
Data & Knowledge Engineering 121 (2019) 1–17

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak

Learning process modeling phases from modeling interactions and
eye tracking data
Andrea Burattin a,∗, Michael Kaiser b, Manuel Neurauter b, Barbara Weber c,a

a Technical University of Denmark, Denmark
b University of Innsbruck, Austria
c University of St. Gallen, Switzerland

A R T I C L E I N F O

Keywords:
Process of process modeling
Eye tracking
Interaction tracking
Automatic phase detection
Classification
Sequence labeling

A B S T R A C T

The creation of a process model is a process consisting of five distinct phases, i.e., problem
understanding, method finding, modeling, reconciliation, and validation. To enable a fine-
grained analysis of process model creation based on phases or the development of phase-specific
modeling support, an automatic approach to detect phases is needed. While approaches exist
to automatically detect modeling and reconciliation phases based on user interactions, the
detection of phases without user interactions (i.e., problem understanding, method finding, and
validation) is still a problem. Exploiting a combination of user interactions and eye tracking
data, this paper presents a two-step approach that is able to automatically detect the sequence
of phases a modeler is engaged in during model creation. The evaluation of our approach
shows promising results both in terms of quality as well as computation time demonstrating its
feasibility.

1. Introduction

Process models play an important role in facilitating communication between different stakeholders and in documenting the
organization’s business processes. They are used for redesigning business processes as well as for automating them [1]. Process
model development is an iterative and collaborative process which involves many stakeholders like domain specialists and system
analysts [2]. It consists of two phases — elicitation and formalization. In elicitation phases, statements about the domain are
generated and validated. In formalization phases, the extracted information is then used to create a formal process model [3].

The elicitation phase requires good communication between stakeholders and has been described in the literature as a negotiation
process [4] in which different modeling alternatives are discussed. The formalization phase of a process model, also denoted as
process of process modeling (PPM), in turn, can be characterized as cognitive design activity during which a designer creates a formal
process model from informal requirements descriptions [5]. This requires the designer to create a mental model of the domain and
to externalize it as a formal process model [6]. During process model formalization the designer engages with the modeling platform
(that provides a modeling notation as well as associated tool support) to improve the process being modeled. Research on model
formalization has resulted in a description of the PPM and the identification of five distinct phases (i.e., problem understanding,
method finding, modeling, reconciliation, and validation) [7]. The formalization of a process model is a flexible process during
which the different phases are iteratively executed. A single instance of the PPM is called a modeling session.

∗ Corresponding author.
E-mail addresses: andbur@dtu.dk (A. Burattin), michael.kaiser@student.uibk.ac.at (M. Kaiser), manuel.neurauter@uibk.ac.at (M. Neurauter),

barbara.weber@unisg.ch (B. Weber).

https://doi.org/10.1016/j.datak.2019.04.001
Received 17 July 2017; Received in revised form 25 February 2019; Accepted 7 April 2019
Available online 10 April 2019
0169-023X/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.datak.2019.04.001
http://www.elsevier.com/locate/datak
http://www.elsevier.com/locate/datak
http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2019.04.001&domain=pdf
mailto:andbur@dtu.dk
mailto:michael.kaiser@student.uibk.ac.at
mailto:manuel.neurauter@uibk.ac.at
mailto:barbara.weber@unisg.ch
https://doi.org/10.1016/j.datak.2019.04.001
http://creativecommons.org/licenses/by/4.0/

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Since each phase is characterized by different underlying cognitive processes, the factors determining a modeler’s performance
might vary for different phases. For example, while domain knowledge plays presumably an important role in problem understand-
ing, process modeling knowledge and experience will be a relevant factor for modeling phases [7]. To enable a fine-grained analysis
of the process of process modeling including its different modeling phases, the automatic detection of all five phases is required.

In [7,8], an algorithm for automatically detecting modeling and reconciliation phases from interactions with the modeling
platform has been proposed. This approach exploits the interactions with the modeling platform to differentiate between modeling
and reconciliation phases. Longer time periods characterized by an absence of interactions, i.e., problem understanding, method
finding, and validation, cannot be differentiated and are labeled as comprehension. A comprehensive analysis of the process of process
modeling, however, requires the detection of all five phases and not only those during which interactions with the modeling platform
take place.

To overcome the limitations of the existing state of the art [7,8] this paper aims at the development of an automatic approach
for phase detection in a single process modeling instance. The central research question of this paper can be formulated as follows:
‘‘Is it possible to automatically and accurately detect the different modeling phases of single modeling instances?’’. To
answer this research question we first developed a novel, machine-learning approach that exploits model interactions along with
eye tracking data and slices the overall process modeling instance into a sequence of phases. We then validated our approach in
two experiments. The validation of the approach against real data, referring to process modeling sessions, yielded promising results,
both in terms of quality and computation time thus demonstrating the feasibility of our technique.

Our novel approach for automatic identification of phases makes a more fine-grained analysis of the process of process modeling
possible and allows to take phase-specifics into account. An automated detection of such fine-grained phases within process modeling
sessions is also a precondition for the development of a context-aware modeling platform that is able to detect the current context
(i.e., the modeling phase the modeler is currently engaged in) and support the modeler in a phase-specific manner through
recommendations, interventions, or even adaptations of the modeling platform (for example, the optimal tool support for validation
is presumably different from tool support for problem understanding or method finding) [9].

The remainder of the paper is structured as follows. Section 2 reports some background information regarding the process of
process modeling and the automatic phase detection problem. Section 3 formalizes the contribution of the paper and Section 4
evaluates the performance of the approach. Section 5 concludes the paper and sketches possible future work.

2. Background and related work

This section introduces the process of process modeling as typically presented in the literature including its five phases: problem
understanding, method finding, modeling, reconciliation, and validation (cf. Section 2.1). Moreover, it introduces an existing
approach for detecting modeling and reconciliation phases based on model interactions, which will serve as a baseline for the
machine learning approach proposed in this paper (cf. Section 2.2). Finally, it discusses existing exploratory research on phase
detection considering multi-modal data (i.e., model interactions as well as eye tracking data), which served as a starting point for
developing our phase detection approach (cf. Section 2.3).

2.1. Process of process modeling

Existing research on the process of process modeling describes the act of creating a process model as a flexible process consisting
of five distinct phases which are iteratively performed, i.e., they can be executed repeatedly and can be skipped for some iterations
as needed [7].

Problem understanding. To develop a process model, modelers need to understand the problem (i.e., both the requirements and the
process model created so far). During problem understanding, modelers build an internal representation (i.e., a mental model) of
the problem to be modeled within their working memory [6].

Method finding. In method finding phases, modelers decompose the problem into smaller sub-problems and develop a solution
that is independent of the concrete modeling notation. This can involve the hierarchically structuring of a process model, but also
horizontally dividing the problem into sub-problems that can be mapped to workflow patterns [10] (e.g., embedding an activity
into a conditional fragment for creating an optional activity).

Modeling. Once modelers have developed a solution for the problem, they can interact with the modeling platform to implement it
by creating an external representation of the problem stored in their working memory. For instance, when using BPMN (Business
Process Model and Notation) [11], modelers might insert an activity into the model and embed it into a conditional branch using
gateways and sequence flows to implement an optional activity.

Reconciliation. Reconciliation phases are concerned with improving the understandability of the process model and facilitate
subsequent phases. This includes changes to an activity label for resolving non-intention revealing naming of activities [12], but
also relates to the secondary notation of process models [13,14].

Validation. In validation phases, modelers evaluate the quality of the externalized process model and assess if the model indeed
provides a correct solution to the considered problem. In particular, in line with the SEQUAL framework [15] and grounded in
semiotic theory, modelers might perform checks for identifying syntactical, semantical, and pragmatic quality issues in the process
model [15].

As mentioned previously the creation of a process model is a flexible process during which the above described phases are
iteratively executed. Fig. 1 depicts an example sequence of phases executed for one particular modeling session.

