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A B S T R A C T

The conventional methods for failure mode analysis usually fail to identify dominant failure modes efficiently
for large structures. To overcome this issue, an approach based on representative samples is proposed, which
combines the MRS (multiple response surfaces) method with iterative strategies. The main steps are: (1) use
MRS method to approximate the system failure function piecewise and to search the multiple design points;
(2) perform deterministic structural analysis to identify failure sequences for samples in the important domain
rather than the total domain; (3) solve representative samples with iterative strategies to obtain a converged
solution based on a visualization plot. A key merit of this approach is that it can identify dominant failure
modes efficiently due to the utilization of samples with most contributions to system failure, such as design
points, etc. Numerical examples show that the proposed method can be used well to search dominant failure
modes for structures.

1. Introduction

For complex engineering structures or systems with uncertainties,
the identification of dominant failure modes can provide valuable
information for achieving a safe design and for accurate reliability
estimation. In recent years, significant attention has been paid to the
dominant failure mode analysis and reliability estimation of structures
and systems with uncertainties [1–3]. Two representative methods:
analytical methods [4–15] and simulation methods [16–27] have been
developed greatly to meet the target.

The analytical methods usually use deterministic mechanical anal-
yses and failure probability computations to search failure modes,
including criterion methods [4,5], branch and bound methods [6–
11], incremental loading methods [12–14] and approaches based on
mathematical programming [15], et al. For example, the optimality
criterion method (reported by Feng [5]) uses the means of variables
(i.e. a deterministic way) to identify the critical failure modes among
the innumerable possible failure modes. Moreover, the branch and
bound method usually uses failure probability analyses continuously
to search each failure member until system failure. This often needs
time-consuming computations of failure probability of dominant failure
modes in the event tree due to statistical dependency of the obtained
failure modes. For example, Lee and Song [7] developed an improved
branch and bound method (termed the B3 method), which can search
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the dominant failure modes efficiently and can estimate the system-
level risk accurately. Generally, the analytical methods can deal with
system reliability problems elegantly, but one of the main shortcomings
is that it needs a great number of failure sequences to be considered
especially for a large structural system with many structural elements
and a long failure path.

The simulation methods including Monte Carlo simulation (MCS)
[21–23], adaptive importance sampling schemes [24], and genetic
algorithms (GA) [25–27], et al. can provide a statistical estimation of
dominant failure modes by sampling. However, there are still some
problems when applied to a large structural system with high level
reliability. For example, a great number of simulations have to be
performed for the crude Monte Carlo simulation; a ‘‘good’’ sampling
density function is usually difficult to select due to multiple failure
sequences involved for the adaptive importance sampling schemes.
These problems mainly result from the fact that most of the randomly
generated samples are in the safe region, which do not lead to a system
failure and also do not contribute to the failure mode identification. For
this sake, Neves et al. [21] reported an improved method, which uses
limit state sample points to construct a local response surface for each
failure mode and to identify the dominant failure modes.

However, for these simulation-based approaches above, the sam-
ple points are usually randomly generated rather than elaborately
designed. This leads to low efficiency in searching the representative
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Fig. 1. Limit state sample points for two basic variables.

sample points corresponding to dominant failure modes, which only
occupy a small proportion of all sample points. Actually, if the un-
necessary computations (e.g. nonlinear mechanical analyses for sample
points corresponding to negligible failure modes) are reduced to the
maximum extent, the computational efficiency can be improved largely
for dominant failure mode analysis. Since the nonlinear mechanical
analysis is the most time-consuming task among all computations, in
particular when large structural systems are considered, the associated
cost can be saved dramatically by reducing the number of nonlinear
analyses.

Herein, we proposed an improved method for searching the domi-
nant failure modes with small number of nonlinear structural analyses.
It mainly uses targeted deterministic mechanical analyses for represen-
tative sample points to satisfy this demand. The proposed approach
combines the multiple response surfaces (MRS) method with an iter-
ative algorithm to obtain the representative sample points. Finally, its
efficiency and accuracy are discussed through examples in Section 4.

2. Samples and failure modes

2.1. Limit state sample points

Following the common simulation-based approaches, the sample
points are usually generated randomly. Therefore, most of the sample
points are in the safe region with significant likelihood, and no system
failure can be identified after a nonlinear mechanical analysis in this
case, which leads to unnecessary computations.

Herein, a simple technique is introduced for limit state sample
points. To illustrate this idea, consider a simple case with two basic
variables: resistance R and load S. Let P0(𝑅0, 𝑆0) be a common sample
point, then the limit state sample points is acquired with the fixed
resistance 𝑅0 and limit load 𝑆lim (solved by structural analysis or finite
element simulations), which is denoted by P(𝑅0, 𝑆lim), as shown in
Fig. 1.

Generally, there are many variables for structures and systems. Let
𝑦1, 𝑦2,. . . , yn1 and yn1+1, yn1+2,. . . , yn1+n2 be 𝑛1 resistance variables and
𝑛2 load variables, respectively, then the resistance vector R and load
vector S are given by

𝑹 = [𝑦1, 𝑦2,… , 𝑦𝑛1 ] (1)

𝑺 = [𝑦𝑛1+1, 𝑦𝑛1+2,… , 𝑦𝑛1+𝑛2 ] (2)

Without loss of generality, choose yn1+1 as the scaling factor, and the
load ratio vector 𝒓L is given by

𝒓L = [1, 𝑦𝑛1+2∕𝑦𝑛1+1,… , 𝑦𝑛1+𝑛2∕𝑦𝑛1+1] (3)

Then, for a structure with given R and 𝒓L, a limit load factor 𝐹lim can
be identified through a nonlinear mechanical analysis. Thus, the limit
state sample point can be specified by

SP =

{

𝑦1, 𝑦2,… , 𝑦𝑛1 , 𝐹lim[1,
𝑦𝑛1+2
𝑦𝑛1+1

,… ,
𝑦𝑛1+𝑛2
𝑦𝑛1+1

]

}

(4)

Fig. 2. One-story and one-bay frame.

