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Abstract The capability of adaptive antenna array lies in forming higher gain in the user directions

and lower gain in the interferer directions. The technique used to produce such radiation pattern by

calculating the excitation weights are called the adaptive beamforming (ABF) techniques. It tries to

minimize the error between the desired and actual signal and maximize the signal to interference ratio

(SIR). But in severe interference environment when the actual signal is weak, the effect of SIR on the

radiation pattern needs to be considered. This paper describes the effect of signal to interference ratio

on different adaptive beamforming techniques such as non-blind least mean square (LMS), blind

constant modulus algorithm (CMA) and evolutionary Particle Swarm Optimization (PSO). The

performance and validation of beamforming algorithms are studied through MATLAB simulation

by varying SIR parameters for different desired and interference direction. Different weights are

obtained using this beamforming algorithm to optimize the radiation pattern. The parameters for

comparison are the main beam and null placement keeping signal to noise (SNR) constant for

different angles of user and interferer. The mean SLL and directivity are also studied.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In satellite communication systems, the receiver receives
extremely weak signals from the satellite (Lian, 1997). To
enhance reception and radiation patterns dynamically in
response to the signal environment, such technologies depend
on adaptive array signal processing (Applebaum, 1975;

Kamboj and Dahiya, 2008). An adaptive antenna is an array
of antenna elements followed by a sophisticated signal proces-
sor that can adjust or adapt its own radiation pattern in order

to focus the reception of the antenna array in a certain direc-
tion and rejects the signal from other directions (Ballanis,
2005; Widrow et al., 1967). The necessity to remove the effect
of the undesired signal to the desired one motivates advances

in communication receiver antenna and hence synthesizing
methods (Canabal et al., 2005; Banerjee and Dwivedi, 2013a,
b; Goswami and Mandal, 2013).
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Figure 1 Uniform linear array.
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An adaptive antenna array combines the outputs of
antenna elements. The directional gain of the antenna is con-

trolled by adjusting phase or amplitude or both at each indi-
vidual element. The weighted signals are summed and the
output is fed to a controller. These weights are computed

adaptively to adapt to the changes in the signal environment.
Different adaptive beamforming algorithms are employed to
minimize the error between the desired signal and the array

output that adjusts the weights to satisfy an optimization cri-
terion (Das, 2008; Gu et al., 2008; Hongwei et al., 2011;
Hossain et al., 2008).

The capability of adaptive antenna array lies in forming
higher gain in the user directions and lower gain in the inter-
ferer directions. There are different adaptive beamforming
algorithms studied in the literature which are used in the adap-

tive antenna array (Banerjee and Dwivedi, 2013a,b; Banerjee
and Dwivedi, 2015a,b; Jiancheng et al., 2011). Beamformers
based upon statistically optimum blind and non-blind adaptive

beamforming are analyzed and compared on the basis of
beamforming capability and rate of convergence. It is observed
that the convergence rate of Least Mean Square (LMS) is

slowest where as Constant CGM is the fastest among all.
SMI is found to have more computational complexity. Recur-
sive Least Square (RLS) is found to have higher side lobe level

(SLL) and null depths as compared to CGM (Saxena and
Kothari, 2014). It was observed that the conventional
Adaptive Beamforming (ABF) technique like Minimum
Figure 2 Block diagram of
Variance Distortionless Response (MVDR) improves the
signal-to-interference-plus-noise ratio (SINR) but is unable
to reduce the SLL (Liu et al., 2011). Hence to improve the

SINR with reduced SLL, many optimization techniques have
been used in ABF application. Adaptive Mutated Boolean
Particle Swarm Optimization (AMBPSO) technique takes the

uncorrelated desired and interferer signal directions and suc-
ceeds in providing good SINR value with lower SLL as com-
pared to conventional MVDR (Zaharis and Yioultsis, 2011).

