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The present communication concerns with three-dimensional MHD/Porous flow of Maxwell nanofluids
generated due to a bidirectional stretching surface in the presence of the Brownian motions of nanopar-
ticles. The ability of Maxwell fluid model to capture the stress relaxation of some polymeric liquids
together with the applications of stretching sheet flows in polymer industries shortly exhibit the impor-
tance of the subject matter. To this end, the associated conservative equations are initially converted to
similarity forms. Here, by means of contemporary mathematics, it is presented an excellent and perhaps
the simplest solution to the problem of interest in a generalized form for the first time. The distinctive
attributes of the present paper can be summarized as:

1- Presenting the three-dimensional stretching flow of UCM fluid subject to a general consideration
including nanoparticles Brownian motions, Darcy porosity and magnetic effects.

2- Analyzing the response of homotopy perturbation method to such nonlinearity.
3- A comprehensive report on the effects of the various engaged parameters.It is hopeful that the

main features of such a fluid flow can be documented by means of the presented explicit analytic
formulae and with the sufficiently provided figures which were hardly reachable until now.

� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The past decade was an exhibition of various and sundry solu-
tions (subject to different conditions) to stretching/shrinking sheet
flows treated mainly analytically due to the reduction of the asso-
ciated conservative equations in similarity forms for this particular
geometry of flow. Applications of stretching sheet flows in perti-
nent industries is an encouraging factor which motivates research-
ers to develop mathematical models in order to give response to
the industrial needs. In this regard, polymer industry stands as
one of the major hosts for the solutions to stretching sheet flows,
being associated with the fact that the extrusion of molten poly-
mers precedes the development of plastic sheets in these indus-
tries. Besides, the applicability of nanofluids (base fluids with
suspended nanoparticles) to enhancing heat transfer coefficient
as an alternative to the usual traditional approaches may play a
key role to achieve the purpose in the new world of emerging tech-
nologies (it is yet to be rigorously proven). Although literature is
flourished in the two-dimensional solutions to stretching sheet
flows, less attention has been paid to the three-dimensional cases.

In this communication, it is given a quick review on the most
relevant previous studies regarding the three-dimensional stretch-
ing sheet flows.

Ariel gave an analytic solution to the three-dimensional flow of
Newtonian fluids using Ackroyd method which is associated with
the infinite series of negative exponentials [1]. It is to some extent
mentioning that in [1], Ariel also gave perturbation solutions for
small and large (close to unity) values of the dimensionless
stretching ratio. He further presented an approximate solution
using the method of trial functions and minimizing the connected
residuals. Using the technique of Samuel and Hall, another solution
was presented by Ariel in [2]. Hang Xu et al. [3] presented analytic
solution to the three-dimensional magnetohydrodynamics (MHD)
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Fig. 1. Schematic of the problem (Solution by 1st order HPM obtained for
axisymmetric bidirectional stretching flow of Newtonian fluids in the absence of
porosity and magnetic effects): Above the surface, the space is assumed to be
porous following the Darcy model. Additionally, the flowing fluid follows the non-
Newtonian UCM fluid model containing suspended nanoparticles within.
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flow of Newtonian fluids due to a bidirectional impulsively stretch-
ing surface by means of homotopy analysis method (HAM). Hayat
and Javed [4] investigated the three-dimensional MHD flow of
Newtonian fluids with transpiration velocity. They presented solu-
tions obtained by HAM for the flow equations. As the main out-
comes of that study, it was reported that injection type
transpiration velocity suppresses the normalized skin friction coef-
ficients whilst, suction increases the normalized wall shear factors.
Furthermore, they recorded an enhancement for the normalized
skin friction coefficients both by increasing the magnetic parame-
ter and the dimensionless stretching ratio. Three- dimensional flow
of viscoelastic fluids generated by a stretching surface was studied
by Hayat et al. [5]. In that investigation, the associated similarity
equations for momentum was treated via HAM. They gave report
that the normalized skin friction factors escalate where both the
material fluid parameter and the stretching ratio increase. More
recently, three- dimensional flow of Maxwell fluids due a stretch-
ing surface was solved by Hayat and Awais [6] using HAM. They
recorded an increase in the normalized wall shear factor with the
increase of Deborah number. Three- dimensional flow of
Oldroyd-B fluid subject to a convective boundary condition was
analyzed by Hayat et al. [7]. The nonlinearity within the coupled
equations was tackled using HAM. They have also provided some
results for Nusselt number. Flow and heat transfer analysis of Max-
well nanofluids due to a bidirectional stretching surface was car-
ried out in [8,9]. Specifically, in [8] authors have provided
homotopic solutions (HAM) for evolution of velocity and tempera-
ture fields in the presence of an imposed magnetic field. This is
whilst in [9] the engaged nonlinear equations were tackled using
Runge–Kutta–Fehlberg fourth-fifth order scheme (RKF45 Method)
along with shooting technique. There exist very marginal reports
on the zeroth characteristics of momentum and energy equations
in [8,9] which indeed are of the most significant outcomes required
for the pertinent applications. This is of course due to the highly
nonlinear nature of the associated conservative equations which
somewhat prevents from proceeding further to obtain a structural
solution. Unsteady flow of Maxwell fluids over a three- dimen-
sional stretching surface was analyzed by Awais et al. [10]. In that
study, authors applied HAM to generate convergent series solu-
tions for momentum equations. The coupled equations of momen-
tum subject to the flow of Jeffery fluid over a bidirectional
stretching surface were solved using HAM in [11]. In that study,
the effects of viscoelastic parameter as well as Deborah number
on the evolution of velocity fields were evaluated for several cases.
There exist several more studies on three-dimensional stretching
sheet flows subject to different considerations such as Williamson
fluids, exponentially stretching surface, variable thermal conduc-
tivity and so forth (for more information see e.g. [12–20]).

In view of the existing literature in this field, it is verified that
all the solutions presented for three-dimensional stretching sheet
flows of non-Newtonian fluids are numeric or of too lengthy ana-
lytic series expressions. Beyond the classical type solutions, it is
presented in here a powerful structural solution to the problem
of three-dimensional MHD/Porous flow of Maxwell nanofluids
due to a bidirectional stretching surface where the thermophoresis
effect is negligible. The solution is based on homotopy perturba-
tion method (HPM) [21–23]. Although this topological algorithm
has been mostly applied to the problems associated with one dif-
ferential equation, here, it was examined and confirmed the suit-
ability of the algorithm even if the problem is characterized by
several highly non-linear differential equations. In this regard, it
is first established a suitable homotopy to the momentum equa-
tions. The finalized solutions are shown to be of accurate ones
which will be used further to tackle the remaining linear transport
equations of energy and nanoparticles in a purely closed form
manner.
In order to increase the accuracy, it is also applied the parame-
ter expansion technique to obtain the 2nd order HPM solution. A
comparison revealed that for the present nonlinearity the parame-
ter expansion technique in its formal way relatively fails to provide
considerably more accurate solutions. Therefore, for the sake of
simplicity, the 1st order HPM solution was brought into account
for further analysis. It should be mentioned that also the three-
dimensional flow of UCM fluid has recently received some atten-
tions from the researchers (as mentioned), but three major con-
cerns are noted: 1- the reports on both the skin friction
coefficient and the associated velocity profiles are insufficient 2-
the effects of an imposed magnetic field and the porosity are
almost missing 3- the associated thermal problem as well as the
nanofluids considerations accounting two-phase modeling are
rather untapped in the literature. Besides, the response of HPM
with regard to a highly nonlinear system of coupled equations
has not been extensively studied in the state of art. Therefore,
the present research concerns with both a general consideration
of a challenging problem in fluid dynamics and an application of
HPM with respect to the resulting nonlinear system of coupled
equations.