2

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 1. Example sequence of phases of a process modeling session.

Table 1
List of possible interaction types.
Interaction type Description

1 Create Node Create an activity, gateway, or event
2 Delete Node Delete an activity, gateway, or event
3 Create Edge Create an edge connecting two nodes
4 Delete Edge Delete an edge
5 Reconnect Edge Reconnect an edge from one node to another
6 Select Tool Select some tool from the toolbar
7 Select XOR Select the XOR tool from the toolbox
8 Select AND Select the AND tool from the toolbox
9 Select Activity Select the Activity tool from the toolbox

10 Select Sequence Flow Select the Sequence Flow tool from the toolbox
11 Select Start Event Select the Start Event tool from the toolbox
12 Select End Event Select the End Event tool from the toolbox
13 Rename Rename an activity
14 Move Node Move an activity, gateway, or event
15 Move Edge Label Move the label of an edge condition
16 Create Bend Point Create new bend point for an edge
17 Delete Bend Point Delete new bend point for an edge
18 Move Bend Point Update the routing of a bend point
19 Resize Node Resize an activity, gateway, or event

2.2. Phase detection based on model interactions

In [7] a naïve approach to automatically detect modeling and reconciliation phases from a log of interactions obtained from
the modeling platform Cheetah Experimental Platform (CEP) [16] is proposed. With respect to the modeling platform, the creation
of a process model consists of a series of model interactions, e.g., adding activities and edges or moving elements for laying out
the process model (cf. Table 1 for an overview of possible interaction types). The naïve approach maps the interactions with the
modeling platform to the phases presented in Section 2.1. More specifically, interactions for creating model elements, deleting model
elements, reconnecting edges, and adding/deleting edge conditions are classified as modeling actions. Interactions for laying out
edges, moving model elements, renaming activities, and updating edge conditions are classified as reconciliation actions.1 Identified
actions are then aggregated to phases using the algorithm proposed in [8]; thresholds are used to avoid very short phases.

While modeling and reconciliation phases can be detected by this naïve approach, all time periods characterized by the
absence of interactions, i.e., problem understanding, method finding, and validation, cannot be differentiated, but are subsumed as
comprehension. Moreover, this assumption makes the technique unreliable in many circumstances, e.g., when a short comprehension
phase is surrounded by reconciliation or modeling phases, as documented in [17] (in this case the naïve approach incorporates the
comprehension phase into the surrounding). Our work overcomes these limitations and presents an approach that can automatically
detect all phases.

2.3. Phase detection based on multi-modal data

To address the limitations of the naïve approach introduced in Section 2.2, we propose an approach based on multi-modal data.
More specifically, we explored the possibility of using eye tracking data (in addition to model interactions) to distinguish between
the phases of problem understanding, method finding, and validation (cf. [18]).

Using eye tracking it is possible to identify fixations, i.e., points on the screen modelers focus their attention on. The sequence
of fixations of a modeler is denoted as scan-path. Fig. 2 shows an example of a scan-path during a brief session, with fixations
represented as black dots. Areas of Interest (AOI) are a tool that is frequently used for the analysis of eye tracking data. AOIs refer
to sub-regions of the stimulus (in our context the modeling platform) [19]. In our case AOIs refer to the textual description of the
task, the modeling area, and the toolbox, as represented in Fig. 2. Having AOIs allows the extraction of metrics specific for each
AOI (e.g., amount of fixations on text) and the analysis of transitions between AOIs [19]. For example, Fig. 2 shows transitions from
text to toolbox, from toolbox to model, from model to toolbox, and from toolbox to model.

As a first step in the development of a phase detection approach based on multi-modal data, we conducted an exploratory study
where we collected data from 116 student modelers and analyzed the comprehension phases we obtained from applying the naïve

1 Note that interactions regarding the selection of elements in the toolbox (interactions # 6–12 in Table 1) were recorded, but not used in [7].

3

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 2. BPMN modeling platform (i.e., Cheetah Experimental Platform) with three AOIs and the modeler’s scan-path (i.e., sequence of fixations).

Fig. 3. Combined visualization of eye tracking information and model interactions.

phase detection algorithm outlined in Section 2.2 manually. Our preliminary findings from this exploratory study suggested that
the fixation patterns we identified are related to the phases of problem understanding, method finding, and validation and can thus
form the basis for automatically detecting the respective phases (cf. [18]). In particular, the way how the modelers’ eyes transitioned
between AOIs (i.e., model, text, toolbox) appeared promising. For example, our exploratory study showed that during problem
understanding, the fixations were primarily on the textual description as modelers are building an internal representation of the
problem. Similarly, during method finding, fixations were on parts of the textual description, followed by fixations on the modeling
platform and the toolbox. Finally, during syntactic validation, fixations showed up on the modeling canvas and occasionally on the
toolbox, while during semantic validation, the fixations occurred on the textual description and the modeling canvas with numerous
switches between these two AOIs.

To further investigate fixation patterns that could form the basis of an automatic phase detection approach, we developed a
visualization tool to represent transitions between AOIs together with the model interactions in an integrated manner [17]. An
example of such visualization is reported in Fig. 3. It shows a problem understanding phase at the beginning with the attention of
the user on the text. Afterward, several method finding phases occurred and all share a similar fixation pattern: the modeler first
focused on the model or the text, then the focus briefly (and possibly repeatably) shifted to the toolbox (in order to understand the
‘‘tools’’ that can be used), and to the text (to map the requirements to the available tools). This further highlighted the potential of
using eye tracking data as the basis for an automatic phase detection approach.

Additionally, Appendix A gives an intuition of how the multi-modal phase detection approach works in contrast to the state of
the art approach: it shows a detailed example of a process modeling session including data on how the modeler interacted with the
modeling platform.

3. Identification of phases using multi-modal data

This section introduces our approach for phase detection based on multi-modal data (i.e., model interactions combined with eye
tracking data). We first provide preliminary definitions used in the remaining paper (cf. Section 3.1), then report a formal problem
definition (cf. Section 3.2), before presenting our approach for phase detection (cf. Sections 3.3 and 3.4).

3.1. Preliminary definitions

The multi-modal data we are dealing with consists of each modality of an ordered sequence of events. These events can be
interactions with the modeling tool or eye tracking data. In both cases, we formally describe these data as sequences. Just as an

4

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 4. Indexes of all possible cuts of a sequence and the set of all possible partitions for the same sequence.

example, a sequence of interactions is graphically visualized in Fig. A.10a and a sequence of eye tracking data is represented in Fig.
A.10b.

Given a set 𝐴, a sequence is a function 𝜎 ∶ N+ → 𝐴. We say that 𝜎 maps index values to the corresponding elements in 𝐴. For
simplicity, in the rest of the paper, we will use the string interpretation of sequences: 𝜎 = ⟨𝑠1,… , 𝑠𝑛⟩.

In order to describe the basic operations we can do with our input data, we need some manipulation capabilities. Therefore, we
assume that typical operators over sets and sequences are available and behave as commonly expected. Given two sequences the
concatenation operator ⋅ creates a new sequence as the ordered combination of them:

⟨

𝑠11,… , 𝑠1𝑛
⟩

⋅
⟨

𝑠21,… , 𝑠2𝑚
⟩

=
⟨

𝑠11,… , 𝑠1𝑛, 𝑠
2
1,… , 𝑠2𝑚

⟩

.
In all our cases, sequence elements contain a time component and we assume all sequences to be sorted temporally, in ascending

order. We assume the availability of an operator which adds items to a sequence keeping it ordered. Moreover, we have access to
the items of a sequence 𝑆 = ⟨𝑠1, 𝑠2,… , 𝑠𝑛⟩ using the sequence indexing : 𝑠𝑖 ∈ 𝑆. Sometimes, the sequence elements are actually tuples,
e.g., 𝑡 = (𝑎, 𝑏) and to access their single components we assume a projection operator 𝜋𝑎(𝑡) = 𝑎 and 𝜋𝑏(𝑡) = 𝑏.

