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Abstract

This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN. We propose
three marginal extensions to DBSCAN related with the identification of (i) core objects, (ii) noise objects, and (iii) adjacent
clusters. In contrast to the existing density-based clustering algorithms, our algorithm has the ability of discovering clusters
according to non-spatial, spatial and temporal values of the objects. In this paper, we also present a spatial–temporal data
warehouse system designed for storing and clustering a wide range of spatial–temporal data. We show an implementation
of our algorithm by using this data warehouse and present the data mining results.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Data mining; Cluster analysis; Spatial–temporal data; Cluster visualization; Algorithms
1. Introduction

Clustering is one of the major data mining methods for knowledge discovery in large databases. It is the
process of grouping large data sets according to their similarity. Cluster analysis is a major tool in many areas
of engineering and scientific applications including data segmentation, discretization of continuous attributes,
data reduction, outlier detection, noise filtering, pattern recognition and image processing. In the field of
Knowledge Discovery in Databases (KDD), cluster analysis is known as unsupervised learning process, since
there is no priori knowledge about the data set.

Most studies in KDD [12] focus on discovering clusters from ordinary data (non-spatial and non-temporal
data), so they are impractical to use for clustering spatial–temporal data. Spatial–temporal data refers to data
which is stored as temporal slices of the spatial dataset. Knowledge discovery from spatial–temporal data is a
very promising subfield of data mining because increasingly large volumes of spatial–temporal data are col-
lected and need to be analyzed. The knowledge discovery process for spatial–temporal data is more complex
than for non-spatial and non-temporal data. Because spatial–temporal clustering algorithms have to consider
the spatial and temporal neighbors of objects in order to extract useful knowledge. Clustering algorithms
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designed for spatial–temporal data can be used in many applications such as geographic information systems,
medical imaging, and weather forecasting.

This paper presents a new density-based clustering algorithm ST-DBSCAN, which is based on the algorithm
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [5]. In DBSCAN, the density associated
with a point is obtained by counting the number of points in a region of specified radius around the point.
Points with a density above a specified threshold are constructed as clusters. Among the existing clustering algo-
rithms, we have chosen DBSCAN algorithm, because it has the ability in discovering clusters with arbitrary
shape such as linear, concave, oval, etc. Furthermore, in contrast to some clustering algorithms, it does not
require the predetermination of the number of clusters. DBSCAN has been proven in its ability of processing
very large databases [3,5,6]. We have improved DBSCAN algorithm in three important directions. First, unlike
the existing density-based clustering algorithms, our algorithm can cluster spatial–temporal data according to
its non-spatial, spatial and temporal attributes. Second, DBSCAN cannot detect some noise points when clus-
ters of different densities exist. Our algorithm solves this problem by assigning to each cluster a density factor.
Third, the values of border objects in a cluster may be very different than the values of border objects in oppo-
site side, if the non-spatial values of neighbor objects have little differences and the clusters are adjacent to each
other. Our algorithm solves this problem by comparing the average value of a cluster with new coming value.

In addition to new clustering algorithm, this paper also presents a spatial data warehouse system designed
for storing and clustering a wide range of spatial–temporal data. Environmental data, from a variety of
sources, were integrated as coverages, grids, shapefiles, and tables. Special functions were developed for data
integration, data conversion, visualization, analysis and management. User-friendly interfaces were also devel-
oped allowing relatively inexperienced users to operate the system. In order demonstrate the applicability of
our algorithm to real world problems, we applied our algorithm to the data warehouse, and then presented
and discussed the data mining results.

Spatial–temporal data is indexed and retrieved according to spatial and time dimensions. A time period
attached to the spatial data expresses when it was valid or stored in the database. A temporal database
may support valid time, transaction time or both. Valid time denotes the time period during which a fact is
true with respect to the real world. Transaction time is the time period during which a fact is stored in the
database. This study focuses on valid time aspect of temporal data.

The rest of the paper is organized as follows. Section 2 summaries the existing clustering algorithms and
gives basic concepts of density-based clustering algorithms. Section 3 describes the drawbacks of existing den-
sity-based clustering algorithms and our efforts to overcome these problems. Section 4 explains our algorithm
in detail and presents the performance of the algorithm. Section 5 presents three applications which are imple-
mented to demonstrate the applicability of it to real world problems. It shows and discusses the data mining
results. Finally, a conclusion and some directions for future works are given in Section 6.