2. Mathematical model

Let us consider the three-dimensional, steady and incompress-
ible MHD flow of upper-convected Maxwell liquid with suspended
nanoparticles inside a porous medium generated via a bidirec-
tional stretching surface (see Fig. 1 which serves as the schematic
of the problem). Further note that the slip mechanism connected to
thermophoresis effect is ignored and only the Brownian motion is
taken into account as the transport mechanism for nanoparticles
(referred to the two-phase modeling of nanofluids initially pro-
posed by Jacopo Buongiorno [24]). In addition, in order to save a
more general scheme, surface transpiration velocity (suction/injec-
tion) is also considered.

Under these assumptions, the boundary layer approximate
equations of mass, momentum, energy and concentration become
(see Ref. [8,9,25,26]):
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Boundary conditions are supposed to be:

u ¼ ax; v ¼ by; w ¼ W0; T ¼ Tw; C ¼ Cw at z ¼ 0 ð6Þ

u ! 0; v ! 0; T ! T1; C ! C1 asz ! 1 ð7Þ
In the above equations, u, v and w are velocity components in x, y
and z directions respectively, k the relaxation time, t the kinematic
viscosity, qf the fluid density, r electrical conductivity, B0 the

imposed magnetic field, �K permeability of the porous medium, T
temperature, a the thermal diffusivity, ðqcÞp and ðqcÞf the effective
heat capacity of nanoparticles and fluid respectively, C concentra-
tion, DB the Brownian diffusion coefficient, W0 the suction/injection
parameter, T1 and Tw temperatures far from the surface and at the
surface respectively, C1 and Cw concentrations far from the surface
and at the surface respectively. Furthermore, a and b are the
stretching factors in ’’x’’ and ’’y’’ directions respectively.

Employing the following similarity quantities:

u ¼ axf 0ðgÞ;v ¼ ayg0ðgÞ;w ¼ �ðatÞ12ðf ðgÞ þ gðgÞÞh

¼ T � T1
Tw � T1

;/ ¼ C � C1
Cw � C1

;g ¼
�
a
t

�1
2

z ð8Þ

The finalized similarity equations are obtained as:

f 000ðgÞ þ ðMbþ 1Þðf ðgÞ þ gðgÞÞf 00ðgÞ � f 0ðgÞ2

þ b
2ðf ðgÞ þ gðgÞÞf 0ðgÞf 00ðgÞ
�ðf ðgÞ þ gðgÞÞ2f 000ðgÞ

 !
� ðM þ KÞf 0ðgÞ ¼ 0 ð9Þ

g000ðgÞ þ ðMbþ 1Þðf ðgÞ þ gðgÞÞg00ðgÞ � g0ðgÞ2

þ b
2ðf ðgÞ þ gðgÞÞg0ðgÞg00ðgÞ
�ðf ðgÞ þ gðgÞÞ2g000ðgÞ

 !
� ðM þ KÞg0ðgÞ ¼ 0 ð10Þ

h00ðgÞ þ Prðf ðgÞ þ gðgÞÞh0ðgÞ þ Nbh
0ðgÞ/0ðgÞ ¼ 0 ð11Þ

/00ðgÞ þ Scðf ðgÞ þ gðgÞÞ/0ðgÞ ¼ 0 ð12Þ
The associated boundary conditions become:

f ð0Þ þ gð0Þ ¼ R; f 0ð0Þ ¼ 1; g0ð0Þ ¼ c; hð0Þ ¼ /ð0Þ ¼ 1f 0ðg ! 1Þ
¼ g0ðg ! 1Þ ¼ hðg ! 1Þ ¼ /ðg ! 1Þ ¼ 0 ð13Þ

In Eqs. (9) to (13), M is magnetic parameter, K is the corre-
sponding Darcian resistance parameter, b is Deborah number, c is
the ratio of the stretching rates, R is suction/injection parameter,
Pr is Prandtl number, Nb is Brownian parameter and Sc is Schmidt
number. These parameters are defined as:
M ¼ rB2
0

qf a
; K ¼ m

�Ka
; b ¼ ka; c ¼ b

a
; R ¼ � W0

ðatÞ12
; Pr ¼ t

a
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ð14Þ

Note that R > 0 corresponds to suction, whilst R < 0 stands for
the injection case.

Besides, Nusselt and Sherwood numbers are defined as:
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Where Rex ¼ ux
t

Obviously, when parameter c is set to zero, two-dimensional
stretching scheme is recovered. Besides, letting c be equal to unity,
the flow geometry takes an axisymmetric form. In addition, taking
b as to be zero, Newtonian case is recovered. Furthermore, letting
Nb be equal to zero, converts the nanofluids problem to the base
fluids one.
3. Solution Strategy: 1st order HPM

As mentioned earlier, homotopy perturbation method of the 1st
and the 2nd order are used to tackle the resulting similarity equa-
tions for momentum. Although the method has been mostly
applied to problems dealing with only one differential equation,
here by constructing a suitable homotopy, it is shown that this
topological method may be promising even for highly nonlinear
coupled equations.

Let us rewrite Eqs. (9) and (10) within the following homotopic
forms:

f 000 � ðk�Þ2f 0 þ pððMbþ 1Þðf þ gÞf 00 � f 02 þ bð2ðf þ gÞf 0 f 00

� ðf þ gÞ2f 000Þ � ðM þ KÞf 0 þ ðk�Þ2f 0Þ ¼ 0 ð16Þ

g000 � ðk�Þ2g0 þ pððMbþ 1Þðf þ gÞg00 � g02 þ bð2ðf þ gÞg0g00

� ðf þ gÞ2g000Þ � ðM þ KÞg0 þ ðk�Þ2g0Þ ¼ 0 ð17Þ
Where f ¼ f ðgÞ, g ¼ gðgÞ, p is the homotopy perturbation

parameter and k� is to be further determined through the solution
procedure. When p ¼ 0, the system of above equations is reduced
to simplified forms which in particular express the initial guess
for the actual solution of interest. Besides, as the parameter p
evolves to eventually take the value of unity, the original system
of equations is readily recovered. Therefore, the initial solutions
deform to reach the required ones through the evolution of homo-
topy perturbation parameter. In algebraic topology, this concept is
called homotopy.

