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A B S T R A C T

Gaussian closure method is commonly used in the analysis of nonlinear stochastic systems. However, Gaussian
closure may lead to unacceptable errors when system response is very much different from being Gaussian,
and accuracy of the method decreases as the nonlinearity of the system increases. The need for better accuracy
in strongly non-linear problems has caused the development of non-Gaussian closure schemes. In this paper,
we develop a new copula-based Gaussian mixture closure method for randomly excited nonlinear systems. Our
method relies on the assumption of marginal PDF of response in terms of finite Gaussian mixture model, and the
derivation of joint PDF with aid of dependence modeling of Gaussian copula. By substituting the non-Gaussian
PDF representation into moment equations of nonlinear system, we further develop an optimization-based
closure scheme for the solution of the unknown parameters in joint PDF. In this way, PDF and thus, moments
of response of highly nonlinear system can be described in a more flexible and robust way. Effectiveness of
the new closure method is demonstrated by a nonlinear and a Duffing oscillator that are subjected to Gaussian
white noise. The results are compared with the Gaussian closure and exact solution. It has been shown that
Gaussian closure is a special case of the new closure method, and accuracy of Gaussian closure is the lower
bound of that of the new closure method.

1. Introduction

The study of behavior of non-linear dynamic systems under random
excitations has attracted considerable attention due to their numerous
applications in various fields of engineering and physical sciences [1–
4]. Generally, the response of many real mechanical and structural
systems to external random excitations can be described by non-linear
stochastic differential equations. Since only in a very few cases can
an exact closed form solutions be obtained, a variety of approximate
techniques have been developed to solve such equations [5]. Among
them, the Gaussian equivalent linearization is presently the most widely
used tool because the method allows to use up the available analytic
results from stochastic linear systems [6–8]. An alternative class of
methods relies on the derivation of moment equations, which describe
the evolution of the response statistical moments. However, the diffi-
culty encountered in using this method is that the equations for the
statistical moments of the response are not closed, and they form an
infinite hierarchy which cannot be solved exactly. This requires the
adoption of closure schemes, which essentially truncate the infinite
system of moment equations to a finite one. One of the simplest
schemes along this line is Gaussian closure. It has been shown that
there is an equivalence between the Gaussian equivalent linearization
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method and the moment equation method applied in conjunction with
Gaussian closure scheme [9,10]. This is due to the shared hypothesis of
Gaussianity of the response process, as a result of which both methods
lead to the same resolving equations and, consequently, to the same
results.

Unfortunately, accuracy of the Gaussian closure, or equivalently,
the Gaussian equivalent linearization, decreases as the nonlinearity
increases and may lead to unacceptable errors in the second mo-
ments [11–13]. Further, when the system response is very much dif-
ferent from being Gaussian, both methods do not perform as well
and may result in erroneous predictions. In practice, it is sometimes
inevitable that one is concerned with strong non-linear systems whose
non-linearities play the dominant roles. Different from those weak non-
linear systems, the response of strong non-linear systems is far from
being Gaussian. Thus there are usually some great errors resulting from
a Gaussian assumption. The need for better accuracy in strongly non-
linear problems has caused the development of non-Gaussian closure
scheme, that do not rely on a Gaussian assumption, as evidenced
in the literature [14]. The basic idea of the scheme is to assume a
non-Gaussian probability density function with adjustable parameters
for the response and to use the moment relations derived from sys-
tem equations to obtain equations for the unknown parameters. The
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truncation of moments and semi-moments (cumulants) for the non-
Gaussian closure were most extensively investigated. Non-Gaussian
closure scheme based on truncated Gram–Charlier or Edgeworth expan-
sion was developed for improving stationary moment accuracy [15,16].
However, the method is only valid for nonlinear systems with linear
damping. In addition, negative values in PDF of response may result
with this method, which is inconsistent with probability theory. In
order to satisfy the non-negativity condition, multi-Gaussian closure
method was subsequently developed, in which the approximate PDF
is constructed with the linear superposition of some two-dimensional
Gaussian PDFs [17]. However, this PDF assumption produces the corre-
lation between stationary displacement response and velocity response,
which is inconsistent with random vibration theory. Further, the multi-
Gaussian closure method also produces a large amount of nonlinear
algebraic equations, and the solution of these highly nonlinear alge-
braic equations is a tedious problem. Although exponential closure
method was further developed to alleviate this problem by the same
author, huge amount of computational cost still limits the application of
the method [18,19]. In a very recent paper, a moment-equation-copula-
based method was developed, in which copula function was introduced
to establish the correlated structures between response quantities and
excitation at different time points [20]. Since the joint distribution was
approximated through the assumed correlation structure, the equiva-
lent linearization model of the nonlinear system can be determined
according to the joint distribution. No wonder, the choice of trial
density functions is of course open and important, and as a result,
various non-Gaussian closure schemes are still underdeveloped in light
of capturing the complex behavior of response accuracy and stability
in robustness [21,22].