A sequence 𝑆 can be divided into a sequence of (sub-)sequences ⟨𝑆1, 𝑆2,… , 𝑆𝑚⟩, called partition, such that 𝑆1 ⋅ 𝑆2 ⋅ ⋯ ⋅ 𝑆𝑚 = 𝑆
(i.e., the partition covers the sequence). Specifically, given a sequence 𝑆 with |𝑆| = 𝑛, it is possible to identify 𝑛−1 indexes where to
cut 𝑆, as depicted in Fig. 4a. Each cut splits the sequence in two additional parts. The power set2 of the set of possible cuts identifies
all possible partitions that can be generated starting from a sequence, as exemplified in Fig. 4b. In this case, the set of possible cuts
is {1, 2, 3} and its power set is {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Therefore, given a sequence of length 𝑛, the number of
possible partitions is the cardinality of the power set of the set of cuts, which is 2𝑛.

3.2. Problem formalization

In this paper we address the problem of dividing a modeling session into phases (i.e., find the partition in the session) introduced
in Section 2.1 considering the user’s interactions with the modeling platform as well as eye tracking data.

Definition 3.1 (Interaction). An interaction 𝑖 = (𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) with the modeling tool is a pair containing the timestamp 𝑡 – when the
interaction took place – and the interaction type 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 which refers to one of those listed in Table 1.

Definition 3.2 (Log of Interactions). A log of interactions 𝐿𝐼 = ⟨𝑖1, 𝑖2,… , 𝑖𝑛⟩ is a sequence of interactions with the modeling tool,
progressively ordered according to their timestamps.

In our context, logs of interactions are collected with the Cheetah Experimental Platform. Considering the example depicted in
Fig. A.10a, the corresponding log of interaction is:

⟨(𝑡1, 𝑆𝑒𝑙𝑒𝑐𝑡 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦), (𝑡2, 𝐶𝑟𝑒𝑎𝑡𝑒 𝑁𝑜𝑑𝑒), (𝑡3, 𝐶𝑟𝑒𝑎𝑡𝑒 𝑁𝑜𝑑𝑒),

(𝑡4, 𝑆𝑒𝑙𝑒𝑐𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐹 𝑙𝑜𝑤), (𝑡5, 𝐶𝑟𝑒𝑎𝑡𝑒 𝐸𝑑𝑔𝑒), (𝑡6, 𝑅𝑒𝑛𝑎𝑚𝑒), (𝑡7, 𝑅𝑒𝑛𝑎𝑚𝑒)⟩.

As a second source of input, we consider eye tracking data as detailed in the following, more specifically fixations and transitions.

Definition 3.3 (Fixations). A fixation represents a period of time in which the gaze was fixed on one point (up to some
approximations) [19]. Formally, in this work, a fixation 𝑓 = (𝑡𝑠, 𝑡𝑒, 𝑎𝑜𝑖) is a tuple where 𝑡𝑠 indicates the time the fixation started, 𝑡𝑒
the time the fixation ended, and the area of interest of the fixation 𝑎𝑜𝑖, with 𝑎𝑜𝑖 ∈ {𝑡𝑒𝑥𝑡, 𝑚𝑜𝑑𝑒𝑙, 𝑡𝑜𝑜𝑙𝑏𝑜𝑥} as described in Section 2.3.

Definition 3.4 (Transition). In our context, a transition represents the gaze movement from one area of interest to another one [19].
Formally, a transition 𝑡𝑟 = (𝑡𝑠, 𝑡𝑒, 𝑎𝑜𝑖𝑠, 𝑎𝑜𝑖𝑡) is a tuple reporting the beginning time of the transition 𝑡𝑠 and the end of it 𝑡𝑒 as well as
the starting area of interest 𝑎𝑜𝑖𝑠 and the target area of interest 𝑎𝑜𝑖𝑡. The possible values for the areas of interests are those reported
in Section 2.3: 𝑎𝑜𝑖𝑠, 𝑎𝑜𝑖𝑡 ∈ {𝑡𝑒𝑥𝑡, 𝑚𝑜𝑑𝑒𝑙, 𝑡𝑜𝑜𝑙𝑏𝑜𝑥}.

2 The power set of set 𝐴 is the set of all subsets of 𝐴, including the empty set and 𝐴 itself.

5

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fixations and transitions of an eye tracking session can be calculated from the raw recordings of the eye tracker and are stored
in temporal order in a log of fixations and transitions respectively.

Definition 3.5 (Log of Fixations). A log of fixations 𝐿𝐹 = ⟨𝑓1, 𝑓2,… , 𝑓𝑘⟩ is a sequence of fixations ordered progressively according
to their start timestamp.

Considering the example of Fig. A.10b, it is possible to identify the following log of fixations:

⟨(𝑡1𝑠 , 𝑡1𝑒 , 𝑡𝑒𝑥𝑡), (𝑡2𝑠 , 𝑡2𝑒 , 𝑡𝑜𝑜𝑙𝑏𝑜𝑥), (𝑡3𝑠 , 𝑡3𝑒 , 𝑚𝑜𝑑𝑒𝑙), (𝑡4𝑠 , 𝑡4𝑒 , 𝑡𝑜𝑜𝑙𝑏𝑜𝑥)⟩.

Definition 3.6 (Log of Transitions). A log of Transitions 𝐿𝑇 = ⟨𝑡𝑟1, 𝑡𝑟2,… , 𝑡𝑟𝑚⟩ is a sequence of transitions progressively ordered
according to their start timestamp.

Considering the example of Fig. A.10b, it is possible to identify the following log of transitions:

⟨(𝑡1𝑠 , 𝑡1𝑒 , 𝑡𝑒𝑥𝑡, 𝑡𝑜𝑜𝑙𝑏𝑜𝑥), (𝑡2𝑠 , 𝑡2𝑒 , 𝑡𝑜𝑜𝑙𝑏𝑜𝑥, 𝑚𝑜𝑑𝑒𝑙),

(𝑡3𝑠 , 𝑡3𝑒 , 𝑚𝑜𝑑𝑒𝑙, 𝑡𝑜𝑜𝑙𝑏𝑜𝑥), (𝑡4𝑠 , 𝑡4𝑒 , 𝑡𝑜𝑜𝑙𝑏𝑜𝑥, 𝑚𝑜𝑑𝑒𝑙)⟩.

Using interactions, fixations, and transitions our goal is to automatically detect the phases introduced in Section 2.1. We can
formalize this problem as finding a sequence of phases from a log of interactions, a log of fixations, and a log of transitions. More
specifically, we aim to partition the logs such that each partition corresponds to one phase (where the events belonging to this
partition are in line with the phase description outlined in Section 2.1) and adjacent partitions are of different phase types.

We approach the problem by decomposing it into a hierarchy of sub-problems. The general algorithm describing the overall
approach is reported in Algorithm 1. It expects the logs of interactions, transitions and fixations as well as the minimum duration
of a phase. Please note that we expect the logs to have synchronized time (i.e., they capture different angles of the same modeling
session). In a first step, similarly to the state of the art, the algorithm detects a set of partitions with just high-level phases,
i.e., modeling, reconciliation and comprehension phases (cf. line 1, Alg. 1; for details see Section 3.3).

Definition 3.7 (High-Level Phase). A high-level phase 𝑝 = (𝑡𝑠, 𝑡𝑒, 𝑡𝑦𝑝𝑒) is a time interval, specified by a start time 𝑡𝑠 and an end time
𝑡𝑒, with a type 𝑡𝑦𝑝𝑒 associated. The possible types are 𝑡𝑦𝑝𝑒 ∈ {𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛, 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔, 𝑟𝑒𝑐𝑜𝑛𝑐𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛}.