In view of the standard practice of homotopy perturbation
method (HPM), the solutions are sought as:

f ¼ f 0 þ pf1 þ p2f 2 þ . . . ð18Þ

g ¼ g0 þ pg1 þ p2g2 þ . . . ð19Þ
Substituting Eqs. (18) and (19) in Eqs. (16) and Eq. (17) and

equating the identical powers of p, the two first systems are
deduced as:

f 0000 � ðk�Þ2f 00 ¼ 0g000
0 � ðk�Þ2g0

0 ¼ 0f 0ð0Þ þ g0ð0Þ ¼ R; f 00ð0Þ
¼ 1; g0

0ð0Þ ¼ cf 0ð1Þ ¼ 0; g0ð1Þ ¼ 0 ð20Þ
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f 0001 � ðk�Þ2f 01 þ ðMbþ 1Þðf 0 þ g0Þf 000 � f 020 þ bð2ðf 0 þ g0Þf 00f 000
� ðf 0 þ g0Þ2f 0000 Þ � ðM þ KÞf 00 þ ðk�Þ2f 00
¼ 0g000

1 � ðk�Þ2g0
1 þ ðMbþ 1Þðf 0 þ g0Þg00

0 � g02
0

þ bð2ðf 0 þ g0Þg0
0g

00
0 � ðf 0 þ g0Þ2g000

0 Þ � ðM þ KÞg0
0 þ ðk�Þ2g0

0

¼ 0f 1ð0Þ þ g1ð0Þ ¼ 0; f 01ð0Þ ¼ 0; g0
1ð0Þ ¼ 0f 01ð1Þ ¼ 0; g0

1ð1Þ ¼ 0
ð21Þ

The auxiliary parameter k� can be obtained via several routes.
However, as it has been outlined by He [27], this parameter should
be obtained in such a way that the finalized solutions are free from
secular terms such as ge�k�g. Once the secular terms are removed,
we have automatically truncated the degree of the series solutions
and consequently lose control on the appearance of secular terms
in higher order systems. However, there is almost no need for fur-
ther series terms since over many practices in this field, the
method has proven itself highly efficient even on using only the
two first series terms. Therefore, we may write:

f ¼ f 0 þ f 1 ð22Þ

g ¼ g0 þ g1 ð23Þ
We solve systems (20) and (21), remove the secular term ge�k�g

and obtain with ease (simplified, so that they can be easily applied
and followed):

f ðgÞ þ gðgÞ ¼ Rþ 1
k�

ð1þ cÞð1� e�k�gÞ þ ðA1 þ A3 þ 2A2 þ 2A4Þ
� ð2ðA1 þ A3Þ þ 3ðA2 þ A4ÞÞe�k�g þ ðA1 þ A3Þe�2k�g

þ ðA2 þ A4Þe�3k�g ð24Þ

f 0ðgÞ ¼ ð1þ ð2A1 þ 3A2Þk�Þe�k�g þ ð�2k�A1Þe�2k�g þ ð�3k�A2Þe�3k�g

ð25Þ

g0ðgÞ ¼ ðc þ ð2A3 þ 3A4Þk�Þe�k�g þ ð�2k�A3Þe�2k�g þ ð�3k�A4Þe�3k�g

ð26Þ

f 00ð0Þ ¼ �k� þ ðk�Þ2ð2A1 þ 6A2Þ ð27Þ

g00ð0Þ ¼ �ck� þ ðk�Þ2ð2A3 þ 6A4Þ ð28Þ

A1 ¼ 2bð1þ cÞ � 2bð1þ cÞ2 þ 1� ð1þMbÞð1þ cÞ � 2Rcbk�

�6ðk�Þ3
ð29Þ

A2 ¼ bð1þ cÞ2 � 2bð1þ cÞ
�24ðk�Þ3

ð30Þ

A3 ¼ 2bc2ð1þ cÞ � 2bcð1þ cÞ2 þ c2 � ð1þMbÞcð1þ cÞ � 2Rcbk�

�6ðk�Þ3
ð31Þ

A4 ¼ bcð1þ cÞ2 � 2bc2ð1þ cÞ
�24ðk�Þ3

ð32Þ

k� ¼ �Rðð1þMbÞ þ 2bð1þ cÞÞ
2ðR2b� 1Þ

�

 
R2ðð1þMbÞ þ 2bð1þ cÞÞ2 � 4ðR2b� 1Þ ð1þMbÞð1þ cÞþ

bð1þ cÞ2 þ ðM þ KÞ

 !!1
2

2ðR2b� 1Þ
ð33Þ
According to Eq. (33), it is readily observable that considering a
transpiration velocity of either suction or injection type enters
complexity into the solution. The complexity refers to both impos-
ing a band in which the strategy yields physical solutions and even
possible appearance of dual solutions with respect to � sign which
should be checked for triviality or stability. Therefore, in order to
stay with the scope of the present communication and further to
study a more realistic problem, we shall leave the suction/injection
cases for future researches. With R ¼ 0, a unique and unconditional
solution is obtained where:

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1þMbÞð1þ cÞ þ bð1þ cÞ2 þ ðM þ KÞÞ

q
ð34Þ
4. A Trial with the Parameter Expansion Technique (R ¼ 0): 2nd
Order HPM

Let us rewrite Eqs. (9) and (10) in the following forms:

f 000 þ ð�ðk�1Þ2 þ k�2pÞf 0 þ pððMbþ 1Þðf þ gÞf 00 � f 02 þ bð2ðf þ gÞf 0 f 00

� ðf þ gÞ2f 000Þ � ðM þ KÞf 0 � ð�ðk�1Þ2 þ k�2pÞf 0Þ ¼ 0 ð35Þ

g000 þ ð�ðk�1Þ2 þ k�2pÞg0 þ pððMbþ 1Þðf þ gÞg00 � g02 þ bð2ðf þ gÞg0g00

� ðf þ gÞ2g000Þ � ðM þ KÞg0 � ð�ðk�1Þ2 þ k�2Þg0Þ ¼ 0 ð36Þ
Again on using straightforward expansion (Taylor Method) the

above systems are expressed as:

f 0000 � ðk�1Þ2f 00 ¼ 0g000
0 � ðk�1Þ2g0

0 ¼ 0f 0ð0Þ þ g0ð0Þ ¼ 0; f 00ð0Þ
¼ 1; g0

0ð0Þ ¼ cf 0ð1Þ ¼ 0; g0ð1Þ ¼ 0 ð37Þ

f 0001 � ðk�1Þ2f 01 þ ðMbþ 1Þðf 0 þ g0Þf 000 � f 020 þ bð2ðf 0 þ g0Þf 00f 000
� ðf 0 þ g0Þ2f 0000 Þ � ðM þ KÞf 00 þ ððk�1Þ2 þ k�2Þf 00
¼ 0g000

1 � ðk�1Þ2g0
1 þ ðMbþ 1Þðf 0 þ g0Þg00

0 � g02
0 þ bð2ðf 0

þ g0Þg0
0g

00
0 � ðf 0 þ g0Þ2g000

0 Þ � ðM þ KÞg0
0 þ ððk�1Þ2 þ k�2Þg0

0

¼ 0f 1ð0Þ þ g1ð0Þ ¼ 0; f 01ð0Þ ¼ 0; g0
1ð0Þ ¼ 0f 01ð1Þ

¼ 0; g0
1ð1Þ ¼ 0 ð38Þ

f 0002 � ðk�1Þ2f 02 þ ðMbþ 1Þððf 0 þ g0Þf 001 þ ðf 1 þ g1Þf 000Þ � ð2f 00f 01Þ
þ bð2ððf 0 þ g0Þf 00f 001 þ ðf 0 þ g0Þf 01f 000 þ ðf 1 þ g1Þf 00f 000Þ � ððf 0
þ g0Þðf 0 þ g0Þf 0001 þ 2ðf 0 þ g0Þðf 1 þ g1Þf 0000 ÞÞ � ðM þ KÞf 01
þ ððk�1Þ2 þ k�2Þf 01 � k�2f

