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A B S T R A C T

A methodology is proposed for efficient and accurate modeling and simulation of correlated non-Gaussian
wind velocity time histories along long-span structures at an arbitrarily large number of points. Currently,
the most common approach is to model wind velocities as discrete components of a stochastic vector process,
characterized by a Cross-Spectral Density Matrix (CSDM). To generate sample functions of the vector process,
the Spectral Representation Method is one of the most commonly used, involving a Cholesky decomposition of
the CSDM. However, it is a well-documented problem that as the length of the structure – and consequently
the size of the vector process – increases, this Cholesky decomposition breaks down numerically. This paper
extends a methodology introduced by the second and fourth authors to model wind velocities as a Gaussian
stochastic wave (continuous in both space and time) by considering the stochastic wave to be non-Gaussian.
The non-Gaussian wave is characterized by its frequency–wavenumber (FK) spectrum and marginal probability
density function (PDF). This allows the non-Gaussian wind velocities to be modeled at a virtually infinite
number of points along the length of the structure. The compatibility of the FK spectrum and marginal PDF
according to translation process theory is secured using an extension of the Iterative Translation Approximation
Method introduced by the second and third authors, where the underlying Gaussian FK spectrum is upgraded
iteratively using the directly computed (through translation process theory) non-Gaussian FK spectrum. After
a small number of computationally extremely efficient iterations, the underlying Gaussian FK spectrum is
established and generation of non-Gaussian sample functions of the stochastic wave is straightforward without
the need of iterations. Numerical examples are provided demonstrating that the simulated non-Gaussian wave
samples exhibit the desired spectral and marginal PDF characteristics.

1. Introduction

Several methods are available today to solve problems in engi-
neering mechanics involving uncertain quantities described by stochas-
tic processes, fields or waves. Among them, Monte Carlo simulation
appears to be the only universal method that can provide accurate
solutions for problems in stochastic mechanics involving strong non-
linearities, system stochasticity, stochastic stability, large variations of
uncertain system parameters, etc. One of the most important steps of
the Monte Carlo simulation methodology is the generation of sample
functions of the stochastic processes, fields or waves involved in the
problem at hand. Among the various methods currently available to
generate such sample functions, the Spectral Representation Method
(SRM) [1] is one of the most widely used today.

Wind is the governing load on long span bridges and exhibits
a high degree of uncertainty [2]. When performing a Monte Carlo
simulation analysis of a long-span bridge subjected to wind loads, the
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standard approach today is to model the wind velocity time histories
as components of a stochastic vector process (or equivalently a multi-
variate stochastic process), characterized by its Cross-Spectral Density
Matrix (CSDM). When the SRM is used to generate sample functions
of this stochastic vector process, its CSDM has to be decomposed
using Cholesky [3] or modal [4–6] decomposition. However, for both
modal and Cholesky type decompositions, there is a serious problem
when the number of components in the vector process becomes large.
These decompositions break down numerically because neighboring
points on the bridge have wind velocity time histories that are highly
correlated to each other, and the CSDM gets increasingly close to
becoming singular. To address this problem, some research efforts
have focused on developing approximate techniques to facilitate this
decomposition (e.g. [7–10]). However, these methods remain quite
expensive computationally, involve different degrees of approximation,
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Fig. 1. Gamma distribution used in the numerical examples compared to the Gaussian distribution with same mean and standard deviation: (a) PDF’s, (b) CDF’s.

and eventually break down when the number of components in the
vector process becomes too large.

Recently, Benowitz and Deodatis [11,12] proposed an alternative
formulation that can simulate wind velocity time histories at an ar-
bitrarily large number of spatial locations without any approximating
assumption or loss of accuracy. The proposed formulation models
wind velocities as a continuous stochastic ‘‘wave’’ in the space–time
domain, rather than as a discrete stochastic vector process in space and
continuous only in time. This idea was then extended for conditional
interpolation for unevenly spaced locations [13], non-stationary waves
[14], and non-homogeneous waves in two space dimensions [15]. All
of these works [11–15], however, considered the stochastic waves
modeling wind velocities to be Gaussian. In this paper, the formulation
introduced by Benowitz and Deodatis [11,12] for Gaussian stochastic
waves is extended to non-Gaussian stochastic waves using translation
process theory [16,17] as wind velocities can exhibit non-Gaussian
characteristics.