Table 1
Sectional properties of elements.

Elements A/m2 I/m4

E1, E4 4 × 10−3 3.58 × 10−5

E2, E3 4 × 10−3 4.77 × 10−5

Note: A is cross section area; I is moment of inertia, the same below.

Table 2
Statistics of variables for frame.

Variables Distribution Mean COV

𝑀1 Normal 75 kN m 5 × 10−2

𝑀2 Normal 101 kN m 5 × 10−2

𝐹1 Normal 20 kN 0.3
𝐹2 Normal 40 kN 0.3

Table 3
Representative samples and failure modes.

Sample no. 𝑀1/kN m 𝑀2/kN m 𝐹1/kN 𝐹2/kN Failure mode

1 74.44 99.84 21.20 70.24 Fig. 3(a)
2 74.44 108.52 24.86 70.12 Fig. 3(b)
3 72.04 104.38 15.86 77.80 Fig. 3(c)
4 80.96 92.47 10.94 78.64 Fig. 3(d)
5 70.95 106.96 3.32 80.20 Fig. 3(e)

2.2. Failure modes identification based on samples

Once a limit state sample point is selected, then all the structural
variables have corresponding deterministic values. Thus, a determinis-
tic mechanical analysis can be performed and the failure sequence can
be identified easily.

For example, consider a one-story and one-bay frame as shown
in Fig. 2. It has four elements: E1–E4 with sectional properties given
in Table 1. Assume that the stress–strain relationship is ideal elastic–
plastic for the frame material, and the yield strength is 276 MPa, and
the elastic modulus is 210 GPa. The applied concentrated forces (𝐹1
and 𝐹2) and the moment capacities (𝑀1 for E1 and E4, and 𝑀2 for E2
and E3) are assumed to be statistically independent. Their statistics are
shown in Table 2, in which the COV denotes coefficient of variation.

If five representative samples are selected as listed in Table 3, then
based on these samples, the corresponding failure sequences can be
identified with mechanical analyses, as shown in Fig. 3.

In fact, many researchers have carried out a failure mode analysis
for this classical example. For example, Kim et al. [28] used a total of
2,270,000 Monte Carlo simulations to obtain a system reliability index
2.4697 and the first five failure modes: 4→7→2, 7→4→2, 7→4→8→2,
4→7→8→2, and 7→8→4→2. By comparison, the five dominant failure
modes obtained with the 5 representative samples are the same as those
obtained with the huge number of Monte Carlo simulations reported by
Kim et al. [28].

It is noteworthy that the representative samples are actually selected
from a certain number of sample points. So, to improve searching
efficiency, the proportion of representative samples with respect to
the total samples needs to be increased dramatically. Herein, the re-
sponse surface method and iterative schemes are used to obtain these
representative samples efficiently.
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Fig. 3. Failure modes based on the representative samples.

3. Dominant failure mode analysis

3.1. Multiple response surfaces method

As well known, the limit state function is usually implicit for practi-
cal structures. In this case, response surface methods [29–36] have been
widely applied for reliability analysis, which can provide an approxi-
mate explicit function model. Most of them are applied to problems
involving single or multiple limit states, but seldom applied to problems
involving multiple failure sequences (mixed failure mechanisms). Jiang
et al. [29] proposed a multiple response surfaces (MRS) method to deal
with this issue. Examples show that the MRS method can be applied
well for complex (high dimensional, piecewise and nonlinear) limit-
state surfaces in design points searching and reliability calculation.
Herein, a brief introduction of the MRS method is described.

Let 𝛷(⋅) denote the cumulative distribution function (CDF) of stan-
dard normal variable, and n denote the variable number, 𝑛 = 𝑛1+𝑛2.
For a variable 𝑦𝑗 with CDF𝐹cd(⋅), the corresponding standard normal
variable 𝑥𝑗 can be given by

𝑥𝑗 = 𝛷−1[𝐹cd(𝑦𝑗 )] 𝑗 = 1, 2,… , 𝑛 (5)

The inverse transformation is given as

𝑦𝑗 = 𝐹−1
cd [𝛷(𝑥𝑗 )] 𝑗 = 1, 2,… , 𝑛 (6)

With Eq. (5), all variables can be transformed into standard normal
ones. In standard normal space, let 𝒙0 be the closest sample point
(i.e. converged design point finally) to the origin, which also regarded
as a vector 𝒙0. Then, an inner product coefficient can be defined as

𝜌0(𝒙) = (𝒙0 ⋅ 𝒙)∕ ‖‖𝒙0‖‖ ∕ ‖𝒙‖ (7)

Numerical examples in [29] shows that this coefficient can be
used efficiently to divide the space into sectors, especially for high-
dimensional (e.g. as many as 20 variables) cases. For example, s sectors
are obtained based on the selected coefficients 𝜌𝑖, as shown in Fig. 4,
in which the 𝑖th sector is defined as:

𝜌𝑖 ≤ 𝜌0(𝒙) ≤ 𝜌𝑖−1 𝑖 = 1, 2,… , 𝑠 (8)

where 𝜌0 = 1.0 for the first sector.
In each sector, a response surface is used for function fitting and

the number of sample points are selected elaborately for zero residual
fitting purpose. For example, if the quadratic polynomials are selected
for response surface fitting, then the limit state equation for each sector
can be given by

𝑍 = 1 +
𝑛
∑

𝑗=1
𝑎𝑗𝑥𝑗 +

𝑛
∑

𝑗=1
𝑏𝑗𝑥

2
𝑗 = 0 (9)

Fig. 4. Diagram of sector division technique.

where 𝑎𝑗 and 𝑏𝑗 are coefficients. Herein, 2n sample points are selected
in each sector to achieve the targeted zero residual fitting, for there
are 2n coefficients in Eq. (9) (without cross terms) needed to be
determined.

