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Abstract Modeling and numerical simulation are implemented to investigate the influence of

membrane excitations on the production of bioethanol in a forced fermentor. Three well developed

attractors in the frequency locking, quasi-periodic and chaotic regions are subjected to membrane

excitations. Two membrane configurations are employed for each case: the shock type and the lin-

ear dynamic membranes. It is interesting that all membrane configurations exhibit wealthy regions

of complex dynamics and very beneficial to the fermentor performance. The simulated results reveal

various fascinating phenomena such as hyperchaos, chaos and large bubble windows. It was shown

that the chaotic regions are the attractive and best potential regions for the implementation of the

membrane excitations. It is interesting to note that when the shock type and linear membranes are

imposed on chaotic regions, the hyperchaotic attractors arise and have substantial impact in

increasing the average ethanol yield to 18.98% and 19.29%, respectively. It is obvious that the lin-

ear dynamic membranes are superior to the shock type membranes with respect to the bioreactor

performance. The bubble windows show an incomplete odd sequence of bubble birth of 1, 3 and

5 bubbles.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There has been growing interest to understand the dynamic
behavior and the associated nonlinear phenomena of biologi-
cal reactors (Abashar and Elnashaie, 2011; Abashar, 2012,

2011; Bruce et al., 1991; Cristina et al., 2011; Garhyan and
Elnashaie, 2004a,b; Jobses et al., 1986, 1985; Parulekar,
2001, 1998; Sinčić and Bailey, 1980; Villadsen et al., 2011). It
is well known that the efficient design, operation, control

and performance of chemical reactors are profoundly affected
by the dynamic phenomena and the related parameter space
(Abashar, 1994; Kevrekidis and Aris, 1986; Kevrekidis et al.,
1986; Mankin and Hudson, 1984). The nonlinear phenomena

can be attractive and beneficial to enhance the yield and selec-
tivity of products or can be harmful and in this case proper
control actions are needed to be taken (Abashar and

Elnashaie, 2010; Abashar, 1994). The compelling interest of
the bioreactor designers in the nonlinear phenomena necessi-
tates extensive parameter space exploration coupled with a

deeper fundamental understanding. Bifurcation, catastrophe,
singularity and chaos theories have played a central role in this
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Nomenclature

Notation

a0 constants in Eq. (14a), m2

a0 0 constant in Eq. (14b), m2/h
a constants in Eq. (21b), m2

A0 forcing amplitude, kg/m3

Ap permeation area, m2

Ci concentration of component i, kg/m3

Csf periodic substrate feed concentration, kg/m3

Cso substrate feed concentration, kg/m3

D dilution rate, h�1

k membrane permeability, m/h

k1 empirical constant, h�1

k2 empirical constant, m3/kg h
k3 empirical constant, m6/kg2 h
Ks Monod constant, kg/m3

ms maintenance factor based on substrate require-
ment, kg/kg h

mp maintenance factor based on product formation,
kg/kg h

P rate constant, h�1

q volumetric flowrate, m3/h

t time, h
V volume, m3

Yp ethanol yield, kg/kg
�YP average ethanol yield, kg/kg
Ysx yield factor of biomass on substrate, kg/kg
Ypx yield factor of biomass on product, kg/kg

Z dimensionless concentration

Greek letters
ki ith Lyapunov exponent
q ethanol density, kg/m3

s dimensionless time
ώ forcing frequency, rad/h
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respect (Jackson, 1989; Kevrekidis and Aris, 1986; Kevrekidis
et al., 2007, 1986; Taylor et al., 1993).

Several investigations have shown that the bioethanol reac-
tor exhibits complex dynamic behavior with a wide variety of
fascinating nonlinear dynamic phenomena such as multiplicity

of steady states, quasi-periodicity, chaos and multi-stability
(Abashar, 2012, 2011; Garhyan and Elnashaie, 2004a,b). How-
ever, the bioethanol reactor suffers from a serious problem of

the ethanol inhibition of fermentation microorganisms. Many
researchers have reported that the in situ removal of the etha-
nol using a permselective membrane has a significant effect to
minimize ethanol inhibition and to enhance the ethanol yield

(Garhyan and Elnashaie, 2004a,b; Ikegami et al., 1997;
Nomura et al., 2002). The membranes also have been utilized
to separate and recycle microorganism cells to the bioreactor

in order to enhance the bioethanol production (Nishiwaki
and Dunn, 1999).

