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ABSTRACT 
 

Second-Order Perturbation Analysis of the St. Venant 
Equations in Relation to Bed-Load Transport and 

Equilibrium Scour Hole Development 
 

Frans Joseph Lambrechtsen 
Department of Civil and Environmental Engineering, BYU 

Master of Science 
 

This analysis is an expansion of research done by Rollin Hotchkiss during his Ph.D work.  
The research uses fluid flow, sediment transport, and perturbation theory to predict where scour 
will occur in a variable-width channel.  The resulting equations also determine equilibrium scour 
depth based upon the stream bed elevation derived from a dimensionless bed slope equation. 

 
Hotchkiss perturbed the width of the channel using a second order Taylor Series 

perturbation but neglected second order terms.  The present work follows the same procedures as 
Hotchkiss but maintains the second order terms.  The primary purpose is to examine how the 
additional terms impact the final equilibrium scour depth and location results. 

 
The results of this research show a slight variation from the previous work.  With respect 

to a hypothetical case, there was not a significant amount of change, thereby verifying that scour 
migrates downstream with an increase in discharge.  Interestingly, the comparison shows a slight 
increase in sediment discharge through the test reach analyzed.  Supplementary to previous 
research, values of scour depth and location in terms of distance from the start of channel-width 
perturbation are provided; at the lowest discharge maximum scour occurs 4% of a wavelength 
upstream of the narrowest portion, and at the highest discharge maximum scour occurs at the 
narrowest point.   

 
Additionally, a one-dimensional HEC-RAS sediment transport model and a two-

dimensional SRH flow model were compared to the analytical results.  Results show that the 
model output of the HEC-RAS model and the SRH model adequately approximate the analytical 
model studied.  Specifically, the results verify that maximum scour depth transitions downstream 
as discharge increases.   
 
 
 
 
 
 
 
 
 
 
Keywords:  equilibrium scour depth, scour holes, saint venant, Reynolds transport theorem, 
bridge abutment, culvert, perturbation 
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1 INTRODUCTION 

A major issue in stream channel design and management is scour hole development in critical 

reaches.  Scour is due to stream discharge and channel geometry.  Increases in scour have become 

a key issue in recent years as land has become more industrialized, and peak discharges have 

increased as a result.   

The purpose of this work is to develop an equation that will help predict the magnitude and 

location of scour for uniformly sized sediment in a channel.  Using the St. Venant Equations, 

perturbation theory, and equations for roughness and sediment transport (Garde et. al, 1985), a 

second-order equation was developed that achieves this purpose. 

Major contributions from this work include the expansion of the St. Venant equations with 

perturbation and sediment theory integration to the second-order; additionally, graphical 

illustrations of the dimensionless equations to visually identify the patterns of sediment 

degradation; and values for scour depth with respect to distance from the initiation of perturbation.  

In addition, the analytical solutions were compared to commonly used one-dimensional and two-

dimensional numerical results. 

The remainder of this paper is outlined in the following order: review of literature, methods, 

first-order analysis, second-order analysis, comparison to numerical models, discussion of results, 

and conclusions. 
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2 BACKGROUND AND LITERATURE REVIEW 

 Description 

Sediment transport is the result of physical forces on a streambed.  These physical forces 

are a function of channel flow, velocity, shear stress, and channel friction to name a few (Garde 

et. al, 1985).  An important factor is stream width: as a channel constricts, the velocity increases 

and the streambed experiences more scour.  As bridges are commonly built at river constrictions 

the prediction of scour is critically important. 

 Analytical Models 

Analytical models are mathematical in nature and examine equations versus quantities and 

magnitude of data.  These models identify a solution that fits with multiple cases and scenarios; a 

solution at any magnitude of discharge, any sediment size, geometric variation, channel 

characteristics, etc.  Any set of values for flow, roughness, sediment size, will return the most 

accurate solution.  Analytical models are preferred over numerical or empirical solutions, but are 

more difficult to develop. The purpose of an analytical model is to provide results that represent 

the actual physics of the problem, and results based on physics are more accurate. 

Analytic models are ultimately restricted because of the difficulty in including all of the 

relevant parameters required for a full solution.  Computers have become more readily available 

with faster processing speeds and the hydraulic community has all but neglected the idea of an 

analytical solution and moved toward empirical models such as finite-difference and finite-

 3 



element analyses.  After a thorough review, only a few studies actually discuss analytic methods.  

Nevertheless, the glimpses into the physics of sediment transport afforded by analytic work make 

it useful to pursue. 

The work in this research expands on that of Hotchkiss (1989) and will be described in 

more detail later.    Two other pertinent studies are from Chalfen et. al (1986) and Berthon et. al 

(2012).  Chalfen et. al use a similar approach to analyze the equilibrium scour problem, but did 

not use a perturbation method to analyze the effects of expansions and contractions.  Instead, they 

used differential schemes to determine water surface elevations and depths, which ultimately 

cannot be used without considering sediment transport.  Berthon et. al solve the St. Venant 

equations using a similar substitution of the continuity and sediment transport Exner equation into 

momentum, to solve for bed elevation based on velocity, gravity, and unit width sediment 

discharge.   