The goal of this paper is the development of a copula-based
Gaussian mixture closure methodology to overcome limitations of the
present non-Gaussian closure schemes. In the proposed method, we
start from assuming the marginal PDF of response in terms of Gaussian
mixture model as this model has shown strong capacity in representing
a general probability density with complex shape. With this assump-
tion, a bona fide estimated density can be guaranteed just by imposing
simple conditions on the weights of Gaussian mixture model. Next, by
virtue of the superior performance of copula function in dependence
modeling, we formulate the joint PDF of response of nonlinear system
based on the assumed marginal PDF and Gaussian copula. Different
from [20], copula function is employed to establish the correlation
between displacement response and velocity response at the same
time point so that the joint PDF of response can be conveniently
represented. Based on the property of zero mean stationary response
in most nonlinear systems, the formulated joint PDF representation is
further simplified to decrease the computational cost. Lastly, by substi-
tuting the assumed PDF representation into the moment equations of
nonlinear system, we develop an optimization-based closure procedure
for the solution of the unknown parameters in joint PDF. In this way,
the number of unknown parameters in PDF of response is not limited to
that of moment equations, and the resulting PDF is flexible in that it has
the potential to converge to a wide class of non-Gaussian distributed
PDF. In contrast to most of the existing non-Gaussian closure schemes,
the procedure for solving sets of highly nonlinear algebra equations can
be avoided.

The remainder of the paper is organized as follows. Section 2 first
briefly introduces the problem of moments of response of nonlinear
system. A new copula-based Gaussian mixture closure scheme is then
developed in Section 3. Numerical examples are finally given to demon-
strate the proposed method. Comparisons of the developed method
with the Gaussian closure and the FPK method are made.

2. Problem formulation

Consider a randomly excited non-linear multi-dimensional system
whose dynamic behavior, described by the 𝑛×1 vector of state variables
𝐗 (𝑡), is governed by the following Itô stochastic differential equation:

𝑑𝐗 (𝑡) = 𝐅 (𝐗 (𝑡) , 𝑡) 𝑑𝑡 +𝐆 (𝐗 (𝑡) , 𝑡) 𝑑𝐖 (𝑡) (1)

where 𝐅 (𝐗 (𝑡) , 𝑡) is an 𝑛 × 1 vector representing the deterministic
influences in the model, and 𝐖 (𝑡) is a zero-mean 𝑚 × 1 vector of
mathematical idealization of Gaussian white noise processes which
influence the model through the 𝑛 × 𝑚 matrix 𝐆 (𝑋 (𝑡) , 𝑡). Function 𝐅
and 𝐆 are generally non-linear; however, their functional forms are
assumed to be deterministic. Intensity of 𝐖 (𝑡) is given as

𝐸
[

𝑑𝐖 (𝑡) 𝑑𝐖𝑇 (𝑡 + 𝜏)
]

= 𝐃𝛿(𝜏) (2)

where 𝛿(⋅) denotes the Dirac’s delta function, and 𝐃 = 2𝜋𝐒 is the
constant strengths of the white noise processes, 𝐒 being the cross-power
spectral density matrix of 𝐖 (𝑡).

It is known that the response 𝐗 (𝑡) of the dynamic system as de-
scribed in Eq. (1) is a Markov vector and the probability density of the
Markov vector is governed by the FPK equation. Further, the statistic in-
formation characterized by the FPK equation can be expressed through
the response governed by the following moment propagation equations

𝜕𝐸[𝛾(𝐱)]
𝑑𝑡

=
𝑛
∑

𝑖=1
𝐸
[

𝑓𝑖 (𝐗, 𝑡)
𝜕𝛾(𝐱)
𝜕𝑋𝑖

]

+ 1
2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝐸
{

[

𝐆𝐃𝐆𝑇 ]
𝑖𝑗

𝜕2𝛾(𝐱)
𝜕𝑋𝑖𝜕𝑋𝑗

}

(3)

where the Kth-order moment of state-variables is written as 𝛾(𝑋) =
∏𝑛

𝑖=1 𝑋
𝑘𝑖
𝑖 for nonnegative integers 𝑘𝑖(𝑖 = 1, 2,… , 𝑛), 𝐾 being the summa-

tions of 𝑘𝑖, and 𝑓𝑖 (𝐗, 𝑡) is the ith component of 𝐅 (𝐗 (𝑡) , 𝑡). In general, the
nonlinear model formula in Eq. (3) will generate an infinite hierarchy
of coupled moment equations, which can be illustrated by re-expressing
Eq. (3) in a more suggestive form as

𝑀̇𝐾 = 𝐹𝐾
(

𝑀1,𝑀2,⋯ ,𝑀𝐾 ,𝑀𝐾+1,⋯
)

(4)

where
{

𝑀1,𝑀2,⋯
}

denote the infinite set of moments. As a result,
suitable closure schemes are required to truncate the infinite set of cou-
pled moment equations in the determination of approximate solution
of nonlinear stochastic differential equation in Eq. (1).

3. The copula-based Gaussian mixture closure scheme

3.1. Copula and Sklar’s theorem

Copula is a multivariate probability distribution function with uni-
formly distributed marginals. It offers a flexible way of describing
nonlinear dependence among multi-variate data in isolation from their
marginal probability distributions [23]. Mathematically, a copula func-
tion 𝐶(𝑢1,… , 𝑢𝑘) is the k-dimensional probability distribution on a unit
hypercube [0, 1]𝑘 with uniform marginal probability distributions on
[0, 1], and is defined as [24]

𝐶(𝑢1,… , 𝑢𝑘) = 𝙿𝚛[𝑈1 ≤ 𝑢1,… , 𝑈𝑘 ≤ 𝑢𝑘] (5)

where 𝑢𝑖 represents a sample of a standard uniform random variable
𝑈𝑖 (𝑖 = 1,… , 𝑘), and 𝙿𝚛(⋅) represents the probability. In this study, we
deal with bivariate distributions – the formulas are given for that case
– though they can be extended to higher dimensions.