For MRS method, if s sectors are selected, then s corresponding
response surfaces are used for function fitting. With increasing sector
number actively, it can achieve the zero residual fitting easily for
cases with large number of samples, and thus can approximate the real
function accurately.

3.2. Generation of critical samples

The sample points closer to the origin usually correspond to the
dominant failure modes. Thus, efficient generation of such critical
sample points is the key to search the dominant failure modes. This
is similar to search design points by iterative sampling with a response
surface method, where more and more sample points close to the origin
are obtained in iterative searching until the converged design points
are sufficiently accurate. For a complex engineering structure or system
failure, it usually involves a solution of multiple design points [37,38],
which would require an accurate and efficient response surface method
to execute reliability analysis.

The critical samples including multiple design points can be ob-
tained with the following steps:
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Fig. 5. Solution flowchart of critical samples including design points with MRS method.

(1) Select a suitable uniform table 𝑈𝑐(𝑞𝑔) (c, q, and g are table param-
eters, see [33]) to generate initial samples in x space by Eq. (10), with
which the initial data can be distributed uniformly in design space.

𝑥𝑖𝑗 = 𝜆[2(𝑢𝑖𝑗 − 1)∕(𝑞 − 1) − 1] (10)

where 𝑢𝑖𝑗 is a value within [1, q] in the uniform table; and 𝜆 is a range
parameter with 𝜆 = 2.0 to 3.0 for usual cases [33,39].
(2) Transform the initial samples into y space with Eq. (6), and then
use Eq. (4) in Section 2.1 to acquire limit state sample points.
(3) Obtain the x space sample points with the y space sample points
and Eq. (5) transformation, and use MSR method to perform a function
fitting, and search the multiple design points.
(4) Transform the currently searched multiple design points into y
space with Eq. (6), and check whether they are on the limit state surface
by structural analyses. If yes, go to step (6); if not, go to step (5).
(5) Generate sample points with the searched design points by using
Eq. (4) in Section 2.1. Add the generated sample points to update the
current sample point sets, and go to step (3).
(6) Record all the obtained sample points (including the converged
design points) as a basic set for failure mode and reliability analysis
later.

With the converged design points, the system failure function is
expressed explicitly in piecewise form with response surfaces in all
sectors. Since the evaluation of the response surfaces is very fast, even
the crude MCS can be selected to calculate the failure probability,
circumventing the construction of importance sampling density func-
tions etc. Furthermore, the crude MCS with large number of samples
is usually considered as an accurate method for complex limit state
functions. Herein, the crude MCS is adopted and the corresponding
flowchart is given in Fig. 5. This procedure delivers the system failure

probability 𝑃f as well as the failure modes. Then, the system reliability
can be calculated as

𝛽 = −𝛷−1(𝑃f ) (11)

where 𝛽 is the system reliability index. Note that 𝑃f and 𝛽 are required
for the following failure mode searching. For example, as shown in
Eq. (14), 𝑃f is used to define the important domain, in which the
representative samples corresponding to the dominant failure modes
are searched.

3.3. Strategies for searching dominant failure mode

When a limit state sample point is obtained through a deterministic
structural analysis, the failure mode can also be identified. Hence, both
failure mode and its location in space are known for a given sample
point.

Due to the large number of failure modes for complex engineering
systems, some critical sample points, which correspond to dominant
failure modes, would not be included in basic sample set (i.e. samples
obtained in Section 3.2). Herein, a practical iterative strategy is pro-
posed to search more dominant failure modes possibly. This strategy is
based on a visualization plot approach for reliability problems proposed
by Hurtado [40]. The approach introduces two parameters d and r for
a reliability plot, which are defined as:

𝑑 =

√

√

√

√

𝑛
∑

𝑗=1
𝑥2𝑗 (12)

𝑟 = (𝒙∗ ⋅ 𝒙)∕ ‖
‖

𝒙∗‖
‖

∕ ‖𝒙‖ (13)

where x∗ is the closest design point.
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Fig. 6. Sub-domain divisions in important domain.

With this approach, the samples can be labeled with different types
of failure mode in a d-r 2D visualization. For each type of sample
points, its representative sample point is defined as the one with
the least d value. For reliability problems, a sphere domain with a
smaller d value (d<𝑑cr), namely important domain, often contributes
most significantly to the total failure probability, and 𝑑cr is estimated
by:

P(𝑑2 > 𝑑2cr ) = 𝜀𝑃f (14)

where 𝜀 is a parameter, 𝜀 = 0.01 ∼ 0.1 for most cases. This indicates
that the probability of the samples (both failure and safe samples)
outside the important sphere domain is only 𝜀𝑃f and the probability
of failure samples outside the important sphere domain should be less
than 𝜀𝑃f . Thus the failure modes corresponding to these failure samples
also contribute less to the total probability, and they can be neglected
for dominant failure mode searching.

Based on representative sample points, such important domain can
be divided into multiple sub-domains (SD) by selected ranges of r. Then,
check the distributions of sample points in each sub-domain. If a much
larger difference of r for two adjacent sample points appears in one
sub-domain, then some additional sample points (ASPs) are added in
this sub-domain to search possible dominant failure modes, as shown
in Fig. 6.

The main steps for searching dominant failure modes are as follows:
(1) Identify failure modes for the basic set of sample points obtained in
Section 3.2. Set 𝑖 = 0.
(2) Record the number of different failure modes as 𝑛f (𝑖), and find out
the representative sample point with the least d value for each type of
failure mode. Thus, 𝑛f (𝑖) representative sample points are obtained.
(3) Select 𝑛f (𝑖) ranges of r based on 𝑛f (𝑖) representative sample points,
and divide the important domain into 𝑛f (𝑖) sub-domains.
(4) Let 𝛥r be the maximum difference of r between two adjacent
samples for each sub-domain. Check whether 𝛥𝑟(𝑙) is much larger for
the 𝑙th sub-domain, 𝑙 = 1, 2,…, 𝑛f (𝑖). If not, go to step (7); if yes, go to
step (5).
(5) Use the Eq. (15) to generate some tentative sample points (TSP)
linearly between two representative sample points.

