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ABSTRACT 

 
Development and Regional Application of Sub-Seasonal Remote-Sensing 

Chlorophyll Detection Models 
 

Carly Adeline Hyatt 
Department of Civil and Environmental Engineering, BYU 

Master of Science 
 

Remote sensing has been used as an effective chlorophyll-a detection method in inland 
lakes and reservoirs. Concentration estimates of chlorophyll-a approximate the amounts of algae 
and phytoplankton in a body of water, can indicate the existence of large blooms and high 
nutrient loading, and can be used as an indicator of water quality. These biomasses pose potential 
threats to the quality of the water and the local environment by depleting oxygen, influencing the 
taste of the drinking water and detrimentally affecting aesthetics and recreation. Deer Creek 
Reservoir exhibited eutrophic tendencies in the early 1990’s, caused by phosphorus pollution. 
This was made evident by accelerated algae growth. Following remediation efforts, Deer Creek 
Reservoir, as well as nearby Jordanelle Reservoir have been closely monitored with regular field 
sampling. These field data have been used to develop remote sensing methods using Landsat 
images to provide supplementary information for reservoir management. These remote sensing 
methods allow for mapping of the distribution of chlorophyll-a, which provides spatial 
distribution average, and maximum estimates of chlorophyll-a concentrations, data and 
information that are not feasible with in-field sampling.  
 

In this thesis, traditional methods for remote sensing models are discussed, and a novel 
sub-seasonal approach based on seasonal algal succession is proposed and demonstrated. Each 
seasonal model is created using a standard stepwise regression using historic field data and the 
associated Landsat images and is statistically tested for leverage to ensure unbiased model 
development. These sub-seasonal detection models are applied to 5 reservoirs in the central-Utah 
region to provide a more comprehensive description of reservoir behavior and water quality 
trends over the past 30 years. Historic trends of the average and maximum chlorophyll-a 
estimates are provided for each of the reservoirs. Example color maps are presented to 
demonstrate the ability of remote sensing to represent the spatial distribution of algae (using 
chlorophyll as an indicator). Limitations for this approach are discussed, as well as applications 
for remotely sensed water quality data on a regional scale. 
 
 
 
 
 
 
 
 
 
Keywords:  remote sensing, chlorophyll-a detection, regional chlorophyll trends, Landsat 
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1 INTRODUCTION 

Various remote sensing methods have been used over the past 40 years in engineering 

and earth sciences to describe and evaluate many land and hydrologic features. The applications 

vary from identifying geologic formations to evaluating climate change or vegetative health. 

Remote sensing instruments can be passive, meaning that they measure the reflectance of an 

object from a source other than the sensor, or active, meaning that they provide the signal that is 

measured. Perhaps the most familiar passive remote sensing instrument is the human eye. Light 

is reflected at different wavelengths by different objects, and the eye can sense characteristics 

such as color, shape, and depth. The practice of using remote sensing in engineering and earth 

science research relies on this same principle of describing objects through their reflective 

properties.  

The ability of remote sensing to provide useful information depends on accurate models 

that correlate reflectance values to useful measurements, such as elevation, temperature, or type 

of vegetation. In order to develop a model for practical applications, remote sensing 

measurements need to meet several resolution criteria: spectral, spatial, and temporal. 

Additionally, while certain resolutions may be more suited for an application based on its 

geographic or temporal scope, an organization may be restricted due to budget or time 

constraints in developing a model. These considerations are discussed later with respect to the 

use of NASA’s Landsat Satellites as remote sensing instruments and suitability of their data to 
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support long-term, regional applications.  Landsat measures reflectance data in 7 or 8 spectral 

bands depending on the satellite mission. These data can be correlated with features of interest to 

develop models or applications. Table 1-1 shows several common applications of remote sensing 

using Landsat data and the principal bands, or ranges of wavelength, involved in these 

applications (2013). (Band 6 is not included, as its resolution is different from other bands and is 

not commonly used in the model development). 

 

Table 1-1 Landsat 5 TM and 7 ETM Band Distribution and Applications 

Band Number Description Wavelength (µm) Example Use 

Band 1 Blue 0.45-0.52 Bathymetry, soil/vegetation 
distinction 

Band 2 Green 0.52-0.60 Peak vegetation, plant vigor 

Band 3 Red 0.63-0.69 Discriminates vegetation slopes 

Band 4 Near Infrared 0.77-0.90 Emphasizes biomass content, 
distinguishing shorelines 

Band 5 Short-wave Infrared 1.55-1.75 Moisture content 

Band 7 Short-wave Infrared 2.09-2.35 Hydrothermally altered rocks, 
mineral deposits 

Band 8 (Landsat 7 only) Panchromatic 0.52-0.9 15 meter resolution 

 

One of the most important remote sensing measurements in environmental engineering is 

with respect to water quality monitoring. There are several water quality parameters that can be 

measured through remote sensing, including Secchi Disk Transparency (SDT), and chlorophyll-

a, a pigment found in algae. Measuring the chlorophyll levels helps describe algal blooms, and 

can be an indicator for lake and reservoir health due to the responsive relationship of algae and 

nutrient levels of phosphorus and nitrates (Healey and Hendzel 1980). Remote sensing is an 

especially effective method for quantifying chlorophyll concentrations when comparing lakes 

and monitoring over a long period of time (Dekker 1993).  There are however, limitations in 
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developing and applying accurate chlorophyll detection models and correlating those 

measurements with algal concentrations, which include the resolution of the remote sensor 

(spectral, spatial, and temporal), and the quality of its products, as well as the quality of the field-

measured data. The following study addresses each of these limitations as it explores a unique 

seasonal approach to develop and apply a regional chlorophyll detection model and use that 

model to estimate concentrations of various algal populations. 