Let us consider the joint CDF of two random variables 𝑋1 and 𝑋2,
𝐹 (𝑥1, 𝑥2) = 𝙿𝚛[𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2], continuous marginal probability
distributions of which are denoted by 𝐹1(𝑥1) (= 𝑢1) and 𝐹2(𝑥2) (= 𝑢2),
respectively. The copula function uniquely describes the dependence
structure and it is independent of the marginals if those are continuous.
Sklar’s theorem establishes the connection among 𝐹 (𝑥1, 𝑥2), 𝐹1(𝑥1), and
𝐹2(𝑥2) by using the copula function 𝐶(𝑢1, 𝑢2) as [25]

𝐹 (𝑥1, 𝑥2) = 𝐶
[

𝐹1(𝑥1), 𝐹2(𝑥2)
]

= 𝐶(𝑢1, 𝑢2) (6)

It indicates that the joint probability distribution of the two random
variables can be characterized by a copula function in terms of their
marginal distributions. An important implication of the Sklar’s theorem
is that marginal modeling and dependence modeling can be carried out
separately. From Eq. (6), the joint PDF of 𝑋1 and 𝑋2, 𝑝(𝑥1, 𝑥2), can be
obtained as

𝑝
(

𝑥1, 𝑥2
)

= 𝑝1
(

𝑥1
)

𝑝2
(

𝑥2
)

𝑐
[

𝐹1(𝑥1), 𝐹2(𝑥2)
]

(7)
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where 𝑝1(𝑥1) and 𝑝2(𝑥2) are the marginal PDFs of 𝑋1 and 𝑋2, respec-
tively, and 𝑐

[

𝐹1(𝑥1), 𝐹2(𝑥2)
]

is the copula density function, which is
given by

𝑐
[

𝐹1(𝑥1), 𝐹2(𝑥2)
]

= 𝑐(𝑢1, 𝑢2) = 𝜕2𝐶(𝑢1 ,𝑢2)∕𝜕𝑢1𝜕𝑢2 (8)

Theoretically, the joint CDF and PDF of 𝑋1 and 𝑋2 can be determined
by Eqs. (6) and (7) as long as the marginal distributions and the copula
function are known.

Since copulas fully describe multivariate dependencies, it is natural
to introduce dependence measures based on the copula only, and not
on the marginals. Such dependence measures include Pearson cor-
relation coefficient, Spearman’s correlation coefficient, and Kendall’s
correlation coefficient, etc. Among them, the most popular one is
the classical Pearson linear correlation coefficient since this measure
is strongly related to the prevalence of linear correlation model in
the simulation of multivariate data. Other copula based measures of
pairwise concordance exist, as well as multivariate extensions [26].

Many copulas such as Gaussian copula, t copula, Frank copula,
Gumble copula and Clayton copula, etc, can be used to describe the
dependence between random variables. A list of classical families of
copulas and their properties can be found in [26]. In the framework of
Pearson dependence modeling, the use of Gaussian copula and t copula
within a class of elliptical copulas is prevalent. For a bi-variate case,
the Gaussian copula with the linear correlation coefficient −1 ≤ 𝜌 ≤ 1,
which represents the strength of correlation, is given by

𝑐𝑁𝜌
(

𝑢1, 𝑢2
)

= 1
√

1 − 𝜌2
exp

⎛

⎜

⎜

⎜

⎝

2𝜌𝛷−1 (𝑢1
)

𝛷−1 (𝑢2
)

− 𝜌2
(

𝛷−1(𝑢1
)2 +𝛷−1(𝑢2

)2
)

2(1 − 𝜌)2

⎞

⎟

⎟

⎟

⎠

(9)

where 𝑐𝑁𝜌
(

𝑢1, 𝑢2
)

is the density of Gaussian copula, and 𝛷(⋅) represents
the standard cumulative distribution function. The bi-variate t copula
with the correlation coefficient 𝜌 and the degree-of freedom parameter
𝜆, 𝑐𝑡𝜌,𝜆

(

𝑢1, 𝑢2
)

, is given by

𝑐𝑡𝜌,𝜆
(

𝑢1, 𝑢2
)

= 𝜌−
1
2

𝛤
(

𝜆+2
2

)

𝛤
(

𝜆
2

)

[

𝛤
(

𝜆+2
2

)]2

[

1 +
𝜁21+𝜁

2
2−2𝜌𝜁1𝜁2

𝜆(1−𝜌)2

]− 𝜆+2
2

∏2
𝑖=1

(

1 +
𝜁2𝑖
𝜆

)− 𝜆+2
2

(10)

where 𝛤 (𝑝) = ∫ ∞
0 𝑒−𝑡𝑡𝑝−1𝑑𝑡 is the Gamma function satisfying 𝛤 (𝑝 + 1) =

𝑝𝛤 (𝑝), 𝜁𝑖 = 𝑡−1𝜆
(

𝑢𝑖
)

(𝑖 = 1, 2), 𝑡𝜆 (⋅) represents the cumulative distribution
function of the unary standard t distribution. It has been shown that
Gaussian copula is symmetrical, and is a limiting case of 𝑡 copula
function [24].

3.2. Copula-based PDF representation

It has been mentioned that the choice of trial density of response is
an important issue in various version of non-Gaussian closure schemes.
As shown in [16], when an inappropriate choice is made the approx-
imate solution may become worse although the order of the method
goes higher. In this study, the non-Gaussian marginal probability den-
sity of response is expressed in terms of finite mixture Gaussian distri-
bution as this model offers a flexible and robust tool in representing
general probability densities that show complex shapes, especially for
dynamic responses of nonlinear systems [27].