𝒙TSP,𝑘 = 𝒙𝑙 +
𝑘

ℎ + 1
(𝒙𝑙+1 − 𝒙𝑙) (𝑘 ∈ [1, ℎ]) (15)

where 𝒙𝑙 is the 𝑙th representative sample point; 𝒙𝑙+1 is the (l+1)th
representative sample point (𝑙<𝑛f (𝑖)) or the sample point with the least
r in sub-domain (𝑙 = 𝑛f (𝑖)); h is the number of TSP needed in iterative
steps, and usually ℎ = 4∼8.

For each TSP, use the approach proposed in Section 2.1 to obtain
an ASP on the limit state surface and its corresponding failure mode
through a deterministic structural analysis.
(6) Update the current sample set with the location and failure mode
type of the obtained ASPs, 𝑖 = 𝑖 + 1; go to step (2).
(7) Identify the dominant failure modes with the representative sample
points obtained finally.

Fig. 7. A one-story two-bay frame.

Table 4
Sectional parameters of the frame structure.

Members Section A/m2 I/m4

Beams W16 × 57 1.084 × 10−2 3.16 × 10−4

Columns W14 × 53 1.006 × 10−2 2.25 × 10−4

Table 5
Statistics of variables for the frame structure.

Variable Distribution Mean COV

𝑀1 Normal 448.44 kN m 0.15
𝑀2 Normal 371.99 kN m 0.15
𝐹1 Normal 266.89 kN 0.3
𝐹2 Normal 444.82 kN 0.3

Generally, the failure modes are much less than sample points,
since many sample points usually correspond to the same failure mode.
To obtain a more accurate reliability result, all the sample points
can be used to update the system failure function fitting with MRS
method after the dominant failure mode converged. Finally, the system
reliability can be updated, too.

Note that the proposed failure mode searching approach uses the
MRS method to obtain representative sample points and adopts itera-
tive calculations rather than less efficient sampling schemes (e.g. MCS)
to identify failure modes. As a main advantage of this approach, the
failure mode can be searched much more efficiently. This is demon-
strated in the following examples.

4. Examples

4.1. Frame structure (Example 1)

Consider a one-story two-bay frame subjected to concentrated hor-
izontal and vertical forces (𝐹1 and 𝐹2) in Fig. 7. Assume that stress–
strain relationship is ideal elastic–plastic for the frame material with
the yield strength 296 MPa and the elastic modulus 210 GPa. The
frame members use common sections from the AISC [41], as shown
in Table 4. The forces and the moment capacities (𝑀1 for beams and
𝑀2 for columns) are statistically independent. Their statistics are given
in Table 5. Assume that only bending failure is defined for failure mode
analysis.

The limit state function can be considered as:

𝑍 =
{

[𝐹lim(𝑀1,𝑀2) − 𝐹2] ||𝒓L = [1, 𝐹1∕𝐹2]
}

= 0 (16)

For this example with 4 normal variables, a uniform table of 𝑈∗
48(484)

is selected to generate initial samples with 𝜆 = 3.0. The corresponding
values of y = [𝑦1, 𝑦2, 𝑦3, 𝑦4] = [𝑀1, 𝑀2, 𝐹1, 𝐹2] are obtained based
on Eq. (6). Using ANSYS software, 𝐹lim is solved by deterministic
failure analysis for each sample. Then, 48 limit state sample points are
obtained correspondingly with Eq. (4) and they are transformed into x
space (standard normal) with Eq. (5).

Using the obtained 48 initial limit state samples, the overall stan-
dard normal space is divided into 6 sectors. Then, a response surface
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Fig. 8. 4 representative samples with numbers boxed among 44 samples in important
domain.

function is obtained and the design point is searched in each sector.
It is found that the currently obtained design points do not satisfy
the requirements for convergence. Thus, these design points are used
to generate 6 samples. These 6 generated sample points are added to
update the sample points for iterative calculations. After 1 iterative
step, it is found that the 6 newly generated design points satisfy
the requirements for convergence. The coefficients of the 6 response
surfaces in x space are shown in Table 6. Thus, there are 60 sample
points in total (including the converged 6 design points) in the basic
sample set.

The system failure function can be expressed explicitly in a piece-
wise form with response surfaces in 6 sectors. The system failure
probability is 1.7 × 10−3 calculated by MCS.

In the standard normal space, the obtained 60 basic sample points
are sorted from small to large according to their d value. Then, the
critical distance for the important domain is determined as 𝑑cr = 5.08
with 𝜀 = 0.02. It is found that there are only 36 sample points in the
important domain among the 60 basic sample points. The 36 sample
points are sorted from large to small according to the r value, and their
corresponding failure modes are also identified through deterministic
structural analyses.

In the d-r 2D visualization plot, the 36 sample points are labeled
with different failure modes. 4 sample points are selected as representa-
tive sample points as shown in Table 7. Based on these 4 representative
sample points, the important domain can be divided into 4 sub-domains
by 4 selected ranges of r ([1.0, 0.94], [0.94, 0.85], [0.85, 0.60], [0.60,
0.37]) with 𝛥𝑟 = 0.01, 0.03, 0.09, 0.11, respectively.

Table 6
Coefficient of multiple response surfaces function for Example 1.