Adaptive Dispersion Invasive Weed Optimization (ADIWO)
shows improvement in steering ability regarding the main lobe
and the nulls, faster as compared to PSO and achieves better
SLL than the PSO and MVDR (Zaharis et al., 2012). Hybrid

Particle Swarm Optimization with Gravitational Search Algo-
rithm (Hybrid PSOGSA) shows its ability for optimization in
beam-forming for a larger number of user signals and speedy

computation using parallel GSA as compared to sequential
stand alone algorithms but cannot maximize the gain along
the user direction (Magdy et al., 2015a,b). Mementic algorithm

shows optimal radiation pattern design to maximize the signal
to interference ratio (SIR) by perturbing the phase-position
(Hsu and Shyr, 2005). But, for the case of adaptive antennas,

the position of the antenna elements cannot be changed so it
should be kept fixed, as the required phase controls are avail-
able at no extra cost. Hence only phase weights are considered
for optimal radiation pattern which shows good null depth

along the undesired direction but the array factor (AF) gain
along the main lobe is not satisfactory (Rao and Sarma,
2012; Zuniga et al., 2010).

In all of the above adaptive beamforming techniques pro-
posed so far we try to minimize the error between the desired
and actual signal and maximize the signal to interference ratio

(SIR). But in severe interference environment when the actual
signal is weak, the effect of SIR on the radiation pattern needs
to be considered.

The present study analyses different adaptive techniques
such as non-blind LMS, blind CMA and evolutionary PSO.
The performance of beamforming algorithms are studied
through MATLAB simulation by varying SIR parameters

for different desired and interference direction. Different
adaptive antenna array.
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weights are obtained using this beamforming algorithm to
optimize the radiation pattern. The parameters for comparison
are the main beam and null placement keeping signal to noise

(SNR) constant for different angles of user and interferer. The
mean SLL and directivity are also studied.

The rest of the paper is arranged as follows: Section II

describes the mathematical model of signal, Section III formu-
lates the adaptive beamforming problem, Section IV, V and VI
describes adaptive beamforming using PSO, LMS and CMA,

Section VII compares the results and Section V concludes
the whole study.

2. Signal model

Consider a Uniform Linear Array (ULA) with N elements as
shown in Fig. 1.

Let S be narrowband signals that are received at ULA with
different directions of arrivals (DOAs) h1, h2, . . . hS. Let s(t) be
the S X 1 signal vector from the Sth source with DOA equal to
hS.

SðkÞ ¼ ½S1ðkÞ S2ðkÞ . . . SsðkÞ� ð1Þ
We define the input signals as x0(t), x1(t), . . . , xN-1(t). As

they reach the antenna elements, the N X 1 signal vector x(t)
can be written as

XðkÞ ¼
Xs

s¼1

SsðkÞ � SVðhsÞ ð2Þ

where SV (h) is the steering vector or array response vector of

N X 1 which controls the direction of the antenna beam.

SVðhÞ ¼ ½1 expð�jp sinðhÞÞ expð�2jp sinðhÞÞ
. . . expð�jðN� 1Þ sinðhÞÞ�T ð3Þ

Now if the signals 1,2 . . . S consist of U number of desired

users arriving from h1, h2, h3, . . . hU, I the number of interfer-
ences arriving from h1, h2, h3, . . . hI with variance ri

2 and noise
with variance rn

2, then the input signal consists of the user sig-

nal, interferer signal and noise. The received signal can be writ-
ten as

XðkÞ ¼
XU

s¼1

SuðkÞ � SVðhuÞ þ
XI

i¼1

SiðkÞ � SVðhiÞ þNðkÞ ð4Þ

where SVðhuÞ ¼ ½1 expð�jp sinðhuÞÞ . . . exp ð�jpðN� 1Þ
sinðhuÞÞ� is the steering vector of the desired signal along the
user and SVðhiÞ ¼ ½1 expð�jp sinðhiÞÞ . . . expð�jp
ðN� 1Þ sinðhiÞÞ� is the steering vector along the interferer
direction.

3. Adaptive beamforming problem formulations

An ULA will receive the incoming signals which will be multi-

plied by the weights of antenna elements which are then
summed to get the output in the form of received signal. The
received signal will be graphically represented in the form of

the radiation properties as a function of space coordinates
known as radiation pattern. The radiation pattern of the linear
array for far field is represented in terms of array factor (AF)

by (Banerjee and Dwivedi, 2015a,b),

AF ¼
XN

n¼1

XðkÞ � wn ð5Þ
Where N = number of elements, wn ¼ an � expðjbnÞ= com-

plex array weights at element n, an = amplitude weight at ele-
ment n, bn = phase shift weight at element n.

