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Abstract Organizations now a days acquaint process capability index (Cpi) to appraise the quality

of their items with an aim to improve quality and cut down the operating costs which enhance the

productivity and help them to stay competitive. In this paper process capability study is performed

for turning operation, keeping in mind the end goal to check the process performance within specific

limits. Three process input like spindle speed, feed and depth of cut has been chosen for process

capability study in plain turning operation following Taguchi’s L27 orthogonal array. Process capa-

bility index was evaluated for two machining attributes frequency of tool vibration and average sur-

face roughness. Single response optimization was executed for these two machining qualities to

explore the input settings, which could optimize turning process ability. Optimum parameter set-

tings for frequency of tool vibration and average surface roughness were found to be spindle speed:

240 rpm, feed: 0.16 mm/rev, depth of cut: 0.2 mm. and spindle speed: 240 rpm, feed: 0.16 mm/rev,

depth of cut: 0.1 mm. respectively.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The quality of an item is measured as far as total loss to the

society because of functional variety and side effects. More loss
means lower quality. This loss happens because of the failure
of the item to convey the desired performance and because
of destructive side effects of it including its expenses. It is
impractical to reach zero loss or perfect quality condition,

yet utilizing robust design engineering technique we can
enhance the quality of an item by minimizing the impact of
the reasons for variation without eradicate of the causes. This
is accomplished by optimizing the item and process design to

make the execution insignificantly sensitive to causes of
variation.

Based on the customer’s needs and associated costs it is nec-

essary for the supplier to set realistic cost and effective part
specifications. Within the given tolerance limits capability
studies can assess how well a process is capable of producing

components. A viable quality administration framework ought
to guarantee the nature of the parts in view of taking suitable
corrective activities. If we know the capability of our process,
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we can choose the most convenient process among competing
processes to fulfil the customer expectation. Process capability
analysis helps to summarize process capability in terms of

essential metrics and also helps to forecast the extent to which
the machining process will be able to hold customer require-
ments or tolerances. It is an inherent quantitative measurement

of a process to fulfil the requirements of the product (Kane,
1986; Kotz and Johnson, 1993; Montgomery, 2007; Wu
et al., 2009).

Statistical quality control is an important concept for
industrial managers to understand. Process Capability is the
capacity of the procedure to understand a characteristic that
will fulfil the prerequisites for that characteristic. As of late,

process capability investigation has assumed a critical part in
guaranteeing nature of fabricated items. The process capability
index is generally utilized in industrial process as a part of

modern procedure to monitor the product as per the specifica-
tion limits. This kind of capability index is valuable to decrease
the variety in the product.

Turning, primitive machining processes in the manufactur-
ing industry, is a basic material removal process which is car-
ried out on a lathe. Lathe has the ability to turn the work-piece

in a desired shape with the help of cutting tool at a feed, given
rotational speed and at a predefined depth of cut. Researchers
have attempted several approaches to identify multiple process
parameter settings that can increase quality, at higher produc-

tivity levels; require the turning process to be executed more
efficiently. So it is utmost important to identify optimal
parameter settings using a process capability index to improve

tool life, lessen cutting force, reduce chip thickness and
increase surface accuracy in turning process.

Process capability index is outline insights which quantify

the real or the potential execution of procedure attributes with
respect to the objective and particular points of confinement. It
has been the most regularly utilized index as a part of the prac-

tice since it gives limits on the procedure division of defectives.
It is an important conception under statistical process control
which portray the strength of a process to produce compo-
nents within tolerance limits.

As of late, to know whether the process can meet the
requirements a statistical quality control approach known as
Process Capability Analysis (Cpi) has been introduced. Cpi

plays a significant part in persuade quality of manufactured
products. Several modern businesses these days recommend
the process capability index and utilize it as a management tool

for measuring products quality (Chen et al., 2015). Higher the
index, very less chance that the item will be outside the speci-
fications. As noted by numerous quality control practitioners
and researchers, Process Capability Index is yield-based and

is not dependent on target (Pearn, 1998). It is a competent tool
which continuously improved quality, productivity and also
helps in taking administrative decisions (Rajvanshi and

Belokar, 2012) and can measure the internal potential of a pro-
cess. Capability index (Cpi) demonstrates that within the range
specified by the design limits how well a produced part can fit