Mathematically, PDF of a Gaussian mixture model is given by [28]

𝑝𝐺𝑀 (𝑥, 𝐯) =
𝐾
∑

𝑘=1
𝜙𝑘𝑓

(

𝑥|𝜇𝑘, 𝜎
2
𝑘
)

(11)

where 𝐾 denotes the number of Gaussian densities in the mixture,
𝜙𝑘, 𝑘 = 1,… , 𝐾 are relative weights of the Gaussian densities satisfying

nonnegative and sum-to-one, i.e., ∑𝐾
𝑘=1 𝜙𝑘 = 1, and 𝜙𝑘 ≥ 0 for ∀𝑘, and

𝑓
(

𝑥|𝜇𝑘, 𝜎2𝑘
)

denotes the Gaussian PDF with mean 𝜇𝑘 and standard
deviation 𝜎𝑘. Thus, the distribution parameters of the Gaussian mix-
ture model are summarized as 𝐯 =

{

𝜙1,… , 𝜙𝐾 , 𝜇1,… , 𝜇𝐾 , 𝜎1,… , 𝜎𝐾
}

.
Through an appropriate choice of its components and weights, a Gaus-
sian mixture model is sufficiently able to model quite complex distri-
butions.

By means of the Gaussian mixture model in Eq. (11), marginal
probability densities of response of nonlinear system in Eq. (1), i.e., PDF
of displacement response 𝑋(𝑡), and PDF of velocity response 𝑋̇(𝑡), can
be expressed in the form

𝑓𝑋 (𝑥) =
𝑚
∑

𝑖=1
𝜙𝑖𝑓

(

𝑥| 0, 𝜎2𝑖
)

(12)

and

𝑓𝑋̇ (𝑥̇) =
𝑛
∑

𝑗=1
𝜙𝑗𝑓

(

𝑥̇| 0, 𝜎2𝑗
)

(13)

respectively, where 𝑖 and 𝑗 are the number of Gaussian densities. Since
stationary response of most nonlinear system has zero mean, without
loss of generality, mean value of each Gaussian component in Eqs. (12)
and (13) can be assumed to be zero. According to Sklar’s theorem, once
the marginal PDF has been determined, the joint PDF of response of the
nonlinear system can be further represented with aid of the dependence
structure through Gaussian copula as

𝑓 (𝑥, 𝑥̇) = 𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇) 𝑐
(

𝐹𝑋 (𝑥)𝐹𝑋̇ (𝑥̇)
)

(14)

where the marginal CDF 𝐹𝑋 (𝑥) and 𝐹𝑋̇ (𝑥̇) can be directly obtained
from PDF of displacement response 𝑋(𝑡) and velocity response 𝑋̇(𝑡),
respectively. It has to be noted that the joint PDF of response depends
on the selection of copula functions since the dependence structure
between the displacement response 𝑋(𝑡) and the velocity response 𝑋̇(𝑡)
has been fully modeled in the copula function 𝑐

(

𝐹𝑋 (𝑥)𝐹𝑋̇ (𝑥̇)
)

, as
shown in Eq. (14).

3.2.1. The selection of copula
Theoretically, any available copula functions can be used in the

representation of the joint PDF of response as shown in Eq. (14), and
various copula functions may lead to different accuracy of approxi-
mations. Although the effect of the selection of copula functions on
the accuracy of the results can be eliminated to some extent by a
subsequent parameter optimization procedure, as will be shown in
the following, the criteria for the selection of copula in the context
of nonlinear random vibration analysis still needs to be examined. In
order to accommodate the classical linear correlation structure between
displacement response and velocity response in random vibration the-
ory, the Pearson dependence measure is preferred to be adopted. In
this context, Gaussian copula and t copula are the only left suitable
candidates among various available copulas in the estimation of PDF
of response of nonlinear systems as they readily describe the linear
dependence model, and the values of the correlation coefficients can
approach one. Further, since these two copula functions involve differ-
ent number of unknown parameters, the copula should be selected so as
the unknown parameters could be determined according to the avail-
able knowledge of the nonlinear system. In addition, copula function
should make the form of joint PDF of response as concise as possible so
that the subsequent copula-based closure method can be conveniently
generalized.

It is worth mentioning that the only available information of an
arbitrary randomly excited nonlinear system is that the stationary
response 𝑋(𝑡) and 𝑋̇(𝑡) are statistical uncorrelated random variables at
arbitrary time point, i.e., 𝐸

(

𝑋𝑋̇
)

= 𝐸
(

𝑋̇𝑋
)

= 0. Under this condition,
we firstly consider the Gaussian copula in the context of representation

3
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of joint PDF of response. By substituting (9) into Eq. (14), the joint PDF
of response yields

𝑓 (𝑥, 𝑥̇) = 𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇) 𝑐𝑁𝜌
(

𝐹𝑋 (𝑥)𝐹𝑋̇ (𝑥̇)
)

=
𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇)
√

1 − 𝜌2

× exp

⎛

⎜

⎜

⎜

⎝

2𝜌𝛷−1 (𝐹𝑋 (𝑥)
)

𝛷−1 (𝐹𝑋̇ (𝑥̇)
)

− 𝜌2
(

𝛷−1(𝐹𝑋 (𝑥)
)2 +𝛷−1(𝐹𝑋̇ (𝑥̇)