MRS no. 𝑥1 𝑥21 𝑥2 𝑥22 𝑥3 𝑥23 𝑥4 𝑥24
1 0.064 −0.013 −0.011 −0.005 −0.017 −0.049 −0.018 −0.101
2 −0.031 −0.044 −0.062 −0.158 0.017 −0.100 −0.044 −0.223
3 −0.042 −0.060 0.016 −0.014 −0.025 −0.023 −0.019 −0.097
4 −0.029 −0.067 −0.007 0.015 −0.039 −0.024 −0.018 −0.104
5 0.068 −0.032 0.034 −0.030 −0.023 −0.030 −0.034 −0.094
6 −0.041 −0.088 0.036 0.067 0.003 −0.047 −0.313 −0.031

Table 7
Representative samples corresponding to the dominant failure modes.

Sample no. 𝑀1/kN m 𝑀2/kN m 𝐹1/kN 𝐹2/kN Failure mode

1 416.82 356.92 274.90 842.49 Fig. 9(a)
12 515.03 324.00 266.09 845.16 Fig. 9(b)
18 467.95 412.72 357.37 842.49 Fig. 9(c)
27 420.86 452.34 470.26 783.77 Fig. 9(d)

It is observed that the 𝛥r in both the third sub-domain and the
fourth sub-domain is much larger than that in other sub-domains. We
use Eq. (15) to add 4 tentative sample points in both the third sub-
domain and the fourth sub-domain. For each tentative sample point, we
use the proposed approach in Section 2.1 to obtain an ASP on the limit
state surface and to identify its corresponding failure mode through a
deterministic structural analysis. Updating the current sample set with
the location and failure mode type of the obtained 8 ASPs, it is observed
that no new failure mode is searched, and the dominant failure mode
searching converges with 44 samples in total in the important domain,
and 𝛥𝑟 = 0.01, 0.03, 0.04, 0.04 in 4 sub-domains, respectively, as shown
in Fig. 8. Therefore, the 4 most dominant failure modes are identified
based on the plastic mechanism analysis, as illustrated in Fig. 9.

This example was also analyzed previously by other researchers.
Dey et al. [24] used a total of 210 simulations of structural analyses to
obtain the reliability and failure modes results. The 4 dominant failure
modes in Fig. 9 are the same as those reported by Dey et al. [24].
However, the proposed method only needs 68 finite element analysis
(FEA) calls (60 calls for basic sample set, and 8 calls for 8 ASPS) to
search dominant failure modes.

Furthermore, the direct MCS is also used to obtain analysis results
with a total of 3.0 × 104 simulations. The reliability results are summa-
rized in Table 8. Compared with the other two methods, the proposed
method shows clear advantages in numerical efficiency.

Fig. 9. Dominant failure modes based on the representative samples.
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Table 8
Comparisons between reliability results for the frame.

Method No. of structural simulations 𝑃f 𝛽

Proposed method 68 1.7 × 10−3 2.93
MCS 3.0 × 104 2.3 × 10−3 2.83
Method [24] 210 2.1 × 10−3 2.86

Table 9
Statistics of variables for the truss.

Variables Distribution Mean COV

𝐹1 Normal 50 kN 0.1
𝐹2 Normal 30 kN 0.1
𝐹3 Normal 20 kN 0.1
𝐹4 Normal 30 kN 0.1
𝐹5 Lognormal 20 kN 0.1
𝜎𝑦𝑖 (𝑖 = 1,. . . ,6) Normal 276 MPa 0.05

4.2. Six-bar truss structure (Example 2)

Consider a six-bar truss subjected to five forces (𝐹1, 𝐹2,. . . , 𝐹5) with
height 0.9 m and width 1.2 m reported by Kim et al. [28], as shown in
Fig. 10. The stress–strain relationship is assumed as ideal elastic–plastic
for the truss material. All the members have the same section area
𝐴 = 2.3 × 10−4 m2 but different yield strengths, 𝜎𝑦𝑖(𝑖 = 1,…, 6). Suppose
that the concentrated forces and yield strengths are all independent
random variables. The statistics of variables are summarized in Table 9.

For this case, there are 11 variables. Herein, a uniform table of
𝑈∗
88(8811) is selected to generate initial samples, where 𝜆 = 2.0 for

variable 𝜎𝑦𝑖(𝑖 = 1,…, 6) and 𝜆 = 3.0 for variable 𝐹𝑖(𝑖 = 1,…, 5),
respectively. The corresponding values of y = [𝑦1, 𝑦2,…, 𝑦10, 𝑦11] =
[𝐹1, 𝐹2,…, 𝜎𝑦5, 𝜎𝑦6] are obtained based on Eq. (6). Then, the limit
load is solved with ANSYS for each sample. The 88 limit state sample
points are obtained with Eq. (4) and transformed into x space (standard
normal) with Eq. (5).

With these 88 initial samples, 4 sectors are obtained by dividing
the overall standard normal space. In each sector, the corresponding
function fitting is performed and the design point is searched. It is found
that the solutions have converged after 7 iterative steps, and there are
120 sample points (including the converged four design points) in total
in the basic sample set.

The system failure function can be expressed explicitly in a piece-
wise form with response surfaces in 4 sectors. The system failure
probability is 1.2 × 10−3 calculated by MCS.

In x space, the obtained 120 basic sample points are sorted from
small to large according to their d value. Then, the critical distance for
the important domain is determined as 𝑑cr = 6.42 with 𝜀 = 0.02. It is
found that there are only 56 sample points in the important domain
among the 120 basic sample points. The 56 sample points are sorted
from large to small according to the r value, and their corresponding
failure modes are identified through deterministic structural analysis.

In the d-r 2D visualization plot, the 56 sample points are la-
beled with different failure modes. 3 sample points are selected as the
representative sample points as shown in Table 10. Based on the 3
representative sample points, the important domain can be divided into
3 sub-domains by 3 selected ranges of r ([1, 0.8], [0.8, 0.57], [0.57,
0.29]) with 𝛥𝑟 = 0.07, 0.05, 0.07, respectively.

It is observed that the 𝛥r values in the 3 sub-domains are smaller
and close to each other, and the dominant failure mode searching
converges obviously (no iterations needed), as shown in Fig. 11. The

Fig. 10. Statically indeterminate six-bar truss.