1.1 Background and Limitations of Traditional Methods 

Traditional methods for chlorophyll-a detection and quantification have been developed 

for a range of satellites, each of which has unique spatial, spectral, and temporal resolutions, and 

data availability. Many traditional methods discussed in literature often use the ratio of the near-

infrared and red spectral bands (NIR/R) to develop models which relate spectral responses to 

algae concentration (Han and Rundquist 1997; Mishra and Mishra 2011). These models typically 

focus only on the late growing season which is generally the period of highest impact (Falconer 

1999; Kutser 2004; Kutser, Metsamaa et al. 2006). The reliance on the NIR/R can be problematic 

when chlorophyll concentrations are low (Han and Rundquist 1997) and when the remote 

sensors do not provide the spectral resolution necessary to make the NIR/R ratio useful. An 

illustration of this difficulty can be seen in Figure 1-1. 
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Figure 1-1 Reflectance of Algae-Laden Water Under Varying Suspended Solids Concentration (SSC) with 
Landsat Band Ranges (Han 1997) 

 

This figure shows the characteristic reflectance values (or spectra) of algae-laden water as 

the suspended solids concentration (SSC) varies. The characteristic profile of this particular 

population of algae can be seen at each of the SSCs. There are consistent and distinct local 

minimum near 680 nm and local maximum at approximately 820 nm within the ranges of bands 

3 (red) and 4 (near-infrared) respectively, as well as a maximum near 700 nm. The ratio of a 

maximum to minimum would serve as clear indicator for concentration if the discrete reflectance 

values of each were known. This correlation between the band ratios and measured data could 

then be used to develop a model.  However, as noted by the colored overlays, the reflectance 

measured by the Landsat satellite covers a much larger range of wavelengths than just the 

minimum or maximum, and does not include the global maximum at all. This means the 

reflectance measured by Landsat may not provide an accurate representation of the relationship 

between the maxima and the minima. Also, suspended solids concentrations can significantly 

impact the measured spectra, and characteristic spectra can vary among populations of algae. 
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Other remote sensors which may provide the spectral resolution to better resolve the chlorophyll 

spectra are generally not feasible for long term monitoring applications due to high cost of 

acquisition and processing and limited data or coverage. 

Traditional approaches to model development that only use the later portion of the 

growing season can also be problematic because they ignore the unique properties and processes 

that occur in connection with seasonal algal succession and unique algae populations (Cullen 

1982; Morel and Berthon 1989), as discussed in the following section. Water quality monitoring 

agencies commonly focus on the late season because of the blooms of toxic cyanobacteria that 

occur in the late summer months (Falconer 1999; Kutser 2004; Kutser, Metsamaa et al. 2006). 

However, diatom blooms in the early growing season can have significant biomass and  can 

negatively affect recreational activities, fish habitats and the overall ecosystem (Spaulding 2007). 

Attempting to fit a model using only the conventional spectral range ratios and concentration on 

the late summer ignores unique physical and spectral properties of the algae and characteristics 

of the body of water under observation during other parts of the growing season. This one-size-

fits-all approach is limited and narrow in scope and ability to accurately describe and monitor the 

health of a lake or reservoir over the entire growing season.  

Placing all of the focus on the end of the growing season, while focusing on a sensitive 

period, ignores the importance of monitoring water quality during other sub-seasons, which may 

require monitoring. For example, a study of over 145 lakes in Minnesota found that 

approximately 17% of the chlorophyll maxima occurred between May and June, and that early 

peaks occurred in all trophic and geometry classes. (Stadelmann, Brezonik et al. 2001). Field 

measured chlorophyll values were similarly analyzed for Deer Creek and Jordanelle Reservoirs 

between 1984-2012. Figure 1-2 shows the distribution and frequency of the maximum measured 
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chlorophyll values over the 28 year time record. Approximately 39% of the maxima occurred for 

these two lakes in the early summer months, and a total of 60% of the maxima occurred outside 

of the later months of August and September. 

 

Figure 1-2 Frequency of Field-Measured Chlorophyll Maximums throughout the Growing Season in Deer 
Creek and Jordanelle Reservoirs from 1984-2012 

 

  As can be seen from Figure 1-2, the high percentage of chlorophyll values occurring 

throughout the early and middle months of the growing season demonstrate the importance and 

need for accurate monitoring throughout. 

Another limitation of traditional remote sensing chlorophyll detection models is the development 

of a model based on a small number of images and data points. Many studies have made great 

effort to take the field samples as close as possible to the time of satellite image acquisition, but 

then base their entire model using the correlation between just a few points and the reflectance 

values of a few pixels, and often a single time and a limited number of locations. This approach 

often results in an artificially high correlation during model development and only describes the 

individual body of water well only under the conditions of that single image. These kinds of 
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models prove less useful in applications to other bodies of water, or the same body under 

different conditions (such as different sun elevation, atmospheric interferences, etc.), or in 

developing historical analyses that may use satellite images that do not have accompanying field 

data. 

