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KEYWORDS Abstract With accelerated evolution of the internet as websites, social networks, blogs, online por-
Sentiment analysis; tals, reviews, opinions, recommendations, ratings, and feedback are generated by writers. This wri-
Text analysis; ter generated sentiment content can be about books, people, hotels, products, research, events, etc.
Sentiment analysis chal- These sentiments become very beneficial for businesses, governments, and individuals. While this
lenges; content is meant to be useful, a bulk of this writer generated content require using the text mining
Sentiments; techniques and sentiment analysis. But there are several challenges facing the sentiment analysis and
Review structure; evaluation process. These challenges become obstacles in analyzing the accurate meaning of senti-
Accuracy ments and detecting the suitable sentiment polarity. Sentiment analysis is the practice of applying

natural language processing and text analysis techniques to identify and extract subjective informa-
tion from text. This paper presents a survey on the sentiment analysis challenges relevant to their
approaches and techniques.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction Online Reviews in April 2013 (Ling et al., 2014). The main
goal of analyzing sentiment is to analyze the reviews and
examine the scores of sentiments. This analysis is divided into

Sentiment analysis (Basant et al., 2015) uses the natural lan- )
many levels (Thomas, 2013): document level (Ainur et al.,

guage processing (NLP), text analysis and computational
techniques to automate the extraction or classification of sen- 2010), sentence level (Noura et al.. 2010), word/term level
timent from sentiment reviews. Analysis of these sentiments (Nikos et al, 2011) or aspect level (Haochen and Fei,
and opinions has spread across many fields such as Consumer 2015). The sequence processes are of sentiment analysis eval-
information, Marketing, books, application, websites, and uation and detection of the sentiment polarity (Khairullah
Social. Sentiment analysis becomes a hot area in decision- et al., 2014). This paper focuses on the most important chal-
making (Tawunrat and Jeremy, 2015) (Matthew et al., lenges in sentiment evaluation phase that they have a signifi-

2015). Hundreds of thousands of users depend on online sen- cant effect in sentiment score and polarity detection. The
timent reviews. 90% of customer’s decisions depended on evaluation sentiment drawbacks that Reflected in language

coverage. This paper summarizes keys of sentiment challenges
(Sujata and Parteek, 2014) (Vinodhini and Chandrasekaran,
2012) (Arjun et al., 2012) with respect to the type of review
structure. It also divides the challenges into two types to ease
to deal with them and focus on the degree of accurate mean-
ing. This research discusses these sentiment challenges, the
ELSEVIER Production and hosting by Elsevier factors affecting them, and their importance. As a result, a
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Table 1 Study for the sentiment challenges relevant to review structure.

Ref. No

Domain oriented

Challenge type

SA challenge

Review structure

Bas et al. (2011)
Alexander et al. (2011)
Amna (2012)

Maral (2011)
Lifeng (2009)
Robert (2013)

Michael et al. (2010)
Emanuele et al. (2012)
Stanislav (2013)

Yulan et al. (2011)
Hiroshi and Tetsuya
(2006)

Bing and Liang (2014))
Alexandra et al. (2013)
Fangtao et al. (2010)
Ouyang et al. (2014)
Fangtao et al. (2011)
Xia et al. (2014)
Qingxi and Ming (2014)
Ahmed et al. (2010)

Myle et al. (2011)
Theodoros (2012)
Alexandra and Ralf
(2009)

Marina et al. (2014)

Svetlana et al. (2014)
Jiliang et al. (2012)
Yanfang et al. (2015)
Yunfang and Miaomiao
(2010)

Duyu et al. (2014)

Saif and Peter (2010)
Christine et al. (2013)
Nathan and Ruihong
(2013)

Subhabrata and Pushpak
(2012)

No (40 different topics)
Yes, movie reviews
N broader sense domain

Yes movies
Yes health/medical domain
Y

N
N
Yes

N mutli-domain
N

product reviews

social media

N, online customers reviews
Y, ecommerce and online
security

N, online customer reviews
N

Y, online news reviews

Y
Y
Y
N
Y,
Y,

Y, the game on amazon
mechanical turk

Y, tweets

Y, facebook, and twitter
N

N

Y, social media
N

Y, tweets

Y, tweets

Y, products

Theoretical
Theoretical
Theoretical

Theoretical
Theoretical
Theoretical and
Technical
Theoretical and
Technical
Theoretical