The membrane excitations means, the disturbance of the

membrane by altering its state dynamically are extremely
scarce subject in the literature. The purpose of this work is
to explore and reveal for the first time the dynamic sequence
of events happen and the possible dynamic phenomena might

arise when the sinusoidally forced bioethanol fermentor is sub-
jected to membrane excitations. Evaluation of the potential
benefits of the membrane excitations from fundamental and

practical standpoints is also explored.

2. Bioreaction kinetics

Jobses et al. (1985, 1986) reported the bioreaction kinetics for
bioethanol formation by Z. mobilis as follows:

rx ¼ lCx ð1Þ

rs ¼ rx
Ysx

þmsCx ¼ l
Ysx

þms

� �
Cx ð2Þ

rp ¼ rx
Ypx

þ mpCx ¼ l
Ypx

þ mp

� �
Cx ð3Þ
re ¼
ðk1 � k2Cp þ k3C

2
pÞ

Ks þ Cs

" #
CsCe ð4Þ

l ¼ lmaxCs

ðKs þ CsÞ ð5Þ

where rx, rs, rp, re are the rates of biomass growth, substrate

consumption, ethanol production and key component forma-
tion, respectively; Cx, Cs, CP, Ce are the concentrations of
the biomass, substrate, bioethanol and key component, respec-

tively; k1–3 are rate constants. Ysx, Ypx are the yield factor of
biomass on the substrate and product, respectively; ms, mp

are the maintenance factor for substrate and product forma-

tion, respectively; lmax is the maximum specific growth rate
and Ks is the Monod constant.

The bioethanol inhibition mechanism is offered by Jobses

et al. (1985, 1986) as follows: the formation of an internal
key component (e) such as RNA (ribonucleic acid) or protein
produces the maximum growth rate of the biomass. The for-
mation of the bioethanol inhibits the formation of the internal

key component and the growth rate of the biomass to attain
the maximum rate.

3. Formulation of reactor model

A schematic diagram of the bioreactor-separator system with a
membrane is depicted in Fig. 1. The dynamics of this system is

described by a set of ordinary differential equations as follows
(Abashar, 2011; Jobses et al., 1986, 1985):

Reactor:

Biomass:

dCx1

dt
¼ PCs1 Cx1

ðKs þ Cs1Þ
� q1
V1

Cx1 ð6Þ

Substrate

dCs1

dt
¼ D1Csf � q1

V1

Cs1 �
P

Ysx

Cs1Ce1

ðKs þ Cs1Þ
þmsCx1

� �
ð7Þ
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Figure 1 Schematic diagram of a membrane bioreactor-separa-

tor system.
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Ethanol

dCp1

dt
¼ P

Ypx

Cs1Ce1

ðKs þ Cs1Þ
þmpCx1

� �
� q1
V1

Cp1 �
kAp

V1

ðCp1 � Cp2Þ

ð8Þ
Key component

dCe1

dt
¼

k1 � k2Cp1 þ k3C
2
p1

� �
ðKs þ Cs1Þ

2
4

3
5Cs1Ce1 �

q1
V1

Ce1 ð9Þ

Separator:

dCp2

dt
¼ kAp

V2

ðCp1 � Cp2 Þ �
q2
V2

Cp2 ð10Þ

The kinetic parameters are shown in Table 1. The feed con-
centration to the bioreactor is introduced sinusoidally as

follows:

Csf ¼ Cso þ A0 sinx0t ð11Þ
where Á is the forcing amplitude and ώ is the forcing fre-
quency. The exit volumetric flow rates from the bioreactor
and the separator are given by:

q1 ¼ qo �
kAp

q
ðCp1 � Cp2Þ ð12Þ
Table 1 Kinetics parameters (Abashar, 2012,

2011; Garhyan and Elnashaie, 2004a,b).