1.2 Sub-Seasonal Approach 

 It has been well documented that algae populations experience a phenomenon known as 

succession in temperate lakes and reservoirs as different types of algae dominate the bodies of 

water at different periods of the growing season (Prowse and Talling 1958; Castenholz 1960; 

Morel and Berthon 1989; Stadelmann, Brezonik et al. 2001). Diatoms, or yellow-brown algae, 

dominate during the early months of the growing season, while green algae and blue-green algae 

dominate during the middle and late months, respectively. Each algae population exhibits unique 

physical properties including buoyancy and pigmentation, making the visible or reflective 

properties (or spectra) unique to each type of algae (Cullen 1982; Morel and Berthon 1989). 

Studies show that diatoms for instance, have lower absorption coefficients than other 

phytoplankton, which means that the reflectance and relation to chlorophyll pigmentation will be 

different from other phytoplankton (Sathyendranath, Watts et al. 2004). More accurate 

recognition of the different types of algae may drastically improve the reliability of remote 

sensing chlorophyll detection models (Hansen, Swain et al. 2013). Also, correlation developed 

for a sub-season should be more accurate as there is less variance in the measured reflectance or 

spectra. 
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1.3 Objective 

 This study addresses the issues and limitations associated with traditional methods by 

developing three sub-seasonal chlorophyll-a detection algorithms. We also demonstrate the use 

of historic field data for model development even if these data were not specifically collected for 

remote sensing studies and may not be coincident in time. These three algorithms developed 

correspond with the three distinct types of algae present in the temperate reservoirs of north-

central Utah, namely diatoms in late spring, green algae in summer, and cyanobacteria in late 

summer. The algorithms are developed using a stepwise linear regression to fit the Landsat-5 

Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM) band reflectance to 

in-situ measured chlorophyll-a. This regression approach includes all band reflectance values 

(not just the red and near infrared bands) and every possible ratio of these values, which 

addresses the issue of spectral resolution, and does not limit the model to only the ratio between 

the bands containing the near-infrared and red values.  

Once the algorithms were developed, they were applied to Landsat images from 1984 to 2012 to 

determine the historical trends of average and maximum chlorophyll levels for five different 

reservoirs. Between 51 and 77 measurements were used to the model for each reservoir 

depending on the quality of images available and the life-span of the reservoir. This use of 

historical data rather than one or two images coincident with field data dramatically increases the 

scope of application and amount of information gained from analysis. This also provides a large 

base of data for evaluating conditions over the years.  

Nominally, Landsat revisits any given location every 16 days; however some of these images are 

unusable because of cloud cover or other issues. This study used every available image that had 

field data collected within either the same day (for early and late seasons) or within 24 hours 
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(middle season) of the satellite image. Sample dates are discussed in more detail in Section 2.1.2. 

Landsat images were collected at approximately 10:30 AM, MST. Generally the field data were 

collected in the morning, near the time of the satellite overpass. This is important, as the spatial 

algae distributions in these lakes can change significantly because of afternoon winds. 

The reservoirs used in this study and corresponding time period used in the analysis are listed 

below in Table 1-2. 

 

Table 1-2 Scope of Model Application for Each Reservoir 

Reservoir Date of Model Application 
Deer Creek 1984-2012 
Jordanelle 1993-2012 

East Canyon 1984-2012 
Echo 1984-2012 

Rockport 1984-2012 
 
 
Long-term model development and application for multiple reservoirs has the potential to 

provide useful information for enhanced analysis, both spatially (regional rather than single 

bodies of water) and temporally (over the life of a reservoir, not for a single day).  Improving the 

accuracy and expanding the scope of chlorophyll detection models allows for better monitoring, 

understanding, and planning for reservoir water quality.  
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2 METHODS 

2.1 Data Collection 

Data used in the development of the chlorophyll detection models were field samples at 

locations shown in Figure 2-1 as well as 25 unique images corresponding with the dates and 

locations of field measurement. An index of images used for model development is included in 

Appendix A. 

 

Figure 2-1 Sampling Locations for Deer Creek and Jordanelle Reservoirs 
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2.1.1 Field Measured Data 

The Central Utah Water Conservancy District (CUWCD) collected in-situ water quality 

data from 1984-2012 for Deer Creek Reservoir and 1993-2012 for Jordanelle Reservoir 

(beginning with the completion of the dam). These measurements included many water quality 

parameters, such as pH, conductivity, nutrient levels, and chlorophyll-a content. Chlorophyll-a 

was reported in μg/L and was measured using spectrophotometric analysis and acetone 

extraction. It should be noted that non-uniform laboratory procedures and pheophytin-a 

correction procedures had been used by the CUWCD prior to 2013, resulting in possible error in 

the data. In addition, unpublished studies at BYU indicate that correlations between measured 

chlorophyll content and algal mass can exhibit significant uncertainty.  

The chlorophyll-a measurements used in the development of the detection models were 

limited to those within 2 meters of the surface. Though other deeper measurements existed, they 

were not included; the Landsat satellites data could not accurately detect concentrations at 

greater depths. A total of 84 samples between Deer Creek and Jordanelle reservoirs were used in 

the development of the detection models.  