 Empirical Models 

Models that examine an empirical approach to equilibrium scour depth are plentiful and 

very common among researchers examining this particular phenomena.  Such approaches address 

the problem of equilibrium scour by collecting large amounts of data over defined and specified 

intervals.  Models developed by Dey et. al (2004) say that equilibrium scour models should be run 

for at least 48 hours.  Simarro et. al (2011) say that empirical models should be run for a duration 

of two weeks.  Some researchers consider this is a significant variation but more importantly it 

demonstrates there are a variety of procedures to performing numerical data collection.  While 

these models vary in duration, the intervals at which data is collected are similar with the first few 

days, but vary as time goes on. 
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Specifically, empirical studies relate equilibrium scour to field-collected data such as 

stream width and sediment size.  Statistical tools are used to develop equations using a logarithmic 

or regression analysis to identify equilibrium scour depth and the time when equilibrium depth 

was achieved (Lagasee et. al, 2009).  Resulting equations are important because they help predict 

scour-hole development both physically and dynamically.  They can infer how long scour takes to 

develop, which can help with remediation plans and channel design near bridges and culverts. 

 Numerical Models 

Two models in particular include a one-dimensional model called HEC-RAS that includes 

a sediment transport analysis, and a two-dimensional model called Sediment and River Hydraulics 

(SRH) that uses a finite-element analysis (Brunner, 2010, Lai, 2009).  One-dimensional HEC-RAS 

models have been used in research and commercial use for years while two-dimensional models 

are becoming increasingly popular as computing power increases.  Two-dimensional river models 

typically use vertically-averaged velocities and laterally non-uniform velocities to enable 

simulation of recirculating eddies and flow separation.   

Numerical models are applied to very specific stream reaches for specific flow 

requirements and do not apply outside of the specified conditions.  Analytic models can be used 

to explore more general conditions. 

 Integrated Studies 

Integrated studies use an equation based on analytical theory, which is then altered by using 

empirical data to adjust the analytical equation to fit.  Parameters are attached to the equation that 

alter the form to fit the plot, i.e. depth versus discharge.  One such piece of literature by Jain et. al 

(1989) provides a guide for estimating degradation, while Godvindasamy (2008) examines the 
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effects of scour at bridges using a simple three phase procedure in combination with collected 

scour data to determine risk.  
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3 METHODS 

 Governing Equations 

The purpose of this section is to present the one-dimensional governing equations for water 

and sediment transport.  Equations are presented for the conservation of mass and momentum (St. 

Venant Equations), sediment transport, and roughness.  A definition sketch is provided in Figure 

1.   See Appendix A for a list of all variables and definitions.    

 

 

With reference to the definition sketch in Figure 1, the St. Venant equations are: 

 

 𝑄𝑄 = 2𝑏𝑏𝑏𝑏ℎ (3.4) 

 𝑑𝑑�𝑢𝑢2ℎ𝑏𝑏�
𝑑𝑑𝑑𝑑

= −𝑔𝑔𝑏𝑏ℎ 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
− 𝑏𝑏𝐶𝐶𝑓𝑓𝑏𝑏2 (3.3) 

Figure 1. Definition sketch of theoretical channel.  Parameters shown are bed elevation, water depth, 
velocity, bed shear stress, distance, velocity head, and water elevation. 

 

𝑏𝑏2

2𝑔𝑔
 

𝜉𝜉 

𝜂𝜂 

ℎ 
𝑏𝑏 

𝜏𝜏𝑏𝑏 

𝑥𝑥 
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Where:  𝑔𝑔 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑔𝑔𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 [𝐿𝐿𝑇𝑇−2] 

 𝐶𝐶𝑓𝑓 = 𝐷𝐷𝑔𝑔𝑔𝑔𝑐𝑐𝐷𝐷 𝑊𝑊𝑊𝑊𝑔𝑔𝑐𝑐𝑏𝑏𝑔𝑔𝑐𝑐ℎ 𝑓𝑓𝑔𝑔𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑔𝑔𝑔𝑔 𝑐𝑐𝑊𝑊𝑠𝑠𝑔𝑔𝑠𝑠𝑊𝑊𝑔𝑔𝑔𝑔 [1] 

 𝑏𝑏 = 𝑐𝑐ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔 ℎ𝑔𝑔𝑔𝑔𝑓𝑓-𝑤𝑤𝑔𝑔𝑠𝑠𝑔𝑔ℎ [𝐿𝐿] 

 ℎ = 𝑐𝑐ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔 𝑠𝑠𝑊𝑊𝑑𝑑𝑔𝑔ℎ [𝐿𝐿] 

 𝜂𝜂 = 𝑏𝑏𝑊𝑊𝑠𝑠 𝑊𝑊𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 [𝐿𝐿] 