2. Related works and basic concepts

This section summaries and discusses the existing clustering algorithms and then gives basic concepts of
density-based algorithms.

2.1. Density-based clustering

The problem of clustering can be defined as follows:

Definition 1. Given a database of n data objects D = {o1,o2, . . . ,on}. The process of partitioning D into
C = {C1,C2, . . . ,Ck} based on a certain similarity measure is called clustering, Ci’s are called clusters, where
Ci � D, (i = 1,2, . . . ,k),

Tk
i¼1Ci ¼ ; and

Sk
i¼1Ci ¼ D.

Clustering algorithms can be categorized into five main types [13]: Partitional, Hierarchical, Grid-based,
Model-based and Density-based clustering algorithms. In Partitional algorithms, cluster similarity is measured
in regard to the mean value of the objects in a cluster, center of gravity, (K-Means [19]) or each cluster is rep-
resented by one of the objects of the cluster located near its center (K-Medoid [26]). K is an input parameter for
these algorithms, unfortunately it is not available for many applications. CLARANS [20] is an improved
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version of K-Medoid algorithm for mining in spatial databases. Hierarchical algorithms such as CURE [9],
BIRCH [31] produce a set of nested clusters organized as a hierarchical tree. Each node of the tree represents
a cluster of a database D. Grid-based algorithms such as STING [28], WaveCluster [23] are based on multiple-
level grid structure on which all operations for clustering are performed. In Model-based algorithms (COB-
WEB [8], etc.), a model is hypothesized for each of the clusters and the idea is to find the best fit of that model
to each other. They are often based on the assumption that the data are generated by a mixture of underlying
probability distributions.

The Density-based notion is a common approach for clustering. Density-based clustering algorithms are
based on the idea that objects which form a dense region should be grouped together into one cluster. They
use a fixed threshold value to determine dense regions. They search for regions of high density in a feature
space that are separated by regions of lower density.

Density-based clustering algorithms such as DBSCAN [5], OPTICS [2], DENCLUE [15], CURD [18] are to
some extent capable of clustering databases [21]. One drawback of these algorithms is that they capture only
certain kinds of noise points when clusters of different densities exist. Furthermore, they are adequate if the
clusters are distant from each other, but not satisfactory when clusters are adjacent to each other. The detailed
description of these problems and our solutions are given in Section 3.

In our study, we have chosen DBSCAN algorithm, because it has the ability in discovering clusters with
arbitrary shape such as linear, concave, oval, etc. Furthermore, in contrast to some clustering algorithms,
it does not require the predetermination of the number of clusters. DBSCAN has been proven in its ability
of processing very large databases [3,6].

In the literature, DBSCAN algorithm was used in many studies. For example, the other popular density-
based algorithm OPTICS (Ordering Points To Identify the Clustering Structure) [2] is based on the concepts of
DBSCAN algorithm and identifies nested clusters and the structure of clusters. Incremental DBSCAN [7]
algorithm is also based on the clustering algorithm DBSCAN and is used for incremental updates of a clus-
tering after insertion of a new object to the database and deletion of an existing object from the database.
Based on the formal notion of clusters, the incremental algorithm yields the same result as the non-incremental
DBSCAN algorithm. SDBDC (Scalable Density-Based Distributed Clustering) [16] method also uses
DBSCAN algorithm on both local sites and global site to cluster distributed objects. In this
method, DBSCAN algorithm is firstly carried out on each local site. Then, based on these local clustering
results, cluster representatives are determined. Then, based on these local representatives, the standard
DBSCAN algorithm is carried out on the global site to construct the distributed clustering. This study pro-
poses the usage of different Eps-values for each local representative. Wen et al. [29] adopted DBSCAN and
Incremental DBSCAN as the core algorithms of their query clustering tool. They used DBSCAN to cluster
frequently asked questions and most popular topics on a search engine. Spieth et al. [24] applied DBSCAN
to identify solutions for the inference of regulatory networks. Finally, SNN density-based clustering algorithm
[25] is also based on DBSCAN and it is applicable to high-dimensional data consisting of time series data of
atmospheric pressure at various points on the earth.
2.2. Basic concepts

DBSCAN is designed to discover arbitrary-shaped clusters in any database D and at the same time can dis-
tinguish noise points. More specifically, DBSCAN accepts a radius value Eps(e) based on a user defined dis-
tance measure and a value MinPts for the number of minimal points that should occur within Eps radius.
Some concepts and terms to explain the DBSCAN algorithm can be defined as follows [5].