(Abdolshah, 2013).
Using Taguchi’s quality loss function Antony (2001) figures

out the important factors that effect turning operation and

also finds out the optimal settings. Pawade and Joshi (2011)
used Taguchi grey relational analysis to optimize different
input parameters for high speed turning and shows that feed
rate display strong effect on surface roughness and cutting
forces. Through desirability function Abhang and
Hameedullah (2015) optimized tool wear and surface rough-
ness when they turn EN-31 steel. Tungsten carbide inserts were

used to studied controllable parameters like cutting velocity,
tool nose radius, and concentrations of solid–liquid lubricants,
feed rate and depth of cut. Shihab et al. (2014) examined turn-

ing parameter effect on surface roughness and micro-hardness
in CNC hard turning and found that sequence wise feed rate,
depth of cut and cutting speed were the most effective param-

eters on surface integrity. Suresh et al. (2014) find out the
machining parameters’ optimal level of turning process using
grey-fuzzy algorithm for Al�SiC�Gr hybrid composites. They
took feed rate, cutting speed and mass fraction of SiC�Gr as

process parameters for their L27 orthogonal array. Jana et al.
(2010) turn mild steel in CNC turning and using RSM method
find out that feed, depth of cut and cutting speed are the signif-

icant factor for high MRR and low surface roughness. Cabrera
et al. (2011) also used cutting speed, depth of cut and feed rate
as input parameters in turning of reinforced PEEK CF30 and

also used Grey Taguchi approach to optimize cutting force
and surface roughness. Bhagora and Shah (2015) used input
parameters like cutting speed, cutting depth, tool nose radius

and feed rate in turning of ASTM A242 TYPE-2 ALLOYS
STEEL. They used artificial neural network and Regression
analysis to optimize surface roughness.

Few researchers used different gradient-free method to

optimize different machining parameters in machining opera-
tions. Martin et al. (2009) used genetic algorithm to find out
optimal tuning to maximize the tool’s working life and the

material removal rate for a network controlled high-
performance drilling process. Sardiñas et al. (2006) used
genetic algorithm to optimize tool life and operation time for

turning operation taking into account cutting depth, feed
and speed as cutting parameters. Haber et al. (2002) intro-
duced knowledge-based system Fuzzy Logic Controllers and

Fuzzy Models for process supervision, control and its applica-
tion to the machining processes.

From these literature overview, it can be seen that as far as
process effectiveness, quality of output or economy concern,

there has been a basic absence of experimental studies on pro-
cess capability of turning process. Extensive work has been
carried out using Process Capability investigation on different

steps of managerial process (Amiri et al., 2012; Aslam et al.,
2013; Basu et al., 2014) and also in machining processes like
WEDM (Chalisgaonkar and Kumar, 2014), grinding (Kumar

et al., 2012), casting (Singh and Singh, 2013) but very few
works have been done on Turning (Erameh et al., 2016;
Kahraman et al., 2012).

Surface roughness plays an essential part to figure out how

an actual item relates with its surroundings and also an impor-
tant predictor of mechanical items performance. It also has
considerable effect on machined part’s properties like fatigue

and wear resistance etc. Tool vibration effects surface rough-
ness as well as the final design of the work-piece. So frequency
of tool vibration is an important criteria we have to consider

during turning in lathe. Thus, the motivation behind this paper
is to concentrate on the assessment and advancement of pro-
cess capability index of turning operation for two essential

quality attributes; frequency of tool vibration and average sur-
face roughness. Based on the researcher’s work (Antony, 2001;
Cabrera et al., 2011; Khan and Maity, 2016; Parida and Maity,
2016) three essential input parameters like spindle speed, feed
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and depth of cut has been chosen for this experimental work.
Thus, the results can be utilised by the engineers willing to
identify an optimal solution of turning operation of ASTM

A36 Mild Steel bar.

2. Materials and methods

Plain turning experiments were performed on a heavy duty
Panther Lathe Machine. Manufactured by- Gujarat Lathe
Manufacturing Co. Pvt. Ltd, India Model-2050/4 (Centre

Height: 254 mm.; No. of Spindle Speed: 8; Range of Spindle
Speed: 30–1235 rpm; Feed Range: 40 mm/rev.). The work
piece material was ASTM A36 Mild Steel bar of 24 mm. diam-

eter and 300 mm. length. Table 1 shows the material composi-
tion of ASTM A36. Square shaped cemented carbide cutting
tool insert was used for all the experiments. To minimize the

experiments turning operations were carried out following
L27 Orthogonal Array (by the help of MINITAB 16 Statistical
Software) taking three prevalent input parameters spindle
speed, feed and depth of cut were taken as input criterion.