Parameter Value

k1 (h
�1) 16.0

k2 (m
3/ kg h) 4.97 � 10�1

k3 (m
6/ kg2 h) 3.83 � 10�3

Ks (kg/ m
3) 0.5

ms (kg/kg h) 2.16

mp (kg/kg h) 1.1

P (h�1) 1.0

Ysx (kg/kg) 2.44498 � 10�2

Ypx (kg/kg) 5.26315 � 10�2
q2 ¼ q0o þ
kAp

q
ðCp1 � Cp2Þ ð13Þ

where Ap is the membrane permeation area, k is the permeabil-
ity of the membrane and q is the density of ethanol. The biore-

actor is excited by the membrane according to the following
turn on relations:

Ap Hðt� topenÞ ¼
0; t < topen

Ap ¼ a0; t P topen

�
ð14aÞ

Apðt� topenÞHðt� topenÞ ¼
0; t < topen

Ap ¼ a00ðt� topenÞ; t P topen

�
ð14bÞ

where H(t) denotes the Heaviside function. For convenience,
we introduce the flowing dimensionless quantities to normalize

the equations:

Z1 ¼ Cx1

Cref

; Z2 ¼ Cs1

Cref

; Z3 ¼ Cp1

Cref

; Z4 ¼ Ce1

Cref

;

Z5 ¼ Cp2

Cref

; Z2f ¼ Cso

Cref

; a1 ¼ qoPo

V1

; a2 ¼ PPo ;

a3 ¼ PPo

Ysx

; a4 ¼ Po ms; a5 ¼ PPo

Ypx

; a6 ¼ Pomp;

c1 ¼
PokCref

V1 q
; c2 ¼

Pok

V1

; h1 ¼ V1

V2

; h2 ¼ q0o
qo

;

x ¼ x0Po ; s ¼ t

Po

; a ¼ a00Po ; A ¼ a2A
0

Cref

;

k01 ¼ k1Po; k02 ¼ k2PoCref; k03 ¼ k3PoC
2
ref;

K ¼ Ks

Cref

ð15Þ

Hence, the ordinary differential equations for the bioreac-
tor and separator are cast into the following equations:

dZ1

ds
¼ �a1Z1 þ a2Z2Z4

½Kþ Z2� þ c1ApZ1ðZ3 � Z5Þ ð16Þ

dZ2

ds
¼ a1ðZ2f � Z2Þ þ A sinxs� a3

Z2Z4

ðKþ Z2Þ þ a4Z1

� �
þ c1ApZ2ðZ3 � Z5Þ ð17Þ

dZ3

ds
¼�a1Z3 þ a5

Z2Z4

ðKþZ2Þþ a6Z1

� �
þðc1Z3 � c2ÞApðZ3 �Z5Þ

ð18Þ

dZ4

ds
¼�a1Z4 þ ðk01 �k02Z3 þk03Z

2
3Þ

ðKþZ2Þ
� �

Z2Z4 þ c1ApðZ3 �Z5ÞZ4

ð19Þ

dZ5

ds
¼ �a1h1h2Z5 þ h1Ap ðc2 � c1Z5ÞðZ3 � Z5Þ ð20Þ

and the membrane functions become:

Ap Hðs� sopenÞ ¼
0; s < sopen
Ap ¼ a0; s P sopen

�
ð21aÞ

Apðs� sopenÞHðs� sopenÞ ¼
0; s < sopen
Ap ¼ aðs� sopenÞ; s P sopen

�
ð21bÞ
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The ethanol yield is given by:

YP ¼ ðq1Cp1 þ q2Cp2Þ
qoCso

¼ ðh3Z3 þ h4Z5Þ
Z2f

ð22Þ

and the average ethanol yield is given by:

�Yp ¼
R s2
s1
Ypds

s2 � s1
ð23Þ
4. Computational algorithms

The system of the ordinary differential equations are solved by
a Fortran subroutine for solving stiff differential equations
called Dgear from the IMSL (International Mathematics and

Statistics Library) with automatic step size and double preci-
sion were used with input relative error bound of 10�14. The
Poincaré bifurcation diagram is constructed by employing

the forcing period to strobe the system. The eigenvalues are
computed by using an IMSL subroutine called Eigrf. The
Gram-Schmidt reorthonormalization (GSR) procedure is used
Figure 3 A one-parameter stroboscopic Poincaré bifurcation

diagram for the forced system without membrane for A = 0.6040–

0.6200.
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Figure 2 The autonomous (unforced system) limit cycle.
to compute the Lyapunov exponents. The figures are prepared
by the Golden Software Grapher 5.
5. Results and discussion