2.1.2 Remotely Sensed Data 

Images in the form of GeoTiffs were downloaded from the USGS Earth Explorer 

website, from both the Landsat 5 TM and 7 ETM satellites which have 30x30 meter pixels. The 

Landsat satellites were chosen due to the appropriate spatial and temporal resolution for this 

application. Given the size of the reservoirs in question, the 30x30 m pixel resolution was 

suitable for chlorophyll detection applications (Sawaya, Olmanson et al. 2003). Images used in 

development of the algorithms were limited temporally to the same day as field-data collection 

for early and late seasons, and within 24 hours of the field-data collection time for the mid-
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summer. Spatially the images were limited to those in paths 37 and 38, row 32 which puts the 

reservoirs away from the edges of the image, where data are distorted because of the slant angle. 

The temporal limitations allowed for an accurate match of the field conditions by matching 

sample collection and satellite image acquisition and provided a suitable number of samples for 

model development. While the Landsat series has a 16-day return period for a particular path and 

row, the overlapping nature of image acquisition provide a 7-9-7 image availability for features 

located on the edges of a path, as is the case for Deer Creek Reservoir. A total of 26 unique 

images (same day images from early and late, and within 24 hour images for the mid-summer 

season) were used in development of the sub-seasonal models. The temporal limitation was 

expanded for the mid-summer season in order to increase the number of sample matches. The 

numbers for each season are shown in Table 2-1.  After the model was developed, it was applied 

to additional images to analyze the time history of the reservoirs. 

 

Table 2-1 Temporal Limitations by Season 

Season Temporal 
Limitation Number of Images Number of Sample 

Matches 

Early Same day 6 18 
Mid Same day 2 6 
Mid Within 24 hours 14 41 

Late Same day 6 25 

 

2.2 Calibration and Processing 

Prior to use in statistical analysis, Landsat images required calibration and processing to 

accurately represent reflective properties of the water surface. Using the image processing 

software, ENVI, the raw image files were calibrated based on the sensor (Landsat 5 or 7), the 
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date of image acquisition, and the sun elevation. The images were then atmospherically corrected 

using a simple dark subtraction algorithm. Atmospheric correction is necessary to account for 

interferences such as water vapor or pollution in the atmospheric column. The simple dark 

subtraction atmospheric correction algorithm locates the pixel with least amount of reflection and 

assumes that amount of reflection in that pixel is attributed to interferences from the atmospheric 

column. That amount is then subtracted from all other pixels, thus correcting or removing the 

reflectance caused by atmospheric interference.  

The next step in processing the data was to apply a filter each of the 3x3 pixel grids. This 

was accomplished by using a common threshold based on the standard deviation of the 

reflectance values (Bailey and Werdell 2006; Johnson, Strutton et al. 2013). Using the following 

equation, a new mean was found to represent the reflectance values for each of the six bands in 

the 90 meter square area surrounding the sample site. 

                
  (       ̅)    (       ̅)

 
   (2-1) 

where  ̅=unfiltered mean,  =unfiltered standard deviation, and  =number of values within 

±1.5*  . This approach calculates the mean value for a 3x3 set of pixels, while ignoring pixels 

with large noise or speckle values.  

2.3 Statistical Analysis 

The first step in statistical analysis was determining whether the field-measured data 

were normally distributed, as normal distribution is a requirement for regression analyses. The 

results of a lilliefor distribution test (shown in Table 2-2) found the data for the middle and late 

seasons to be not normally distributed, while the early season data were normally distributed. 
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The distributions for the natural log transform of the middle and late season chlorophyll 

concentrations, however, were normally distributed. 

 

Table 2-2 Distributions for Each Sub-season 

Season and measurement p-value Distribution 
Early; Chlorophyll 0.0535 Normal 

Early; Natural Log of chlorophyll 0 Not normal 
Mid; Chlorophyll 0.0027 Not normal 

Mid; Natural Log of Chlorophyll 0.5729 Normal 
Late; Chlorophyll 0 Not normal 

Late; Natural Log of Chlorophyll 0.2009 Normal 
 

Using the appropriate data, a forward stepwise regression was run on each of the sub-

seasons to determine which parameters should be included in the predictive model and their 

respective coefficients. A p-value of 0.25 was used as a threshold for the amount of effect that a 

parameter must have to be included in the model on a forward step, while a threshold p-value of 

0.1 was used to determine whether a parameter should be removed during a backward step. 

Initial regression results are reported in Appendix B. 

Following the initial regression, a series of tests of influence were applied to determine 

whether a sample point had large influence on the model, even if it were not obvious 

graphically. A sample was categorized as having large leverage if it exceeded the following 

criteria for 2 or more tests of influence. 

Hats test: hi>
  

 
  

where,  

    
 

(   )
(
    

  
)  

 

 
   (2-2) 

p= number of parameters in the model and n=number of samples included 
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Studentized Residual:    (        )      

where, 

          
    

 √    
   (2-3) 

Res= residual of a case 

Cook’s Distance: Di>1  

where, 

    
 

 
(        )

 (
  

    
)   (2-4) 

One case of high leverage was identified in both the early and late sub-seasons, resulting 

in a new stepwise regression and updated model after the case was removed from the regression. 

