squared test for 

goodness of fit was performed on the validation dataset for both the three-year and five-year 

samples.  The critical value for the right-tailed chi-square distribution was 416.9.  This number 

was calculated with a 95% probability and 371 degrees of freedom.  The chi-squared statistic for 

the three-year sample was 370.0 and was 349.2 for the five-year sample.  Both of these values 

were less than the critical value, signifying strong evidence that the distribution of the samples 

approximate a negative binomial distribution and that the validation dataset was an appropriate 

sample.  The actual number of crashes in the three-year sample of the validation dataset was 204, 

and 396 crashes took place during the five-year sample.  The model predicted 269 crashes for the 

three-year sample—an overprediction of 32 percent.  Also, the model predicted 470 crashes for 

the five-year sample—an overprediction of 19 percent.  Since the values for actual number of 

crashes are, in fact, actual data, it shows the reality of this type of modeling.  Even when the 

predictions and the actual observed data do not always match, real conditions cannot be ignored.  

Therefore, these models represent every segment that was evaluated in the research and will 

stand as the results. 
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Figure 5-2:  Actual vs. Predicted Three-Year Total Crashes 

 

 

Figure 5-3:  Actual vs. Predicted Five-Year Total Crashes 
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5.4.2 Empirical Bayes Model 

 The EB model was used to estimate the total number of crashes based on predicted values 

and on actual values.  The EB model also uses a dispersion parameter to weight the predicted 

values.  If the predicted values are over-dispersed, then the model gives more weight to the 

actual number of crashes in the calculations.  The dispersion parameter for the three-year sample 

was found to be 0.6491 and the dispersion parameter for the five-year sample was found to be 

0.5755.  This means that the three-year sample data were more dispersed than the five-year 

sample data.  The actual weights and models for the EB model vary for each segment.  The only 

values that remain constant for each segment are the dispersion parameters.  

 The benefit of the EB model is that is more closely approximates the actual number of 

crashes compared to the NB model, because it incorporates the actual number of crashes into the 

model.  For this reason, the output of the EB model is called the “expected” number of crashes 

rather than the “predicted” number.  The EB model might be more appropriately considered a 

weighted average of the predicted and actual number of crashes.  For example, the combined 

total of expected crashes on the validation dataset using the EB model was 235 for the three-year 

sample and 420 for the five-year sample.  These numbers fall between the actual and predicted 

values for the validation dataset, 204 and 269 for the three-year sample and 396 and 470 for the 

five-year sample, respectively.  While the EB model should only be used on a segment by 

segment basis, these total values illustrate the benefits of the EB model for more closely 

approximating the expected number of crashes based on actual and predicted values.   

5.5 Summary of Results 

 This chapter has discussed the data collection efforts and the three different modeling 

procedures: HSM predictive model, curve and tangent combination, and the Utah-specific 
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modeling efforts.  The calibration factor for the HSM predictive model was found to be 1.50 for 

the three-year sample of the combined dataset, and 1.60 for the five-year sample of the combined 

dataset.  These values were calculated from the SPF for base conditions, as well as all applicable 

CMFs.  These CMFs included lane width, shoulder width, horizontal alignment, grade, driveway 

density, rumble strip presence, passing lane presence, and two-way left-turn lane presence.  

Looking at the decreased calibration factor between the three-year and five-year samples, and 

comparing it with the decreased calibration factors for the tangent segments over an eight-year 

period, indicates that overall safety is improving on rural two-lane two-way highways in Utah.    

 The curve and tangent combination attempt was partially successful in identifying a 

suitable parameter for variations in horizontal alignment.  The simple indicator variable for curve 

presence was statistically significant at a 95 percent confidence level.  However, this approach 

ignored all variations within the set of curved segments.  The use of curve radius as a continuous 

variable was also statistically significant at a 95 percent confidence level.  However, this 

approach assigned an arbitrary value of 10 miles for curve radius to all tangent segments.  The 

most important observation was the result of testing the interaction between curve presence and 

segment length.  The interaction showed strong evidence of a relationship between curve 

presence and segment length, signifying that the samples used in the combined models needed to 

have similar average segment lengths.  The widely differing average segment lengths that were 

seen in the samples used for this research prevented the successful combination of curved and 

tangent segments into one model.  Further research is required to identify the dividing point 

between a curve and a tangent based on curve radius.   