+ Technical
Theoretical

Theoretical
Theoretical

Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical

Theoretical
Theoretical
Theoretical

Theoretical

Theoretical
Theoretical
Theoretical
Theoretical

Theoretical
Theoretical
Theoretical
Theoretical

Technical

Negation
Negation
Negation

Negation + domain dependence
Negation
Negation + bipolar words

Negation + entity features/keywords
Negation + huge lexicon
Domain dependence

Domain dependence
Domain dependence

Domain dependence
Domain dependence
Domain dependence
Domain dependence
Spam and fake detection
Spam and fake detection
Spam and fake detection
Spam and fake detection

Spam and fake detection
Spam and fake detection + negation
World knowledge

World knowledge

NLP overheads (Short Abbreviations)
NLP overheads (Short Abbreviations)
NLP overheads (Ambiguity)
NLP overheads (Ambiguity)

NLP overheads (Emotions)

NLP overheads (Emotions)

NLP overheads (Sarcasm) + negation
NLP overheads (Sarcasm)

Extracting features or keyword

Semi-structured adjectives only

Un-structured

Semi-structured nouns/adjectives/verbs and adverbs-
clauses and phrases

Semi-structured adverbs, adjectives

Semi-structured

Semi-structured, sentences or topics documents

Structured or semi-structured
Semi-structured,

Unstructured conjunction with predefined taxonomy of
emotional terms

Semi-structured

Structured, objectives expressions

Un-structured, twitter

Structured, news articles

Un-structured, online customers reviews
Unstructured, emotion reviews
Unstructured

Unstructured

Unstructured

Semi-structured

Unstructured,
Semi-Structured
Semi-structured, unstructured

Unstructured

Unstructured
Unstructured
Semi-structured
Structured, adjectives only

Unstructured
Unstructured
Unstructured

Unstructured

Semi-structured

(continued on next page)
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332 Doaa Mohey El-Din Mohamed Hussein
large number of studies and research have helped monitor the
trending new research increasing year by year. The focus in
this research, has been to achieve the most suitable challenges
facing sentiment evaluation to be useful for researchers and
facilitate their relationships.The rest of this paper is organized
as follows: Section 2, Empirical Study, Section 3, Discussion,
and Section 4, Conclusion and proposes directions for future
work.

2. Empirical study
o
% This research is based on two comparisons among the forty-
© E seven previous researches in sentiment analysis to choose the
i BB oo o 2 B suitable challenge for each research and to show their effects
é’ g g g g g % ; g - on the sentiment accuracy (Ismat and Ali, 2011). First compar-
; g g 588 B g g g ison discusses the ‘relationship between the sentiment analysis
2 é é fé é é é ‘ca'i é g cha.ller.lges and review structure. Second comparison examines
gle8555 53584 a significance of solving the sentiment challenges to improve
accuracy.
First comparison: is between the thirty-seven research
papers. The target of this comparison is recognizing the rela-
_E tionship between the sentiment challenges and review structure
5, and how to effect on the sentiment results. Sentiment review
= structure becomes an essential factor which effects on selecting
"g 'g ‘; the important challenges should the researchers face in their
E g g research by assuming the types of review format as in the
22 8 following:
5 5 Z,
g g g%" (A) Structured Sentiments are found in formal sentiment
. 5 g ,§ .§ ,§ o= e § E reviews, but it targets the formal issues as books or
%‘) wme2s 888 : g research. Because the writers are professional and writ-
= % *;E, 555 8858 gg ing sentiments or notices about the scientific or fact
S| £ £7T9E 2% %2 2 issues.
= B A e E E :::5 4+ (B) Semi-Structured Sentiments lie on the range between the
formal structured sentiments and unstructured senti-
ments. These require understanding several issues about
2 - reviews. This type which depends on Pros and Cons is
Z 2 listed separately by the writer and the contents of Pros
Eﬂ SSSSS5 SS55 & and Cons are usually short phrases.
é{; E E E £ E E E g E é (C) Unstructured Sentiments are an informal and free text
5 [§ ;'3 E [5_'3[13 [5_3 ;'3 é E T format, the writer does not follow any constraints
(Arjun et al., 2013). There is no formal separation of
4 o % Pros and Cons and the content may consist of several
g Sz sentences, where each sentence contains features and/
3 E E or opinions. For the example below the unstructured
_ B % é reviews have the potential to provide more abundant
- % E S5m 4 and detailed opinion information than its counterpart
% é%_ﬁ*%’ E% E (Arjun et al., 2013). Explicit feature: If a feature f
HE % § 2 o § : g appears in the segment/chgnk of a review sentence, the
g|Soa=38 BEM = feature is called an explicit feature of a product. For
£ }% TEg E E = % § example; in the segment the picture is wonderful, picture
Bls s s sisr 57 sl 50 is an explicit feature. Implicit feature: If a feature f does
not appear in the segment of review, but is implied, the
< =3 feature is called an implicit feature of a product. For
§ -8 é & 9 _ .example; in the segment it is very expensive, thé price
i S8o=8 B &2 is an implicit feature, and expensive is a feature indica-
S @ \_: Sa g < = 8 tor. With respect to the importance of sentiment analy-
= f 5 ; = g g G ) sis, this survey discusses the relationship between the
NEAEE g s % 825 review structure and sentiment analysis challenges. We
% o E 2 g 3 g i:: D E S examine the sentiment challenge that appears more with
HIlIOZ=2aal0a<A the type of sentiment structure.
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Figure 1  SA challenge type and technique Used.