An example of the leverage test results is shown in Figure 2-2 for the early sub-season data. The 

remainder of the leverage test results can be found in Appendix B. Figure 2-2a shows the points 

which have high leverage; one data point has high leverage for two of the tests, while no points 

are flagged as having high leverage in Figure 2-2b, after the data point is excluded from the 

regression. Difference in scales should be noted when comparing the results of the leverage 

tests.    

The results of the final regressions are shown in the plots of actual vs. predicted 

chlorophyll or log(chlorophyll) values in Figure 2-3. The original Actual v. Predicted plots for 

the models prior to excluding points that failed the leverage test are included in Appendix B. By 

examining the leverage of individual cases within the regression, the models were improved by a 

10% increase in the correlation coefficient value for the early model and a 2% increase for the 

late model.  
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Figure 2-2 Example of Leverage Tests for Early Sub- Seasonal Model a) Including all data points, and 
highlighting the point which fails the leverage tests b) Excluding points that failed at least two of the leverage 
test 
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Figure 2-3 Actual v. Predicted Values for Early, Mid, and Late Sub-seasons 
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The algorithms for each of the sub-seasons are included below. 
 
 
Early summer (April – May) 
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3 RESULTS AND DISCUSSION 

3.1 Model Comparisons 

As can be seen in Figure 2-3, the regression coefficients for each of the sub-seasonal 

models are relatively high, at 0.83, 0.64, and 0.91 for the early, mid, and late sub-seasons 

respectively. When compared to the regression coefficients for the individual sub-seasons, the 

application of the late algorithm to early and mid-summer months were significantly lower. 

Figure 3-1 and Figure 3-2 illustrate the inability of a model developed using only data from the 

end of the growing season to accurately estimate the chlorophyll during other months of the 

growing season. This demonstrates how the reflectance properties of the algae change with the 

season and how sub-seasonal models can provide more accurate estimates.  

Figure 3-3 shows the results of a model developed using stepwise regression and fitting 

all of the data for the entire growing season – rather than for individual seasons. Though it is a 

better fit than the late algorithm applications to other sub-seasons, the correlation coefficient is 

only R2=0.42 compared to 0.83, 0.64, or 0.91 from the sub-seasonal algorithms. 
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Figure 3-1 Actual v. Predicted for Early Data with the Late Model Applied. R2 = 0.443 Compared to 0.83 of 
the Early Data with the Early Model Applied. 

 

 

Figure 3-2 Actual v. Predicted for Mid-summer Data with the Late Model Applied. R2=0.049 Compared to 
0.64 of the Mid-summer Data with the Mid-summer Model Applied. 
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Figure 3-3 Actual v. Predicted for the Entire Growing Season Using a Single Model 

 

It should also be noted that the data for the early sub-season was normally distributed, but 

the mid and late seasons required log transformation before they could be considered normally 

distributed. When all of the data was combined, a log transformation was required to be normally 

distributed.  

3.2 Sub-Seasonal Model Results 

Models were then applied to images from throughout the growing season for each of the 

five reservoirs. The temporal analysis covered the period of satellite or reservoir record, with 

images varied from reservoir to reservoir due to image quality, cloud cover, ice cover, or 

construction of the reservoir; however, the range of dates included in the application span from 

1984 to 2012. The appropriate seasonal model was applied to the each image, and then using 

unsupervised classification, the image was masked to only include the reservoir and exclude the 

land areas. This provided a data set covering the entire reservoir that consisted of the estimated 
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chlorophyll concentrations. I then calculated measures of central tendency and variation on these 

reservoir pixels. Table 3-1 summarizes the results of these statistical measures for each of the 

sub-seasons and the entire growing season for each reservoir. The mode was chosen as a measure 

of the average chlorophyll value instead of the mean as it is less influenced by outliers, and 

provides a more accurate description for the most commonly occurring value in the reservoir. 

The maximum value was calculated as follows: 

          ̅      ( ) (3-1) 

where, 

  ̅                                and σ = standard deviation. 

The purpose of calculating the maximum using this approach is to avoid using a single 

pixel with a high value which could be contributed to noise in the image rather than a true high 

chlorophyll value. The value located approximately two standard deviations from the mean 

represents the 95th percentile, or a value that is greater than 95 percent of all of the observations. 

The standard deviation is used as a measure of the variability of chlorophyll levels in the entire 

body of water. 

The following plots show the results by season of the mode and maximum estimated 

chlorophyll levels for the entire reservoir for Jordanelle over a 19 year period (1993-2012). 

Figure 3-4 and Figure 3-5 show the trends for the early summer months, Figure 3-6 and Figure 

3-7 show the trends for the mid-summer months, and Figure 3-8 and Figure 3-9 show the trends 

for the late summer months. A collection of historical trends for the other reservoirs for each 

season is provided in a similar manner in Appendix D. 
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Figure 3-4 Average (mode) Estimated Chlorophyll Levels in Jordanelle for the Early Summer Months from 
1993-2012 
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Figure 3-5 Maximum Estimated Chlorophyll Levels in Jordanelle for the Early Summer Months from 1993-
2012 
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Figure 3-6 Average (mode) Estimated Chlorophyll Levels in Jordanelle for the Mid-summer Months from 
1993-2012 
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Figure 3-7 Max Estimated Chlorophyll Levels in Jordanelle for the Mid-summer Months from 1993-2012 
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Figure 3-8 Average (mode) Estimated Chlorophyll Levels in Jordanelle for the Late Summer Months from 
1993-2012 
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Figure 3-9 Max Estimated Chlorophyll Levels in Jordanelle for the Late Summer Months from 1993-2012 