 𝜉𝜉 = 𝑐𝑐ℎ𝑔𝑔𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔 𝑠𝑠𝑊𝑊𝑑𝑑𝑔𝑔ℎ 𝑑𝑑𝑔𝑔𝑏𝑏𝑐𝑐 𝑏𝑏𝑊𝑊𝑠𝑠 𝑊𝑊𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 [𝐿𝐿] 

 𝑏𝑏 = 𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝐷𝐷 [𝐿𝐿𝑇𝑇−1] 

 

Simple power law function for sediment transport:  

 𝑞𝑞𝑠𝑠 = 𝑐𝑐4𝜏𝜏𝑏𝑏𝑁𝑁 (3.5) 

 

Where:  𝑐𝑐4 = 𝑔𝑔𝑊𝑊𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑊𝑊𝑠𝑠 𝑐𝑐𝑔𝑔𝑊𝑊𝑓𝑓𝑓𝑓𝑔𝑔𝑐𝑐𝑔𝑔𝑊𝑊𝑔𝑔 [𝑇𝑇]  

 𝜏𝜏𝑏𝑏 = 𝑏𝑏𝑊𝑊𝑠𝑠 𝑐𝑐ℎ𝑊𝑊𝑔𝑔𝑔𝑔 𝑐𝑐𝑔𝑔𝑔𝑔𝑊𝑊𝑐𝑐𝑐𝑐 [𝑠𝑠𝐿𝐿−1𝑇𝑇−2]  

 𝑁𝑁 = 𝑐𝑐𝑊𝑊𝑠𝑠𝑔𝑔𝑠𝑠𝑊𝑊𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 𝑊𝑊𝑥𝑥𝑑𝑑𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔 [1] 

 

Note the value N approaches a constant value as sediment transport increases (Garde et. al, 

1985).  The following is sediment continuity: 

 𝑄𝑄𝑠𝑠 = 2𝑏𝑏𝑞𝑞𝑠𝑠 (3.6) 

 

Where:  𝑞𝑞𝑠𝑠 = 𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑔𝑔𝑠𝑠𝑔𝑔ℎ 𝑐𝑐𝑊𝑊𝑠𝑠𝑔𝑔𝑠𝑠𝑊𝑊𝑔𝑔𝑔𝑔 𝑓𝑓𝑔𝑔𝑔𝑔𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑊𝑊 [𝑠𝑠𝑇𝑇−1] 

 

Friction used is the Darcy Weisbach friction factor divided by eight (Whipple, 2004): 

 𝐶𝐶𝑓𝑓 = 𝑓𝑓
8
 (3.7) 
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4 FIRST-ORDER LINEAR PERTURBATION OF ST. VENANT EQUATIONS 

 Discussion of Previous Work 

The following is from Hotchkiss (1989).  After some manipulation the governing equations 

are as presented in the following manner:   

 𝑄𝑄 = 2𝑏𝑏ℎ𝑏𝑏 (4.1) 

 𝑑𝑑�𝑢𝑢2ℎ𝑏𝑏�
𝑑𝑑𝑑𝑑

= −𝑔𝑔𝑏𝑏ℎ 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
− 𝑏𝑏𝐶𝐶𝑓𝑓𝑏𝑏2 (4.2) 

 𝑞𝑞𝑠𝑠 = 𝑐𝑐4𝜏𝜏𝑏𝑏𝑁𝑁 (4.3) 

 𝑄𝑄𝑠𝑠 = 2𝑏𝑏𝑞𝑞𝑠𝑠 (4.4) 

 

The equations were made dimensionless using:  

𝑏𝑏� = 𝑏𝑏
𝑏𝑏𝑜𝑜

,  ℎ� = ℎ
ℎ𝑜𝑜

, �̂�𝑆 = 𝑆𝑆
𝑆𝑆𝑜𝑜

, 𝑏𝑏� = 𝑢𝑢
𝑢𝑢𝑜𝑜

, 𝑄𝑄� = 𝑄𝑄
𝑄𝑄𝑜𝑜

, 𝑄𝑄�𝑠𝑠 = 𝑄𝑄𝑠𝑠
𝑄𝑄𝑠𝑠𝑜𝑜

, 𝑞𝑞�𝑠𝑠 = 𝑞𝑞𝑠𝑠
𝑞𝑞𝑠𝑠𝑜𝑜

, 𝜉𝜉 = 𝜕𝜕
𝜕𝜕𝑜𝑜

, and �̂�𝐶𝑓𝑓 = 𝐶𝐶𝑓𝑓
𝐶𝐶𝑓𝑓𝑜𝑜

. 

 

Where the subscript refers to uniform channel and flow values. 