Table 1 illustrates that the comparison between the forty-
one papers in sentiment analysis challenges. The compar-
ison’s results declare that there is an essential factor impor-
tant and relevant to the review structure. This factor is
domain oriented, that requires having an orientation of the
topic domain and its features or keywords to determine the
fitting challenge for the research or application. The compar-
ison relies on the relationship between the domain and the
review structure. Another result is the negation is the most
important challenge which has the greatest impact in any sen-
timent analysis and evaluation whether structured, semi-
structured or unstructured review. But the comparison short-
coming requires updatable research constantly to reach the
suitable challenges easily and quickly.

Second comparison explains the summary of sentiment
challenges and how to improve the accuracy of each one
based on the previous works. Its goal is identifying the most
significant challenges in sentiment and how to improve its
results relevant to the used techniques. Fig. 1 explains the
proposition of using the techniques with respect to the senti-
ment analysis (SA) challenge types (Theoretical or technical).
According to the comparison between the twenty-six research
papers Table 2 identifies the usage of each technique. The the-
oretical challenges use many techniques to improve the results
with solving the selective sentiment challenges. The highest
technique usage in the theoretical type is parts-of-speech
(POS) tagging and lexicon-based techniques. Bag-of-words
(BOW) technique is the second technique. And the last one
is Maximum entropy (ME) technique. But the results are dif-
ferent in technical sentiment challenge type, the highest usage
technique is n-gram technique, because it is based on phrases
and expressions. And the least technique usage here is
lexicon-based technique.

Table 2 examines several parameters relevant to the senti-
ment analysis challenges. These parameters are lexicon type,
domain oriented, dataset, the technique used and the accu-
racy results. This comparison summarizes the effect of senti-
ment challenge solutions in analyzing and evaluating
sentiment analysis accurately. The lexicon type in comparison
in Table 2 refers to the language of the dataset and the size of

Table 2 Study to several parameters effects on the sentiment challenges.

Ref. No.

Accuracy

Lexicon type Data set

Domain

oriented

SA challenge  Technique used

SA challenge

type

90%

The two datasets, the movie review (MR)

data and the multi domain

46English

N multi

domain

Naive Bayes and support
vector machines from

Theoretical Domain
WEKAS5

Yulan et al.

(2011)

dependence

69%

Facebook dataset containing 10,000 posts

English

Y

Combination of features

(n-grams) and

Technical Bi-polar
words

Ivan et al.
(2013)

Facebook

preprocessing techniques
(unsupervised stemming

and phonetic

transcription).

94% (25 to 33%)

Polar clauses conveying goodness and

Japanese
badness in a specific domain

N

Deep sentiment analysis
method analogous to
machine translation

Domain

Theoretical

Hiroshi and

Tetsuya

Dependence

J

(2006)

65% with higher recall 83%

2000 movie reviews: 1000 positive and 1000

negative

Y Two wordlists

BOW term frequencies

Negation

Theoretical

Maral (2011)

+ domain

dependence
Domain

Improve accuracy and F-measure

2000 positive words and 4700 negative words,

Tweets and

SemEval-2013

Theoretical

Svetlana

about 13% from base line to reach

69%

MPQA English also the popular MPQA

Dependence

et al. (2014)

(continued on next page)



Table 2 (continued)