Considering the example in Fig. A.10c, the result of the first line of the algorithm is the following sequence of high-level phases
(wrt the figure, phases 𝑝1 and 𝑝2 are merged into a single comprehension phase):

⟨(𝑡1𝑠 , 𝑡1𝑒 , 𝑐𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑜𝑛), (𝑡2𝑠 , 𝑡2𝑒 , 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔), (𝑡3𝑠 , 𝑡3𝑒 , 𝑟𝑒𝑐𝑜𝑛𝑐𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛)⟩.

In a second step, the algorithm selects only the comprehension phases (line 2, Alg. 1) and replaces each of them with a sequence
of low-level phases (i.e., problem understanding, method finding, syntactic and semantic validation) by applying one of the low-level
phase detection algorithms (line 4, Alg. 1; for details see Section 3.4).

Definition 3.8 (Low-Level Phase). A low-level phase 𝑝 = (𝑡𝑠, 𝑡𝑒, 𝑡𝑦𝑝𝑒) is a time interval, specified by a start time 𝑡𝑠 and an end time 𝑡𝑒,
with a type 𝑡𝑦𝑝𝑒 associated. The possible types are 𝑡𝑦𝑝𝑒 ∈ {𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔, 𝑚𝑒𝑡ℎ𝑜𝑑 𝑓𝑖𝑛𝑑𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔, 𝑟𝑒𝑐𝑜𝑛𝑐𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛}.

Considering again the example in Fig. A.10c, the final result of the algorithm is the following sequence of phases:

⟨(𝑡′1𝑠 , 𝑡
′
1𝑒
, 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔), (𝑡′′1𝑠 , 𝑡

′′
1𝑒
, 𝑚𝑒𝑡ℎ𝑜𝑑 𝑓𝑖𝑛𝑑𝑖𝑛𝑔),

(𝑡2𝑠 , 𝑡2𝑒 , 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔), (𝑡3𝑠 , 𝑡3𝑒 , 𝑟𝑒𝑐𝑜𝑛𝑐𝑖𝑙𝑖𝑎𝑡𝑖𝑜𝑛)⟩.

3.3. Identification of high-level phases using multi-modal data

In order to extract the high-level phases out of a modeling session, we translate the problem at hand into a series of classification
problems. Figs. 5a and 5b highlight the overall idea of our approach for high-level phase detection which can be divided into 4
steps. In the first step, the algorithm identifies a sliding window (cf. 1⃝ in Fig. 5a). In a second step, different features are extracted
for the identified sliding window (cf. 2⃝ in Fig. 5a). The sliding window is then classified as any of the high-level phases using a
pre-trained classifier (cf. 3⃝ in Fig. 5a). This whole procedure is repeated for the entire session, resulting in a sequence of candidate
phases. In a subsequent step, adjacent phases with the same phase type are merged (cf. 4⃝ in Fig. 5b). Alg. 2 provides a more formal
description of the high-level phase detection and is detailed in the following.

To obtain candidate high-level phases our algorithm uses a sliding window approach which allows to capture the optimal
separation of partitions among events3 and to obtain maximum flexibility in the selection of the classification algorithms and the
features to use. In Alg. 2 the iteration over all windows is reported in line 5. The selection of the sliding window size plays an

3 We might have two events (i.e., two candidate partitions) separated by a long time period. A sliding window approach allows to fine-tune the time where
the separation takes place.

6

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Algorithm 1: General algorithm to detect low- and high-level phases
Input: 𝐿𝐼 : log of interactions

𝐿𝑇 : log of transitions
𝐿𝐹 : log of fixations
𝑤𝑙: minimum duration of a phase

Output: 𝑃 : sequence of phases discovered

1 𝑃 ← HighLevelPhases(𝐿𝐼 , 𝐿𝑇 , 𝐿𝐹 , 𝑤𝑙) ⊳ See Alg. 2
2 foreach 𝑝 = (𝑡𝑠, 𝑡𝑒, type) ∈ 𝑃 with type = comprehension do
3 Remove 𝑝 from 𝑃 ⊳ Comprehension phases are refined
4 Add LowLevelPhases(𝐿𝑇 , 𝑡𝑠, 𝑡𝑒) to 𝑃 ⊳ See Alg. 3
5 end
6 return 𝑃

Fig. 5. Approach for high-level phase detection for multi-modal data.

important role: since each sliding window is classified as a single phase, its length represents the minimum duration of a high-level
phase (or partition). Choosing a too small window size might lead to phases not being recognized (because of a lack of representative
features). If the window size, in turn, is too long then phases might not be properly separated. For each sliding window, a set of
features is extracted (line 6, Alg. 2) and the phase type is detected (line 7, Alg. 2) using a standard classification technique available
in machine learning. The classifiers we tested in this paper are: Naïve Bayes [20,21]; Multilayer Perceptron [21,22]; Support Vector
Machines (SVMs) [21,23] (with ANOVA – ANalysis Of VAriance – kernel [24]); Random Forests and Extra Trees [21,23,25]. At the
end of each iteration, the algorithm appends the new phase to the sequence of phases (line 8). This procedure is repeated until the
end of the modeling session is reached (line 5). Once the algorithm for high-level phase detection has provided a classification for
the entire modeling session, there can be contiguous phases that were classified with the same type which are merged (line 10 in
Alg. 2).

In order to identify the features to use for the classification (cf., line 6 in Alg. 2), we went through a feature engineering process.
Data referring to user’s interactions with the modeling tool represents the primary source of information. For example, the creation
of a new task clearly represents a modeling phase, while the moving of an edge is part of a reconciliation phase. Eye tracking data
(i.e., fixations and transitions between areas of interest) is also considered since it allows to refine the classification and in particular
can help to identify short comprehension phases (cf. [17]). We selected features to capture all these notions and we grouped them
into classes. Given a log of interactions 𝐿𝐼 , a log of transitions 𝐿𝑇 , a log of fixations 𝐿𝐹 and a time window (i.e., a start 𝑠𝑤𝑠 and end
time 𝑠𝑤𝑒), the first feature class refers to features describing the user’s interactions with the modeling tool. The primary purpose of
these features is to capture the high-level phases by analyzing how the user performed the actual modeling:

7

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Algorithm 2: Algorithm to detect high-level phases (HighLevelPhases)
Input: 𝐿𝐼 : log of interactions

𝐿𝑇 : log of transitions
𝐿𝐹 : log of fixations
𝑤𝑙: minimum duration of a phase

Output: 𝑃 : sequence of high-level phases discovered

1 𝑃 ← ⟨⟩ ⊳ Sequence of high-level phases
2 start ← 𝜋𝑡𝑠

(

𝐿𝑇 1
)

⊳ Timestamp of first interaction in 𝐿𝑇

3 end ← 𝜋𝑡𝑒
(

𝐿𝑇 |𝐿𝑇 |

)

⊳ Timestamp of last interaction in 𝐿𝑇

4 𝐶 ← trained classification model ⊳ Obtain a trained classifier

⊳ Construct all possible sliding windows and classify each of them as proper phase
5 foreach window (sw𝑠, sw𝑒) in between start and end do
6 F← ExtractFeatures(𝐿𝐼 , 𝐿𝑇 , 𝐿𝐹 , sw𝑠, sw𝑒) ⊳ Extract the feature vector for the current window
7 type ← 𝐶(F) ⊳ Get most likely type for the window
8 𝑃 ← 𝑃 ⋅ ⟨(sw𝑠, sw𝑒, type)⟩ ⊳ Append the new phase
9 end

⊳ In 𝑃 there can be contiguous phases with the same type
10 Merge phases of 𝑃 that are contiguous and with the same type
11 return 𝑃

• The number of interactions #(𝑇) of a particular type 𝑇 taking place within the time frame of the sliding window:

#(𝑇) = |

|

|

{

(𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) ∈ 𝐿𝐼 ∣ 𝑡 ≥ 𝑠𝑤𝑠 ∧ 𝑡 < 𝑠𝑤𝑒 ∧ 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 ∈ 𝑇
}

|

|

|

.