In adaptive antenna beamforming, the radiation pattern of

ULA is controlled through various adaptive algorithms. Adap-
tive algorithm dynamically optimizes the radiation pattern
according to the changing electromagnetic environment. The
output or received signal is given to the adaptive algorithm

where it checks the output radiation pattern with the desired
radiation pattern. If the received actual radiation pattern does
not meet the user demands, then adaptive algorithm will try to

adjust the weights of the antenna array such that the actual
and desired radiation pattern remains same. The antenna array
pattern is optimized to have maximum possible gain in the

direction of the desired signal and nulls in the direction of
the interferers. Fig. 2 shows the block diagram of an adaptive
antenna array.

4. Adaptive beamforming using particle swarm optimization

Particle Swarm Optimization (PSO) was developed by

Eberhart and Shi (Eberhart and Lu, 2001). It is used as an
adaptive algorithm to search the optimized adaptive antenna
radiation pattern. This is done using the algorithm summarized
in the Table 1 (Arora, 2015). In every iteration, PSO algorithm

will try to increase the AF gain of the desired user and decrease
the AF gain of the interfering user as compared of the previous
iteration (Mandal et al., 2012). The converged value of weights

produces an optimized adaptive antenna radiation pattern.
The amplitudes excitations are kept constant whereas the

phase excitations are selected as the optimization parameters.

Hence the AF can be written as

AF ¼
XN

n¼1

XðkÞ � expjbn ð6Þ

The objective function is formulated to find the values of
phase of the element of antenna array in order to focus the main
lobe toward the desired user while low gain toward interfering

user. It is formulated using the AF equation for b = 0.For 1
user and 2 interferer, there are three cost functions: AFðhs1Þ:
the first cost function is the magnitude of the radiation pattern

in the user direction hs1 and AFðhi1Þ, AFðhi2Þ: the other two cost
functions are the magnitude of the radiation pattern in the
interferer directions hi1 and hi2: The aims are to maximize the

AF gain of the desired user and minimize the AF gain of the
interfering user. This is multi-objective optimization.

Fitness function for Beamforming

¼ AFðhs1Þ � ½AFðhi1Þ þ AFðhi2Þ� ð7Þ
where

AFðhs1Þ ¼
XN

n¼1

exp�jpðn�1Þðsin hs1Þ � expjbn ð8Þ

AFðhi1Þ ¼
XN

n¼1

exp�jpðn�1Þðsin hi1Þ � expjbn ð9Þ

AFðhi2Þ ¼
XN

n¼1

exp�jpðn�1Þðsin hi2Þ � expjbn ð10Þ
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Figure 3 Best radiation pattern found by PSO, LMS and CMA for 16 element antenna array with user at 0� and interferers at �15� &
30� with SNR = 30 dB (a) Rectangular Plot for SIR = 30 dB (SLLPSO = �15.41 dB, SLLLMS = �19.12 dB, SLLCMA = �19.14 dB) (b)

Rectangular Plot for SIR = �30 dB (SLLPSO = �10.35 dB).
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Figure 4 Best radiation pattern found by PSO, LMS and CMA for 16 element antenna array with user at 0� and interferers at �40� &
20� with SNR = 30 dB (a) Rectangular Plot for SIR = 30 dB (SLLPSO = �17.46 dB, SLLLMS = �19.15 dB, SLLCMA = �19.32 dB) (b)

Rectangular Plot for SIR = �30 dB (SLLPSO = �7.63 dB).
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The following steps show how PSO is used to find the opti-
mal radiation pattern of an adaptive antenna.

Step 1: Initialize population, number of iterations, tuning
parameters ðu1 and u2Þ and weights (w). The particle

corresponds to phase bn in the interval [�2p, 2p].