 

The equations of motion then become: 

 ℎ� = 𝑏𝑏�
1−2𝑁𝑁
2𝑁𝑁  (4.5) 

 𝑑𝑑
𝑑𝑑𝑑𝑑�

 �𝑏𝑏�2ℎ�𝑏𝑏�� = 𝜀𝜀�̂�𝑆𝑏𝑏�ℎ� − 𝜀𝜀𝑏𝑏�𝑏𝑏�2�̂�𝐶𝑓𝑓 − 𝐹𝐹𝑟𝑟𝑜𝑜
−2𝑏𝑏�ℎ� 𝑑𝑑ℎ

�

𝑑𝑑𝑑𝑑�
 (4.6) 

 �̂�𝑆 = 𝑏𝑏�
2𝑁𝑁−3
2𝑁𝑁 − 1

𝜀𝜀
𝑑𝑑𝑏𝑏�

𝑑𝑑𝑑𝑑
 �1−2𝑁𝑁

2𝑁𝑁
 𝐹𝐹𝑟𝑟𝑜𝑜

−2 𝑏𝑏�
1−4𝑁𝑁
2𝑁𝑁 − 1

2𝑁𝑁
 𝑏𝑏�

−1−𝑁𝑁
𝑁𝑁 � (4.7) 

 9 



Where:  𝐹𝐹𝑟𝑟𝑜𝑜 = 𝐹𝐹𝑔𝑔𝑔𝑔𝑏𝑏𝑠𝑠𝑊𝑊 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏𝑊𝑊𝑔𝑔 [1]  

 𝜀𝜀 = 𝛾𝛾𝐶𝐶𝑓𝑓 [1] 

 𝛾𝛾 = 𝑔𝑔𝑐𝑐𝑑𝑑𝑊𝑊𝑐𝑐𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑏𝑏𝑜𝑜
ℎ𝑜𝑜

 [1]  

 

Hotchkiss used a perturbation analysis to determine the impact of a slightly varying-width 

channel on bed scour (see Figure 2).  Neglecting any terms beyond the first-order, Hotchkiss found 

a linear solution.  The dimensionless perturbed equations follow, with the hat-symbol dropped for 

simplicity. 

 

 
 

Figure 2. Plan view of hypothetical perturbed channel.  Half width is displayed as well as perturbation 
amplitude and wavelength. 
 

 𝑏𝑏 = 1 + 𝐷𝐷𝐷𝐷 sin (𝐷𝐷𝑥𝑥) (4.8) 

 𝐷𝐷 = 2𝜋𝜋𝑏𝑏𝑜𝑜
𝜆𝜆

 (4.9) 

 ℎ = 1 + 𝜔𝜔 �1−2𝑁𝑁
2𝑁𝑁

�+ 𝜔𝜔2

2
 �1−2𝑁𝑁

2𝑁𝑁
�  �1−4𝑁𝑁

2𝑁𝑁
� (4.10) 

 𝑆𝑆 = 1 + 𝜔𝜔 �2𝑁𝑁−3
2𝑁𝑁

� + 𝜔𝜔2

2
 �2𝑁𝑁−3

2𝑁𝑁
�  �− 3

2𝑁𝑁
� + 1

𝜀𝜀
𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑
�𝐹𝐹𝑟𝑟𝑜𝑜

−2  �1−2𝑁𝑁
2𝑁𝑁

�+

 𝜔𝜔 𝐹𝐹𝑟𝑟𝑜𝑜
−2  �1−2𝑁𝑁

2𝑁𝑁
� �1−4𝑁𝑁

2𝑁𝑁
� − 1

2𝑁𝑁
− 𝜔𝜔 1

2𝑁𝑁
 �−2−2𝑁𝑁

2𝑁𝑁
�� (4.11) 

Where:  𝐷𝐷 = 𝑤𝑤𝑔𝑔𝑔𝑔𝑊𝑊 𝑔𝑔𝑏𝑏𝑠𝑠𝑏𝑏𝑊𝑊𝑔𝑔 [𝐿𝐿] 

𝜆𝜆 

C L 
Flow 

bo 
Dk 
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 𝜆𝜆 = 𝑤𝑤𝑔𝑔𝑔𝑔𝑊𝑊𝑔𝑔𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔ℎ [𝐿𝐿]   

 𝜔𝜔 = 𝐷𝐷𝐷𝐷 𝑆𝑆𝑔𝑔𝑔𝑔(𝐷𝐷 𝑥𝑥) [1] 

 𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑊𝑊𝑔𝑔𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑠𝑠𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑠𝑠𝑊𝑊 ≫ 1 [1] 

 

After applying the derivative and performing some substitution the final dimensionless 

first-order equations are:   

 ℎ = 1 + 𝐷𝐷𝐷𝐷 sin(𝐷𝐷 𝑥𝑥) �1−2𝑁𝑁
2𝑁𝑁

� (4.12) 

 𝑆𝑆 = 1 + 𝐷𝐷𝐷𝐷 sin(𝐷𝐷 𝑥𝑥) �2𝑁𝑁−3
2𝑁𝑁

�+ 1
𝜀𝜀
𝐷𝐷𝐷𝐷(𝐷𝐷) cos(𝐷𝐷 𝑥𝑥) ∗ 

�𝐹𝐹𝑟𝑟𝑜𝑜
−2  �1−2𝑁𝑁

2𝑁𝑁
�  �1 + 𝜔𝜔 �1−4𝑁𝑁

2𝑁𝑁
�� − 1

2𝑁𝑁
 �1 + 𝜔𝜔 �−2−2𝑁𝑁

2𝑁𝑁
��� (4.13) 