Interactions with the modeling tool can refer to different interaction types (e.g., Create Node, Move Node). Specifically, as
reported in Table 1, 19 different interaction types can be differentiated. This class of features counts the number of interactions
of a particular type within a particular sliding window resulting in 19 features. Additionally, interaction types can be classified
either as modeling interactions (i.e., types 1–12 in Table 1) or reconciliation interactions (i.e., types 13–19 in Table 1). Thus, we
consider the number of modeling interactions and the number of reconciliation interactions as two additional features. This
set of features is useful to provide information about the actual operations performed during the given sliding window.

• Time distance to the closest interactions of a particular type, both occurring before and after the current sliding window:

before(𝑇) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝑤𝑠 − max{𝑡 ∣ (𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) ∈ 𝐿𝐼

∧ 𝑡 < 𝑠𝑤𝑠 ∧ 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 ∈ 𝑇 } if ∃(𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) ∈ 𝐿𝐼 ∶
𝑡 < 𝑠𝑤𝑠 ∧ 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 ∈ 𝑇

∞ otherwise

after(𝑇) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{𝑡 ∣ (𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) ∈ 𝐿𝐼 ∧ 𝑡 > 𝑠𝑤𝑒

∧ 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 ∈ 𝑇 } − 𝑠𝑤𝑒 if ∃(𝑡, 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒) ∈ 𝐿𝐼 ∶
𝑡 > 𝑠𝑤𝑒 ∧ 𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 ∈ 𝑇

∞ otherwise

This class of features considers the time of the closest interactions of a particular type before and after the sliding window
resulting into 38 features, i.e., 19 for before and 19 for after. Moreover, we consider 4 additional features capturing the
time of the closest modeling interaction (i.e., 𝑇 contains activities 1–12 in Table 1) and reconciliation interaction (i.e., 𝑇
contains activities 13–19 in Table 1) before and after the sliding window. This set of features is useful to characterize the
‘‘neighborhood’’ of the sliding window under examination and therefore to improve the classification of borderline cases
(e.g., windows with no interactions, but just before a dense cluster of modeling interactions which suggests a modeling phase
about to start).

The second group of features refers to the information coming from eye tracking:

• The sum of the durations of all fixations in one area of interest:

fixations(𝑎𝑟𝑒𝑎) =
∑

(𝑡𝑠 ,𝑡𝑒 ,𝑎𝑜𝑖)∈𝐿𝐹

(𝑡𝑒 − 𝑡𝑠)
[

𝑡𝑠 ≥ 𝑠𝑤𝑠 ∧ 𝑡𝑒 < 𝑠𝑤𝑒 ∧ 𝑎𝑜𝑖 = 𝑎𝑟𝑒𝑎
]

.

This measure is computed for each area of interest. Since we have 3 areas of interest (c.f. Section 2.3), we have 3 additional
features. Depending on the phase, different areas of interest might be in the focus. For example, during modeling phases, we
expect most of the time spent on the model canvas whereas, during comprehension phases, we expect most of the time spent

8

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Algorithm 3: Algorithm to detect low-level phases with HMM or CRF
Input: 𝐿𝑇 : log of transitions

start: start time of window
end: end time of window

Output: sequence of low-level phases discovered

⊳ Filtering of transitions, to consider just the given time interval
1 𝑇 ← ⟨(𝑡𝑠, 𝑡𝑒, aoi𝑠, aoi𝑡) ∈ 𝐿𝑇 ∣ 𝑡𝑠 > start ∧ 𝑡𝑒 ≤ end⟩

2 𝐹 ← convert T into a sequence of features ⊳ See Section 3.4
3 𝑆 ← SequenceLabeler(𝐹) ⊳ Standard HMM or CRF procedure

⊳ In 𝑆 we have a sequence (same length as 𝑇) where each component is classified as a low-level phase
4 Merge contiguous components of 𝑆 with the same classification
5 return 𝑆

on the text and on the toolbox. This set of features is relevant in order to describe how much time the user spent looking at the
different areas of interest, to reinforce the phase classification and therefore to help in disambiguating borderline cases [18].

• The number of transitions from one area of interest to another:

transitions(𝑎𝑟𝑒𝑎𝑠, 𝑎𝑟𝑒𝑎𝑡) = |{(𝑡𝑠, 𝑡𝑒, 𝑎𝑜𝑖𝑠, 𝑎𝑜𝑖𝑡) ∈ 𝐿𝑇 ∣

𝑡𝑠 ≥ 𝑠𝑤𝑠 ∧ 𝑡𝑒 < 𝑒𝑠𝑤𝑒 ∧ 𝑎𝑜𝑖𝑠 = 𝑎𝑟𝑒𝑎𝑠 ∧ 𝑎𝑜𝑖𝑡 = 𝑎𝑟𝑒𝑎𝑡}|.

This measure is computed for each combination of transitions. As we have 3 areas of interest and it is possible to have
transitions within the same area of interest, we introduce 32 = 9 additional features. As for the previous group of features, this
set of features is relevant in order to disambiguate borderline situations. An example of such case is reported in [17], where a
phase was classified as reconciliation even though the number of transitions clearly showed a comprehension pattern (flipping
between text and model).

One additional feature is included: the number of features with value set to 0. This feature can be seen as a way of quantifying
the absence of interactions. Considering all the features described each sliding window extracts from the logs a feature vector with
76 numerical components.

3.4. Identification of low-level phases

As a result of the high-level phase detection algorithm, we obtain a sequence of phases classified as either modeling,
reconciliation, or comprehension. In this section, we introduce our approach for low-level phase detection which further refines
comprehension phases into problem understanding, method finding and validation. Since, by definition, comprehension phases are
characterized by no interaction with the modeling tool, to detect low-level phases we can rely only on the eye tracking data and,
in particular, we focused on the log of transitions. To detect the low-level phases we devised two approaches, graphically depicted
in Fig. 6b. We rephrased our problem as sequence labeling and applied either (HMM) [23,26–28] or Conditional Random Fields
(CRFs) [29,30] to solve it. The low-level phases identification approach starts by filtering the log of transitions for only those
that occurred within the comprehension phase under examination (cf. Fig. 6a). Each sub-sequence of transition is converted into a
sequence of features (cf. 1⃝ in Fig. 6b) and a sequence classifier attaches a possible low-level phase type to each transition (cf. 2⃝ in
Fig. 6b). Finally, these points are merged into proper phases (cf. 3⃝ in Fig. 6b).

A formalization of this approach is reported in Algorithm 3: given a log of transitions (line 1, Alg. 3), it first converts it into a
sequence of feature vectors (line 2, Alg. 3). The sequence of features is fed to a sequence labeler which associates each element with
a class. In our case, the labels correspond to the low-level phases we are interested to detect (line 3, Alg. 3). Such a sequence of
labels is post-processed by merging equivalent contiguous labels, thus creating time intervals describing the actual low-level phases
(line 4, Alg. 3).

As described in the previous section also for the low-level phases identification we went through a feature engineering process.
The set of features includes the source and the target AOIs of the current transition as well as the source and the target AOIs for
the 2 previous and the 2 following transitions. Additionally, we added 2 features to indicate if the given transition is the first or the
last within the comprehension phase.

4. Experimental evaluation

This section describes the evaluation of the algorithms for the classification task of the high- and low-level phases. With this
evaluation we want to answer the following two research questions:

Q1 How well does the machine learning approach classify high-level phases in comparison with the state of the art?
Q2 How well does the machine learning approach segment a modeling session into low-level phases?

9

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 6. Different steps involved in the identification of low-level phases using HMM or CRF.

4.1. Data-set and ground truth

The data set used for our evaluation stems from a modeling session experiment where we collected model interactions and
eye tracking data from novice modelers. This experiment took place in 2015 at the University of Innsbruck (Austria) and 116
psychology students (participation was voluntary) were asked to model a mortgage process (after receiving proper training). The
log of interactions was directly obtained from CEP after the modeling session (cf. Section 2.2); eye tracking data was collected using
a Tobii TX300 eye tracker and the log of fixations (i.e., time-series of fixations including coordinates) was obtained with the help
of Tobii Studio. The fixations were mapped onto the AOI (cf. Fig. 2) using the coordinates of the fixation provided by Tobii Studio,
thus obtaining a representation as described in Definition 3.5. The log of transitions was computed based on the log of fixations.