2. Spectral representation method for simulation of Gaussian
stochastic waves

When generating samples of a Gaussian stochastic wave 𝑢 (𝑡, 𝑥)
according to its frequency–wavenumber spectrum (FKS) 𝑆𝐺 (𝜔, 𝜅), the
Spectral Representation Method (SRM) takes the following form [12]:

𝑢 (𝑡, 𝑥) =
√

2
𝑁𝜅
∑

𝑙=1

𝑁𝜔
∑

𝑚=1

∑

𝐼𝜔=±1

√

2𝑆𝐺
(

𝐼𝜔𝜔𝑚, 𝜅𝑙
)

𝛥𝜔𝛥𝜅 cos
[

𝐼𝜔𝜔𝑚𝑡 + 𝜅𝑙𝑥 + 𝜙𝐼𝜔
𝑚𝑙

]

(1)

where:

𝜔𝑚 = 𝑚𝛥𝜔 ; 𝛥𝜔 =
𝜔𝑢
𝑁𝜔

; 𝜅𝑙 = 𝑙𝛥𝜅 ; 𝛥𝜅 =
𝜅𝑢
𝑁𝜅

(2)

In order to take advantage of the Fast Fourier Transform (FFT)
technique, Eq. (1) is rearranged as follows [12]:

𝑢 (𝑡, 𝑥)

= Re

[𝑁𝑘−1
∑

𝑙=0

𝑁𝜔−1
∑

𝑚=0

{

𝐵(1)
𝑙𝑚 exp

[

𝑖𝜔𝑚𝑡 + 𝑖𝜅𝑙𝑥
]

+ 𝐵(2)
𝑙𝑚 exp

[

−𝑖𝜔𝑚𝑡 + 𝑖𝜅𝑙𝑥
]

}]

(3)

where 𝑖 is the imaginary unit, Re [⋅] denotes the real part, and:

𝐵(𝑛)
𝑙𝑚 = 2

√

𝑆
(

𝜔𝑚, 𝜅𝑙
)

𝛥𝜔𝛥𝜅 ⋅ exp[𝑖𝜙(𝑛)
𝑙𝑚 ] (4)

Using a pseudo-notation for the FFT, Eq. (3) can be re-written as a
series of FFTs [12]:

𝑢 (𝑡, 𝑥) = Re
{

𝐹𝐹𝑇𝜅
[

𝐹𝐹𝑇𝜔
(

𝐁(1))] + 𝐹𝐹𝑇𝜅
[

𝐼𝐹𝐹𝑇𝜔
(

𝐁(2))]} (5)

where 𝐹𝐹𝑇 (⋅) and 𝐼𝐹𝐹𝑇 (⋅) denote the FFT and the Inverse FFT,
respectively, and subscripts 𝜔 and 𝜅 indicate along which dimension
the (I)FFT is computed.

3. Translation process theory for stochastic waves

Let 𝑢 (𝑡, 𝑥) be a stationary and homogeneous Gaussian stochastic
wave with zero mean, standard deviation 𝜎, and autocorrelation func-
tion (ACF) 𝑅𝐺 (𝜏, 𝜉). This Gaussian wave can then be mapped to a
non-Gaussian one 𝑢𝑁𝐺 (𝑡, 𝑥) with prescribed marginal cumulative distri-
bution function (CDF) 𝐹𝑁𝐺 (⋅), through the following non-linear trans-
formation known as ‘‘translation’’ [16,17]:

𝑢𝑁𝐺 (𝑡, 𝑥) = 𝐹−1
𝑁𝐺

[

𝐹𝐺 {𝑢 (𝑡, 𝑥)}
]

(6)

where 𝐹𝐺 (⋅) is the Gaussian CDF. This transformation from Gaussian to
non-Gaussian is always possible in a ‘‘forward’’ fashion. The Gaussian
ACF 𝑅𝐺 (𝜏, 𝜉) is transformed to the corresponding non-Gaussian ACF
𝑅𝑁𝐺 (𝜏, 𝜉) using the following equation proposed by Grigoriu [16,17]:

𝑅𝑁𝐺 (𝜏, 𝜉) = ∫

∞

−∞ ∫

∞

−∞
𝐹−1
𝑁𝐺

{

𝐹𝐺
[

𝑥1
]}

⋅ 𝐹−1
𝑁𝐺

{

𝐹𝐺
[

𝑥2
]}

× 𝛷
{

𝑥1, 𝑥2; 𝜌 (𝜏, 𝜉)
}

𝑑𝑥1𝑑𝑥2 (7)

where 𝛷
{

𝑥1, 𝑥2; 𝜌 (𝜏, 𝜉)
}

is the joint Gaussian probability density:

𝛷
{

𝑥1, 𝑥2; 𝜌 (𝜏, 𝜉)
}

= 1
2𝜋𝜎2

√

1 − 𝜌2 (𝜏, 𝜉)
exp

(

𝑥21 + 𝑥22 − 2𝜌 (𝜏, 𝜉) 𝑥1𝑥2
2𝜎2

(

1 − 𝜌2 (𝜏, 𝜉)
)

)

(8)

and 𝜌 (𝜏, 𝜉) is the normalized Gaussian correlation function:

𝜌 (𝜏, 𝜉) =
𝑅𝐺 (𝜏, 𝜉)

𝜎2
(9)

4. Proposed methodology for simulation of non-Gaussian stochas-
tic waves

The methodology in this section is an extension of the Iterative
Translation Approximation Method introduced by Shields, Deodatis and
Bocchini [18].

4.1. Define target non-Gaussian CDF & FKS, and initialize underlying
Gaussian FKS

The non-Gaussian stochastic wave is defined by its marginal non-
Gaussian CDF 𝐹𝑁𝐺 (⋅) and its non-Gaussian FKS 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅). According
to translation process theory, 𝐹𝑁𝐺 (⋅) and 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅) are in general
incompatible if defined arbitrarily and independently. The first step in

2



H. Zhou, G. Deodatis, M. Shields et al. Probabilistic Engineering Mechanics 59 (2020) 103016

Fig. 2. (a) Gaussian FKS 𝑆𝐺 (𝜔, 𝜅) at the end of the iterative process, (b) Non-Gaussian FKS 𝑆𝑁𝐺 (𝜔, 𝜅) at the end of the iterative process, (c) Ensemble FKS of 5000 generated
Gaussian samples, (d) Ensemble FKS of 5000 generated non-Gaussian samples, (e) Prescribed target FKS 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅).

the proposed iterative methodology is to provide an initial guess for the
underlying Gaussian FKS 𝑆𝐺 (𝜔, 𝜅). Here, the initial guess for 𝑆𝐺 (𝜔, 𝜅)
is the prescribed non-Gaussian FKS 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅) (which is almost always
an excellent choice for the initial guess).

4.2. Determining non-Gaussian FKS from Gaussian FKS at iteration (𝑖)

Given the Gaussian FKS 𝑆(𝑖)
𝐺 (𝜔, 𝜅) at iteration (𝑖), the corresponding

Gaussian ACF𝑅(𝑖)
𝐺 (𝜏, 𝜉) can be computed using the Wiener–Khintchine

transform:

𝑅(𝑖)
𝐺 (𝜏, 𝜉) = ∫

∞

−∞ ∫

∞

−∞
𝑆(𝑖)
𝐺 (𝜔, 𝜅) 𝑒𝑖(𝜔𝜏+𝜅𝜉)𝑑𝜔𝑑𝜅 (10)

The Gaussian normalized correlation function𝜌(𝑖)𝐺 (𝜏, 𝜉) at iteration (𝑖)
is then computed as:

𝜌(𝑖)𝐺 (𝜏, 𝜉) =
𝑅(𝑖)
𝐺 (𝜏, 𝜉)

𝜎2𝐺
(11)

where 𝜎2𝐺 is the variance of the (zero mean) underlying Gaussian wave.
The non-Gaussian ACF 𝑅(𝑖)

𝑁𝐺 (𝜏, 𝜉) is computed next, using the classic
translation process non-linear mapping [16,17]:

𝑅(𝑖)
𝑁𝐺 (𝜏, 𝜉) = ∫

∞

−∞ ∫

∞

−∞
𝐹−1
𝑁𝐺

{

𝐹𝐺
[

𝑥1
]}

⋅ 𝐹−1
𝑁𝐺

{

𝐹𝐺
[

𝑥2
]}

× 𝛷
{

𝑥1, 𝑥2; 𝜌
(𝑖)
𝐺 (𝜏, 𝜉)

}

𝑑𝑥1𝑑𝑥2 (12)
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Fig. 3. FKS of one generated non-Gaussian sample function.