Ref. No. SA challenge  SA challenge  Technique used Domain Lexicon type Data set Accuracy
type oriented
Andrius Technical Huge lexicon  Bag-of-wordl1s SVM. Y, CNET, pSenti The firrst dataset|Software Review, second 82.30%
et al. (2012) IMDB data set Movie Reviews
movie
reviews
Saif and Technical NLP (Naive Bayes, Maximum N multi Microblogging  Tweets with emoticons, 1,600,000 training Accuracy improved for Naive Bayes
Peter (2010) overheads Entropy, and SVM) domain lexicon tweets., 800,000 tweets with positive (81.3% from to 82.7%) and Max-
(emotions) emoticons, and 800,000 tweets with negative Ent (from 80.5 to 82.7). However,
emoticons, there was a decline for SVM (from
82.2% to 81.6%).
Alexandra Theoretical Domain WordNet- lexicon based Y News reviews Newspaper articles (the set of 1292 quotes 82% improve the base line 21%
et al. (2013) Dependence
Theresa Technical Huge lexicon  Auto.Distinguishing prior N Multi- 15,991 subjective expressions from 425 75.9%,
et al. (2005) and contextual polarity. perspective documents (8,984 sentences)
Question
Answering
(MPQA)
Opinion
Corpusl,
Erik and Technical Nlp Integrated approach Y English, Dutch  Blog, review and forum texts found on the 83% 70% and 68%
Marie- overheads combining from and French tex World Wide Web
Francine (Multi- information retrieval,
(2009) lingual) natural language
processing and machine
learning
Fangtao Theoretical Domain Dependency-Sentiment- Y Hownet- Senti- Online customers reviews- HowNet 2700 70.7
et al. (2010) Dependence LDA- Markov chain wordnet- 2009 English translation of positive/negative
MPQA Chinese SentiWordNet 4800 2290 Words
with a positive or negative score- MPQA
4152 2304 MPQA subjectivity lexicon
Duyu et al.  Technical Nlp Fine-grained emotions Y Chinese lexicon 35,000 tweets about Sichuan earthquake 80%,
(2014) overheads
(emotions)
Bas et al. Theoretical Negation Part of speech (POS) 40 different OpenNLP Dutch language 71.23% for negation (Precision
(2011) topics improves with 1.17%)
Ouyang Theoretical Domain Emotion Dependency N Chinese COAE2014 dataset 60%
et al. (2014) Dependence Tuple (EDT- improved
(BOW) TF-IDF and cross
entropy, space vector
model
Lucie et al. ~ Technical Bi-polar n-gram (uni and bi-grams) Y HL and Data set of 1,600 Facebook messages 70%
(2015) words MPQA lexicon.
Qingxi and Theoretical Spam and Combine lexicon and use N, online SentiWordNet  Store#364, 85.7% for sentiment method but
Ming (2014) fake reviews shallow dependency parser customers and MPQA word counting approach 76.7%
reviews
Emitza and  Technical Feature and POS tagging with fine- N, 7 SentiStrength 7 apps from the Apple App Store and Google 91%

Pee
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Table 2 (continued)

Ref. No. SA challenge  SA challenge  Technique used Domain Lexicon type Data set Accuracy
type oriented

Walid (2014) keywords grained app applications Play Store

extraction
Alexandra Theoretical World Adding word polarity Y Context- 6500 answers on game reviews Improve acc 60% to 80%
and Ralf knowledge scores from sentiment dependent
(2009) lexicons. lexicon
Lifeng Theoretical Negation Parse Tree and dependency Y English, Dataset that consists of 1000 sentences Between 79.2% to 82% with
(2009) health/medical different four methods

domain

Mohammed  Technical Domain Lexicon-based method N 16 domain Deal with emoticons, chat language, Arabizi, 93.9%
et al. (2014)  + Theoretical dependence depends on POS tagging Lexicon-based

+ NLP tool for Arabic

overheads opinion

(multi- mining.

language)
Chetan and  Technical Huge lexicon  Lexicon based technique Y 6,74,412 tweets The polarities of the words in the dictionary 73.5%
Atul (2014) are set according to a specific domain,
Jiang and Theoretical Domain- n-gram N, 7 Chinese 560 Chinese review 65%
Min (2011) dependence domains reviews b
Alexander Theoretical Negation POS Technique (Word Y WORDNET 1;000 positive and 1;000 negative English 98:7%-
et al. (2011) Sense Disambiguation, movie

Sentiment analysis)

Doaa et al.  Technical Lexicon Enhancement BOW model Y, scientific New lexicon Three datasets (training set, test set and the  83.5%
(2015) + Theoretical + Feature papers verified set) 1000, 5000, and 10.000

extraction

+ Negation

+ world

knowledge
Walter and ~ Technical Extracting Character n-grams instead Y German Hotel  Corpus of 1559 hotel reviews crawled from  83%
Mihaela + Theoretical Features or of terms reviews the web.
(2011) keywords