Hotchkiss then examined the combined impact of discharge and a perturbed channel width 

by finding the location of maximum scour for discharges corresponding to 50% exceedence, mean 

annual, and bankfull.  The results will be shown later in the context of the second-order 

perturbation. 
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5 SECOND-ORDER NON-LINEAR PERTURBATION OF ST. VENANT EQUATIONS 

 Difference from Previous Work 

The current analysis expands upon the work of Hotchkiss and proceeds to analyze the 

effects of additional terms in the equation (up to the second-order).  Making the present analysis a 

second-order, non-linear perturbation of the St. Venant equations. 

 Equations 

Performing the same Taylor series expansion on the channel half-width, and comparing to 

equations (4.10) and (4.11), additional terms were identified that were not included in Hotchkiss 

(1989).  By adding these terms (as underlined) the dimensionless equations result in the following: 

 ℎ = 1 + 𝜔𝜔 �1−2𝑁𝑁
2𝑁𝑁

�+ 𝜔𝜔2

2
 �1−2𝑁𝑁

2𝑁𝑁
�  �1−4𝑁𝑁

2𝑁𝑁
� (5.1) 

 𝑆𝑆 = 1 + 𝜔𝜔 �2𝑛𝑛−3
2𝑁𝑁

� + 𝜔𝜔2

2
 �2𝑛𝑛−3

2𝑁𝑁
� �− 3

2𝑁𝑁
� + 1

𝜀𝜀
 𝜑𝜑 ��1−2𝑁𝑁

2𝑁𝑁
�𝐹𝐹𝑟𝑟𝑜𝑜

−2  �1 + 𝜔𝜔 �1−4𝑁𝑁
2𝑁𝑁

�+

𝜔𝜔2

2
�1−4𝑁𝑁

2𝑁𝑁
� �1−6𝑁𝑁

2𝑁𝑁
� � − 1

2𝑁𝑁
 �1 + 𝜔𝜔 �−2−2𝑁𝑁

2𝑁𝑁
�+ 𝜔𝜔2

2
 �−2−2𝑁𝑁

2𝑁𝑁
� �−2−4𝑁𝑁

2𝑁𝑁
� �� (5.2) 

 

Where:  𝜑𝜑 = 𝐷𝐷𝐷𝐷(𝐷𝐷)𝐶𝐶𝑔𝑔𝑐𝑐(𝐷𝐷 𝑥𝑥)  
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 Analysis 

Beyond analyzing the equations by hand, the equations were also put into the mathematics 

program Maple (a high-order mathematical analysis program) to visually identify mathematical 

patterns.  Before equations could be visualized all independent variables required initial condition 

values for input.  The same hypothetical data used by Hotchkiss was used for comparison purposes.   

The data comes from a hypothetical case along the Minnesota River, near Granite Falls, 

Minnesota.  The channel is assumed to have an initial half width of 40 m and a channel slope of 

0.001.  Other geometric data include the wavelength with a value of 800 m, perturbation amplitude 

of 0.1 (or 4 m), and bankfull depth of 1 m.  The actual physical wavelength is altered because of 

equation (4.9); it is approximately 1150 m.  This particular case is analyzed using a single sediment 

size of d50 = 0.45 mm.  In addition, the same discharges are used to complete the analysis; 50% 

exceedance discharge, mean annual discharge, and bankfull discharge. 

Based on this flow and geometric information, further data needed to be calculated, which 

Hotchkiss provides in his analysis.  Using this geometric data and discharge information he 

determined the normal depth, discharge, velocity, Froude number, Darcy Weisbach friction factor, 

and the exponent N in the sediment transport equation for the three discharges to be analyzed.  The 

following in Table 1, is a summary of this data. 
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Table 1. Input values for the hypothetical channel. 

Flow Regime 
Normal 
depth 

(m) 

Discharge 
(cms) 

Velocity 
(m/s) 

Froude 
Number 

Friction 
Factor 

(𝐶𝐶𝑓𝑓) 

Exponent 
N 

50% Exceedence 0.21 7.1 0.42 0.3 0.0105 2.58 

Mean Annual 0.43 22.4 0.65 0.32 0.009 2.58 

Bankfull 1.04 135 1.62 0.51 0.0035 1.63 

 

 Results 

The following figures were developed in Maple and are in the following order. They are 

representations of dimensionless depth (h), dimensionless slope (S), and dimensionless bed 

elevation (𝜂𝜂), respectively.  Figure 3 is dimensionless depth from equation (5.1) and Figure 4 

represents the difference between the first-order and second-order functions. 