5.1. Steady state autonomous bioethanol fermentor without
membrane

For the autonomous reactor at steady state conditions and

without membrane the following parameters are set to zero
(A= 0, Ap = 0). The steady state equations of the reactor
after lengthy manipulation are reduced to the following cubic

polynomial:

/3Z
3
2 þ /2Z

2
2 þ /1Z2 þ /0 ¼ 0 ð24Þ

where:

/0 ¼ �a1K;

/1 ¼ k01 � a1 � k02Z2f

a5
a2
þ a6

a1

h i
a3
a2
þ a4

a1

h i þ k03Z
2
2f

a5
a2
þ a6

a1

h i2
a3
a2
þ a4

a1

h i2 ;

/2 ¼ k02

a5
a2
þ a6

a1

h i
a3
a2
þ a4

a1

h i � 2k03Z2f

a5
a2
þ a6

a1

h i2
a3
a2
þ a4

a1

h i2 ;

/3 ¼ k03

a5
a2
þ a6

a1

h i2
a3
a2
þ a4

a1

h i2

ð25Þ

The roots of Eq. (24) are obtained by following equations:

Z21 ¼ � /2

3/3

� 21=3ð�/2
2 þ 3/1/3Þ

3/3 �2/3
2 þ 9/1/2/3 � 27/0/

2
3 þ D

� �1=3
þ ½�2/3

2 þ 9/1/2/3 � 27/0/
2
3 þ D�1=3

3 21=3/3

ð26Þ

Z22 ¼ � /2

3/3

þ ð1þ i
ffiffiffi
3

p Þð�/2
2 þ 3/1/3Þ

3 22=3/3½�2/3
2 þ 9/1/2/3 � 27/0/

2
3 þ D�1=3

� ð1� i
ffiffiffi
3

p Þ½�2/3
2 þ 9/1/2/3 � 27/0/

2
3 þ D�1=3

6 21=3/3

ð27Þ
Table 2 Regions and selected attractors for the membrane

excitations study.

A Region Attractor Lyapunov exponents

0.07 Frequency

locking

Periodic k1 = 0.0000, k2 = �0.0121,

k3 = �0.3461, k4 = �0.9725,

k5 = �3.5927

0.176 Quasi-

periodicity

Quasi-

periodic

k1 = 0.0000, k2 = 0.0000,

k3 = �0.4330, k4 = �1.7766,

k5 = �2.7003

0.614 Chaotic Strange

chaotic

k1 = 1.2696, k2 = 0.0000,

k3 = �0.2441, k4 = �2.0006,

k5 = -3.9946
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Figure 4 Schematic representation of: (a) the shock type membrane; (b) the linear dynamic membrane.

b c

a

Figure 5 Influence of the shock type membrane on the periodic attractor in the frequency locking region: (a) A one-parameter

stroboscopic Poincaré bifurcation diagram; (b) Time trace at Ap1 = 1.5 � 10�3 m2; (c) Time trace at Ap2 = 7.0 � 10�3 m2.
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a

b

Figure 6 Influence of the linear dynamic membrane on the

periodic attractor in the frequency locking region for the total

membrane area of Ap = 1.5 � 10�3 m2: (a) Time trace; (b) Phase

plane of Z4 vs. Z1.
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Z23 ¼ � /2

3/3

þ ð1� i
ffiffiffi
3

p Þð�/2
2 þ 3/1/3Þ

3 22=3/3 �2/3
2 þ 9/1/2/3 � 27/0/

2
3 þ D

� �1=3
� ð1þ i

ffiffiffi
3

p Þ½�2/3
2 þ 9/1/2/3 � 27/0/

2
3 þ D�1=3

6 21=3/3

ð28Þ

where:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�/2

2 þ 3/1/3Þ
3 þ ð�2/3

2 þ 9/1/2/3 � 27/0/
2
3Þ

2
q

ð29Þ
The roots can be three distinct real roots, one distinct real

root and two identical real roots, three identical real roots,

and one real root and two complex conjugates. In this study,
three distinct real roots are found. The values of the three
steady states (Z1, Z2, Z3, Z4) as follows: SS1 = (0.0056,