0
0

¼ 0g000
2 � ðk�1Þ2g0

2 þ ðMbþ 1Þððf 0 þ g0Þg00
1 þ ðf 1 þ g1Þg00

0Þ
� ð2g0

0g
0
1Þ þ bð2ððf 0 þ g0Þg0

0g
00
1 þ ðf 0 þ g0Þg0

1g
00
0 þ ðf 1

þ g1Þg0
0g

00
0Þ � ððf 0 þ g0Þðf 0 þ g0Þg000

1 þ 2ðf 0 þ g0Þðf 1
þ g1Þg000

0 ÞÞ � ðM þ KÞg0
1 þ ððk�1Þ2 þ k�2Þg0

1 � k�2g
0
0

¼ 0f 2ð0Þ þ g2ð0Þ ¼ 0; f 02ð0Þ ¼ 0; g0
2ð0Þ ¼ 0f 02ð1Þ

¼ 0; g0
2ð1Þ ¼ 0 ð39Þ

After solving the above systems, removing the occurring secular
terms it is obtained with ease:
L ¼ bþ 4c þ 2Mbþ 15bc þ 4Mb2 þ 15bc2 þ 16b2c þ bc3

þ 2b2 þ 28b2c2 þ 16b2c3 þ 2b2c4 þ 12Mb2c2 þ 4Mb2c3

þ 4Mbc þ 2Mbc2 þ 12Mb2c ð40Þ
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Q ¼24bcþ12Mbcþ12Mbþ12Kþ12Mþ12bþ12cþ12þ12bc2

ð41Þ

P ¼� 12 ð42Þ
k�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4PL

q
Þ

2P

vuut
ð43Þ

k�2 ¼ K þM þ bþ c þMbþ 2bc þ bc2 � ðk�1Þ2 þMbc þ 1 ð44Þ
X2
i¼0

f 00i ð0Þ ¼

180K2 þ 80KMbc þ 80KMbþ 360KM þ 60Kbc2 þ 240Kbc þ 180 K b� 1080Kðk�1Þ2�
360K k�2 þ 120Kc þ 360K � 20M2b2c2 � 40M2b2c � 20M2b2 þ 80M2 bc þ 80M2bþ
180M2 � 22Mb2c3 � 54Mb2c2 � 42Mb2c � 10Mb2 � 320Mbðk�1Þ2c � 320Mbðk�1Þ2�
80Mbk�2c � 80Mbk�2 þ 40Mbc2 þ 280Mbc þ 240Mb� 1080M ðk�1Þ2 � 360Mk�2þ

120Mc þ 360M þ 17b2c4 þ 24b2c3 � 6b2c2 þ 8b2c þ 21b2 � 180bðk�1Þ2c2 � 720bðk�1Þ2c
�540bðk�1Þ2 � 60bk�2c

2 � 240bk�2c � 180bk�2 þ 30bc3 þ 62bc2 þ 162bc þ 162b� 540ðk�1Þ4

þ360ðk�1Þ2k�2 � 360ðk�1Þ2c � 1080ðk�1Þ2 þ 180ðk�2Þ2 � 120k�2c � 360k�2 þ 20c2 þ 80c þ 180

�������������������

�������������������
1440ðk�1Þ3

ð45Þ

X2
i¼0

g00
i ð0Þ ¼ c

180K2 þ 80KMbc þ 80KMbþ 360KM þ 180Kbc2 þ 240 Kbc þ 60Kb� 1080Kðk�1Þ2

�360Kk�2 þ 360Kc þ 120K � 20M2 b2c2 � 40M2 b2c � 20M2 b2 þ 80M2bc þ 80M2b

þ180M2 � 10Mb2c3 � 42Mb2c2 � 54Mb2c � 22Mb2 � 320Mbðk�1Þ2c � 320Mbþ 80c

ðk�1Þ2 � 80Mbk�2c � 80Mbk�2 þ 240Mbc2 þ 280Mbc þ 40Mb � 1080Mðk�1Þ2 � 360þ 20

Mk�2 þ 360Mc þ 120 M þ 21b2c4 þ 8b2c3 � 6b2c2 þ 24b2c þ 17b2 � 540bðk�1Þ2c2 � 720

bðk�1Þ2c � 180bðk�1Þ2 � 180bk�2c
2 � 240 bk�2 c � 60bk�2 þ 162bc3 þ 162bc2 þ 62bc þ 30

b� 540ðk�1Þ4 þ 360ðk�1Þ2k�2 � 1080ðk�1Þ2c � 360ðk�1Þ2 þ 180ðk�2Þ2 � 360k�2c � 120k�2 þ 180c2

�������������������

�������������������
1440ðk�1Þ3

ð46Þ

f 0ðgÞ þ g0ðgÞ ¼ �ð1þ cÞ ðe
ð�k�1 gÞ � 1Þ

k�
1

ð47Þ

f 1ðgÞ þ g1ðgÞ ¼
1

24ðk�1Þ3
eð�3k�1gÞðeðk�1gÞ � 1Þ2 b� bc � bc2 þ bc3 þ 2bþ 8c þ 14bc2 þ 2bc3 þ 4Mb

þ14bc þ 8Mbc þ 4Mbc2

 !
eðk

�
1gÞ

 !
ð48Þ

f 2ðgÞ þ g2ðgÞ ¼ � 1

2880ðk�1Þ5
eð�5k�1gÞðeðk�1gÞ � 1Þ ð7b2c þ 3b2 � 10b2c2 � 10b2c3 þ 7b2c4 þ 3b2c5Þ

þA1ek
�
1g þ A2e2k

�
1g þ A3e3k

�
1g þ A4e4k

�
1g

 !
ð49Þ

A1 ¼ �8b� 61b2 � 50Mb2 þ 144bc2 þ 7b2c þ 32bc3 � 8bc4 þ 438b2c2 þ 438b2c3

þ7b2c4 � 61b2c5 þ 32bc þ 96Mb2c þ 96Mb2c3 þ 292Mb2c2 � 50Mb2c4

 !
ð50Þ

A2 ¼
�20Mb2c4 � 1184Mb2c3 � 240M2b2c � 2328 M b2c2 � 20M b c3 � 1184Mb2c � 380Mbc2

�80M2b2c3 � 240M2b2c2 � 380Mbc � 608 b c � 20M bþ 104 b2 c5 � 688 b2 c4 � 2872b2c3�
2872b2c2 � 80M2b2 þ 22bc4 � 608bc3 � 688b2c þ 22b� 120c þ 104b2 � 120c2 � 20Mb2 � 1516bc2

0
B@

1
CA ð51Þ

A3 ¼
520Mb2c4 þ 3616Mb2c3 þ 720M2b2c þ 6192Mb2c2 þ 140Mbc3 þ 3616Mb2c þ 1380Mbc2 þ 22b
þ240M2b2 c3 þ 720M2 b2 c2 þ 1380Mbc þ 2272bc þ 140Mbþ 104 b2c5 þ 2672b2c4 þ 7848b2c3