)2
)

2
(

1 − 𝜌2
)

⎞

⎟

⎟

⎟

⎠

(15)

Obviously, there exists only one unknown parameter, known as linear
correlation coefficient 𝜌 of 𝑋(𝑡) and 𝑋̇(𝑡), in the representation of joint
PDF of response as long as the marginal PDFs of response can be
determined. In this case, coefficient 𝜌 can be derived by considering
the fact that 𝐸

(

𝑋𝑋̇
)

= 𝐸
(

𝑋̇𝑋
)

= 0. Note that covariance matrix of
displacement response 𝑋(𝑡) and velocity response 𝑋̇(𝑡) can be expressed
as
∑

=
[

𝐸
(

𝑋2) 𝐸
(

𝑋𝑋̇
)

𝐸
(

𝑋̇𝑋
)

𝐸
(

𝑋̇2)

]

=
[

𝐸
(

𝑋2) 0
0 𝐸

(

𝑋̇2)

]

(16)

which indicates that linear correlation coefficient between 𝑋(𝑡) and
𝑋̇(𝑡) is zero, or equivalently, the density function of Gaussian copula
in the joint PDF of response 𝑐𝑁𝜌

[

𝐹𝑋 (𝑥) , 𝐹𝑋̇ (𝑥̇)
]

= 1. In this way, the
dependence structure between the marginal PDFs 𝑓𝑋 (𝑥) and 𝑓𝑋̇ (𝑥̇) can
be conveniently determined via the Gaussian copula, and correspond-
ingly, the joint PDF of response of nonlinear system in Eq. (15) can be
further simplified as

𝑓 (𝑥, 𝑥̇) = 𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇) =
𝑚
∑

𝑖=1
𝜙𝑖𝑓

(

𝑥| 0, 𝜎2𝑖
)

⋅
𝑛
∑

𝑗=1
𝜙𝑗𝑓

(

𝑥̇| 0, 𝜎2𝑗
)

(17)

From the joint PDF representation in Eq. (17), it can be deduced that
displacement response and velocity response are statistical independent
variables. This is a direct result from the fact that linear correlation
coefficient in Gaussian copula equals zero. However, this independence
structure between 𝑋(𝑡) and 𝑋̇(𝑡) cannot be assumed a priori because
only uncorrelation condition can be imposed on these two variables,
and one has to further determine the correlation coefficients according
to some posterior knowledge. In this regard, it is rational to firstly
assume a general PDF formulation and then to derive the correlation
structure via Gaussian copula to represent joint PDF of the response.

We next examine the case when another candidate, t copula, is used
in the representation of joint PDF of response. By substituting (10) into
Eq. (14), we then have

𝑓 (𝑥, 𝑥̇) = 𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇) 𝑐𝑡𝜌,𝜆
(

𝐹𝑋 (𝑥) , 𝐹𝑋̇ (𝑥̇)
)

= 𝑓𝑋 (𝑥) 𝑓𝑋̇ (𝑥̇) 𝜌−
1
2

𝛤
(

𝜆+2
2

)

𝛤
(

𝜆
2

)

[

𝛤
(

𝜆+2
2

)]2

[

1 +
𝜁21+𝜁

2
2−2𝜌𝜁1𝜁2

𝜆(1−𝜌)2

]− 𝜆+2
2

∏2
𝑖=1

(

1 +
𝜁2𝑖
𝜆

)− 𝜆+2
2

(18)

Note that there exist two unknown parameters, i.e., the linear cor-
relation coefficient 𝜌 and the degree-of freedom parameter 𝜆, in the
representation of t copula-based joint PDF of response. In this case, 𝜌
and 𝜆 cannot be determined simultaneously with the only condition
𝐸
(

𝑋𝑋̇
)

= 𝐸
(

𝑋̇𝑋
)

= 0, and as a result, one has to assume addition
condition to determine these two parameters, which may lead to errors.
More importantly, even if 𝜌 and 𝜆 can be determined, the joint PDF of
response in Eq. (18) cannot be expressed separately as that in Eq. (17).
Consequently, the form of the t copula-based joint PDF of response will
be too complicated to develop a subsequent truncation scheme.

We emphasize that, although copulas from different families can
all be used to model the dependence structure between displacement
response and velocity response theoretically, one has to determine
the relations between the linear correlation and other dependence
measures, i.e., Spearman’s correlation, or Kendall’s correlation, which

may require additional assumptions. Therefore, the Gaussian copula is
selected in this study since the Gaussian copula-based PDF represen-
tation in Eq. (17) is a justified and a general choice in the context
of non-Gaussian closure scheme for response estimation of nonlinear
systems.

3.3. The new closure scheme

Based on the Gaussian copula-based joint PDF representation in
Eq. (17), the joint moment of the response of order (𝑠 + 𝑡) can be
computed as

𝐸
(

𝑋𝑠𝑋̇𝑡) = ∬∞
𝑥𝑠𝑥̇𝑡𝑓 (𝑥, 𝑥̇)𝑑𝑥𝑑𝑥̇

= ∬∞
𝑥𝑠𝑥̇𝑡

𝑚
∑

𝑖=1
𝜙𝑖𝑓

(

𝑥 ||
|

0, 𝜎2𝑖
)

⋅
𝑛
∑

𝑗=1
𝜙𝑗𝑓

(

𝑥̇ ||
|

0, 𝜎2𝑗
)