To extract our ground truth knowledge, i.e., the ‘‘gold standard’’ for our dataset, we started from video recordings of different
subjects. For this experiment we use data generated by 5 subjects randomly selected among the participants. The video recordings
were manually classified by two experts independently and discrepancies between the two classifications were resolved by a
consensus building process. For the manual labeling, we used the descriptions of the phases introduced in Section 2.1, i.e., problem
understanding, method finding, modeling, reconciliation, and validation. The data-set manually enriched represents the gold
standard used for computing the qualitative performance of our approaches. Table 2 depicts the distribution of high-level phases
and the distribution of low-level phases among subjects.

Please note that in order to answer the two research questions we will use only parts of the dataset. Specifically, to answer Q1
we will consider only the high-level phases, whereas to answer Q2 we will operate on the low-level phases.

10

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Table 2
Absolute frequency of phase types in the ground truth and duration of modeling sessions for each subject.

Subjects Total

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5
Modeling 40 41 47 22 49 199
Comprehension 35 25 36 22 38 156
Reconciliation 24 26 35 20 21 126

Sem. validation 15 6 15 7 17 60
Syn. validation 0 4 16 5 12 37
Method finding 31 18 27 16 16 108
Prob. under. 19 17 21 6 18 81

Duration 00:23:57 00:39:50 00:31:09 00:21:33 00:40:17 02:36:47

Table 3
Time needed for training and prediction of low-level classifiers.

Training time Prediction time

Markovian (baseline) 620.0ms > h
CRF 216.0ms 2ms
HMM 0.5ms 0.8ms

4.2. Question Q1: Comparison to the state of the art

To answer research question Q1, we use the state of the art automated phase detection approach by [7, Sec. 6.3.1] introduced
in Section 2.2, which is based on user interactions only, and compare its results with those obtained by the approach presented in
this paper. For the actual comparison, we adopted the accuracy measure, i.e., the ratio of correctly classified phases over all phases.

In order to extensively analyze the possible factors affecting the quality scores, we tested the different classifiers varying the
window size and the set of features used. Fig. 7 depicts the corresponding accuracy values. Moreover, the measures for the state of
the art approach are depicted for reference. As a further reference, No Information Rate (NIR) curves are reported, indicating the
accuracy of selecting a random class. Our results show that the Extra Trees classifier achieves the highest accuracy with a value of
86% when a window of 5000 ms is used and both eye tracking and interaction features are exploited. 4 of the tested techniques
have configurations that outperform the state of the art and only Naïve Bayes reports very poor performance.

Besides accuracy, we also evaluate the time needed for training and prediction. For both, the training and prediction times,
we used the wall-clock as the measure, i.e., the time difference between the time at which the task finished and the time the task
started. We repeat the training procedure 5 times and calculate the average. Additionally, we measure the wall-clock time needed by
classifiers to predict the phases of a subject not used for training. We repeat this procedure 5 times and the average wall-clock time
is computed. Fig. 8 shows the time performance for training the classifiers and for predicting the phases (except for Naïve Bayes
due to lack of interest given its accuracy performance). With increasing window sizes the time needed for training and prediction
decreases since it becomes easier to classify the time window (due to the presence of more observations).

In conclusion, our results showed that question Q1 can be answered positively, i.e., the new approach outperforms the state of
the art approach.

4.3. Question Q2: Performance of segmenting into low-level phases

In contrast to the high-level phases classification, the low-level phases classification cannot be performed with the state of the art
approach since the low-level phase classification operates only during comprehension phases (i.e., when no interaction takes place).
Therefore, to define a baseline, we defined a ‘‘brute-force’’ algorithm called Markovian which tries all possible partitions and selects
the most likely one, assuming Markov property (i.e., the future state only depends on the current one), as described in Appendix B.

For evaluation, we use the accuracy and the wall-clock time as measurements on the comprehension phases of the ground truth
(for the same subjects evaluated in the previous section). Fig. 9 depicts the accuracy values for the detection of low-level phases.
The highest accuracy is achieved by CRF with 83%, whereas the baseline stops at 76%.

For evaluating the time performance, we trained on the data of 4 subjects and used the fifth for the prediction. The training and
prediction procedure is repeated 5 times, and the average is taken. Table 3 depicts the results. The prediction for the Markovian
(baseline) approach is very slow, because it employs a brute-force method. CRF represents a very good trade-off: even though it is
not as fast as HMM, both the training and the prediction times are very good.

In conclusions, we can answer question Q2 by showing the performance (both in terms of time requirements and quality) of the
different techniques we devised. The CRF approach achieves the best accuracy while showing a good time performance.

4.4. Limitations

The main limitation of the approaches presented stems from the assumption that all phase types can be induced by interactions
with the modeling platform and eye movements on the screen. While this assumption is realistic in some settings (e.g., teaching

11

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 7. Accuracy for detection of high-level phases with different approaches and different window sizes. The legend is shared by all charts.

exercises), it might not hold in the general case. However, eye tracking technologies are getting increasingly powerful enabling the

mapping of eye tracking data onto real-world objects as well. Thus, it is realistic to assume that our approach can be applied in

more dynamic settings in the future. A technical limitation of the approaches is the potential impact of the window size on the

identification of high-level phases: a bad decision on this regard can lead to poor results (also for low-level phases).

Finally, it is important to mention that the manual labeling of the gold standard represents a limitation regarding the

generalizability of our experimental results. Such labeling might be affected by human perception since it is a manual process.

To mitigate this problem we asked two experts to independently label the instances and reach consensus.

12

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. 8. Wall-clock time for training and prediction with different window sizes.

Fig. 9. Comparison of the accuracy for low-level classification for the different techniques devised as well as for the baseline (Markovian).

5. Conclusion and future work

The process underlying the creation of process models has recently received a lot of attention. Specifically, the impor-
tance of process models, for communication and documentation purposes, drives the need for improving their correctness and
understandability.

Historically, the analysis of the process of process modeling relied just on the recording of user’s interactions with the modeling
tools. Exploiting this data source, the literature reports techniques to gather information regarding the different modeling phases
taking place (i.e., comprehension, modeling, reconciliation). With the contribution presented in this paper, we showed how to
process the data in a completely new fashion, also incorporating a new source of information, i.e. eye tracking, resulting in a
twofold improvement of the state of the art. On the one hand, we are now able to extract phase types that were not identifiable
with state of the art techniques (i.e., problem understanding, method finding, semantic and syntactic validation), thus delivering
additional useful information to the analysis. On the other hand, the new analysis technique and the exploitation of the new data
source resulted in superior accuracy in identifying the phase types with respect to the state of the art.

Leveraging the technique reported in this paper allows the automatic detection of the different phases a user is performing during
a modeling task. The automatic phase detection will allow a more fine-grained analysis of modeling sessions. Moreover, this can

13

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

be used to provide better modeling experience through phase-specific modeling support which, in turn, will result in better process
models. In particular, the automatic phase detection can provide important contextual information to be able to identify how to best
support the modeler in her specific situation through feedback, interventions, or adaptations. This represents the main long-term
goal and future working direction of the paper. At the same time, we plan to investigate different possibilities to improve the overall
quality of the phase detection, as well as the introduction of new techniques, resulting in even more accurate inferences.

Acknowledgment

This work is funded by the Austrian Science Fund (FWF) project ‘‘The Modeling Mind: Behavior Patterns in Process Modeling’’
(P26609).

Appendix A. Data example with expected results

Fig. A.10 presents an example of a process modeling session including data on how the modeler interacted with the modeling
platform and how her attention was distributed. Moreover, it depicts the phases that should be detected when applying the
multi-modal phase detection approach presented in this paper.