þ7848b2c2 þ 240M2b2 þ 22bc4 þ 2272bc3 þ 2672b2c þ 4884bc2 þ 520Mb2 þ 520c2 þ 104b2 þ 520c

0
B@

1
CA ð52Þ

A4 ¼

þ2880Mbðk�1Þ2c þ 1440Mbðk�1Þ2c2 þ 1440bðk�1Þ2c3 þ 4320bðk�1Þ2c2 þ 30Mb2c4 þ 224bc

�480M2b2c � 1276Mb2c2 þ 4320 b ðk�1Þ2 c þ 1440 M ðk�1Þ2 c þ 120Mbc3 � 608Mb2c

�280Mbc2 þ 1440Mbðk�1Þ2 þ 1440 K ðk�1Þ2 c � 160M2 b2 c3 � 480M2b2c2 � 280Mbcþ
120Mbþ 1440ðk�1Þ2c2 þ 90b2c5 þ 162b2c4 � 124b2c3 � 124b2c2 � 160M2b2 � 1440ðk�1Þ4cþ
þ84bc4 þ 224bc3 þ 162b2c þ 1440Kðk�1Þ2 þ 88 b c2 þ 1440bðk�1Þ2 þ 1440Mðk�1Þ2 þ 30Mb2

þ1440ðk�1Þ2 þ 90b2 þ 2880ðk�1Þ2c þ 84b þ 80c2 � 1440 ðk�1Þ4 þ 80c � 608Mb2c3 þ 140Mbc3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð53Þ

f 00ðgÞ ¼ eð�k�1gÞ ð54Þ
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f 01ðgÞ ¼
1

24ðk�1Þ2
eð�3k�1gÞðeðk�1gÞ � 1Þ 3bþ 3beðk

�
1gÞ þ 8ceðk

�
1gÞ � 3bc2 þ 13bc2eðk

�
1gÞ

þ8Mbeðk
�
1gÞ þ 16bceðk

�
1gÞ þ 8Mbceðk

�
1gÞ

 !
ð55Þ

f 02ðgÞ ¼
1

2880ðk�1Þ4
eð�5k�1gÞðeðk�1gÞ � 1Þ þ160b2c þ 15b2 þ 110b2c2 � 160b2c3 � 125b2c4

þA1ek
�
1g þ A2e2k

�
1g þ A3e3k

�
1g

 !
ð56Þ

A1 ¼ �768b2c þ 288bc2 � 200Mb2 � 32b� 241b2 þ 320bc3 þ 206b2c2

þ1536b2c3 þ 803b2c4 � 192bc� 8Mb2c þ 392Mb2c3 þ 584Mb2c2

 !
ð57Þ

A2 ¼
�1618Mb2c3 � 480M2b2c � 3346Mb2c2 � 1838Mb2c � 540Mbc2 � 1762b2c4

�240M2b2c2 � 600Mb c � 462 bc � 4704 b2 c3 � 3484b2c2 þ 58b� 60Mb

�120c þ 254b2 � 240c2 � 110Mb2 � 2202bc2 � 288 b2 c � 1330bc3 � 240M2b2

0
BB@

1
CCA ð58Þ

A3 ¼
þ2102Mb2c3 þ 800M2b2c þ 5174Mb2c2 þ 4042Mb2c þ 1060Mbc2 þ 970Mb2

þ400M2b2c2 þ 1320Mbc þ 2418bc þ 260Mb þ 1598 b2c4 þ 6016b2c3 þ 400c2

þ7236b2c2 þ 400M2b2 þ 1550bc3 þ 3072 b2 c þ 4198bc2 þ 58bþ 520c þ 254b2

0
BB@

1
CCA ð59Þ

Finally:

f 0ðgÞ ¼ f 00ðgÞ þ f 01ðgÞ þ f 02ðgÞ ð60Þ
Similarly:

g0
0ðgÞ ¼ ceð�k�1gÞ ð61Þ

g0
1ðgÞ ¼

c

24ðk�1Þ2
eð�3k�1gÞðeðk�1gÞ � 1Þ 8eðk

�
1gÞ � 3bþ 13beðk

�
1gÞ þ 3bc2 þ 3bc2eðk

�
1gÞþ

8Mbeðk
�
1gÞ þ 16bceðk

�
1gÞ þ 8Mbceðk

�
1gÞ

 !
ð62Þ

g0
2ðgÞ ¼

c

2880ðk�1Þ4
eð�5k�1gÞðeðk�1gÞ � 1Þ �160b2c � 125b2 þ 110b2c2 þ 160b2c3 þ 15b2c4

þA1ek
�
1g þ A2e2k

�
1g þ A3e3k

�
1g

 !
ð63Þ

A1 ¼ �8Mb2c2 � 200Mb2c3 þ 584Mb2c þ 288bc � 768b2c3 � 241b2c4þ
206b2c2 � 32bc3 þ 1536b2c � 192bc2 þ 320bþ 803b2 þ 392Mb2

 !
ð64Þ

A2 ¼
�110Mb2c3 � 480M2 b2 c � 1838Mb2c2 � 3346Mb2c � 60Mbc2 � 240M2b2c2

�600Mbc � 2202 b c � 1762b2 � 240 � 1330bþ 254b2c4 þ 254b2c4 � 540Mb�
288b2c3 � 3484b2 c2 � 240M2b2 þ 58bc3 � 4704b2c � 462bc2 � 1618Mb2 � 120c

0
BB@

1
CCA ð65Þ

A3 ¼
þ970Mb2c3 þ 800M2b2c þ 4042Mb2c2 þ 5174Mb2c þ 260Mbc2 þ 400M2b2c2

þ1320Mbc þ 4198bc þ 1060Mbþ 254b2c4 þ 3072b2c3 þ 7236b2c2 þ 400M2b2

þ58bc3 þ 6016b2c þ 2418 b c2 þ 2102Mb2 þ 1598b2 þ 520c þ 400þ 1550b

0
BB@

1
CCA ð66Þ

Finally:

g0ðgÞ ¼ g0
0ðgÞ þ g0

1ðgÞ þ g0
2ðgÞ ð67Þ
Having f ðgÞ þ gðgÞ known from Eq. (24) or Eqs. (47)–(53), Eqs.
(11) and (12) can be simply solved explicitly through the following
closed form integral manners (which can be easily quantified
directly by numerical integration):

hðgÞ ¼ 1þ h0ð0Þ#ðgÞ; #ðgÞ

¼
Z g

0

e�Prð
R g

0
ðf ðgÞþgðgÞÞdgÞ�Nb/

0ð0Þð
R g

0
e
�Sc
R g

0
ðf ðgÞþgðgÞÞ dg

dgÞdg; h0ð0Þ ¼ �1
#ð1Þ

ð68Þ
/ðgÞ ¼ 1þ/0ð0ÞuðgÞ; uðgÞ ¼
Z g

0
e�Sc

R g

0
ðf ðgÞþgðgÞÞdgdg; /0ð0Þ ¼ �1

uð1Þ
ð69Þ
For example, on using Eqs. (24), (68) and (69) can be further
simplified to yield:



#ðgÞ ¼
Z g

0

e
�Pr Rgþ 1

k�ð1þcÞgþ 1
ðk�Þ2

ð1þcÞe�k�gþðA1þA3þ2A2þ2A4Þgþ 1
k�ð2ðA1þA3Þþ3ðA2þA4ÞÞe�k�g� 1

2k�ðA1þA3Þe�2k�g� 1
3k�ðA2þA4Þe�3k�g

� �g

0

eNb/
0ð0Þ
R g

0
e
�Sc Rgþ 1

k�ð1þcÞgþ 1
ðk�Þ2

ð1þcÞe�k�gþðA1þA3þ2A2þ2A4Þgþ 1
k�ð2ðA1þA3 Þþ3ðA2þA4ÞÞe�k�g� 1

2k�ðA1þA3Þe�2k�g� 1
3k�ðA2þA4Þe�3k�g

� �g

0 dg

dg ð70Þ

uðgÞ ¼
Z g

0
e
�Sc Rgþ 1

k�ð1þcÞgþ 1
ðk�Þ2

ð1þcÞe�k�gþðA1þA3þ2A2þ2A4Þgþ 1
k�ð2ðA1þA3Þþ3ðA2þA4ÞÞe�k�g� 1

2k�ðA1þA3Þe�2k�g� 1
3k�ðA2þA4Þe�3k�g

� �g

0dg ð71Þ
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It is worth noting that Eqs. (11) and (12) subject to the associ-
ated boundary conditions may result in the following deduction
if Pr ¼ Sc:

hWBðgÞ � 1 ¼ � h0WBð0Þ
Nbh

0
WoBð0Þ

ðe�NbðhWoBðgÞ�1Þ � 1Þ; h0WBð0Þ
h0WoBð0Þ

¼ Nb

eNb � 1

ð72Þ
In Eq. (72), indexes WB and WoB denote cases with regard to

’with Brownian motions’ and ’without Brownian motions’ respec-
tively. It should be mentioned that such a deduction has been also
previously noted by Jafarimoghaddam regarding the wall jet anal-
ysis for nanofluids (see [28]).
5. Numerical solution

4th-order Runge-Kutta is applied to discrete the coupled equa-
tions of momentum. An appropriate shooting technique is then
used to convert the initially BVPs to IVPs. As mentioned, the rest
of the transport equations are solved simply using a direct integra-
tion procedure. In order to proceed with R-K algorithm the
involved equations were considered as:
Table 1
Comparison for f 00 ð0Þ and g00 ð0Þ.

f 00ð0Þ/1st order HPM f 00ð0Þ/2nd order HPM f 00ð0Þ/R-K
b ¼ 0:25;K ¼ M ¼ R ¼ 0
c = 0.1 �1.0884 �1.09320 �1.09297
c = 0.5 �1.20041 �1.20860 �1.20139
c = 1 �1.34715 �1.35030 �1.33122

b ¼ 0:5;K ¼ M ¼ R ¼ 0
c = 0.1 �1.15738 �1.16391 �1.16450
c = 0.5 �1.30515 �1.31647 �1.30489
c = 1 �1.5 �1.50670 �1.4710

b ¼ 1;K ¼ M ¼ R ¼ 0
c = 0.1 �1.28684 �1.29626 �1.29350
c = 0.5 �1.4954 �1.51270 �1.49263
c = 1 �1.76908 �1.78279 �1.72143

K ¼ 0:25; b ¼ M ¼ R ¼ 0
c = 0.1 �1.13321 �1.13489 �1.13555
c = 0.5 �1.19689 �1.20045 �1.20004
c = 1 �1.27778 �1.27752 �1.27344

K ¼ 0:5;b ¼ M ¼ R ¼ 0
c = 0.1 �1.23856 �1.23983 �1.24063
c = 0.5 �1.29636 �1.29893 �1.29854
c = 1 �1.37032 �1.36944 �1.36586

K ¼ 1;b ¼ M ¼ R ¼ 0
c = 0.1 �1.42614 �1.42695 �1.42682
c = 0.5 �1.47573 �1.47720 �1.47694
c = 1 �1.5396 �1.53815 �1.53554

K ¼ b ¼ M ¼ R ¼ 0, (Ref. [1])
c = 0.1 �1.017027 �1.01939 �1.020260
c = 0.5 �1.088662 �1.09383 �1.093095
c = 1 �1.178511 �1.17933 �1.173721
F1 ¼ f ðgÞ ð73Þ

Y1 ¼ F 0
1 ð74Þ

Z1 ¼ Y 0
1 ð75Þ

F2 ¼ gðgÞ ð76Þ

Y2 ¼ F 0
2 ð77Þ

Z2 ¼ Y 0
2 ð78Þ

Z0
1 ¼ �ðMbþ 1ÞðF1 þ F2ÞZ1 þ Y2

1 � bð2ðF1 þ F2ÞY1Z1Þ þ ðM þ KÞY1

ð1� bðF1 þ F2Þ2Þ
ð79Þ

Z0
2 ¼ �ðMbþ 1ÞðF1 þ F2ÞZ2 þ Y2

2 � bð2ðF1 þ F2ÞY2Z2Þ þ ðM þ KÞY2

ð1� bðF1 þ F2Þ2Þ
ð80Þ
g00ð0Þ/1st order HPM g00ð0Þ/2nd order HPM g00ð0Þ/R-K

�0.08002 �0.07539 �0.07402
�0.5313 �0.52502 �0.51299
�1.34715 �1.35030 �1.33122

�0.08644 �0.08135 �0.07641
�0.58185 �0.57556 �0.55413
�1.5 �1.50670 �1.4710

�0.09809 �0.09234 �0.08480
�0.67239 �0.66672 �0.62825
�1.76908 �1.78279 �1.72143

�0.0875 �0.08448 �0.08363
�0.53545 �0.53046 �0.52677
�1.27778 �1.27752 �1.27344

�0.10014 �0.09775 �0.09715
�0.58926 �0.58474 �0.58164
�1.37032 �1.36944 �1.36586

�0.12191 �0.12028 �0.12019
�0.68516 �0.68150 �0.67993
�1.5396 �1.53815 �1.53554

�0.073099 �0.06913 �0.066847
�0.476290 �0.47086 �0.465205
�1.178511 �1.17933 �1.173721



Table 2
Comparison for �h0ð0Þ.

c ¼ 1; b ¼ M ¼ K ¼ R ¼ Nb ¼ 0 c ¼ 0:5; b ¼ M ¼ K ¼ R ¼ Nb ¼ 0 c ¼ 0:1; b ¼ M ¼ K ¼ R ¼ Nb ¼ 0

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

Pr ¼ 0:5 0.52604 0.5296 0.523 0.45323 0.45118 0.45106 0.37792 0.37763 0.37757
Pr ¼ 1 0.85427 0.85224 0.85214 0.73689 0.73538 0.73545 0.61819 0.61817 0.61816
Pr ¼ 10 3.30734 3.30813 3.30883 2.86014 2.86152 2.86148 2.43142 2.43241 2.43253
Pr ¼ 20 4.7883 4.7891 4.7905 4.1425 4.14441 4.14437 3.52879 3.53034 3.53022
Pr ¼ 100 11.0298 11.0332 11.0341 9.54758 9.55111 9.55101 8.15635 8.15888 8.15894

c ¼ 1; b ¼ 0:25;M ¼ K ¼ R ¼ Nb ¼ 0 c ¼ 0:5; b ¼ 0:25;M ¼ K ¼ R ¼ Nb ¼ 0 c ¼ 0:1; b ¼ 0:25;M ¼ K ¼ R ¼ Nb ¼ 0