𝑑𝑥𝑑𝑥̇

= ∫∞
𝑥𝑠

𝑚
∑

𝑖=1
𝜙𝑖𝑓

(

𝑥 ||
|

0, 𝜎2𝑖
)

𝑑𝑥∫∞
𝑥̇𝑡

𝑛
∑

𝑗=1
𝜙𝑗𝑓

(

𝑥̇ ||
|

0, 𝜎2𝑗
)

𝑑𝑥̇

= 𝐸 (𝑋𝑠)𝐸
(

𝑋̇𝑡)

(19)

Obviously, according to Eq. (19), joint moment of the response can
be obtained by separately determining the moment of displacement
response and velocity response, respectively. From probability theory,
k-order moment of Gaussian-distributed variable, 𝑌 , with zero mean
and variance of 𝜎2, can be derived as

𝐸
(

𝑌 𝑘) = 𝜎𝑟𝐸 (𝑍𝑟) (20)

where 𝐸 (𝑍𝑟) is the r -order moment of standard normal variable, 𝑍,
given by

𝐸 (𝑍𝑟) =
{

0 𝑟 = 1, 3, 5,⋯
(𝑟 − 1) (𝑟 − 3)⋯ 3 ⋅ 1 𝑟 = 2, 4, 6,⋯

(21)

Thus, moment of displacement response 𝑋(𝑡) of order 𝑠 can be com-
puted as

𝐸 (𝑋𝑠) =

⎧

⎪

⎨

⎪

⎩

0 𝑠 = 1, 3, 5,⋯

(𝑠 − 1) (𝑠 − 3)⋯ 3 ⋅ 1 ⋅
𝑚
∑

𝑖=1
𝜙𝑖𝜎

𝑠
𝑖 𝑠 = 2, 4, 6,⋯ (22)

and moment of velocity response 𝑋̇(𝑡) of order 𝑟 yields

𝐸
(

𝑋̇𝑡) =

⎧

⎪

⎨

⎪

⎩

0 𝑡 = 1, 3, 5,⋯

(𝑡 − 1) (𝑡 − 3)⋯ 3 ⋅ 1 ⋅
𝑛
∑

𝑗=1
𝜙𝑗𝜎

𝑡
𝑗 𝑡 = 2, 4, 6,⋯ (23)

By substituting Eqs. (22) and (23) into Eq. (19), the joint moments of
response, 𝐸

(

𝑋𝑠𝑋̇𝑡), can be represented in a very concise form. With
sets of formulated moments of response, moment equation of nonlinear
systems can be rewritten in the form

𝑀̇𝐾 = 𝐹𝐾
(

𝐸
(

𝑋2) , 𝐸
(

𝑋4) ,⋯ , 𝐸
(

𝑋̇2) , 𝐸
(

𝑋̇4) ,⋯
)

𝐾 = 1, 2,⋯ (24)

by following the suggestive form of moment equation as in Eq. (4).
For the stationary response, since the joint moment 𝑀𝑘 is a time-
independent constant, moment equation in Eq. (24) can be further
reduced to

0 = 𝐹𝐾
(

𝐸
(

𝑋2) , 𝐸
(

𝑋4) ,⋯ , 𝐸
(

𝑋̇2) , 𝐸
(

𝑋̇4) ,⋯
)

𝐾 = 1, 2,⋯ (25)

It is worth mentioning that only even moments of response are involved
in the moment equation since the odd moment of response vanishes
in the computation of displacement response or velocity response, as
shown in Eqs. (22) and (23). As a result, the computational cost can be
significantly reduced in the procedure of closure.

Similar as the conventional moment equations, the developed
moment equation also form an infinite coupled system, and closure
scheme is therefore required to truncate Eq. (25) to a closed system
of equations. For finite number of Gaussian densities that constitute
the marginal PDF of response, the prediction of moment of response
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depends on the determination of the set of coefficients
{

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖,
𝜎𝑗
}𝑖=𝑚,𝑗=𝑛
𝑖,𝑗=1 . For this purpose, we firstly define the cost function in terms

of the developed moment equation as

𝛤
(

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
)

=
𝐾
∑

𝑙=1
𝐹 2
𝑙
(

𝐸
(

𝑋2) , 𝐸
(

𝑋4) ,… , 𝐸
(

𝑋̇2) , 𝐸
(

𝑋̇4) ,…
)

𝐾 = 1, 2,… (26)

Then, the set of couples
{

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
}𝑖=𝑚,𝑗=𝑛
𝑖,𝑗=1 are determined from

minimizing 𝛤
(

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
)

by substituting the formulation of joint
moments of response in Eq. (19) into the cost function in Eq. (26). Thus,
the estimation of moment of response from the new closure scheme is
equivalent to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find ∶
{

𝜙𝑖, 𝜎𝑖
}𝑚
𝑖=1 ,

{

𝜙𝑗 , 𝜎𝑗
}𝑛
𝑗=1

Minimize ∶𝛤
(

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
)

subjectto ∶𝜙𝑖 ≥ 0,
𝑚
∑

𝑖=1
𝜙𝑖 = 1;𝜙𝑗 ≥ 0,

𝑛
∑

𝑗=1
𝜙𝑗 = 1

(27)

Since the optimized set of couples
{

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
}𝑖=𝑚,𝑗=𝑛
𝑖,𝑗=1 can be obtained

during the above procedure, estimation of the moment of response can
thus be accomplished. In this way, the number of unknown parameters
{