 

Jordanelle was chosen to demonstrate the benefits of a seasonal analysis and reinforce the 

importance of monitoring reservoirs throughout the growing season, rather than only during the 

late summer months. These trends show change in the reservoir since the dam was completed 

until the present. As can be seen in Figure 3-4 and Figure 3-5, the trend for the early growing 

season over 19 years is increasing, indicating that diatom concentrations are increasing, while 

Figure 3-6 through Figure 3-9 show decreasing trends for the mid and late summer months 

indicating decreasing concentrations of green and blue-green algae. It should be noted that the 

trends differ in degree for each reservoir and each sub-season. This indicates that each reservoir 

is unique, and each sub-season is unique and requires monitoring. 
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The results in Table 3-1 present the slope of the linear trend in degree of change per year 

for each trend line for the average, maximum, and standard deviations of estimated chlorophyll 

levels in each of the five reservoirs. Values are highlighted to emphasize which reservoirs and 

seasons are increasing in the average, maximum or variation of chlorophyll levels over time. 

Three of the five reservoirs show positive trends for the early months in both maximum levels, 

albeit by less than 0.1 μg/L per year. The most drastic changes are occurring in the late summer 

months, as the trends for maximum levels are decreasing (with the exception of Echo Reservoir) 

by an average of 2.56 μg/L per year. 

 

 

Table 3-1 Slope of Trend Lines for Each Sub-Season and Reservoir 

Reservoir and Season Mode (ug/L/year) Max (ug/L/year) Standard Deviation 
(ug/L/year) 

Deer Creek – Early -0.05 -0.10 -0.04 
Deer Creek – Mid -0.06 -0.12 -0.03 
Deer Creek – Late -2.14 -3.48 -1.33 

Jordanelle – Early 0.06 0.09 0.02 
Jordanelle – Mid -0.07 -0.19 -0.05 
Jordanelle – Late -0.79 -2.50 -0.81 

East Canyon - Early 0 -0.12 -0.05 
East Canyon – Mid -0.04 -0.25 -0.10 
East Canyon – Late 0.17 -2.08 -0.65 

Echo – Early 0.06 0.04 0 
Echo – Mid -0.04 -0.17 -0.07 
Echo – Late 0.30 0.18 -0.01 

Rockport – Early -0.04 0.02 0.02 
Rockport – Mid -0.05 -0.10 -0.03 
Rockport - Late 0.18 -2.19 -0.86 
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Another way of using the model to examine the quality of water on a regional basis can 

be demonstrated by applying the algorithm to a reservoir image to show the spatial distribution 

of the algae.  All of the reservoirs used in this study are within Landsat path 38, row 32. The 

spatial distribution of the chlorophyll within each reservoir on May 21, 2003 can be seen in the 

color maps of Figure 3-10. 

 

Figure 3-10 Spatial Distribution Maps of Each Reservoir from May 21, 2003 Landsat Image (A. Deer Creek, 
B. Rockport, C. Echo, D. Jordanelle, E. East Canyon) 

 

This example of spatial distribution color maps shows that each of the reservoirs behaves 

quite differently. For instance, Deer Creek has relatively low values throughout the reservoir, 

with high levels concentrated along the shoreline and upper reservoir (due to both wind and 

nutrient inputs), while Rockport has highly variable levels throughout, Echo has relatively 
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constant levels, Jordanelle has a slightly higher concentration just above the dam, and lower 

concentrations in the upper arm, and East Canyon is fairly constant throughout. These spatial 

distribution maps have the potential to identify reservoirs that might require additional mitigation 

efforts or locations within reservoirs that should have increased monitoring.  
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4 CONCLUSIONS 

The following discussion summarizes many of the benefits and the limitations that were 

overcome by developing a remote sensing chlorophyll detection model from a long-term, sub-

seasonal approach. These include improvements made in the developing process, improvements 

in the model accuracy and reliability, and enhanced information and insights provided by this 

unique approach to developing and applying the model. 

 The first obstacle overcome in this approach was choosing the most appropriate sensor 

that would fit the resolution requirements, as well as the time and economic constraints of the 

study. The use of the Landsat series as the source of remote sensing data met these requirements. 

In a single image, all five reservoirs of interest could be examined. This improved the efficiency 

of model development as the time spent calibrating and processing the images was reduced 

because fewer images needed processing. The pixel size of 30 meters was also adequate for each 

of the reservoirs of interest. Additionally, the Landsat images provided a low-cost option for 

remote sensing model development as the images were completely free to download. This 

economic factor is important for agencies or organizations looking to enhance their water quality 

monitoring efforts on a tight budget.  

 Second, the stepwise regression used to develop the models, considering all possible 

bands and band ratios, overcame a major limitation of the spectral resolution of the Landsat 

images. This technique of statistical analysis provided algorithms with much more accurate 
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estimation capabilities than the traditional band ratios, and was much more appropriate to the use 

of Landsat reflectance values. The further statistical analysis, using tests of leverage and filtering 

the data for noise, also improved the accuracy of the model.  