0.1620, 0.4138, 0.00011), SS2 = (0.007, �0.0012, 0.4897,
�0.00029) and SS3 = (0.007, �0.0218, 0.4998, 0.00014). The
second steady state (SS2) and the third one (SS3) show negative
values, therefore physically excluded. The eigenvalues of the

first steady state (SS1) indicate that this steady state is unstable.
This unstable steady state is surrounded by a stable periodic
attractor as shown in Fig. 2. A shooting algorithm was

employed to determine the natural period of this limit cycle.
The autonomous reactor ordinary differential equations can
be cast into matrix notations as follows:

dC

dt
¼ gðC;wÞ; C 2 Rn ð30Þ

where C is the concentration vector, g is the vector of nonlin-
ear functions and w is the parameters vector. A periodic solu-

tion must satisfy the following two boundary conditions:

C ðt ¼ 0Þ ¼ Cðt ¼ PnÞ ð31Þ
where Pn is the natural period. This two-point boundary prob-
lem is transformed to the following equivalent system of

equations:

F ðC;PnÞ � C ¼ 0 ð32Þ
where Pn is unknown and F(C, Pn) is obtained by integrating
Eq. (30). Since infinite number of points on the limit cycle sat-
isfies Eq. (31), an anchor equation is introduced to eliminate

free translation in time (infinity of solutions):

GðX;PnÞ ¼ 0 ð33Þ
Newton method is employed to solve Eqs. (32) and (33),

where the Jacobian is given by:

J ¼
@F
@C

� I @F
@Pn

@G
@C

@C
@Pn

 !
ð34Þ

where I is the identity matrix and the derivatives @F/@C are
computed variationally. The importance of the natural period
is that the forcing period will be a multiple of this period in the

frequency locking region. Furthermore, the forcing period is
usually employed to strobe the system to construct the Poin-
caré bifurcation diagram because it is always present in the

response of the forced system.

5.2. Forced bioethanol fermentor without membrane

For the forced biosystem without membrane, the membrane

permeation area is set to zero (Ap = 0). In this case we have
two frequencies, namely the natural frequency (ώ = 2p/Pn)
and the forcing frequency (x= 2p/P). The ratio of the forcing
frequency to the natural frequency is taken as a rational num-

ber of 2 (x/ώ= 2). This point is the tip of a resonance horn.
By increasing the normalized amplitudes three distinct regions
are identified. The regions are frequency locking, quasi-

periodic and chaotic. In order to choose the appropriate forc-
ing amplitude for the chaotic region, a one-parameter strobo-
scopic Poincaré bifurcation diagram is developed for the

forced system as shown in Fig. 3. We have used the normalized
amplitude as a bifurcation parameter. As one can see that the
chaos is developed by the famous Feigenbaum period doubling
bifurcations. A normalized amplitude of 0.614 in the well

developed chaotic region is selected as a center of excitations.
Table 2 shows various selected attractors at specific normalized
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amplitudes in each region for the study. The influence of the
membrane excitations on their dynamics is investigated in fol-
lowing sections.

5.3. Influence of the dynamic membrane on the forced bioethanol

fermentor

The shock type and linear membrane configurations are imple-
mented to excite the attractors shown in Table 2. Schematic
representations of the shock type and linear dynamic mem-

branes are presented in Fig. 4a and b, respectively. The shock
type membrane represents instantaneous opening of the mem-
brane i.e. very short time is taken to fully open the membrane
a

b

Figure 7 Influence of the linear dynamic membrane on the

periodic attractor in the frequency locking region for the total

membrane area of Ap = 7.0 � 10�3 m2: (a) Time trace; (b) Phase

plane of Z4 vs. Z1.
as shown in Fig. 4a. The linear membrane presented in Fig. 4b
represents linear opening of the membrane with time up to a
fully open membrane i.e. the membrane attains the total area

linearly.

5.3.1. Frequency locking region

In this region the forcing amplitude is small and the frequency

locking occurs on a surface of a torus with periodicity twice the
natural period of the limit cycle.