𝜙𝑖, 𝜙𝑗 , 𝜎𝑖, 𝜎𝑗
}𝑖=𝑚,𝑗=𝑛
𝑖,𝑗=1 is not limited to that of moment equations in the

proposed closure scheme, and the resulting PDF is thus flexible in that
it has the potential to converge to a wide class of non-Gaussian dis-
tributed PDF. More importantly, in contrast to the present non-Gaussian
closure methods, the procedure for solving set of highly nonlinear
algebra equations is avoided. No wonder, the more the number of
moment equations are involved, the more statistical information of the
response can be estimated. However, the number of moment equations
adopted in the optimization, i.e., value of 𝐾, directly influences the
computational complexity. On the other hand, the number of Gaussian
densities in marginal PDF should also be chosen carefully to achieve
a balance between the accuracy and efficiency. A smaller value of 𝑚
and 𝑛 may reduce the ability of represent the details in the PDF of
response. Obviously, with the combination of 𝑚 = 𝑛 = 1, and 𝐾 = 2,
the new closure will be reduced to the well-known Gaussian closure
scheme, and in this case, highly non-Gaussian distributed response
cannot be accurately estimated. According to the author’s experience,
the combinations of small values of 𝑚, 𝑛, and 𝐾 (i.e., 𝑚 = 2, 𝑛 = 2,
and 𝐾 = 2) is generally sufficient for the target accuracy of problems
of interests. The choice of 𝑚, 𝑛, and 𝐾 will be discussed in more details
in the following numerical examples.

4. Numerical examples

4.1. Non-linear oscillator under Gaussian white noise

The first example considers the following oscillator with nonlinear
damping and stiffness, which is subjected to Gaussian white noise exci-
tation. Unlike the nonlinear system with linear damping, it is difficult
to determine the steady-state probability density of nonlinear damped
system even if the stiffness of the system is linear [1]. The equation of
motion of such a system is described as

𝑚𝑥̈ + 𝑞 (𝐸) 𝑥̇ + 𝑔 (𝑥) = 𝐹 (𝑡) (28)

where 𝐹 (𝑡) is the Gaussian white noise with spectral density 𝑆0, 𝐸
represents the total energy of system, expressed as

𝐸 = 1
2
𝑚𝑥̇2 + ∫

𝑥

0
𝑔 (𝑡)𝑑𝑡 (29)

and 𝑞 (𝐸) is the function of 𝐸. The exact PDF of response can be
obtained by FPK method, i.e,

𝑓 (𝑥, 𝑥̇) = 𝐶 exp
[

− 1
𝜋𝑆0 ∫

𝐸

0
𝑞 (𝑢)𝑑𝑢

]

(30)

where 𝐶 is the normalization constant of PDF. In this study, 𝑞(𝐸) and
𝑔(𝑥) are adopted as those in [29], then the nonlinear system becomes

𝑥̈ + 4ℎ

(

1
2
𝑥̇2 +

𝜔2
0
2
𝑥2 + 𝜀

4
𝑥4
)

𝑥̇ + 𝜔2
0𝑥 + 𝜀𝑥3 = 𝜎𝐹 (𝑡) (31)

where parameters of the nonlinear oscillator are given as ℎ = 0.1, 𝜎 = 1,
and 𝜔2

0 = 1. Spectral intensity 𝑆0 are selected as 1 and 10, and the
nonlinear intensity 𝜀 varies from 1 to 10, respectively, to examine the
effect of level of excitation intensity and nonlinearity of system to the
performance of the developed method.

In this example, order of joint moments of response, 𝐾, is fixed as 2
in all analyses, and the number of Gaussian densities in marginal PDF of
displacement response and velocity response, i.e., values of 𝑚 and 𝑛, are
equally adopted as 𝑚 = 𝑛 = 1, 2 and 3, respectively, to independently
investigate the effect of the selection of number of Gaussian densities on
the performance of the developed method. Under low level of excitation
intensity, i.e., 𝑆0 = 1, Figs. 1(a) and 1(b) show the estimated variance
of displacement response and velocity response with different values of
𝜀 from FPK, Gaussian closure, and the developed copula-based Gaussian
mixture closure method, respectively. Note that since the stochastic
excitation is Gaussian distributed, the results from FPK method are the
exact solution of the problem. Obviously, the conventional Gaussian
closure yields the worst results in both cases. For example, variance of
the velocity response from Gaussian closure is beyond two times of the
exact one. It is also seen that results from Gaussian closure are identical
to those from the developed method with the case 𝑚 = 𝑛 = 1, and 𝐾 = 2,
illustrating that Gaussian closure is the special case of the new closure
method. On the other hand, with increasing the number of Gaussian
densities in marginal PDF, i.e., 𝑚 = 𝑛 = 2 and 3, accuracy of the new
closure method obviously improves even for the case of high level of
nonlinearity (i.e., 𝜀 = 10) for both displacement response and velocity
response. In particular, the estimated variance of displacement response
from the new closure method is almost in accordance with the exact one
for high level of nonlinearity, e.g., 𝜀 > 5. This means that accuracy of
Gaussian closure is the lower bound of that of the developed closure
scheme. It is also worth mentioning that further increasing the value of
𝑚 and 𝑛 (i.e., from 2 to 3) does not significantly improve accuracy of
the solution. This is the direct result from the optimization procedure as
it has been found that the optimized Gaussian mixture model with two
components is very similar as that with three Gaussian components.
Therefore, 𝑚 and 𝑛 are chosen as 2 for simplicity in the following of
this paper.