Figure 3 represents the dimensionless depth of the hypothetical channel.  As expected the 

depth begins at one, which represents the initial dimensionless conditions.  As the channel widens, 

the depth decreases, and then increases as the channel contracts.  At half of the wavelength the 

depth begins to increase and reaches its maximum near the point of contraction.  A small difference 

is shown in Figure 4 between the first-order and second-order analyses.  The second-order depth 

is greater near the contracted and expanded portions of the channel at 1
4
𝜆𝜆 and 3

4
𝜆𝜆.  Between these 

positions the difference is zero, and dimensionless channel depth is the same.   
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Figure 3. First and second order dimensionless water depth with respect to distance from start of channel 
perturbation.  Y-axis is dimensionless and X-axis is in meters.  Plan view of channel geometry is shown above 
for reference.  Point of interest is channel contraction; occurs at 𝟑𝟑

𝟒𝟒
𝝀𝝀. 
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Figure 4. Difference between first and second order dimensionless water depth equations with respect to 
distance from start of perturbation.   

 

A small variation from the first-order analysis is expected due to the additional terms in the second-

order solution.  This variation is hardly seen in Figure 5, of dimensionless slope from equation 

(5.2).  Figure 6 shows the difference between the functions. 

 

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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Figure 5. First and second order dimensionless bed slope equations with respect to distance from start of 
perturbation.   

 

Dimensionless slope is shown in Figure 5.  The place of interest for this plot is where the 

function crosses at a y-axis value of one; that is where the slope changes from a positive to 

negative, indicating scour.  This change occurs near three-quarters of the wavelength.   

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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Figure 6. Difference between first and second order dimensionless slope equations with respect to distance 
from start of perturbation. 

 

Figure 6 shows the actual difference between the first-order and second-order functions.  There is 

very little variance shown between the two analyses performed.  The max and min values are 

nearly the same and look almost identical.  By integrating equation (5.2), the result is 

dimensionless bed elevation, which can be seen in Figure 7, with the difference between the 

functions shown in Figure 8. 

 

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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Figure 7. First and second order dimensionless bed elevation equations with respect to distance from start of 
perturbation.  Unperturbed bed elevation is shown as a straight line. 
 

Figure 7 shows the lowest bed elevation occurs around the same point of contraction as the 

previous figures, 3
4
𝜆𝜆.  The undisturbed bed elevation is equal to the dimensionless slope value of 

one, and a line at a slope of negative one is displayed on the figure above to represent the 

undisturbed bed elevation.   

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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Figure 8. Difference between first and second order dimensionless bed elevation equations with respect to 
distance from start of perturbation. 

 

It also shows where points of degradation and aggradation occur.  Bed elevation for the first-order 

solution is nearly identical for the second-order case, as seen in Figure 8, and shows little difference 

between the two functions.  The difference in bed elevation from the undisturbed channel can be 

determined by taking the difference between the undisturbed function and the first and second-

order functions.  This is graphically shown in Figure 9. 

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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Figure 9. Difference between first and second order bed elevation equations and the unperturbed bed 
elevation.  See Figure 7 for reference.   

 

This plot is the difference between the undisturbed channel and the disturbed channel.  The 

difference in bed elevation goes down at the widest portion of the channel, and later increases near 

the point of contraction.  Where the difference equals zero is where the channel has returned to the 

original undisturbed bed elevation.  Using this plot the distance where max scour depth can be 

identified. 

𝜆𝜆 2𝜆𝜆 

𝜆𝜆 2𝜆𝜆 

Flow 

Plan View of Channel Geometry 
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The data shown in the Figures 3-9 uses bankfull discharge because it represents the most 

extreme case for potential scour.  The discharge with respect to distance of scour and dimensionless 

scour depth, taken from these functions, can be seen in Table 2. 

 

Table 2. Distance where max scour occurs from the start 
of perturbation.  Narrowest point occurs at 𝟑𝟑

𝟒𝟒
𝝀𝝀. 

  

Flow Regime Discharge 
(cms) 

Distance  
(m, wavelength) 

50% 
Exceedence 7.1 814   �2.84

4
𝜆𝜆� 

Mean Annual 22.4 839   �2.93
4
𝜆𝜆� 

Bankfull 135 856   �2.99
4
𝜆𝜆� 
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6 COMPARISON TO 1D AND 2D NUMERICAL MODELS 

 Scope of Computational Sediment Transport Analysis 

Two numerical models were employed to compare to the analytic model.  The most 

commonly used computational model in use today is HEC-RAS developed by the Hydrologic 

Engineering Center and the Army Corps of Engineers (Brunner, 2010).  This is a one-dimensional 

model developed to analyze hydraulics in channels and matches the dimensions of this analytic 

study.  Analytic results are also compared to those from Sediment and River Hydraulics (Lai, 

2009).  While this model does not yet include the ability to simulate sediment transport, it can still 

provide an interesting perspective by examining computed velocity and shear stress.   