Step 2: Initialize starting position bn(i,k) for the kth variable in

the population by bnði; kÞ ¼ bnði;minÞ þ ðbnði;maxÞ�
bnði;minÞÞuðiÞ where k ¼ 1; 2;���npop and uðiÞ is
the random number generated between 0 and 1. Initial-
ize the velocities of the kth variable as vði; kÞ ¼ 0:
Step 3: Evaluate the normalized received current for each par-
ticle bn(i). Compute FF (i, k) as per (7).
Step 4: Compute pbest(i, k) = FF (i, k) and gbest(i) = max
(pbest (i, k)) with its location pbest (k) and gbest.
Step 5: Update velocity v (i + 1, k) and position bn (i + 1, k)

using vðiþ1;kÞ¼w� vði;kÞþu1ðpðbnikÞ�bnði;kÞÞuðiÞþ
u2ðgðibnÞ�bnði;kÞÞuðiÞbnðiþ1;kÞ¼ bnði;kÞþ vðiþ1; kÞ.
Step 6: Update Fitness function for BF (i + 1, k).
Step 7: If Fitness function for BF (i+ 1, k) > Fitness function

for BF (i, k), then pbest(i+ 1, k) = Fitness function
for BF (i + 1, k).

Step 8: Update gbest (i+ 1, k) = max (pbest(i+ 1, k)).
Step 9: If i < imax then increment i and go to step-5, else
stop.
5. Adaptive beamforming using least mean square algorithm

Least mean square (LMS) algorithm was first developed by
Widrow and Hoff in 1960. The optimum weights can be esti-
mated with the LMS algorithm. The algorithm recursively

computes and updates the weight vector. Successive correc-
tions to the weight vector in the direction of the negative of
the gradient vector eventually lead to the MMSE between
the beamformer output and the reference signal. At this



Table 2 Comparison of PSO, LMS and CMA for different

values of SIR for scenario#1 and scenario#2 (*C-Main beam

and null are converging at the exact position, *NC-Main beam

and null are not converging at the exact position).

SIR Scenario#1 Scenario#2

PSO LMS CMA PSO LMS CMA

30 *C *C *C *C *C *C

20 *C *C *C *C *C *C

10 *C *C *C *C *C *C

0 *C *C *NC *C *C *NC

�10 *C *C *NC *C *C *NC

�20 *C NC *NC *C *NC *NC

�30 *C NC *NC *C *NC *NC

Table 1 AF gain along main lobe and null for PSO, LMS and CMA for different values of SIR for scenario#1 and scenario#2

(*MB-Main Beam, *NP-Null Position).

SIR (dB) Scenario PSO LMS CMA

G_S1 G_I1 G_I2 G_S1 G_I1 G_I2 G_S1 G_I1 G_I2

30 #1 0 �30 �23 0 �33 �38 0 �32 �37

#2 0 �32 �42 0 �48 �40 0 �40 �47

20 #1 0 �25 �53 0 �32 �50 0 �37 �43

#2 0 �22 �21 0 �43 �36 0 �37 �34

10 #1 0 �34 �45 0 �48 �36 0 �30 �28

#2 0 �44 �30 0 �35 �36 0 �39 �26

0 #1 0 �32 �37 0 �34 �40 *MB and *NP are not exact

#2 0 �38 �45 0 �39 �44 *NP are not exact

�10 #1 0 �34 �35 0 �37 �39 *MB and *NP are not exact

#2 0 �51 �48 0 �66 �38 *MB and *NP are not exact

�20 #1 0 �41 �42 *MB and *NP are not exact *MB and *NP are not exact

#2 0 �50 �34 *MB and *NP are not exact *MB and *NP are not exact

�30 #1 0 �35 �35 *MB and *NP are not exact *MB and *NP are not exact

#2 0 �36 �28 *MB and *NP are not exact *MB and *NP are not exact
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point the weight vector assumes to be its optimum value. The
algorithm contains three steps in each recursion: the computa-

tion of the processed signal with the current set of weights, the
generation of the error between the processed signal
Table 3 Optimized excitation weights for SIR = 30 dB for scenario