When the strength of random excitation is increased, i.e., 𝑆0 = 10,
the estimated variance of displacement response and velocity response
with different values of 𝜀 from FPK, Gaussian closure, and the devel-
oped method are described in Figs. 2(a) and 2(b). In this case, we only
examine the performance of the developed method under the condition
𝐾 = 2, and 𝑚 = 𝑛 = 2. Compared with the results in Fig. 1, the new clo-
sure method consistently yields more accurate predictions with respect
to the conventional Gaussian closure, illustrating that performance of
the new method is insensitive to the excitation intensity.

4.2. Duffing oscillator subject to Gaussian white noise

We next consider a Duffing nonlinear SDOF oscillator with linear
damping and cubic nonlinear spring, which has been applied to model
many mechanical systems. The equation of motion of is given by

𝑥̈ + 𝛽𝑥̇ + 𝜔2
0
(

𝑥 + 𝜀𝑥3
)

= 𝐹 (𝑡) (32)

where parameters of the nonlinear system are given as 𝛽 = 1, and
𝜔2
0 = 1. In order to examine the performance of the new closure method

to different level of nonlinearity and excitation intensity, 𝜀 is adopted
from 1 to 5, and the intensity of Gaussian white noise 𝐹 (𝑡), 𝑆0, is
adopted as 1∕𝜋 and 5∕𝜋, respectively. In this example, the number of
Gaussian densities in both marginal PDFs are fixed as two, i.e., 𝑚 =
𝑛 = 2, and order of joint moments of response, 𝐾, is specified as 2 and
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Fig. 1. The variance of response of nonlinear oscillator under Gaussian white noise
(

𝑆0 = 1
)

.

3, respectively, to investigate the effect of the selection of 𝐾 on the
performance of the new closure method.

With low level of excitation intensity, i.e., 𝑆0 = 1∕𝜋, Figs. 3(a)
and 3(b) describe the estimated variance of displacement response and
velocity response with different values of 𝐾 from FPK, Gaussian closure,
and the developed copula-based Gaussian mixture closure method,
respectively. The exact analytic solution of the FPK equation is used
to check the accuracy of the methods. For the nonlinear oscillator with
linear damping, since the stationary displacement response and velocity
response are statistical independent variables each with zero mean,
both Gaussian closure and the new closure method could yield the exact
variance of velocity response, as shown in Fig. 3(b). In this case, only
variance of displacement response is considered. Similar observations
can be made as in the previous example. Accuracy of Gaussian closure,
or equivalently the new closure scheme with the case 𝑚 = 𝑛 = 1 and
𝐾 = 2, is obviously improved by increasing the number of Gaussian
densities in marginal PDF, values of 𝑚 and 𝑛, from 1 to 2 with the
fixed order of moments 𝐾 = 2. On the other hand, when the number
of Gaussian densities is kept the same, i.e., 𝑚 = 𝑛 = 2, it can be found
that accuracy of the new closure method increases with the order of
moments 𝐾. However, further increasing the order of moments, i.e., 𝐾

Fig. 2. The variance of response of nonlinear oscillator under Gaussian white noise
(

𝑆0 = 10
)

.

varies from 2 to 3, does not significantly improve the accuracy of the
new closure method, as shown in Fig. 3(a). This means that, in order
to obtain satisfactory results for problems of interests, one can choose
relatively small values of 𝑚, 𝑛, and 𝐾 for efficiently implementing the
developed closure method.

When the intensity of Gaussian white noise is increased to 𝑆0 =
5∕𝜋, the estimated variance of displacement response and velocity
response with different values of 𝜀 from FPK, Gaussian closure, and
the developed method are described in Figs. 4(a) and 4(b). Again,
the new method achieves better accuracy than the Gaussian closure
method with the combination of high level of excitation intensity and
nonlinearity.

5. Conclusion

In this paper, a novel copula-based Gaussian mixture closure method
is developed for stochastic response analysis of nonlinear systems.
We firstly assume the marginal PDF of response in terms of Gaussian
mixture model, and then formulate the joint PDF of response of nonlin-
ear system based on the assumed marginal PDF and Gaussian copula.
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Fig. 3. The variance of response of Duffing oscillator under Gaussian white noise
(

𝑆0 = 1∕𝜋
)

.

By substituting non-Gaussian PDF representation into the moment
equations of nonlinear system, we further develop an optimization-
based closure scheme for the solution of the unknown parameters in
joint PDF. In this way, the number of unknown parameters in PDF of
response is not limited to that of moment equations, and the resulting
PDF is flexible in that it has the potential to converge to a wide class
of non-Gaussian distributed PDF. Also, in contrast to the existing non-
Gaussian closure schemes, the procedure for solving sets of highly
nonlinear algebra equations can be avoided, and as a result, the compu-
tational cost of the new closure method can be significantly decreased.
Effectiveness of the new closure method is finally demonstrated by a
nonlinear and a Duffing oscillator that are subjected to Gaussian white
noise. Comparisons with the exact results demonstrate the superior
accuracy of the new closure method even for a high level of system
nonlinearity. We note that Gaussian closure is a special case of the new
closure method, and accuracy of Gaussian closure is the lower bound
of that of the new closure method. In the future work, the developed
copula-based Gaussian mixture closure method will be generalized to

Fig. 4. The variance of response of Duffing oscillator under Gaussian white noise
(

𝑆0 = 5∕𝜋
)

.

problems that involve multi-degree-of freedom nonlinear systems and
color noise excitations.
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