In particular, Fig. A.10a provides the sequence of interactions with the modeling platform that occurred during the modeling
session. Each interaction is numbered 𝑖1,… , 𝑖7 and the respective interaction type is shown on top (for the full list of possible types
see Table 1). Fig. A.10a also shows how the process model (as a result of the model interactions) evolved over time. With the first
interaction, i.e., 𝑖1, the modeler selected the tool for adding activities from the toolbox. This was followed by the creation of two
nodes (i.e., 𝑖2, 𝑖3). After that, a different tool from the toolbox was selected (𝑖4) and an edge was created (𝑖5). Finally, the two
activities were renamed (𝑖6, 𝑖7). Please note that not all interactions changed the structure of the model: 𝑖6 and 𝑖7 are reconciliation
actions since they consisted of renaming activities already in the model. Additionally, 𝑖1 and 𝑖4 did not cause any change on the
artifact since they just involved the selection of a tool from the modeling platform toolbox.

Fig. A.10b, in turn, focuses on the eye tracking input stream highlighting the AOIs the modeler focused on as well as the
transitions between AOIs. In the beginning, the user focused on the text (𝑎𝑜𝑖1), followed by the toolbox (𝑎𝑜𝑖2) and the modeling
canvas (𝑎𝑜𝑖3). In the end, after switching the focus to the toolbox to select a different tool (𝑎𝑜𝑖2), the user looked again at the
modeling canvas (𝑎𝑜𝑖3). Please note that this sequence of transitions between AOIs is also visible in the scan-path shown in Fig. 2.

Given the above data, the application of the state of the art technique described in Section 2.2 would (based on model interactions
only) result in the detection of only 3 phases (i.e., ‘‘comprehension’’, ‘‘modeling’’, ‘‘reconciliation’’).

The aim of this paper, instead, is to combine the sequence of interactions with the eye tracking data in order to infer
modeling phases with a finer granularity (i.e., where ‘‘comprehension’’ is split into ‘‘problem understanding’’, ‘‘method finding’’,
and ‘‘validation’’) as reported in Fig. A.10c. In this case, during the first time period, no interactions were observed (cf. Fig. A.10a)
and the user spent all time focusing on the text (as indicated in Fig. A.10b) and therefore our system should infer a ‘‘problem
understanding’’ phase (𝑝1). This is followed by ‘‘method finding’’ (𝑝2) as the user selected a new tool from the toolbox (as indicated
both in Figs. A.10a and A.10b). Then, while the user was focusing on the model and creating activities and the edge, a ‘‘modeling’’
phase took place (𝑝3). Finally, when the user was spending time on the model without changing its structure, but renaming activities,
a ‘‘reconciliation’’ phase should be detected (𝑝4).

Appendix B. Segmentation with Markov Chain

The ‘‘brute-force approach’’ used as baseline to detect low-level phases is based on Markov Chains (MC) [28,31]. Markov Chains
provide a probabilistic framework to describe a system whose current status only depends on the previous one.

We can use this notion to construct a Markov Chain for each specific low-level phase we want to detect. To achieve that, we
feed the learning algorithm with the sequence of transitions observed for a specific phase (i.e., the gold standard) to obtain a MC
describing the low-level phase under examination. Then, given an unseen sequence of transitions, we can use our MC to obtain the
probability that the sequence has been generated by the given low-level phase.

A formalization of the entire approach is reported in Algorithm 4. First of all, the algorithm filters the log of transitions, to
consider only those referring to the considered time frame (line 1, Alg. 4). Comprehension phases are a generalized phase type,
each of them can consist of one or more sub-phases, i.e., problem understanding, method finding, syntactic, and semantic validation.
However, since a Markov Chains can only provide the probability of a sequence constituting a particular phase type, we have to
generate all possible partitions of the sequence (line 4, Alg. 4) and calculate probabilities for each of them. Since a partition is
basically a sequence of sub-sequences, the approach iterates through the partition itself and assigns a score to each sub-sequence,
which represents a candidate low-level phase (line 9, Alg. 4). To do that, the sequence is checked against all MCs for each possible
low-level phase type, and the best performing (i.e., the one with the highest probability) is returned. The scores for each sequence of
the partition are summed up (line 10, Alg. 4) and the candidate sequence of low-level phases is built (line 11, Alg. 4). The algorithm
keeps only the best performing partition (lines 13–16, Alg. 4), which is eventually returned as final output (line 18, Alg. 4).

Despite the efficiency of computing the likelihood of a sequence, the most relevant drawback of this approach is the number
of partitions it has to evaluate. Such a brute force mechanism makes the whole approach very inefficient and therefore hardly
applicable in real scenarios. Still, it is relevant since it allows the identification of all partitions (including the correct one as well)
and therefore can be used as baseline.

14

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Fig. A.10. Example of a process modeling session with model interaction and eye tracking data as well as the inferred phases.

Appendix C. Implementation details

The approach presented in this paper has been implemented using different programming languages and techniques.

15

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

Algorithm 4: Algorithm to detect low-level phases with Markov Chains
Input: 𝐿𝑇 : log of transitions

start: start time of window
end: end time of window

Output: sequence of low-level phases discovered

⊳ Filtering of transitions, to consider just the given time interval
1 𝑇 ← ⟨(𝑡𝑠, 𝑡𝑒, aoi𝑠, aoi𝑡) ∈ 𝐿𝑇 ∣ 𝑡𝑠 > start ∧ 𝑡𝑒 ≤ end⟩

⊳ Define the best score and the best sequence
2 scorebest ← −∞
3 seqbest ← ⟨⟩

4 𝑃 ← generate all possible partitions of the sequence 𝑇 ⊳ See Section 3.1
5 foreach partition 𝑝 ∈ 𝑃 do
6 score ← 0
7 seq ← ⟨⟩

⊳ Iterate through all sub-sequences of the current partition to check its quality
8 foreach sequence 𝑠 ∈ 𝑝 do
9 score𝑠, type ← highest likelihood that 𝑠 is generated by one of the Markov Chains, and the phase type the M.C. refers

to
10 score ← score + score𝑠
11 seq ← seq ⋅ ⟨(𝜋𝑡𝑠 (𝑠0), 𝜋𝑡𝑒 (𝑠|𝑠|), type)⟩
12 end

⊳ If the current partition is the best so far, update the global values
13 if score > scorebest then
14 scorebest ← score
15 seqbest ← seq
16 end
17 end
18 return seqbest

The high-level phase classification is completely coded in Python and the open-source ecosystem SciPy.4 We extensively used the
scikit-learn package [32] for training and validating the different classifiers.

For the low-level phase classification, Matlab5 was used for the HMM. The R programming environment6 has been adopted to
program the Markov Chain algorithm, and Python and the sklearn-crfsuite (which is based on CRFsuite [33]) package was
exploited for CRF.