N (WPSO)#1 (WPSO)#2 (WLMS)#1

1 1.00 + 0.00i 1.00 + 0.00i 1.00 + 0.00

2 0.84 � 0.54i �0.28 + 0.95i 0.99 + 0.00

3 0.59 + 0.80i 0.88 � 0.46i 0.99 + 0.00

4 0.99 + 0.02i �0.09 + 0.995i 0.99 + 0.00

5 0.53 � 0.84 0.66 + 0.750i 0.99 + 0.00

6 �0.04 � 0.99i �0.72 + 0.688i 0.99 + 0.00

7 0.66 � 0.74i 0.63 + 0.770i 1.00 + 0.00

8 0.54 + 0.83i �0.99 + 0.032i 1.00 + 0.00

9 �0.29 � 0.95i 0.29 � 0.954i 0.99 + 0.00

10 �0.92 � 0.37i �0.40 + 0.912i 0.99 + 0.00

11 �0.14 + 0.98i 0.82 � 0.571i 0.99 + 0.00

12 �0.79 + 0.60i 0.03 � 0.999i 0.99 + 0.00

13 0.17 + 0.98i �0.34 + 0.939i 0.99 � 0.00

14 �0.62 � 0.78i 0.44 � 0.896i 0.99 + 0.00

15 0.82 � 0.56i �0.44 + 0.896i 0.99 + 0.00

16 0.21 � 0.97i �0.90 � 0.431i 1.00 + 0.00
and the desired signal, and the adjustment of the weights with
the new error information. The following steps summarize the

above three steps (Banerjee and Dwivedi, 2013a,b).

Step 1: Initialize number of iteration imax and the value
of l.
Step 2: Initialize weight WLMS, error ELMS and output yLMS

as 0.
Step 3: Compute output, yLMS(i, k) = WLMS(i, k)

Hx(k).

Step 4: Compute error, ELMS (i, k) = Su(k) � yLMS (i, k).

Step 5: Compute weight, WLMS (i + 1, k) = WLMS (i, k) + lx

(k)ELMS * (i, k).

Step 6: If i> imax, then stop, otherwise go to step (3) to update

output, error and weight.

6. Adaptive beamforming using constant modulus algorithm

The constant modulus algorithm (CMA) was first proposed by

Godward. It is used for blind equalization of signals that have
#1 and scenario#2.

(WLMS)#2 (WCMA)#1 (WCMA)#2

i 1.00 + 0.00i 1.00 + 0.00i 1.00 + 0.00i

i 0.99 + 0.00i 1.00 � 0.02i 0.99 + 0.00i

i 0.98 + 0.00i 0.98 � 0.00i 0.98 + 0.01i

i 0.99 + 0.00i 0.97 + 0.00i 0.99 + 0.01i

i 0.99 + 0.01i 0.99 + 0.02i 0.99 + 0.01i

i 0.98 + 0.00i 0.99 � 0.00i 0.99 + 0.01i

i 0.99 + 0.00i 0.97 � 0.00i 0.99 � 0.00i

i 0.99 + 0.00i 0.98 � 0.00i 0.98 + 0.01i

i 0.98 + 0.00i 0.98 + 0.00i 0.98 + 0.01i

i 0.99 + 0.00i 0.98 � 0.01i 1.00 + 0.00i

i 0.99 + 0.00i 0.99 � 0.01i 1.00 + 0.00i

i 0.99 + 0.00i 0.98 + 0.00i 0.99 + 0.00i

i 0.99 � 0.00i 0.99 + 0.01i 0.99 � 0.00i

i 0.99 + 0.00i 0.99 � 0.00i 0.98 + 0.00i

i 0.99 + 0.00i 0.97 � 0.01i 0.99 + 0.00i

i 0.98 + 0.00i 0.97 + 0.00i 0.99 + 0.00i
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a constant modulus where reference signals are not available.
The algorithm contains three major steps in each recursion:
the computation of the output signal with the current set of

weights, the generation of the error, and the adjustment of
the weights with the new error information. The following
steps summarize the above three steps (Saxena and Kothari,

2014).

Step 1: Initialize number of iteration imax and the value of l.

Step 2: Initialize weight WCMA, error ECMA and output yCMA

as 0.