 The main improvement for accuracy and reliability comes from the unique sub-seasonal 

division of data and development of three algorithms for the growing season. As shown in Figure 

3-1 and Figure 3-2, the algorithm developed for the late summer months does not have accurate 

predictive capabilities for the early or mid-summer months, even though it has a high correlation 

for the chlorophyll levels in the late months. The relatively high correlations (R2 = 0.83, 0.64, 

and 0.91) for each of the sub-seasons indicates that the model using unique algorithms is much 

more appropriate for describing the water quality with respect to chlorophyll throughout the 

growing season than a single model for the growing season(R2=0.42). As noted in the single 

model, the distribution of data required a log transform before it could be considered normally 

distributed, however, the data from the early months is already normally distributed. Splitting up 

the growing season and fitting the reflectance values to the true measured amount or log 

transformation of this value depending on the actual distribution of the sub-season allows for a 

better representation of the data and provides a much better fit. 

In addition to improvements in model development and accuracy, this kind of regional analysis 

can provide valuable information and insights that is not available from point sampling. The 

figures in Appendix D show average, maximum, and standard deviations of the estimated 

chlorophyll values for the entire reservoir for each reservoir included in the study. None of these 

measurements of water quality can be accurately obtained from practical point sampling 

campaigns but this remote sensing approach allows a regional analysis. Through the application 

of the algorithms, these measures of water quality can be determined for the entire region, and 
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comparisons can easily be made. For instance, the average values of chlorophyll in the late 

summer months throughout the entire reservoirs of Deer Creek and Jordanelle are decreasing, 

while Rockport, East Canyon, and Echo Reservoirs are increasing each year. This helps to 

identify which reservoirs require further monitoring and mitigation efforts, as well as determines 

when those efforts should be focused. The spatial maps shown in Figure 3-10 also illustrate how 

an agency might use these model applications to identify problem areas and evaluate efforts. 

 In conclusion, the described methods for developing a sub-seasonal model can greatly 

improve the accuracy of remote sensing chlorophyll detection models throughout the entire 

growing season. Utilization of historical data and the large spatial coverage of Landsat images 

results in more accurate historical analyses and comparisons of an entire region through 

historical trends and spatial distribution maps. The products of these kinds of analyses provide 

valuable information to water resource managers, and have the potential to supplement and 

greatly enhance current monitoring and mitigation practices. 
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APPENDIX A. INDEX OF DATA 

Table A-1 provides a list of the images used in developing the three sub-seasonal models. 

The number of usable sample points refers to the number of samples from sites in both Deer 

Creek and Jordanelle Reservoirs that both a recorded field measurement and were free of cloud 

cover. 
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Table A- 1 Index of Landsat 5 and 7 Images Used in Model Development 

Date of Image Acquisition Number of Usable Sample Points 
6/18/1984 3 
6/12/1985 4 
8/15/1985 4 
4/21/1986 3 
7/1/1986 4 

9/22/1987 3 
7/18/1989 3 
7/16/1991 3 
9/17/1991 3 
6/29/1994 3 
8/17/1994 6 
7/19/1995 3 
6/19/1996 1 
8/29/1996 6 
5/28/1997 3 
4/22/1998 2 
5/18/1999 4 
6/22/2000 3 
8/1/2000 3 

5/31/2001 3 
6/12/2002 2 
6/19/2002 6 
5/21/2003 3 
7/17/2003 1 
6/21/2005 3 
6/13/2012 2 
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APPENDIX B. INITIAL MODELS AND TESTS OF LEVERAGE 

The following figures show results from initial stepwise regressions and the 

corresponding tests of leverage for each of the sub-seasons. The early and late sub-seasons 

indicate one data point has high leverage. The final stepwise regressions and leverage tests for 

these sub-seasons are shown following the initial results.  

 

 

Figure B- 1 Measured Chlorophyll v. Estimated Chlorophyll using Early Model and all Points 
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Figure B- 2 Tests of Leverage for Initial Early Model Indicate High Leverage for One Point 

 

Figure B- 3 Measured Chlorophyll v. Estimated Chlorophyll after Exclusion of High Leverage Points using 
Early Model 
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Figure B- 4 Tests of Leverage for Early Model after Exclusion of High Leverage Point 

 

Figure B- 5 Log Measured Chlorophyll v. Log Estimated Chlorophyll using Mid-Summer Model 
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Figure B- 6 Tests of Leverage for Mid-Summer Model Indicating No Points with High Leverage 

 

Figure B- 7 Log Measured Chlorophyll v. Log Estimated Chlorophyll using Initial Late Model and All Points 
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Figure B- 8 Tests of Leverage for Late Model Indicate High Leverage for One Point 

 

Figure B- 9 Log Measured Chlorophyll v Log Estimated Chlorophyll after Exclusion of High Leverage Point 
using Late Model 
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Figure B- 10 Tests of Leverage for Late Model after Exclusion of High Leverage Point 
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APPENDIX C. PARAMETERS USED IN STEPWISE REGRESSION 

Table C-1 shows the final parameters chosen by the stepwise regression for each sub-

season. The order listed indicates the order in which they were selected by the regression to be 

included in the model. 