References

[1] P. Fettke, How conceptual modeling is used, Commun. Assoc. Inf. Syst. 25 (2009).
[2] S. Hoppenbrouwers, H.A. Proper, T.P. van der Weide, Formal modelling as a grounded conversation, in: Proc. LAP’05, 2005, pp. 139–155.
[3] S. Hoppenbrouwers, H.A. Proper, T.P. van der Weide, A fundamental view on the process of conceptual modeling, in: Proc. ER’05, 2005, pp. 128–143.
[4] P. Rittgen, Negotiating models, in: Proc. CAiSE’07, 2007, pp. 561–573.
[5] J. Recker, N. Safrudin, M. Rosemann, How novices design business processes, Inf. Syst. 37 (6) (2012) 557–573.
[6] P. Soffer, M. Kaner, Y. Wand, Towards understanding the process of process modeling: Theoretical and empirical considerations, in: Proc. ER-BPM’11,

2012, pp. 357–369.
[7] J. Pinggera, The Process of Process Modeling (Ph.D. thesis), University of Innsbruck, Austria, 2014, URL http://bpm.q-e.at/wp-content/uploads/2014/10/

thesis_jakob_final.pdf.
[8] J. Pinggera, S. Zugal, M. Weidlich, D. Fahland, B. Weber, J. Mendling, H.A. Reijers, Tracing the process of process modeling with modeling phase diagrams,

in: Proc. ER-BPM’11, 2012, pp. 370–382.
[9] B. Weber, M. Neurauter, A. Burattin, J. Pinggera, C. Davis, Measuring and explaining cognitive load during design activities: A fine-grained approach, in:

Proceedings Gmunden Retreat on NeuroIS (Preprint), 2017.
[10] W.M.P. van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Barros, Workflow patterns, Distrib. Parallel Databases (14) (2003) 5–51.
[11] OMG, Business Process Model and Notation (BPMN) - Version 2.0, Beta 1, 2009.
[12] B. Weber, M. Reichert, J. Mendling, H.A. Reijers, Refactoring large process model repositories, Comput. Ind. 62 (5) (2011) 467–486.
[13] M. Petre, Why looking isn’t always seeing: Readership skills and graphical programming, Commun. ACM 38 (6) (1995) 33–44.
[14] J. Mendling, H.A. Reijers, J. Cardoso, What makes process models understandable? in: Proc. BPM’07, 2007, pp. 48–63.
[15] J. Krogstie, G. Sindre, H. Jørgensen, Process models representing knowledge for action: a revised quality framework, Eur. J. Inf. Syst. 15 (1) (2006)

91–102.

4 See https://www.scipy.org/.
5 See https://www.mathworks.com/products/matlab.html.
6 See https://www.r-project.org/.

16

http://refhub.elsevier.com/S0169-023X(17)30328-2/sb1
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb2
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb3
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb4
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb5
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb6
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb6
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb6
http://bpm.q-e.at/wp-content/uploads/2014/10/thesis_jakob_final.pdf
http://bpm.q-e.at/wp-content/uploads/2014/10/thesis_jakob_final.pdf
http://bpm.q-e.at/wp-content/uploads/2014/10/thesis_jakob_final.pdf
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb8
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb8
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb8
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb9
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb9
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb9
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb10
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb12
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb13
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb14
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb15
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb15
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb15
https://www.scipy.org/
https://www.mathworks.com/products/matlab.html
https://www.r-project.org/

A. Burattin, M. Kaiser, M. Neurauter et al. Data & Knowledge Engineering 121 (2019) 1–17

[16] J. Pinggera, S. Zugal, B. Weber, Investigating the process of process modeling with cheetah experimental platform, in: Proc. ER-POIS’10, 2010, pp. 13–18.
[17] A. Burattin, M. Kaiser, M. Neurauter, B. Weber, Eye tracking meets the process of process modeling: a visual analytic approach, in: Proc. TAProViz’16,

2016.
[18] B. Weber, J. Pinggera, M. Neurauter, S. Zugal, M. Martini, M. Furtner, P. Sachse, D. Schnitzer, Fixation patterns during process model creation: Initial

steps toward neuro-adaptive process modeling environments, in: Proc. HICSS’16, IEEE, 2016, pp. 600–609.
[19] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, J. van de Weijer, Eye Tracking: A Comprehensive Guide to Methods and Measures,

OUP Oxford, 2011.
[20] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, third ed., Prentice Hall, 2009, p. 1152.
[21] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, in: Springer Series in Statistics, Springer-Verlag New York, 2009.
[22] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[23] C.C. Aggarwal, Data Mining, Springer International Publishing, 2015, p. 734.
[24] T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning, Ann. Statist. 36 (3) (2008) 1171–1220.
[25] Tin Kam Ho, Random decision forests, in: Proc. ICDAR’95, 1995, pp. 278–282.
[26] L. Rabiner, B. Juang, An introduction to Hidden Markov models, IEEE ASSP Mag. 3 (January) (1986) Appendix 3A.
[27] S.R. Eddy, Hidden Markov models, Curr. Opin. Struct. Biol. 6 (3) (1996) 361–365.
[28] J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Computational Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
[29] J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in: Proc. ICML’01, 2001,

pp. 282–289.
[30] C. Sutton, A. Mccallum, An introduction to conditional random fields for relational learning, in: L. Getoor, B. Taskar (Eds.), Introduction to Statistical

Relational Learning, Vol. 2, MIT Press, 2006, pp. 93–128.
[31] R. Serfozo, Basics of Applied Stochastic Processes, Springer Science & Business Media, 2009, p. 443.
[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[33] N. Okazaki, Crfsuite: a fast implementation of conditional random fields (crfs), 2007. URL: http://www.chokkan.org/software/crfsuite/.

Andrea Burattin is Associate Professor at the Technical University of Denmark, Denmark. Previously, he worked as Assistant Professor
at the same university, and as postdoctoral researcher at the University Innsbruck (Austria) and at the University of Padua (Italy). In
2013 he obtained his Ph.D. degree from University of Bologna and Padua (Italy). The IEEE Task Force on Process Mining awarded
to his Ph.D. thesis the Best Process Mining Dissertation Award 2012–2013. His Ph.D. thesis has then been published as Springer
Monograph in the LNBIP series. He served as organizer of BPI workshop since 2015, and special sessions on process mining at IEEE
CIDM since 2013. He is also in the program committee of several conferences. His research interests include process mining techniques
and, in particular, online approaches on event streams.

Michael Kaiser is a Computer Science Student at the University of Innsbruck (Austria). In 2017 he obtained his B.Sc. degree from the
University of Innsbruck (Austria). His main research interests include game theory, consensus algorithms, blockchain technology and
artificial intelligence. He is also involved, with different roles, in some companies with a particular focus on blockchain technology.

Manuel Neurauter is a Ph.D. candidate at the University of Innsbruck (Austria). Manuel received his M.Sc. degree from the Department
of Psychology, University of Innsbruck in 2013. His main research interest is the influence of human cognition and cognitive load
on the design process of process models. His research interests further include the influence of cognitive abilities in general and
particularly working memory functions on business process quality. Manuel has published eight papers in international journals,
conferences, and workshops.

Barbara Weber is Professor for Software Systems Programming and Development at the University of St. Gallen, Switzerland. She is
Chair for Software Systems Programming and Development and Director of the Institute of Computer Science. In addition, she holds
a part-time full professor position at the Department of Applied Mathematics and Computer Science with the Technical University
of Denmark. Barbara’s research interests include process model understandability, process of process modeling, process flexibility,
and user support in flexible process-aware systems as well as neuro-adaptive information systems. Barbara has published more than
150 refereed papers, for example, in Nature Scientific Reports, Information and Software Technology, Information Systems, Data and
Knowledge Engineering, Software and System Modeling, and Journal of Management Information systems and is co-author of the
book ‘‘Enabling Flexibility in Process-aware Information Systems: Challenges, Methods, Technologies’’ by Springer.

17

http://refhub.elsevier.com/S0169-023X(17)30328-2/sb16
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb17
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb17
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb17
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb18
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb18
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb18
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb19
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb19
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb19
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb20
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb21
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb22
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb23
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb24
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb25
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb26
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb27
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb28
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb29
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb29
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb29
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb30
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb30
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb30
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb31
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb32
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb32
http://refhub.elsevier.com/S0169-023X(17)30328-2/sb32
http://www.chokkan.org/software/crfsuite/

	Learning process modeling phases from modeling interactions and eye tracking data
	Introduction
	Background and related work
	Process of process modeling
	Phase detection based on model interactions
	Phase detection based on multi-modal data

	Identification of phases using multi-modal data
	Preliminary definitions
	Problem formalization
	Identification of high-level phases using multi-modal data
	Identification of low-level phases

	Experimental evaluation
	Data-set and ground truth
	Question question1: Comparison to the state of the art
	Question question2: Performance of segmenting into low-level phases
	Limitations

	Conclusion and future work
	Acknowledgment
	Appendix A. Data Example with Expected Results
	Appendix B. Segmentation with Markov Chain
	Appendix C. Implementation Details
	References