Step 3: Compute output, yCMA(i, k) = WCMA(i, k)

Hx(k).

Step 4: Compute Error, ECMA (i, k) = yCMA (i, k)/|yCMA

(i, k)| � yCMA (i, k).

Step 5: Compute Weight, WCMA (i+ 1, k) = WCMA(i, k)

+ lx(k)ECMA * (i, k).

Step 6: If i> imax, then stop, otherwise go to step (3) to update

output, error and weight.

7. Numerical simulation results

A 16 element ULA with k=2 inter element spacing is taken.

PSO, LMS and CMA were applied on a 16-element ULA.
Three algorithms were compared on the basis of the SIR. In
order to compare the performance, the simulations are done

using MATLAB. All the algorithms were executed for 200 iter-
ations and the termination criterion is set for the number of
iterations. For PSO, the population size is assumed as 100
and tuning parameter u1 and u2 are set to 2.0. Phase excitation

bn is chosen as the design variable in the PSO with lower and
upper limit taken in the range of [�2p, 2p] with initial values of
position and velocities are taken as random. For LMS and

CMA, l is taken as 0.001 and the initial weight and error
are set to 0.

Based upon the aims to maximize the AF gain of the

desired user and minimize the AF gain of the interfering user.
PSO will try to maximize the value of the AF gain along User1
while minimize the AF gain along interferer1 and interferer2.

LMS will recursively compute and update the weight vector
between the output signal and the desired signal. CMA will
update the information based upon the new error information.

To validate the study, two different scenarios are studied

with different positions of interferer. In scenario#1, the ULA
receives a desired signal arriving from angle hs1 = 0 and 2
interference signals arriving from angles hi1 = �15 and

hi2 = 30. In scenario#2, the ULA receives a desired signal in
the same direction with 2 interference signals arriving from
angles hi1 = �40 and hi2 = 20. Seven cases are studied for

each scenario for different SIR values keeping SNR= 30 dB.
For each case, it was observed that PSO algorithm pro-

duces main lobe along hs1 and nulls toward hi1 and hi2. The
AF gain along the main lobe is 0 dB whereas the AF gain

toward the null is �20 dB to �50 dB as shown in Table 1.
The maximum SLL is �15 dB to �17 dB with directivity of
7 dB as shown in Figs. 3 and 4.

LMS algorithm also produces main lobe gain of 0 dB along
the hs1 direction and null gain of �33 dB to �66 dB for
SIR = 30 dB to SIR = �10 dB as shown in Table 1. As SIR

reduces more than �10 dB, LMS fails to point the main beam
and null along the user and the interferer direction in both the
scenarios.

CMA algorithm works well for SIR = 30 dB to

SIR = 10 dB. As SIR starts deteriorating CMA does not pro-
duce the main beam along the user and fails to point lower
gain along the interferer as shown in Table 1. In both the sce-

narios, LMS and CMA give reduced SLL.
The comparative Table 2 for both the scenarios shows that

PSO is better as compared to LMS and CMA for every value

of SIR. LMS and CMA fail to adapt for lower value of SIR.
However LMS and CMA show better SLL as compared to
PSO. Table 3 gives the optimized excitation weights for PSO,
LMS and CMA for SIR = 30 dB.

8. Conclusions

In this paper, ABF based on PSO, LMS and CMA method
have been simulated for 16 elements ULA. A performance
analysis and validation are done by changing the values of
SIR for two different positions of interferers. The main lobe

gain and null depth are calculated to validate this approach.
It is shown that the PSO-based beamformer provides accurate
0 dB main beam gain and null depth of �20 dB to �50 dB with

better SLL for each case of SIR. However, CMA fail to pro-
vide main beam and null placement for SIR < 0 dB and
LMS for SIR < �20 dB. Therefore, the PSO method seems

to be simple and appropriate in ABF applications based on
the fitness function. ABF using PSO shows mean side lobe
level (SLL) of �15 dB to �17 dB with a directivity of 7 dB
for each case of SIR. LMS and CMA show better SLL than

PSO. It can be further studied with complex fitness functions
in order to improve the value of SLL.
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