Finally, the corresponding non-Gaussian FKS 𝑆(𝑖)
𝑁𝐺 (𝜔, 𝜅) at iteration

(𝑖) is computed using the inverse Wiener–Khintchine transform:

𝑆(𝑖)
𝑁𝐺 (𝜔, 𝜅) = 1

(2𝜋)2 ∫

∞

−∞ ∫

∞

−∞
𝑅(𝑖)
𝑁𝐺 (𝜏, 𝜉) 𝑒−𝑖(𝜔𝜏+𝜅𝜉)𝑑𝜏𝑑𝜉 (13)

4.3. Upgrade the Gaussian FKS for iteration (𝑖 + 1)

The underlying Gaussian FKS is upgraded for iteration (𝑖 + 1) using
the calculated non-Gaussian FKS for iteration (𝑖) as proposed initially
by Deodatis and Micaletti [19]:

𝑆(𝑖+1)
𝐺 (𝜔, 𝜅) =

[

𝑆𝑇
𝑁𝐺 (𝜔, 𝜅)

𝑆(𝑖)
𝑁𝐺 (𝜔, 𝜅)

]𝛽

𝑆(𝑖)
𝐺 (𝜔, 𝜅) (14)

The iterative scheme is terminated when the relative difference
between the computed non-Gaussian FKS 𝑆(𝑖+1)

𝑁𝐺 (𝜔, 𝜅) and the target
non-Gaussian FKS 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅):

𝜀(𝑖+1) = 100

√

√

√

√

√

√

∑

𝑚,𝑙

[

𝑆(𝑖+1)
𝑁𝐺

(

𝜔𝑚, 𝜅𝑙
)

− 𝑆𝑇
𝑁𝐺

(

𝜔𝑚, 𝜅𝑙
)

]2

∑

𝑚,𝑙
[

𝑆𝑇
𝑁𝐺

(

𝜔𝑚, 𝜅𝑙
)]2

(15)

stabilizes to a constant value or when further iterations are not able to
lower the value of this relative difference. Because of the original in-
compatibility between 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅) and 𝐹𝑁𝐺 (⋅), it is of course impossible
for 𝑆(𝑖+1)

𝑁𝐺 (𝜔, 𝜅) to perfectly converge to 𝑆𝑇
𝑁𝐺 (𝜔, 𝜅), but it generally gets

as close as possible to it, while ensuring translation-type compatibility
between 𝑆(𝑖+1)

𝑁𝐺 (𝜔, 𝜅) and 𝐹𝑁𝐺 (⋅).

5. Numerical examples

A zero-mean Gamma distribution with unit standard deviation [20]
is selected for the marginal probability distribution of the stochastic
wave modeling wind velocities. Its PDF is given by:

𝑓 (𝑥) = 1
𝛤 (𝑘)𝜃𝑘

𝑥𝑘−1𝑒−
𝑥
𝜃 (16)

where:

𝜃 = 𝜎2

𝜇
; 𝑘 =

𝜇
𝜃
; 𝑥 = 𝑥 − 𝜇 (17)

Selecting the following values for parameters 𝜇 and 𝜎2: 𝜇 = 5,
𝜎2 = 1, leads to the following moments for the Gamma distribution:
mean = 0, variance = 1, skewness = 0.4, kurtosis = 3.24. The resulting
distribution is defined over the interval [−5, ∞] and is plotted in Fig. 1.
It is clear that its difference to the Gaussian is rather slight.

The selected target non-Gaussian power spectral density function is
the Kaimal spectrum [21]:

𝑆𝑁𝐺 (𝜔) = 1
2
200
2𝜋

𝑢2∗
𝑧

𝑈 (𝑧)
1

[

1 + 50 𝜔𝑧
2𝜋𝑈 (𝑧)

]5∕3
(18)

where 𝑧 is the height above ground, 𝑈 (𝑧) is the average wind velocity
at height 𝑧, and 𝑢∗ is the shear velocity defined as:

𝑢∗ =
𝑘𝑈 (𝑧)

ln
(

𝑧∕𝑧0
) (19)

where 𝑘 is von Karman’s constant (𝑘 ≅ 0.4) and 𝑧0 is a parameter
describing the ground roughness.