Machining parameters which were considered for experiments
are shown in Table 2. Frequency of tool vibration was mea-
sured using analyser Picoscope 2202. It was mounted some dis-

tance from the tool tip to measure vibrations in the cutting
speed direction. This position was as close as possible to the
tool tip, but at a sufficient distance to prevent metal chips from

the job surface during turning. After the experiments average
surface roughness of all machined surfaces was measured uti-
lizing Mar Surf PS1 Surface Roughness Tester. The surface
roughness was measured at five different locations on the

machined surface and average value of surface roughness has
been taken for further examination.

3. Methodology

Process capability indicates an execution measure of the
machine operation which turned out to be exceptionally

famous in evaluating the capacity of manufacturing proce-
dures henceforth deciding the machine tool achievement. More
endeavours have been given to uses and studies of process

capability index. A process capability index is a numerical syn-
opsis that analyses the behaviour of an item or procedure char-
acteristic in designing details.

3.1. Assessment of process capability

Following three steps are followed to find out the process
capability of attributes criterion. In this work frequency of tool

vibration and average surface roughness are two attributes.

1st Step. Computation of mean (X): Computation of mean

is ascertained for every trial run by using following equation.

X ¼
XN
i¼1

xi

N
ð1Þ
Table 1 Chemical composition of ASTM A36 Mild steel.

Material C Mn Cu

Percentage (%) 0.15 1.03 0.20
Here,

Xi = response parameter value for i-th replicate trial.

N= number of replicates.

2nd Step. Computation of standard deviation (r): Follow-
ing equation was used to compute Standard deviation (r).

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 xi � X
�� 2

N

s
ð2Þ

Here,

xi = Response parameter value for i-th replicates of a dis-
tinct trial.

X = Mean of the N replicates for the trial.

3rd Step. Process capability index (Cpi): following equation
was used to calculate process capability index (Cpi) for each
experimental run.

Cpi ¼ min
½X� � LSL

3r
;
USL� ½X�

3r

� �
ð3Þ

Here,
USL= upper specification limit for individual attributes.

LSL = lower specification limit for individual attributes.

USL and LSL actually are a destination value. Specification
limits are typically provided from outside which depends on

production necessities, market prerequisites). It can either be
one-sided or two-sided.

3.2. Single response optimization

In mid-1980s Taguchi introduced signal-to-noise (S/N) ratio to
reduce variation and to optimize design parameters. S/N ratio
is the most critical and valuable parameter when analysed with

respect to the target and variety in contrasting of two arrange-
ments of tests. In this research, to find out quality characteris-
tics evaluation index, objective parameters are converted into

S/N ratio. To achieve robust process performance, a higher
value of S/N ratio is desirable. There are three sorts of
signal-to-noise ratio depending on the attribute characteristics

which are smaller-the best, larger-the-best and nominal-the-
best. To diminish alteration of response parameters like fre-
quency of tool vibration and average surface roughness within
specification limits our main focus is to maximize process

capability index (Cpi). To find out the S/N ratio in smaller is
the best criterion we have to follow the following equation:

S=Ncpi ¼ �10log10
1

n

Xn

i¼1

1

y2ij

" #
ð4Þ
Si S P Fe

0.22 0.022 0.030 Balance
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Here

yij = Response value of a characteristic in ith replicate of

the jth trial.
n= total number of trials.

4. Results and discussions

To find out the process capability of two attributes known as

frequency of tool vibration and average surface roughness in
our turning operation, we took two trials for each set of exper-
iments following Taguchi’s L27 which is shown in Table 3.

After that the mean value (X) of each experiment was found
out using equation 1. Standard deviation (r) for each experi-
ment were found out using Eq. (2). Following that process

capability index (Cpi) for two attributes were observed using
Eq. (3) and represent in tabulated form in Table 4. For process
capability analysis following specification limits were selected.
Table 2 Input parameters with their limits.

Parameter Denotation

Spindle speed (rpm) A

Feed (mm/rev) B

Depth of cut (mm) C

Table 3 Experimental design and collected response data.