 

Table C- 1 Model Parameters Used By Season 

Sub-season Dependent Variable Independent Variables 

Early Chlorophyll B3/B1, B4/B7, B5/B4, B7/B5 

Mid Log(Chlorophyll) B5, B7, B2/B4, B5/B3 

Late Log(Chlorophyll) B1, B2/B5, B3/B5, B4/B7, 
B5/B4 
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APPENDIX D. HISTORICAL TRENDS BY SEASON AND RESERVOIR 

This appendix contains the trends for the mode, maximum, and standard deviation of 

each reservoir by sub-season. 

 

 

 

Figure D- 1 Average Estimated Chlorophyll from 1984-2012 for Early Summer Months in Deer Creek 
Reservoir 
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Figure D- 2 Max Estimated Chlorophyll from 1984-2012 for Early Summer Months in Deer Creek Reservoir 

 
Figure D- 3 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Early Summer Months in Deer 
Creek Reservoir 
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Figure D- 4 Average Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Deer Creek 
Reservoir 

 
Figure D- 5 Max Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Deer Creek Reservoir 
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Figure D- 6 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Deer 
Creek Reservoir 

 
Figure D- 7 Average Estimated Chlorophyll from 1984-2012 for Late-Summer Months in Deer Creek 
Reservoir 
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Figure D- 8 Max Estimated Chlorophyll from 1984-2012 for Late-Summer Months in Deer Creek Reservoir 

 
Figure D- 9 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Late-Summer Months in Deer 
Creek Reservoir 
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Figure D- 10 Average Chlorophyll from 1984-2012 for Early Summer Months in East Canyon Reservoir 

 

Figure D- 11 Max Estimated Chlorophyll from 1984-2012 for Early Summer Months in East Canyon 
Reservoir 



  

52 

 

 

Figure D- 12 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Early Summer Months in 
East Canyon Reservoir 

 

Figure D- 13 Average Estimated Max Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in 
East Canyon Reservoir  
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Figure D- 14 Max Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in East Canyon 
Reservoir 

 
Figure D- 15 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in East 
Canyon Reservoir 
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Figure D- 16 Average Estimated Chlorophyll from 1984-2012 for Late-Summer Months in East Canyon 
Reservoir 

 
Figure D- 17 Max Estimated Chlorophyll from 1984-2012 for Late-Summer Months in East Canyon 
Reservoir 
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Figure D- 18 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Late-Summer Months in East 
Canyon Reservoir 

 
Figure D- 19 Average Estimated Chlorophyll from 1993-2012 for Early Summer Months in Jordanelle 
Reservoir 
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Figure D- 20 Max Estimated Chlorophyll from 1993-2012 for Early Summer Months in Jordanelle Reservoir 

 
Figure D- 21 Standard Deviation Estimated Chlorophyll from 1993-2012 for Early Summer Months in 
Jordanelle Reservoir 
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Figure D- 22 Average Estimated Chlorophyll from 1993-2012 for Mid-Summer Months in Jordanelle 
Reservoir 

 
Figure D- 23 Max Estimated Chlorophyll from 1993-2012 for Mid-Summer Months in Jordanelle 
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Figure D- 24 Standard Deviation Estimated Chlorophyll from 1993-2012 for Mid-Summer Months in 
Jordanelle Reservoir 

 

Figure D- 25 Average Estimated Chlorophyll from 1993-2012 for Late Summer Months in Jordanelle 
Reservoir 
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Figure D- 26 Max Estimated Chlorophyll from 1993-2012 for Late Summer Months in Jordanelle Reservoir 

 

Figure D- 27 Standard Deviation Estimated Chlorophyll from 1993-2012 for Late Summer Months in 
Jordanelle Reservoir 
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Figure D- 28 Average Estimated Chlorophyll from 1984-2012 for Early Months in Echo Reservoir 

 

Figure D- 29 Max Estimated Chlorophyll from 1984-2012 for Early Months in Echo Reservoir 
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Figure D- 30 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Early Months in Echo 
Reservoir 

  

Figure D- 31 Average Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Echo Reservoir 
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Figure D- 32 Max Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Echo Reservoir 

  

Figure D- 33 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Echo 
Reservoir 
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Figure D- 34 Average Estimated Chlorophyll from 1984-2012 for Late Summer Months in Echo Reservoir 

 

Figure D- 35 Max Estimated Chlorophyll from 1984-2012 for Late Summer Months in Echo Reservoir 
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Figure D- 36 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Late Summer Months in Echo 
Reservoir 

 
Figure D- 37 Average Estimated Chlorophyll from 1984-2012 for Early Summer Months in Rockport 
Reservoir 
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Figure D- 38 Max Estimated Chlorophyll from 1984-2012 for Early Summer Months in Rockport Reservoir 

 

Figure D- 39 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Early Summer Months in 
Rockport Reservoir 

 

 



  

66 

 

 

Figure D- 40 Average Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Rockport 
Reservoir 

 
Figure D- 41 Average Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Rockport 
Reservoir 
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Figure D- 42 Estimated Chlorophyll from 1984-2012 for Mid-Summer Months in Rockport Reservoir 

 

Figure D- 43 Average Estimated Chlorophyll from 1984-2012 for Late Summer Months in Rockport 
Reservoir 
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Figure D- 44 Max Estimated Chlorophyll from 1984-2012 for Late Summer Months in Rockport Reservoir 

 

Figure D- 45 Standard Deviation of Estimated Chlorophyll from 1984-2012 for Late Summer Months in 
Rockport Reservoir 
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