The selected target coherence is Davenport’s coherence [22]:

𝛾(𝜉, 𝜔) = exp
[

−
𝜆𝜔𝜉

2𝜋𝑈 (𝑧)

]

(20)

with parameter 𝜆 = 10 [22]. Then, the non-Gaussian target frequency–
wavenumber spectrum (FKS) can be computed from:

𝑆𝑇
𝑁𝐺 (𝜔, 𝜅) = 1

2𝜋 ∫

∞

−∞
𝑆𝑁𝐺 (𝜔) 𝛾(𝜉, 𝜔)𝑒𝑖𝑘𝜉𝑑𝜉 (21)

Substituting Eqs. (18) and (20) into Eq. (21) leads to:

𝑆𝑇
𝑁𝐺 (𝜔, 𝜅)

= 1
2
200
2𝜋

𝑢2∗
𝑧

𝑈 (𝑧)
1

[

1 + 50 𝜔𝑧
2𝜋𝑈 (𝑧)

]5∕3

[

1
2𝜋 ∫

∞

−∞
𝑒−𝜆𝜔𝜉∕2𝜋𝑈 (𝑧)𝑒𝑖𝑘𝜉𝑑𝜉

]

(22)

Fig. 4. Comparison of estimated coherences from 5000 generated non-Gaussian samples and corresponding target Davenport coherences: (a) 𝛾 (𝜔, 𝜉 = 2.34 m), (b) 𝛾 (𝜔, 𝜉 = 9.37 m).
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Fig. 5. Generated sample realization of wind velocity fluctuations modeled as a non-Gaussian stochastic wave: (a) Entire sample wave in space–time, (b) Selected time histories:
top: 𝑥 = 0 m, middle: 𝑥 = 800 m, bottom: 𝑥 = 1600 m, (c) Spatial coherency between neighboring points.

The integral in the above equation has an analytical solution, and
Eq. (22) simplifies to:

𝑆𝑇
𝑁𝐺 (𝜔, 𝜅) = 1

2
200
2𝜋

𝑢2∗
𝑧

𝑈 (𝑧)
1

[

1 + 50 𝜔𝑧
2𝜋𝑈 (𝑧)

]5∕3

⎡

⎢

⎢

⎢

⎣

(

𝜆𝜔
𝜋𝑈 (𝑧)

)

𝜅2 +
(

𝜆𝜔
2𝜋𝑈 (𝑧)

)2

⎤

⎥

⎥

⎥

⎦

(23)

5.1. Problem parameter definitions

A bridge with an 𝐿 = 1600 m main span is considered. The other
parameters involved in the problem are set equal to:

𝑧 = 50m; 𝑧0 = 0.03m; 𝑈 (𝑧) = 40m∕s

The frequency–wavenumber discretization used is described by:

𝜔𝑢 = 8𝜋 rad∕s;𝑁𝜔 = 1024;𝛥𝜔 =
𝜔𝑢

𝑁𝜔 − 1
= 0.0246 rad∕s

𝜅𝑢 =
2
(

𝑁𝜅 − 1
)

𝐿
𝜋 = 8.0385m−1;𝑁𝜅 = 2048;𝛥𝜅 = 2𝜋

𝐿
= 0.00393m−1

Time and space are discretized as follows:

𝑁𝑡 = 2𝑁𝜔 = 2048; 𝑇 = 2𝜋
𝛥𝜔

= 255.75 s ; 𝛥𝑡 = 𝑇
𝑁𝑡

=
(2𝜋∕𝛥𝜔)

𝑁𝑡
= 0.125 s ;

𝑁𝑥 = 2𝑁𝜅 = 4096; 𝛥𝑥 = 𝐿
𝑁𝑥

= 0.391m

Fig. 6. Generated wind velocity fluctuation time histories at location 𝑥 = 38.67m:
underlying Gaussian and corresponding translated non-Gaussian (Gamma) time
histories.