+ domain

dependence
Myle et al. Theoretical Spam/fake POS tagging similarities N, online LIWC 800 opinions Nearly 90%
(2011) reviews and n-gram algorithm customer

reviews
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the dataset. There are several available lexicon as Senti, How-
Net, and Wordnet. The used lexicon has the sentiment word
and polarity. The polarity differs in the sentiment classification
polarity level. This classification of polarity is divided into sev-
eral class levels such as two levels (Positive, and Negative
polarities), three levels as in the hierarchical level, or four level
(—, Neutral, +, Mixed), and more specified classification into
five levels (Very Negative, Negative, Neutral, Positive, Very
Positive polarities) (Doaa, 2016). The comparison’s strengths
are (1) the facility of understanding the hot area research, (2)
illustrating the most effect challenges on the accuracy results,
(3) recognizing the propagation of use of each sentiment anal-
ysis technique, and (4) discussing the relationship among the
domain dependence, lexicon type and the accuracy results
(Doaa et al., 2015). The results of this comparison are very
important in choosing the suitable technique to solve the sen-
timent challenges to reach the highest accuracy.

The comparison’s conclusion is in Table 2, which includes
the relationship between the sentiment analysis challenge type
and the importance of its presence in the new search. Other
results from the second comparison declare in Fig. 2 that the
percentage of Average of accuracy enhancement related to
the compared research papers. Although the Negation is the
most affected in any sentiment type as the results in compar-
ison in Table 1 mean it has a big number of research. That
makes the result of it is lower here.

n
AVG(ACC)=>"

i=0

Accuracy of each paper
number of papers (n)

(1)

That means the lowest Average of accuracy is the highest
rate research area with the bi-polar words with 69.5. Then
domain dependence and NLP overheads have the second rank.
And the Negation challenge has the third rank.

Fig. 3 presents the highest improvement in accuracy for
each sentiment analysis challenges related to the second com-
parison. Negation has the highest accuracy percentage that
can support the result of the first comparison because
researches in sentiment do not need to understand the negative
reviews whether explicit or implicit. And the least score in
accuracy is bi-polar words research, so we recommend to
increase the research in it.

Huge lexicon | — /9.7
bi-polar  —— 69.5
Extracting features | 35.83
NP Overheads |  76.46
World knowledge | —— 31.75
Negation | 77.72
Domain dependance | 76.62
Spam and fake — 87.85

0 20 40 60 80 100

precntage of AVargae Accuracy Enhacement

Sentiment Analysis Challenges

M Accuracy

Figure 2 The improvement in accuracy results in sentiment
analysis challenges.

> 120%
1%}
©
5 100% o
3 - N
3 S OETTT A
8 s i :\'9.—“1“’--3\--_,49
= 1 1 1 1 I 1 1
o 1 1 1 1 1 1 o 1
w 60% ) ) ) ) ' ' i '
[J] 1 1 I 1 1 1 1 1
4&' o 1 1 1 1 1 1 1 1
g 40% : : : : : : :
[%] 1 1 1 1 1 1 1 1
g 20% | : : : : : : :
g 1 1 1 1 I 1 1 1

0% 1 1 1 1 1 1 1 1

\{.‘2’ OQ' .o(\ %g’ g 8 Qb . oQ
N of @"’b & & 8 \q:\r‘('
S & & o & N > )
L ¥ N o N & o
R 'b\(\ $0&\ %V ’Z}’\)k &
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&
&
&
<</+
sentiment analysis challenges
m—@m== ACCUrACy ====-= Linear (Accuracy)

Figure 3 The highest accuracy to each sentiment analysis
challenge.

3. Conclusion and future work

This survey discusses the importance and effects of sentiment
analysis challenges in sentiment evaluation based on two com-
parisons among forty-seven papers. The first comparison is
based on the relationship between the sentiment review struc-
ture and the sentiment analysis challenges. The result of this
comparison reveals another essential factor to recognize the
sentiment challenges which is domain-dependence. Moreover,
the negation challenge became popular in all types of reviews
structured just differs in implicit or explicit meaning. This
comparison result provides a facility to the effects of each sen-
timent challenge on the review structure types. We conclude
that the topic nature and the review structure determines the
suitable challenges for the evaluation sentiment reviews. Then
the second comparison relies on the sentiment analysis chal-
lenges relevant to the accuracy rate. Their results present the
importance of sentiment challenges in evaluating the senti-
ments and how to select the fitting challenge to improve accu-
racy. We find the relationship between the proportion of
sentiment techniques usage in theoretical and technical types
to solve sentiment challenges. Another result explains the hot
area of research is a theoretical type of sentiment challenges.
That reflects on the results of the average of accuracy based
on the number of researches in each challenge. The more the
research in a sentiment challenge, the less the Average of accu-
racy rate. The future work is the expansion of the comparison
circle larger with the new research continuously.
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