 The subsection on the development of Utah-specific models outlined the procedure for 

identifying significant variables within an NB model.  A backward stepwise technique was used 
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to remove insignificant variables.  Originally the models were created from the first dataset and 

validated by the second and third datasets.  For the second dataset, the model overpredicted the 

number of crashes by about 5.5 percent for the three-year sample and 13.8 percent for the five-

year sample.  For the third dataset, the model underpredicted the number of crashes by about 6.7 

percent for the three-year sample and 3.7 percent for five-year sample.  So all three datasets were 

combined into one dataset and 75 percent of the segments were randomly selected to make a new 

model.  The remaining 25 percent were used to validate the new combined model.  The model, 

created from 75 percent of the segments, overpredicted the number of crashes for validation 

dataset by 32 percent for the three-year sample and 19 percent for the five-year sample.   

 After the creation of the models, only four variables remained that were significant at a 

95 percent confidence level: AADT (modeled as vehicle count, which was the product of AADT, 

days per year, and years in sample), segment length, curve radius, and total truck percentage.  

The four variables were significant in both the three-year model and the five-year model.   

 The Utah-specific NB crash prediction models can benefit from the application of the EB 

model.  This model is used to better approximate the number of expected crashes.  The EB 

model is essentially a weighted average between the predicted number of crashes and the actual 

number of crashes, using the dispersion factor to determine the weight.  Thus, the expected 

number of crashes from the EB model is closer to the actual number of crashes than the predicted 

number of crashes from the NB model.  A main benefit of the EB model is that it automatically 

corrects for the regression-to-the-mean effect.  The EB model is appropriate for site-specific 

evaluation; thus EB model results for a combined dataset are not shown.   

 The main observation of the results is the importance of the four variables identified by 

the Utah-specific crash prediction models.  AADT and segment length were always significantly 
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associated with crash frequencies.  More exposure equates to higher crash frequencies.  Total 

truck percentage was found to be a significant variable and an increase in truck traffic is 

associated with lower crash frequency most likely due to the increased training and experience of 

professional truck drivers.  Radius was indeed significantly associated with crash frequency.  

Smaller radii—sharper curves—are associated with higher crash frequency.
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6 CONCLUSION 

 The purpose of this research was to use historical data to develop crash prediction models 

for curved segments of rural two-lane two-way highways in Utah.  This thesis presents the 

methodology for developing crash prediction models and reports on the results of the accuracy of 

the crash prediction modeling effort.  The modeling was accomplished by calibrating the HSM 

crash prediction model as well as by creating Utah-specific models.  The data came from 2008-

2012 datasets, grouped into a three-year sample from 2010-2012 and a five-year sample from 

2008-2012.  The HSM predictive model calibration followed the HSM predictive model, 

including the use of appropriate CMFs as described in the HSM (AASHTO 2010).  The Utah-

specific models were developed using an NB regression.  An EB model was also used to 

compare the number of crashes predicted by the NB model with the actual number of crashes 

through weighted average equations.   

 The main finding of this research is that both the HSM and Utah-specific crash prediction 

models can incorporate highway curvature as a statistically significant variable.  Out of a large 

list of possible variables, the Utah-specific models resulted in only four statistically significant 

variables at a 95 percent confidence level.  This simplified crash prediction model will be easier 

to reproduce due to the small amount of data collection required for its use.  

 This chapter presents the outcomes of the research, recommendations for the use of 

models, and further research needs.  
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6.1 Outcomes 

The calibration of the HSM predictive model for curved segments on rural two-lane two-

way roads in Utah was completed for the three-year sample and the five-year sample for 

comparison.  The combined dataset contained 1,495 curved segments throughout the state.  The 

three-year sample had a calibration factor of 1.50 and the five-year sample had a calibration 

factor of 1.60.  The HSM model is underpredicting the number of crashes (i.e. curved segments 

of Utah’s rural two-lane two-way roads have 50 to 60 percent more crashes on average than a 

national dataset of rural two-lane two-way roads).   