The above discretizations indicate that the velocity time histories
will be computed at 4096 equidistant points along the length of the
bridge’s main span. The corresponding space interval is 0.391 m. Each

5
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Fig. 7. Comparison of prescribed Gamma distribution to distribution estimated from one sample function: (a) PDF’s, (b) CDF’s.

of the 4096 time histories will be computed at 2048 equidistant time
instants with a time interval of 0.125 s. It is clear that the currently
existing approaches based on modeling the velocity time histories as a
stochastic vector process (multi-variate stochastic process) would never
be able to simulate time histories at such a large number of spatial
locations/time instants.

5.2. Simulation results

The Gaussian FKS 𝑆𝐺 (𝜔, 𝜅) and non-Gaussian FKS 𝑆𝑁𝐺 (𝜔, 𝜅) at
the end of the iterative process described in Section 4 are shown
in Figs. 2(a) and 2(b), respectively. Figs. 2(c) and 2(d) show the
corresponding ensemble FKS computed from 5000 generated Gaussian
and non-Gaussian sample functions, respectively. Fig. 2(e) displays the
prescribed target FKS 𝑆𝑇

𝑁𝐺 (𝜔, 𝜅). There are minor differences between
Fig. 2(a) and (b) as the selected Gamma distribution in Eqs. (16) and
(17) is only mildly non-Gaussian. As expected, Fig. 2(a) is identical to
Fig. 2(c), and Fig. 2(d) is converging to Fig. 2(b). Fig. 3 displays the FKS
of just one generated non-Gaussian sample function. The convergence
of the ensemble FKS of non-Gaussian samples from one sample to 5000
samples can be observed by comparing Figs. 3 to 2(d).

Using the 5000 generated non-Gaussian samples, two representative
coherence functions are estimated at two different separation distances
and plotted versus the corresponding target Davenport coherences in
Fig. 4. For both selected separation distances, the match is very good
as can be seen in Fig. 4.

A sample realization of the simulated non-Gaussian wave modeling
wind velocity fluctuations is shown in Fig. 5. Fig. 5(a) shows the entire
wave sample in space and time. Fig. 5(b) displays the corresponding
time histories at 𝑥 = 0 m, 𝑥 = 800 m, and 𝑥 = 1600 m. The time histories
at 𝑥 = 0 m and 𝑥 = 1600 m display a high level of coherency because
of the periodicity property of the spectral representation method. In
contrast, the time history at 𝑥 = 800 m shows no coherency to the
time histories at 𝑥 = 0 m and 𝑥 = 1600 m because of the large sep-
aration distances. Finally, Fig. 5(c) shows corresponding superimposed
and zoomed-in time histories at 𝑥 = 11.72 m and 𝑥 = 13.28 m to
visually demonstrate the spatial coherency between neighboring points
in space.

In Fig. 6, a generated Gaussian wind velocity time history at location
x = 38.67 m along the length of the bridge is contrasted to the cor-
responding translated non-Gaussian (Gamma) time history. Although
the Gamma PDF is only slightly non-Gaussian, it is clear that there are
differences in the peaks of the two velocity time histories.

Fig. 7 displays the prescribed Gamma distribution and the estimated
distribution computed from one generated sample function involving
4096 × 2048 data points. It is clear that the matching is excellent.

Finally, the CPU time necessary to generate one Gaussian sample
function (4096 × 2048 data points) is 2 s, and then mapping it to
the corresponding non-Gaussian Gamma sample function (4096 × 2048
data points) takes an additional 33 s. These CPU times were computed
using 64-bit MATLAB R2014a on a desktop work-station with an In-
tel(R) Core(TM) i7-7700 processor and 24 GB of RAM. The capabilities
of the proposed methodology become obvious when compared to exist-
ing methodologies based on modeling the velocity time histories as a
stochastic vector process (multi-variate stochastic process). The existing
vector process based methodologies are simply not capable of gener-
ating time histories at such a large number of spatial locations/time
instants. The proposed stochastic wave based methodology is capable
of doing so with great computational efficiency.

6. Conclusions

A methodology is proposed to simulate a non-Gaussian wind veloc-
ity field along the length of long-span bridges. In contrast to existing
methodologies where these wind velocities are modeled as stochastic
vector processes, the wind velocity field is modeled as a stochastic
wave, continuous in space and time. This allows for simulation of wind
velocity time histories at a virtually infinite number of points in space
and time.
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