Exp. No. Spindle speed

(rpm)

Feed

(mm/rev)

Depth of cut

(mm)

F

f

1

1 160 0.08 0.15 2

2 160 0.08 0.2 2

3 160 0.32 0.15 3

4 160 0.32 0.1 3

5 160 0.16 0.1 2

6 400 0.32 0.15 3

7 240 0.16 0.1 3

8 400 0.16 0.15 3

9 160 0.16 0.2 3

10 400 0.16 0.1 3

11 240 0.16 0.15 3

12 400 0.08 0.2 3

13 240 0.32 0.1 3

14 240 0.08 0.1 2

15 240 0.08 0.15 3

16 160 0.08 0.1 2

17 240 0.08 0.2 3

18 160 0.32 0.2 3

19 400 0.08 0.15 3

20 160 0.16 0.15 3

21 400 0.16 0.2 3

22 240 0.32 0.15 3

23 400 0.32 0.1 3

24 240 0.32 0.2 3

25 400 0.32 0.2 4

26 240 0.16 0.2 3

27 400 0.08 0.1 3
USL for frequency of tool vibration = 420 Hz,

LSL for frequency of tool vibration = 260 Hz,
USL for surface roughness = 7.0 lm,
LSL for surface roughness = 0.0 lm.

To maximize process capability index (Cpi) following Eq.
(4) S/N ratio was ascertained in smaller is the best criterion.
Figs. 1 and 2 represent the S/N ratio plots for Cpi (frequency

of tool vibration) and Cpi (average surface roughness) respec-
tively. Table 5 shows optimum parameter settings for both the
outputs.

4.1. Confirmation experiments

At the concluding stage Taguchi’s parametric design is to fore-

cast and certify the enhancement of the performance character-
istics with the preferred optimum parameter setting. Using the
optimum level of process parameters the predicted values of
the S/N ratio (ĉ) can be calculated as:
Level

Low Medium High

160 240 400

0.08 0.16 0.32

0.1 0.15 0.2

requency of tool vibration

(Hz)

Average surface roughness

Ra (lm)

st Trail 2nd Trail 1st Trail 2nd Trail

70.7 271.2 1.97 2.24

81.1 280.7 2.01 2.11

25 311.8 6.84 6.72

22.9 321.6 6.16 6.25

95 295.7 2.58 2.67

95 395.8 5.46 5.72

26.5 322 2.38 2.47

62 360.2 1.68 1.85

10 308.6 3.02 3.21

47 344.6 2.29 2.43

37.7 340.1 2.20 2.31

55 356.7 1.66 1.75

50 351.8 6.01 6.23

97 295.9 1.59 1.48

21 322.8 1.80 1.72

63.2 262.8 1.88 1.97

25.7 324.8 1.82 1.65

45.8 344.1 6.72 6.39

42.2 340.8 1.54 1.68

02.7 301.5 3.42 3.22

83.8 384.5 2.60 2.41

71.8 370.8 5.84 5.62

76 374.4 5.82 5.58

74.7 373.8 6.28 6.08

01 401.4 5.89 5.65

52.6 353.8 2.84 2.71

22.2 320.8 1.38 1.52



Table 4 Evaluation of process capability index (Cpi).

Exp. No �X (Frequency) r (Frequency) Cpi (Frequency) �X (Roughness) r (Roughness) Cpi (Roughness)