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

Pr ¼ 0:5 0.48104 0.47312 0.47211 0.42317 0.41689 0.41588 0.35867 0.35399 0.35407
Pr ¼ 1 0.80382 0.79917 0.79716 0.7034 0.69934 0.69831 0.59661 0.59378 0.59341
Pr ¼ 10 3.26273 3.26512 3.26593 2.83071 2.83465 2.83263 2.41232 2.41238 2.41249
Pr ¼ 20 4.74594 4.75123 4.75052 4.11456 4.11761 4.11744 3.51069 3.51188 3.51142
Pr ¼ 100 10.9909 10.9956 10.9982 9.52191 9.52591 9.52676 8.1398 8.1401 8.142

c ¼ 1;K ¼ 0:25;M ¼ b ¼ R ¼ Nb ¼ 0 c ¼ 0:5;K ¼ 0:25;M ¼ b ¼ R ¼ Nb ¼ 0 c ¼ 0:1;K ¼ 0:25;M ¼ b ¼ R ¼ Nb ¼ 0

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

�h0ð0Þ/1st order
HPM

�h0ð0Þ/2ndorder
HPM

�h0ð0Þ/
R-K

Pr ¼ 0:5 0.50833 0.50677 0.50605 0.43349 0.43218 0.43117 0.35710 0.35689 0.35669
Pr ¼ 1 0.83397 0.83312 0.8324 0.71409 0.71288 0.71262 0.59391 0.59388 0.59378
Pr ¼ 10 3.28592 3.28799 3.28755 2.83603 2.83651 2.83688 2.40561 2.40593 2.40639
Pr ¼ 20 4.76696 4.76891 4.76931 4.1185 4.11932 4.11972 3.50313 3.50482 3.50415
Pr ¼ 100 11.0086 11.0101 11.0131 9.52387 9.52663 9.52601 8.13099 8.13199 8.13289

Table 3
Effect of the involved parameters on the factors of engineering interest.

b " or K " or M " or c " )f 00ð0Þ "and g00ð0Þ "
b # or K # or M # or c " or Sc " )/0ð0Þ "
b # or K # or M # or c " or Sc # or Nb # or Pr " )h0ð0Þ "
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6. Comparison

In this section, we briefly compare some results obtained via the
purely analytic strategies presented here with those obtained
numerically. In Table 1, values of f 00ð0Þ and g00ð0Þ for some cases
obtained analytically have been compared with those calculated
numerically.

Table 2 shows a comparison between values of h0ð0Þ in different
Prandtl numbers for several cases obtained by the analytic solu-
tions and those quantified numerically.

According to the comparison outcome, it is easy to confirm that
regarding the present highly nonlinear coupled equations, the
parameter expansion technique (2nd order HPM) relatively fails
to provide considerably more accurate results than the 1st order
Fig. 5. Comparison of f 0ðgÞ (upper) and g0ðgÞ (lower) obtained analytically, 1st order
HPM (red) and numerically (blue) where b ¼ K ¼ M ¼ R ¼ 0.
HPM respecting the studied range. In other words, accounting
the computational cost, the 1st order HPM solution is much more
appreciated. Therefore, we shall proceed with the visualization of
the results in an extended form considering the 1st order HPM
solution.
Fig. 6. velocity profiles (f 0ðgÞ (blue) and g0 ðgÞ (red)) where b ¼ M ¼ K ¼ 0.



Fig. 8. velocity profiles (f 0ðgÞ (blue) and g0ðgÞ (red)) where b ¼ K ¼ 1;M ¼ 2.

Fig. 9. values of �f 00ð0Þ (red) and �g00ð0Þ (blue) as functions of stretching ratio
(horizontal axis) where M ¼ K ¼ 0.
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Besides, Fig. 5 has been plotted to serve as a comparison
between the two approaches (1st order HPM and numeric) for
f 0ðgÞ and g0ðgÞ in the pure Newtonian case.

It is worth mentioning that here; the proposed homotopy struc-
ture with the artificial perturbation parameter was constructed in
such a way being easily expandable by the formal straightforward
method (Taylor method). By choosing an amenable auxiliary linear
operator as well as applying the rule of no-secular terms the trun-
cated orders of the series solution could be simply obtained. Nor-
mally, by increasing the series terms, more accurate solutions are
expected (as observed respecting the present nonlinearity); but
undeniably, the convergence acceleration highly depends on the
nature of the nonlinearity (as examined in the present research).
Obviously, each nonlinear solver has its merits; e.g. HAM directly
uses the Taylor method for expansion with no option to apply
other existing perturbation techniques; besides, because the initial
guess is not based on a firm principle, usually many series terms
are applied to ensure an admissible convergence (in addition to
securing the controlling parameter). Nevertheless, HAM could usu-
ally benefit from the convergence accelerating parameter leading
to a very fast convergence in some problems; whilst, such a param-
eter does not exist in the classic HPM strategy (for more informa-
tion see [29–34]).

7. Visualization and discussion

In this section, it is presented sufficient figures to express the
quality of the obtained analytic solutions (1st order HPM). In the
first place, it is referred to Table 3 which qualitatively shows the
effect of the engaged parameters on the factors of engineering
interest.

Figs. 6–8 express the behaviors of f 0ðgÞ and g0ðgÞ in different
stretching ratios (c) and in three different stations of
b ¼ M ¼ K ¼ 0, b ¼ K ¼ 1;M ¼ 0 and b ¼ K ¼ 1;M ¼ 2 respec-
tively. According to these figures it is readily confirmed that
increasing the stretching ratio results in enhancing both the zeroth
values f 00ð0Þ and g00ð0Þ. Figs. 9–11 show the quantities of f 00ð0Þ and
g00ð0Þ as functions of stretching ratio in various Deborah
numbers and for three stations of M ¼ K ¼ 0, K ¼ 1;M ¼ 0 and
M ¼ 1;K ¼ 0 respectively. Examining the figures reveals a stronger
effect by the imposed magnetic field compared to the Darcy poros-
ity effect. Figs. 12–13 show the topographical view of f 00ð0Þ and
g00ð0Þ as functions of stretching ratio and Deborah number where
M ¼ K ¼ 0. Based on these figures, the enhancing effect of Deborah
Fig. 7. velocity profiles (f 0 ðgÞ (blue) and g0ðgÞ (red)) where b ¼ K ¼ 1;M ¼ 0.
Fig. 10. values of �f 00ð0Þ (red) and �g00ð0Þ (blue) as functions of stretching ratio
(horizontal axis) where K ¼ 1;M ¼ 0.



Fig. 11. values of �f 00ð0Þ (red) and �g00ð0Þ (blue) as functions of stretching ratio
(horizontal axis) where K ¼ 0;M ¼ 1.