The Utah-specific models were developed using NB models.  The use of a backward 

stepwise technique identified only four variables as statistically significant at a 95 percent 

confidence level.  Those four variables were AADT, segment length, curve radius, and total 

truck percentage.   

Where the HSM predictive model uses up to 12 variables in the CMF calculations in 

addition to the AADT and segment length values used in the SPF calculation, the Utah-specific 

models require only four variables in total.  With the reduced data collection demands, these 

Utah-specific models may be better suited for crash prediction than the HSM predictive model.   

This research also attempted to combine curved and tangent segments into one parameter.  

This attempt proved inconclusive as some of the models did not pass standard statistical tests for 

significance for tangent and curve section distinction since the coefficients of the possible 

variables were not significant at a 95 percent confidence level.  The models that did have strong 

evidence of significance were not evaluated any further as they were either too general or needed 

further definition.  Since the purpose of this research was to create crash prediction models for 
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curved segments, the attempt to incorporate tangent segments did not receive any further 

attention.   

 An EB model was also used to determine an expected number of crashes.  The EB model 

relies on a combination of predicted values and actual values.  The two values are weighted and 

added together to provide the overall result.  The weight is dependent on a dispersion parameter.  

These dispersion parameters were obtained during model development so that future analysis can 

be performed.  EB models are meant to be site-specific; therefore, results from the combined 

datasets were not reported. 

6.2 Recommended Models 

The HSM calibration factors were found to be 1.50 and 1.60 for the three-year sample 

and the five-year sample, respectively.  The Utah-specific crash prediction models can also be 

used as alternative models for curved segments of rural two-lane two-way highways.  These are 

shown in Equations 5-11 and 5-12, which are repeated here in Equations 6-1 and 6-2, 

respectively.   

 

 N3-year  =  483.8542 * AADT (0.8833) * R (-0.2236)  (6-1) 

   * exp[-11.5570 + (2.4465)(L)  

   – (0.0127)(TT)]  

 

 N5-year = 640.6824 * AADT (0.8606) * R (-0.2082)  (6-2) 

   * exp[-11.2040 + (2.5757)(L) 

   – (0.0148)(TT)] 
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 where, AADT = average annual daily traffic, 

  R = radius (ft.),   

  L = length (mi), and  

 TT = total truck percentage (percent). 

 

 The Utah-specific models use far fewer variables than the HSM models and were 

developed from segments in Utah rather than across the United States.  But simplicity has 

limitations: the Utah-specific models can only evaluate the effects of the four variables in the 

models—specifically, improvements on horizontal curvature.  The HSM models require more 

variables, hence are able to evaluate the effects of as many variables as are included in the 

CMFs. 

 The EB models discussed in the previous chapter should be used in conjunction with the 

Utah-specific crash prediction NB models to correct for the regression-to-the-mean effect.  Since 

the EB models use a weighted average of actual and predicted crashes, they are appropriate for 

before-after analysis where the actual number of crashes is known (Srinivasan et al. 2009).   

6.3 Future Research Needs 

 As described earlier, this research was performed for curved segments of rural two-lane 

two-way highways in Utah.  Research has been previously performed on tangent segments of 

rural two-lane two-way highways in Utah.  This research attempted to find a suitable parameter 

for combining curved and tangent segments into the same model, but no convincing models 

resulted.  Future research should give attention to this possibility.  One hypothesis is that a mixed 

dataset of curved and tangent segments should have similar average segment lengths.  Since 

segment length is a key component of vehicle exposure, which is a key variable in crash 

88 



prediction modeling, longer average lengths for tangent segments may be falsely correlated with 

higher crash rates.   

 As expected, more recent data will help further research on this topic.  A comparison of 

historical predictions versus current crash data would help in the development of more accurate 

crash prediction models.  Also, interactions between variables were not considered in this 

research—each variable was considered independently from each other.  Further research on 

interactions between variables would shed more light on improving the accuracy of crash 

prediction models.
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