6.1.1 One-Dimensional Sediment Transport Analysis: HEC-RAS 

HEC-RAS was first used on a uniform channel under steady state flow conditions.  The 

model and roughness values were verified and calibrated using the normal depth from three 

uniform flow values, as seen in Table 1.  Calibrated Manning’s roughness coefficients were 0.027 

for the first two flows, and 0.0197 for the bank full flow regime.  Sediment transport was added to 

this uniform unperturbed channel and analyzed to make sure the channel did not undergo 

degradation or aggradation.  Sediment input for sediment size is limited to inputting 100% passing 

for one size, and 0% passing for another.  Therefore, using the available defined sediment sizes, a 

gradation of 100% passing 0.5 mm and 0% passing 0.25 mm was used to estimate a d50 of 0.45 

mm, as defined by the analytical model.  The duration for the model was initially set to two weeks.  
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Duration was later increased to four weeks to verify bed elevation.  However bed elevation 

increased, indicating equilibrium scour had not been achieved.  The final model run time was set 

to a time period of six months and equilibrium scour depth conditions were confirmed at three 

months. 

A perturbed channel was added to the most downstream quarter of the reach defined, with 

the first three-quarters remaining an unperturbed channel to provide a steady flow of sediment into 

the perturbed portion of the channel for recharge.  Initial perturbed runs were conducted under 

steady flow without a sediment transport analysis.  The model was checked and normal depths 

were verified against the uniform flow values.  Then the sediment transport component was added, 

analyzed, and manipulated to determine what these results mean and how to compare them against 

the analytical results.  The same procedures for the unperturbed runs were used.   

The first three-quarters of the reach is uniform and shows no change in bed elevation, as 

expected.  Figure 10 shows the change in streambed elevation, zoomed-in on the last quarter of 

the reach, with flow from left to right. 

  

Figure 10. Change in bed elevation (y-axis) from HEC-RAS with reach distance in meters (x-axis). 

Flow 
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Based on Figure 10, it appears the deepest point occurs around 3200 m from the end of the 

reach, with a scour depth of approximately -0.11 m.  Table 3 shows the values of distance to scour 

from the start of perturbation (4000 m) and the scour depth in meters, with the analytical results. 

 

Table 3. Data from HEC-RAS numerical analysis of distance and scour depth. 

Flow Regime Discharge 
(cms) 

Distance  Scour Depth  

Analytical 
(m) 

HEC-
RAS (m) 

%  
Diff. 

Analytical 
(m) 

HEC-RAS 
(m) 

% 
Diff. 

50% Exceedence 7.1 814 740 6.46% -0.029 -0.0058 80% 

Mean Annual 22.4 839 800 3.40% -0.061 -0.0348 43% 

Bankfull 135 856 855 0.08% -0.138 -0.109 21% 

 

Looking at the values in the table, it appears the values follow a similar pattern as the 

analytical results, with the deepest scour depth occurring upstream of the narrowest portion, and 

nearest the contraction.  As discharge increases the maximum scour depth approaches the 

narrowest portion of the channel.   

An interesting piece of information was identified because of the numerical analysis.  The 

max scour depth was observed over a time of approximately six months.  This period was chosen 

after an iterative process of increasing the duration by weeks at a time to determine if equilibrium 

scour depth was achieved.  Observing the data over each time step, the equilibrium scour depth 

appeared to be achieved after a time of three months.  This is an interesting observation when 

compared to the discussion found in Simarro (2011), who estimates a duration of two weeks. 
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6.1.2 Two-Dimensional Sediment Transport Analysis: SRH 

An identical model to the HEC-RAS model was developed using SRH.  The same 

parameters, with three-quarters of the model being a uniform rectangular channel and the final 

quarter being a perturbed width portion, were used in conjunction with other characteristics.  

Model development began with a 2D-scatter set and was followed by a conceptual model to 

establish the boundaries of the mesh.  Using the elevations prescribed in the scatter set, a mesh 

was interpolated resulting in triangular elements with quadrilateral nodes, with each node 

representing a point of calculation.  Similar unto the HEC-RAS model, boundary conditions of 

steady flow were applied to the model at both the upstream and downstream ends of the mesh, 

with values of flowrate.  Like the HEC-RAS model, the bed roughness values were calibrated 

using an iterative approach to values of 0.019 for the lower flows and 0.014 for bankfull.  Flow 

depth was also verified against the values found in Table 1. 

While sediment transport is not yet included in SRH, the 2D model can still provide insight 

that can be compared to the 1D model with respect to velocity magnitudes and bed shear stress 

values.  Therefore the results of the two-dimensional model can still prove useful, even if the data 

comparison represents more of a strong relationship versus a confident interpretation.   

Due to this limitation, only the SRH output for velocity and shear stress can be compared 

to HEC-RAS.  Collecting the maximum values for bed shear stress and velocity from the SRH and 

HEC-RAS models, Table 4 and Table 5 compare the location and magnitude of these values. 
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Table 4. Max velocity comparison between HEC-RAS and SRH. 