Fig. 12. topographical view of �f 00ð0Þ as a function of c and b where M ¼ K ¼ 0;
0 6 c 6 1 and 0 6 b 6 1:5.

Fig. 13. topographical view of �g00ð0Þ as a function of c and b where M ¼ K ¼ 0;
0 6 c 6 1 and 0 6 b 6 1:5.
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number on the normalized skin friction coefficient is evident. In
other words, by getting further from the Newtonian fluids (being
in accordance with the UCM constitutional model) the values of
engineering interest rise accordingly. Figs. 14–15 betray the con-
centration profiles in various stretching ratios and with respect
to three stages of Sc ¼ 0:5, Sc ¼ 1 and Sc ¼ 2 where the hydrody-
namic factors are b ¼ M ¼ K ¼ 0 and b ¼ K ¼ 1:5;M ¼ 0 respec-
tively. As shown in Table 3, by increasing Schmidt number, an
increase within the normalized Sherwood number is expected. In
Fig. 16, the topographical view of /0ð0Þ is depicted as a function
of stretching ratio and porosity parameter where the magnetic
parameter and Deborah number are equal to zero and Sc ¼ 1.
Fig. 17 shows analogous quantity as a function of stretching ratio
and Deborah number where the both factors associated with mag-
netic and porosity effects are zero. Fig. 18 shows/0ð0Þ as a function
of Deborah number and magnetic parameter where Sc ¼ 10 and
K ¼ 0 and flow is axisymmetric. This figure shows that both the
magnetic parameter and Deborah number express minor effects
Fig. 14. /ðgÞ where b ¼ M ¼ K ¼ 0 (blue: Sc ¼ 0:5, red: Sc ¼ 1, black: Sc ¼ 2).

Fig. 15. /ðgÞ where b ¼ K ¼ 1:5;M ¼ 0 (blue: Sc ¼ 0:5, red: Sc ¼ 1, black: Sc ¼ 2).



Fig. 19. topographical view of �/0ð0Þ as a function of Sc and c where
K ¼ M ¼ b ¼ 0; 0 6 c 6 1 and 0:5 6 Sc 6 100.

Fig. 20. hðgÞ where b ¼ K ¼ M ¼ 0; Sc ¼ 1;Nb ¼ 10 (blue: Pr ¼ 0:5, red: Pr ¼ 1,
black: Pr ¼ 2).

Fig. 21. hðgÞwhere b ¼ K ¼ M ¼ 0; Sc ¼ 1;Nb ¼ 1 (blue: Pr ¼ 0:5, red: Pr ¼ 1, black:
Pr ¼ 2).

Fig. 16. topographical view of �/0ð0Þ as a function of K and c where
M ¼ b ¼ 0; Sc ¼ 1; 0 6 c 6 1 and 0 6 K 6 1:5.

Fig. 18. topographical view of �/0ð0Þ as a function of b and M where
K ¼ 0; Sc ¼ 1; c ¼ 1; 0 6 b 6 1 and 0 6 M 6 2.

Fig. 17. topographical view of �/0ð0Þ as a function of b and c where
M ¼ K ¼ 0; Sc ¼ 1; 0 6 c 6 1 and 0 6 b 6 1:5.
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on the normalized Sherwood number respecting the studied
ranges. Fig. 19 illustrates /0ð0Þ as a function of Schmidt number
and stretching ratio where b ¼ M ¼ K ¼ 0. Figs. 20–22 show the
temperature profiles in various values of stretching ratio and in dif-
ferent stages of Pr ¼ 0:5, Pr ¼ 1 and Pr ¼ 2 where Sc ¼ 1 and in
three stations of b ¼ K ¼ M ¼ 0;Nb ¼ 10, b ¼ K ¼ M ¼ 0;Nb ¼ 1
and b ¼ K ¼ 1;M ¼ 0;Nb ¼ 1 respectively. Figs. 23–26 show topo-
graphical view of the normalized convective heat transfer coeffi-
cient h0ð0Þ as functions of Nb; c, Sc; c, b; c and Pr; c respectively. It



Fig. 22. hðgÞ where b ¼ K ¼ 1;M ¼ 0; Sc ¼ 1;Nb ¼ 1 (blue: Pr ¼ 0:5, red: Pr ¼ 1,
black: Pr ¼ 2).

Fig. 23. �h0ð0Þ where b ¼ K ¼ M ¼ 0; Sc ¼ Pr ¼ 1; 0 6 c 6 1, 1 6 Nb 6 6.

Fig. 24. �h0ð0Þ where b ¼ K ¼ M ¼ 0;Nb ¼ Pr ¼ 1; 0 6 c 6 1, 1 6 Sc 6 10.

Fig. 25. �h0ð0Þ where K ¼ M ¼ 0;Nb ¼ Pr ¼ Sc ¼ 1; 0 6 c 6 1, 0 6 b 6 1:5.

Fig. 26. �h0ð0Þ where K ¼ M ¼ b ¼ 0;Nb ¼ Sc ¼ 10; 0 6 c 6 1, 1 6 Pr 6 100.
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is of worth mentioning that by increasing the Brownian heat diffu-
sion parameter the normalized convective heat transfer coefficient
shrinks rather drastically. Please note that Table 3 is sufficient to
justify all the trends observed respecting the presented figures.
Therefore, here we are not to repeat the observed trends separately
for each individual case. It is only additionally stated that in the
usual range of the hydrodynamic factors of b;K and M, almost no
considerable effect on either /0ð0Þ or h0ð0Þ can be observed
(e.g. see Fig. 18). Finally, for the purely Newtonian case
(b ¼ M ¼ K ¼ 0) where Nb ¼ 0, the following correlation can be
derived from the HPM results to predict the normalized convective
heat transfer coefficient:

�h0ð0Þ ¼ 0:7425Pr0:5178ðc þ 0:9244Þ0:4786; Pr P 10; R� square � 1

ð81Þ
It should be mentioned that obviously Eq. (81) can be also

applied for calculating /0ð0Þ. Further note that this correlation falls
into deviation if Prandtl number is extremely large. To admit such
a statement, it is easy to note that if c ¼ 0 the problem turns to the
two-dimensional stretching sheet flow (in which the well-known
closed form solution for h0ð0Þ is in the form of incomplete
gamma function) where it can be simply shown asymptotically
that h0ð0Þ Pr ! 1j / Pr0:5. This is whilst Eq. (81) reveals
h0ð0Þ Pr ! 1j / Pr0:5178.

Now, the origin of such a deviation in extremely large Prandtl
numbers becomes clear
8. Conclusion

It was studied three-dimensional MHD/Porous Maxwell
nanofluids due to a bidirectional stretching surface. The problem
became a bit simplified since the thermophoresis effect was
ignored. He’s homotopy perturbation method of the 1st and 2nd
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orders were applied to solve the resulting similarity equations of
momentum. For the range of the studied parameters, the agree-
ment between the analytic results and those obtained numerically
was shown to be remarkable. It was then moved forward to solve
the rest of the transport equations simply by a numerical integra-
tion procedure. It was visualized the effect of the engaged param-
eters in a comprehensive manner. Furthermore, a correlation was
derived to predict Nusselt number for Newtonian case with
Nb ¼ 0 where the effects imposed due to the presence of magnetic
field and porosity were ignored.
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