1 270.95 0.25 14.60 2.105 0.135 5.20

2 280.9 0.2 34.83 2.06 0.05 13.73

3 318.4 6.6 2.95 6.78 0.06 1.22

4 322.25 0.65 31.92 6.205 0.045 5.89

5 295.35 0.35 33.67 2.625 0.045 19.44

6 395.4 0.4 20.50 5.59 0.13 3.62

7 324.25 2.25 9.52 2.425 0.045 17.96

8 361.1 0.9 21.81 1.765 0.085 6.92

9 309.3 0.7 23.48 3.115 0.095 10.93

10 345.8 1.2 20.61 2.36 0.07 11.24

11 338.9 1.2 21.92 2.255 0.055 13.67

12 355.85 0.85 25.16 1.705 0.045 12.63

13 350.9 0.9 25.59 6.12 0.11 2.67

14 296.45 0.55 22.09 1.535 0.055 9.30

15 321.9 0.9 22.93 1.76 0.04 14.67

16 263 0.2 5.00 1.925 0.045 14.26

17 325.25 0.45 48.33 1.735 0.085 6.80

18 344.95 0.85 29.43 6.555 0.165 0.90

19 341.5 0.7 37.38 1.61 0.07 7.67

20 302.1 0.6 23.39 3.32 0.1 11.07

21 384.15 0.35 34.14 2.505 0.095 8.79

22 371.3 0.5 32.47 5.73 0.11 3.85

23 375.2 0.8 18.67 5.7 0.12 3.61

24 374.25 0.45 33.89 6.18 0.1 2.73

25 401.2 0.2 31.33 5.77 0.12 3.42

26 353.2 0.6 37.11 2.775 0.065 14.23

27 321.5 0.7 29.29 1.45 0.07 6.90

Figure 1 S/N ratio plot for Cpi (Frequency of tool vibration).
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ĉ ¼ cm þ
Xp

i¼0

�cj � cm
� � ð5Þ

Here
cm = mean value of S/N ratio of total experimental runs.

�cj = S/N ratio corresponding to the optimum factor level.

p= number of factors.
Table 6 shows confirmation test results which were con-
ducted in optimum conditions. Predicted machining perfor-

mance and actual machining performance were compared
and satisfactory reconciliation was retrieved between these
two performances which validate the result. The advancement

of the Cpi (frequency of tool vibration) and Cpi (average sur-



Figure 2 S/N ratio plot for Cpi (Average surface roughness).

Table 5 Optimal parameter settings for single response.

Response

characteristics

Optimal parametric setting

Frequency of tool

vibration, f (Hz)

Spindle speed: 240 rpm, feed:0.16 mm/

rev, depth of cut:0.2 mm

Average surface

roughness, Ra (lm)

Spindle speed: 240 rpm, feed:0.16 mm/

rev, depth of cut:0.1 mm

Table 6 Conformation results.

Process

parameter

condition

Cpi (frequency)-process

parameter setting

Cpi (roughness)-

process parameter

setting

Initial level 14.60 – A:160 rpm,

B:0.08 mm/rev,

C:0.15 mm

5.20 – A:160 rpm,

B:0.08 mm/rev,

C:0.15 mm

Predicted

optimum

condition

37.11 – A:240 rpm,

B:0.16 mm/rev,

C:0.2 mm

17.96 – A:240 rpm,

B:0.16 mm/rev,

C:0.1 mm

Experimental 39.33 – A:240 rpm,

B:0.16 mm/rev,

C:0.2 mm

18.76 – A:240 rpm,

B:0.16 mm/rev,

C:0.1 mm
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face roughness) from the starting parametric setting was exam-
ined to be 24.73 and 13.56 respectively. Consequently the

machining performance is enhanced significantly at optimum
conditions.
5. Conclusions

In this experimental study, process capability index has been

researched for turning of ASTM A36 mild steel. On the
ground of investigation results the accompanying conclusions
might be drawn:

(1) Process Capability Analysis is the most convenient
approach to measure the capacity of a process. Though

it has some limitations which prevent a deep and flexible
analysis because of the crisp movement and specification
limits still it is broadly utilized as a part of industrial

process to monitor the product according to the specifi-
cation limits which is helpful to reduce the variation in
the product.

(2) Optimum process parameter settings for process capa-

bility index (Cpi) of frequency of tool vibration were
found to be spindle speed: 240 rpm, feed: 0.16 mm/rev,
depth of cut: 0.2 mm. For average surface roughness,

the optimal setting is Spindle speed: 240 rpm, feed:
0.16 mm/rev, depth of cut: 0.1 mm.

(3) From the present study, with the proposed optimal

parameters it is possible to increase the efficiency of
machining process and decrease production cost in an
automated manufacturing environment.

(4) Confirmation test results confirmed that the determined

optimum condition of turning parameters fulfils the cer-
tain requirements.

(5) The research findings from the process capability analy-

sis will provide effective guidelines and the results would
be a good technical database for the aerospace, automo-
bile and military applications in fabrication and machin-

ing aspects.
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This work may be extended further by considering some
other performance characteristics of turning operation such
as cutting tool life, dimensional deviation, cutting temperature,

etc. The Process capability index technique presented in this
study might also be applied for the different conventional
machining process like milling, drilling, forming etc. as well

as different non-conventional process like EDM, USM,
LBM etc.
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