Fig. 11. 3 representative samples with numbers boxed among 56 samples in important
domain.

Table 11
Comparisons between reliability results for the truss.

Method No. of structural simulations 𝑃f 𝛽

Proposed method 120 1.2 × 10−3 3.04
Ref. [28] 2840 1.4 × 10−3 2.98
MCS 2.5 × 104 1.3 × 10−3 3.01

three most dominant failure modes of the truss are: (6→2), (6→1),
(2→6) based on the plastic mechanism analysis.

Kim et al. [28] used 2840 simulations of structural analyses to
identify 3 dominant failure modes. However, this method only needs
120 FEA calls to identify 3 dominant failure modes, which are the
same as those reported in [28]. Thus, the proposed method improves
the efficiency dramatically. For the purpose of comparison, MCS is per-
formed and the failure probability is 1.3 × 10−3 obtained by 2.5 × 104

simulations. Then, the reliability results are shown in Table 11.

4.3. Truss bridge structure (Example 3)

Consider a 2-D truss bridge with 25 members. It is subjected to
two forces 𝑃1 and 𝑃2 as shown in Fig. 12. The section areas are given
in Table 12. The stress–strain relationship is assumed as ideal elastic–
plastic for the truss material with yield strengths of the members, 𝜎𝑦𝑖
(𝑖 = 1,. . . ,25). Suppose that the concentrated forces and yield strengths
are all independent variables. Table 13 summarizes the statistics of
variables.

Table 10
Representative samples corresponding to the dominant failure modes.

Sample no. Load/kN Yield strength/MPa Failure mode

𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝜎𝑦1 𝜎𝑦2 𝜎𝑦3 𝜎𝑦4 𝜎𝑦5 𝜎𝑦6
1 59.0 34.0 22.0 30.9 20.3 276.4 274.8 268.0 261.4 272.3 255.9 6→2
11 63.8 32.9 22.1 30.3 23.3 262.6 276.3 278.8 259.7 276.3 262.6 6→1
36 66.2 34.8 24.4 30.2 21.7 273.1 282.2 309.3 276.8 274.9 275.0 2→6
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Fig. 12. A truss bridge structure.

Table 12
Section areas of 25 members for the truss bridge.

No. of members A/m2

1–6 15 × 10−4

7–12 14 × 10−4

13–17 12 × 10−4

18–25 13 × 10−4

Table 13
Statistics of variables for the truss bridge.

Variable Distribution Mean COV

𝑃1 Lognormal 160 kN 0.1
𝑃2 Lognormal 160 kN 0.1
𝜎𝑦𝑖 (𝑖 = 1,. . . ,25) Normal 276 MPa 0.05

For this case, there are 27 variables. A uniform table of 𝑈∗
162(16227)

is selected. Using Eq. (10), the generate initial samples are obtained
with 𝜆 = 2.0 and 𝜆 = 3.0 for 𝑥𝑖𝑗 variables corresponding to yield strength
variables and load variables, respectively. Then, the corresponding
values of y = [𝑦1, 𝑦2,…, 𝑦26, 𝑦27] = [𝜎𝑦1, 𝜎𝑦2,…, 𝑃1,𝑃2] are obtained
based on Eq. (6). The limit load is solved by a deterministic analysis
with ANSYS for each sample. The 162 limit state sample points are
acquired with Eq. (4) and they are transformed into x space (standard
normal) with Eq. (5).

Using these 162 initial samples, 3 sectors are obtained by dividing
the overall standard normal space. Then, the design point is searched
for each response surface function obtained by zero residual fitting.
The solutions have converged after 2 iterative steps. This leads to 171
sample points in total (including the converged three design points) in
the basic sample set.

The system failure function can be expressed explicitly in a piece-
wise form with response surfaces in 3 sectors. The system failure
probability is 6 × 10−3 calculated by MCS.

In x space, the obtained 171 basic sample points are sorted from
small to large according to their d value. Then, the critical distance
for the important domain is determined as 𝑑cr = 7.91 with 𝜀 = 0.02.
It is found that there are 140 sample points in the important domain
among the 171 basic sample points. The 140 sample points are sorted
from large to small according to the r value, and their corresponding
failure modes are identified through deterministic structural analysis.

In the d-r 2D visualization plot, the 140 sample points are labeled
with different failure modes. 8 sample points are identified as the
representative ones. With these 8 representative sample points, the
important domain can be divided into 8 sub-domains by selected ranges
of r ([1, 0.69], [0.69, 0.50], [0.50, 0.49], [0.49, 0.48], [0.48, 0.45],
[0.45, 0.44], [0.44, 0.35], [0.35, 0.28]) with 𝛥𝑟 = 0.21, 0.13, 0.01,
0.01, 0.003, 0.002, 0.01, 0.02, respectively.

It is observed that the 𝛥r in the first sub-domain and the second
sub-domain is much larger than that in other sub-domains. We use
Eq. (15) to add 8 tentative sample points in the first sub-domain and
4 tentative sample points in the second sub-domain. For each tentative
sample point, we use the proposed approach from Section 2.1 to obtain
an ASP on the limit state surface and to identify its corresponding

Fig. 13. 8 representative samples with numbers boxed among 152 samples in
important domain.

failure mode through a deterministic structural analysis. Updating the
current sample set with the location and failure mode type of the newly
obtained 12 ASPs, it is observed that no new failure mode is searched,
and the dominant failure mode searching converges with 152 samples
in total in the important domain, and 𝛥𝑟 = 0.03, 0.04, 0.01, 0.01,
0.003, 0.002, 0.01, 0.02 in 8 sub-domains respectively, as shown in
Fig. 13. Table 14 summarizes the representative sample points labeled
with failure modes.