5.3.1.1. Effect of the shock type membrane. Here we will inves-
tigate the influence of the shock type membrane, i.e. the sud-
den opening of the membrane on the periodic attractor

dynamics. A one-parameter stroboscopic Poincaré bifurcation
diagram is shown in Fig. 5a. The membrane area (AP) is con-
sidered as a bifurcation parameter. It is clearly shown that the

membrane has a strong impact on changing the periodic
dynamics. As illustrative examples the dynamic simulation is
carried out at two selected permeation areas of Ap1 = 1.5 �
10�3 m2 and Ap2 = 7.0 � 10�3 m2. When the shock style

membrane of an area of Ap = 1.5 � 10�3 m2 is applied the
periodic attractor converges to a periodic attractor with peri-
odicity the same as the forcing period and low amplitude oscil-

lations as shown in the time trace presented in Fig. 5b. As the
a 

b 

Figure 8 Influence of the shock type membrane on the quasi-

periodic attractor in the quasi-periodic region: (a) A one-param-

eter stroboscopic Poincaré bifurcation diagram; (b) Enlargement

of a part of the one-parameter stroboscopic Poincaré bifurcation

diagram shown in Fig. 8a (complex region 1).
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system is excited by a permeation area of Ap = 7.0 � 10�3 m2,
the dynamics of the original periodic attractor is distorted to
quasi-periodic oscillations as shown in the time trace in

Fig. 5c. The corresponding spectrum of the Lyapunov expo-
nents of this quasi-periodic attractor is (k1 = 0.0000, k2 =
0.0000, k3 = �0.1380, k4 = �1.8811, k5 = �2.4005).

5.3.1.2. Effect of the linear dynamic membrane. Now we consid-
ered the analysis of the biosystem when the periodic reactor is

excited by the linear dynamic membrane. The influence of the
membrane is investigated for two total permeation areas of
Ap = 1.5 � 10�3 m2 and Ap = 7.0 � 10�3 m2. The larger the
total membrane area implies the faster the membrane, i.e.

the slope of the membrane openability function is increased.
a

b

Figure 9 Influence of the linear dynamic membrane on the

quasi-periodic attractor in the quasi-periodic region for the total

membrane area of Ap = 1.5 � 10�3 m2: (a) Time trace; (b) Phase

plane of Z4 vs. Z1.
When the membrane turns on linearly up to the final area of
Ap = 1.5 � 10�3 m2, it is found that substantial complex
dynamic changes occur as shown in the time trace and phase

planes depicted in Fig. 6a and b, respectively. It is obvious that
the attractor oscillates in a very complex manner. Fig. 7a dis-
plays the dynamics of the of forced system, when the linear

dynamic membrane of an area equals to Ap = 7.0 � 10�3 m2

is employed to excite the periodic attractor. It should be
observed that the system exhibits a complex dynamic behavior

as shown in the time trace and phase planes presented in
Fig. 7a and b, respectively.

5.3.2. Quasi-periodicity region

In this section the quasi-periodic attractor is excited by the
adopted two membrane configurations.

5.3.2.1. Effect of the shock type membrane. The Poincaré bifur-
cation diagram for this case is shown in Fig. 8a. The diagram
contains complex fascinated dynamical regions. Two apparent
visible regions (region 1, region 2) separated by a large period 1

window (PW1) are identified. An enlargement part of region 1
is shown in Fig. 8b. Fig. 8b demonstrates the evolution of the
phenomenon of the bubble windows. It is interesting to note

that the bubble windows show an incomplete odd sequence
of 1, 3 and 5 (BW1, BW3, BW5) according to the number of
bubbles present. The truncated period doubling sequences
a 

b 

Figure 10 Influence of the shock type membrane on the chaotic

attractor in the chaotic region: (a) A one-parameter stroboscopic

Poincaré bifurcation diagram; (b) Phase plane of the hyperchaotic

attractor at an area of Ap = 2.0 � 10�4 m2.
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might be due to the complex interaction of the membrane per-
meation area with the forced system dynamics causing the sys-
tem to change its bifurcation nature from period doubling

sequences to period halving sequences. Also, chaotic bands
exist. The chaos is developed by the famous Feigenbaum per-
iod doubling bifurcations and break down by period halving

scenario. Another important observation is chaos followed
by bubbles. Region 2 also contains complicated bifurcation
structures such as a large bubble 1 window (BW1) and chaotic

attractors arise through period doubling scenario and sup-
pressed by the period halving bifurcations.