Flow Regime Discharge 
(cms) 

Distance  Velocity  

HEC-RAS 
(m) SRH (m) 

% 
Diff 

HEC-RAS 
(m/s)  SRH (m/s) 

% 
Diff 

50% Exceedence 7.1 933 931 0.17% 0.53 0.63 18.9% 

Mean Annual 22.4 945 952 0.61% 0.85 1.05 23.5% 

Bankfull 135 1005 1033 2.44% 1.71 1.75 2.34% 

 

 

Table 5. Max bed shear stress comparison between HEC-RAS and SRH. 

Flow Regime Discharge 
(cms) 

Distance 
 

Bed Shear Stress 
 

HEC-RAS 
(m) SRH (m) 

% 
Diff 

HEC-RAS 
(N/m2) 

SRH 
(N/m2) 

% 
Diff 

50% Exceedence 7.1 960 951 0.78% 1.88 2.12 12.8% 

Mean Annual 22.4 960 976 1.40% 3.86 4.27 10.6% 

Bankfull 135 1040 1036 0.35% 11.11 12.8 15.2% 

 

 

Results show a strong correlation between the HEC-RAS and SRH, inferring if SRH 

included sediment transport, bed elevations would be similar results to HEC-RAS.   
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7 DISCUSSION OF RESULTS 

 Analytical Results 

The analytical model identified in section 5 was plotted to identify the behavior of 

equilibrium scour depth.  By collecting data from each flow regime the scour depth development 

pattern could be identified.  In this case, the development of scour holes migrates downstream as 

discharge increases.  This is similar to Hotchkiss’ original results; he identified the max scour 

depth migrating downstream with increases in discharge, as seen in Figure 11.  Using data from 

Table 2 and Table 3, distances of locations for max scour are shown on the figure, with an “A” 

indicating the second order analytical solution, “H” for HEC-RAS, and the number suffix 

indicating what case flow was used, with Case 1 being 7.1 cms, and Case 3 being 135 cms.  

The location of maximum scour moves downstream, consistent with the results of the 

current analysis.  The analytical results are clustered near the narrowest portion of the channel, 

while the HEC-RAS numerical results show a wider longitudinal distribution of max scour depth.  

In general, locations of max scour depth agree well with those from Hotchkiss’ work.   

The values in Table 2 are lower than expected; for an 80 m wide channel, to only obtain 

14 cm (5.5 inches) bed elevation difference or scour is questionable.  One explanation is the 

perturbation amplitude.  If there is no perturbation then scour or change in bed elevation will not 

occur because sediment transport is uniform longitudinally and laterally across the reach; the 

greater the amplitude the greater the scour.   
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Figure 11. Comparison plot between the first-order equations, second-order equations, and HEC-RAS.  
Locations 1, 2, and 3 are locations of maximum scour from Hotchkiss (1989) analyzed at discharges of 135, 
22.4, and 7.1 cms. Locations A1 and H1, A2 and H2, and A3 and H3 were analyzed at the same discharges of 
1, 2, and 3 respectively.  “A” refers to second-order analytic solution, “H” refers to HEC-RAS.   

 Comparison to Numerical Models 

Results from the analytical model compare well to the numerical models.  The scour depths 

identified in Table 3 show the same pattern of equilibrium scour magnitude migrating downstream 

towards the narrowest point in the channel width.  The magnitudes themselves vary from -0.0058 

to -0.138, with a maximum difference of 6.5% between analytic and numeric results.  Considering 

this is a comparison between a numerical and analytical model, the difference seems reasonable.   

The HEC-RAS model underestimates scour at low discharge rates.  As discharge rates 

increase, where significant scour is expected, the numeric model more closely matches the 

analytical but still underestimates by a short margin.  Assuming the analytical results represent the 
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physics correctly, results from the HEC-RAS model should be increased slightly to compensate, 

depending on the discharge. 
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8 CONCLUSIONS 

 Conclusions 

The contributions of this research include an in-depth understanding of the first-order 

model to expand the study to include second-order terms that identified the minute differences 

from the previous results.  Additional contributions comprise an evaluation of the max scour depth 

pattern, where results confirm maximum scour depth migrates towards the contraction as discharge 

increases.  Lastly, widely used numerical models were compared to the analytical results to 

identify their compatibility and validity, concluding that one-dimensional numerical models agree 

well with analytic theory but slightly underestimate scour depth. 

While the sediment transport and hydrodynamic community has trended towards numerical 

and finite difference/finite element solutions, this work provides interesting results when 

considering the analytical versus numerical consideration among researchers.  While this work 

was comprehensive and identified interesting aspects of sediment transport and hydraulics, it could 

still be continued further.   

Future research on this subject should include a study of a two-dimensional model that 

includes sediment transport, which may be SRH when it becomes Version 3 or another model in 

use at the time.  Additionally, a two-dimensional analytical study could be developed to see how 

it compares to the one-dimensional results, and identify how additional velocity vectors affect 

scour results in multiple dimensions.  Furthermore, research could be conducted using these same 

analytical theories to determine how bridge piers or other objects affect scour.  Finally, the use of 
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a non-uniform bed-load sediment transport equation could be used to examine the variances in the 

analytical approach versus the numerical.
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APPENDIX A.     LIST OF TERMS 
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