Kim et al. [28] also analyzed this example and identified 10 domi-
nant failure modes through 51, 344 simulations of structural analyses.
Herein, 8 dominant failure modes are identified using only 183 FEA
calls (171 calls for basic sample set, and 12 calls for 12 ASPS) with this
method, which are among the 10 failure modes reported in [28]. The
failure mode analysis results are shown in Table 15.

The 2 failure modes (2→9→3, 1) that are found by Kim et al. [28]
but not by our approach contribute less to the total failure probabil-
ity. Thus, it leads to a smaller difference between 𝑃f results (see 𝑃f
results in Table 16). That is, our approach concentrates on the most
significant failure modes resulting a great gain in efficiency, but sacri-
ficing accuracy only marginally. The efficiency of searching dominant
failure modes is improved dramatically by solving the representative
sample points. Furthermore, the direct MCS is also performed and 𝑃f is
6.7 × 10−3 obtained by a total of 2.0 × 104 simulations. The reliability
results are shown in Table 16.

4.4. 25-bar truss structure (Example 4)

To check its applicability for a structural system with some more
complex functionality and smaller failure probabilities, a 25 bar space
truss (high voltage transmission tower, see [42]) with the horizontal
load 𝐹1 and the vertical load 𝐹2 is considered, as shown in Fig. 14. The
section areas of 25 members are given in Table 17. The stress–strain
relationship is assumed as ideal elastic–plastic for the truss material
with elastic modulus 2.06 × 105 MPa. The loads and the yield stresses
of the members, 𝜎𝑦𝑖 (𝑖 = 1,…, 25), are considered as random variables.
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Table 14
Representative samples corresponding to the dominant failure modes.

Variable Sample no.

1 6 10 13 22 40 47 131

𝜎𝑦1/MPa 275.72 272.96 301.53 302.63 285.11 263.17 254.61 284.69
𝜎𝑦2/MPa 274.62 273.79 300.84 295.32 299.18 257.65 270.62 248.40
𝜎𝑦3/MPa 267.72 270.48 277.93 261.10 272.69 255.30 274.48 271.03
𝜎𝑦4/MPa 272.41 277.66 269.65 265.51 249.37 293.94 296.01 283.04
𝜎𝑦5/MPa 273.38 275.31 280.00 263.86 288.56 269.65 270.62 299.87
𝜎𝑦6/MPa 274.90 277.24 266.62 297.80 262.75 270.62 288.83 268.27
𝜎𝑦7/MPa 278.21 281.11 281.38 287.87 252.13 265.93 276.14 281.93
𝜎𝑦8/MPa 276.83 275.86 254.20 271.03 259.03 286.76 265.24 252.54
𝜎𝑦9/MPa 275.03 273.93 252.13 250.06 283.73 288.83 297.11 280.00
𝜎𝑦10/MPa 275.45 276.97 280.97 280.00 257.65 280.69 262.75 279.31
𝜎𝑦11/MPa 276.97 275.72 295.04 268.27 266.89 272.69 283.04 266.62
𝜎𝑦12/MPa 274.21 279.45 289.94 283.31 271.72 252.13 275.17 281.93
𝜎𝑦13/MPa 274.21 275.03 266.20 252.13 266.62 270.62 254.20 259.03
𝜎𝑦14/MPa 264.55 230.87 289.52 257.37 271.31 302.63 288.83 297.39
𝜎𝑦15/MPa 276.41 276.00 287.18 290.90 254.89 280.69 257.37 284.42
𝜎𝑦16/MPa 272.96 278.76 259.72 265.93 274.48 262.48 258.34 276.14
𝜎𝑦17/MPa 277.10 277.52 281.66 271.31 261.10 258.06 250.06 284.42
𝜎𝑦18/MPa 275.59 275.59 277.93 271.03 256.96 265.93 300.84 291.59
𝜎𝑦19/MPa 278.90 283.59 273.79 287.87 284.00 296.70 291.32 257.37
𝜎𝑦20/MPa 276.97 276.28 276.14 299.18 270.34 270.07 255.58 251.44
𝜎𝑦21/MPa 277.66 278.07 277.93 290.21 273.79 248.68 284.42 279.31
𝜎𝑦22/MPa 274.90 279.04 256.96 299.87 273.10 262.75 276.83 274.48
𝜎𝑦23/MPa 276.83 275.17 295.32 268.69 256.68 264.13 269.65 272.69
𝜎𝑦24/MPa 274.62 278.21 273.10 268.00 265.93 250.75 278.62 262.06
𝜎𝑦25/MPa 276.14 279.17 288.83 276.83 273.10 272.41 295.73 252.54
𝑃1/kN 118.41 112.01 126.77 123.93 141.00 141.53 133.88 163.75
𝑃2/kN 29.79 26.94 36.52 27.48 28.39 31.19 34.04 24.50
Failure mode 3→9 9→3 2→3→9 9→2→3 3→2→9 3→1 3→4→9 4→3→9

Table 15
Comparisons of failure modes for the truss bridge.

Ref. [28] Proposed method

Failure modes Failure modes Sample no.
3→9 3→9 1
9→3 9→3 6
3→2→9 2→3→9 10
2→3→9 9→2→3 13
2→9→3 3→2→9 22
9→2→3 3→1 40
1 3→4→9 47
3→4→9 4→3→9 131
3→1
4→3→9

Table 16
Reliability results for the truss bridge.

Method No. of structural simulations 𝑃f 𝛽

Proposed method 183 6 × 10−3 2.51
Ref. [28] 51,344 5.4 × 10−3 2.55
MCS 2.0 × 104 6.7 × 10−3 2.47

Suppose that they are all independent and their statistics are listed in
Table 18.

Firstly, 162 initial samples are selected by uniform design, and the
limit load is solved through elasto-plastic analysis for each sample.
Using the obtained 162 initial samples, 3 sectors are obtained by
dividing the overall standard normal space. Following the procedure as
shown in Example 3, the solutions have converged after 1 iterative step.
There are 168 sample points in total (including the converged three
design points) in the basic sample set.