5.3.2.2. Effect of the linear dynamic membrane. We imple-

mented here the linear dynamic membrane of a total area of
Ap = 1.5 � 10�3 m2. In this case, the quasi-periodic dynamics
a

b

8.00 10.00 12.00 14.00 16.00 18.00
Cs1

(kg/m3)

55.40

55.60

55.80

56.00

56.20

56.40

56.60

56.80

57.00

57.20

C
p 2

(k
g/

m
3 )

8.00 10.00 12.00 14.00 16.00 18.00
Cs1

(kg/m3)

0.00

0.01

0.02

0.03

0.04

C
e 1

(k
g/

m
3 )

Figure 11 Examples of complex geometries in the hyperchaotic

region shown in Fig. 10a: (a) Ce1 vs. Cs1; (b) Cp2 vs. CS1.
has been changed into a complex dynamic behavior as shown
by the time trace and phase plane in Fig. 9a and b, respectively.

5.3.3. Chaotic region

Chaos is a strange attractor that characterized by a single pos-
itive Lyapunov exponent as shown in Table 2.

5.3.3.1. Influence of the shock type membrane. Fig. 10 a shows
the stroboscopic Poincaré bifurcation diagram due to the influ-
ence of the shock type membrane on the chaotic attractor. It is

interesting to note that a hyperchaotic region evolves as well as
chaotic regions. A phase plane of the hyperchaotic attractor at
an area of Ap = 2.0 � 10�4 m2 is presented in Fig. 10b. The

hyperchaos is characterized by at least two positive Lyapunov
exponents. The Lyapunov spectrum of this hyperchaotic
attractor is (k1 = 1.0256, k2 = 0.8657, k3 = 0.0000,

k4 = �1.1238, k5 = �2.3322). It is interesting to note that
complex geometrical structures are developed within the
hyperchaotic region as displayed in Fig. 11a and b.

5.3.3.2. Influence of the linear dynamic membrane.When the lin-
ear dynamic membrane of a total area ofAp = 1.5 � 10�3 m2 is
imposed on the chaotic dynamics, the response of the forced

system is quite complex as shown in Fig. 12.

5.3.4. Potential benefits of membrane excitations

From an engineering point of view, we need to evaluate the

merits and benefits of the implication of the membrane excita-
tions on the dynamic performance of the forced fermentor.
Table 3 shows the average ethanol yield compared to the

autonomous (unforced) value for various bioreactor configura-
tions. As one can see that for the forced system without mem-
brane, the forcing can increase or decrease the ethanol yield

depending on the final attractor. However, for the forced
Figure 12 Time trace for the influence of the linear dynamic

membrane on the chaotic attractor in the chaotic region for the

total membrane area of Ap = 1.5 � 10�3 m2.



Table 3 Percent average ethanol yield compared to the autonomous value for various biosystems configurations.

Forced bioreactor without membrane Forced bioreactor with membrane

Membrane

Shock Linear

Attractor Av. yield Attractor Av. yield Dynamics Av. yield

Periodic �2.23% Quasi-periodic 7.21% Complex 9.26%

Quasi-periodic 1.65% Chaotic 12.43% Complex 14.22%

Chaotic 10.88% Hyperchaotic 18.98% Complex 19.29%
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chaotic attractor significant improvement of ethanol yield of
10.88% is achieved. It is clearly shown that all membrane con-
figurations achieve significant improvement in ethanol yield. It

is interesting to note that when the shock type and linear mem-
branes are imposed on the forced chaotic dynamics, the hyper-
chaos and the complex dynamics arise have increased the
average ethanol yield to 18.98% and 19.29%, respectively.

Furthermore, the membrane excitations can play a central role
in the control systems to achieve the best desired reactor
performance.
6. Conclusions

The present numerical results suggest that the membrane exci-

tations and configurations have a profound effect on the
dynamical behavior of the forced fermentor. The membrane
excitation causes drastic dynamic changes of the original

forced attractor accompanied by fascinated nonlinear phe-
nomena. It appears that the complex regions of the chaos
and hyperchaos could be of interest and have the potential

for the best operation of the bioreactor. It seems that the linear
dynamic membrane is superior to the shock type membrane.
This investigation has demonstrated and highlighted the
promising potential of the dynamic membranes implementa-

tion to enhance the biosystem performance. An area of a great
potential needed to be explored is the influence of a vibrating
dynamical membrane on the dynamics of unforced and forced

biosystems.
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