Fig. 14. Space truss with 25 members.

Table 18
Statistics of random variables.

Variable Distribution Mean COV

𝐹1 Normal 88.9 kN 0.2
𝐹2 Normal 22.6 kN 0.2
𝜎𝑦𝑖 (𝑖 = 1,…, 25) Normal 276 MPa 0.05

The system failure function can be expressed explicitly in a piece-
wise manner with response surfaces in 3 sectors. The system failure
probability is 1.43 × 10−6 computed by MCS.

Table 17
Cross section areas of members.

Type I II III IV V VI VII VIII IX X XI XII XIII

No. of members 1 2 3 6 7 10 12 14 15 18 19 22 23
5 4 9 8 11 13 17 16 21 20 25 24

A/cm2 4.36 4.56 7.47 2.39 7.52 1.51 1.77 4.88 1.89 1.78 2.63 4.89 7.66
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Fig. 15. 9 representative samples with numbers boxed among 90 samples in important
domain.

In x space, the obtained 168 basic sample points are sorted from
small to large with respect to their d value. Then, the critical value for
the important domain is determined as 𝑑cr = 9.40 with 𝜀 = 0.02. It is
found that there are only 78 sample points in the important domain
among the 168 basic sample points. The 78 sample points are sorted
from large to small according to the r value, and their corresponding
failure modes are identified through deterministic structural analysis.

In the d-r 2D visualization plot, the 78 sample points are labeled
with different failure modes. 9 sample points are selected as the
representative sample points. Based on these representative sample
points, the important domain can be divided into 9 sub-domains by
selected ranges of r ([1,0.98], [0.98,0.64], [0.64,0.61], [0.61,0.60],
[0.60,0.58], [0.58,0.576], [0.576,0.54], [0.54,0.535], [0.535,0.42])
with 𝛥𝑟 = 0.02, 0.29, 0.02, 0.01, 0.01, 0.003, 0.01, 0.002, 0.06,
respectively.

It is observed that the r differences in both the second sub-domain
(𝛥𝑟 = 0.29) and the ninth sub-domain (𝛥𝑟 = 0.06) are much larger.
Using Eq. (15) we add 8 tentative sample points in the second sub-
domain and 4 tentative sample points in the ninth sub-domain. For each
tentative sample point, we use the proposed approach from Section 2.1
to obtain an ASP on the limit state surface and to identify its corre-
sponding failure mode by a deterministic structural analysis. Updating
the current sample set with the location and failure mode types of the
newly obtained 12 ASPs, it is observed that no new failure mode is
searched, and the dominant failure mode searching converges with 90
samples in the important domain in total, and 𝛥𝑟 = 0.02, 0.04, 0.02,
0.01, 0.01, 0.003, 0.01, 0.002, 0.03 in 9 sub-domains, respectively, as
shown in Fig. 15.

Dong [42] used the branch and bound method to obtain 24 fail-
ure modes for this example and computes the failure probability as
[0.99 × 10−6, 1.0 × 10−6] with the narrow reliability bounds method
proposed by Ditlevesen [43]. However, the proposed method required
a total of 180 calls (168 calls for basic sample set, and 12 calls for 12
ASPS) of structural analysis to obtain 𝑃f as 1.43 × 10−6 and to identify
nine dominant failure modes, which are the same as the first 9 failure
modes reported in [42]. The failure modes analysis results are shown
in Table 19.

Then, the comparisons between reliability results are shown in
Table 20. The obtained result of system failure probability matches
well with the MCS result. The proposed method identifies, again, the
most important failure modes with a big gain in efficiency sacrificing
accuracy only marginally.

4.5. Summary

Conventional methods (e.g. analytical methods and simulation-
based methods) are usually less efficient in searching dominant failure
modes for large structures. However, the proposed method can ef-
ficiently achieve the goals by solving multiple design points with

Table 19
Comparisons of failure modes for the truss tower.

Proposed method Branch and bound method [42]

Sample no. Dominant failure modes Dominant failure modes
1 3→6 3→6
2 4→9 4→9
12 7→9→17 7→9→17
19 3→10→12 3→10→12
23 4→11→13 4→11→13
33 3→11→9 3→11→9
34 4→10→6 4→10→6
54 3→10→1 3→10→1
56 4→10→13 4→10→13

Table 20
Reliability results for the truss tower.

Method No. of structural simulations 𝑃f

Proposed method 180 1.43 × 10−6

MCS 2 × 107 1.17 × 10−6

Ref. [42] – [0.99 × 10−6, 1.0 × 10−6]

the MRS method and by obtaining the representative samples in the
important domain with iterative strategies. Moreover, if with a large
number of samples, the searched dominant failure modes can be usually
accurate.

With numerical examples, it is known that the proposed method are
applied well to identifying dominant failure modes, especially suitable
for large structures, because it needs much less computational effort to
obtain similar accurate reliability results in most cases.

5. Conclusions

An approach based on representative samples is proposed to identify
failure modes. It combines the MRS method, iterative strategies and
visualization plot techniques to improve the efficiency of searching
dominant failure modes. The conclusions are drawn as follows:
(1) Combining the MRS method with other techniques (e.g. limit state
sample points), the system failure function can be expressed explic-
itly in a piecewise manner, and the basic sample set including the
converged multiple design points can be obtained efficiently.
(2) Considering contributions of samples to failure probability, the
sample points in the important domain rather than in the total domain
are used for identifying failure sequences, and they can be labeled with
different failure modes in a 2D visualization plot.
(3) With the distribution of sample points in important domain, it-
erative strategies (e.g. sub-domain division, adding additional sample
points) are adopted to search a converged solution of the representa-
tive samples corresponding to the dominant failure modes. The result
converges quickly and stably verified by examples.
(4) Based on the representative samples, the method can be applied
well to identifying dominant failure modes in most cases, even with a
smaller number of structural simulations, and thus especially suitable
for large structures.
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