Definition 2 (Neighborhood). It is determined by a distance function (e.g., Manhattan Distance, Euclidean
Distance) for two points p and q, denoted by dist(p,q).

Definition 3 (Eps-neighborhood). The Eps-neighborhood of a point p is defined by {q 2 D jdist(p,q) 6 Eps}.

Definition 4 (Core object). A core object refers to such point that its neighborhood of a given radius (Eps) has
to contain at least a minimum number (MinPts) of other points (Fig. 1c).



Fig. 1. Basic concepts and terms: (a) p density-reachable from q, (b) p and q density-connected to each other by o and (c) border object,
core object and noise.
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Definition 5 (Directly density-reachable). An object p is directly density-reachable from the object q if p is
within the Eps-neighborhood of q, and q is a core object.

Definition 6 (Density-reachable). An object p is density-reachable from the object q with respect to Eps and
MinPts if there is a chain of objects p1, . . . ,pn, p1 = q and pn = q such that pi+1 is directly density-reachable
from pi with respect to Eps and MinPts, for 1 6 i 6 n, pi 2 D (Fig. 1a).

Definition 7 (Density-connected). An object p is density-connected to object q with respect to Eps and MinPts
if there is an object o 2 D such that both p and q are density-reachable from o with respect to Eps and MinPts
(Fig. 1b).

Definition 8 (Density-based cluster). A cluster C is a non-empty subset of D satisfying the following ‘‘maxi-
mality’’ and ‘‘connectivity’’ requirements:

(1) "p,q: if q 2 C and p is density-reachable from q with respect to Eps and MinPts, then p 2 C.
(2) "p,q 2 C: p is density-connected to q with respect to Eps and MinPts.
Definition 9 (Border object). An object p is a border object if it is not a core object but density-reachable from
another core object.

The algorithm starts with the first point p in database D, and retrieves all neighbors of point p within Eps
distance. If the total number of these neighbors is greater than MinPts—if p is a core object—a new cluster is
created. The point p and its neighbors are assigned into this new cluster. Then, it iteratively collects the neigh-
bors within Eps distance from the core points. The process is repeated until all of the points have been
processed.
3. Problems of existing approaches

3.1. Problem of clustering spatial–temporal data

In order to determine whether a set of points is similar enough to be considered a cluster or not, we need a
distance measure dist(i, j) that tells how far points i and j are. The most common distance measures used are
Manhattan distance, Euclidean distance, and Minkowski distance. Euclidean distance is defined as Eq. (1).
distði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1 � xj1Þ2 þ ðxi2 � xj2Þ2 þ � � � þ ðxin � xjnÞ2

q
ð1Þ
where i = (xi1,xi2, . . . ,xin) and j = (xj1,xj2, . . . ,xjn) are two n-dimensional data objects. For example, the
Euclidean distance between the two data objects A(1,2) and B(5,3) is 4.12.

DBSCAN algorithm uses only one distance parameter Eps to measure similarity of spatial data with one
dimension. In order to support two dimensional spatial data, we propose two distance metrics, Eps1 and
Eps2, to define the similarity by a conjunction of two density tests. Eps1 is used for spatial values to measure
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the closeness of two points geographically. Eps2 is used to measure the similarity of non-spatial values. For
example, A(x1,y1) and B(x2,y2) are two points (spatial values), t1, t2 (DayTimeTemperature, NightTime

Temperature) and t3, t4 are four temperature values of these points respectively (non-spatial values). In this
example, Eps1 is used to measure the closeness of two points geographically, while Eps2 is used to measure
the similarity of temperature values. If A(x1,y1, t1, t2) and B(x2,y2, t3, t4) are two points, Eps1 and Eps2
are calculated by the formulas in Eq. (2).
Eps1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1� x2Þ2 þ ðy1� y2Þ2

q
Eps2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt1� t2Þ2 þ ðt1� t2Þ2

q ð2Þ
In order to support temporal aspects, spatio-temporal data is first filtered by retaining only the temporal
neighbors and their corresponding spatial values. Two objects are temporal neighbors if the values of these
objects are observed in consecutive time units such as consecutive days in the same year or in the same day
in consecutive years.

3.2. Problem of identifying noise objects

From the view of a clustering algorithm, noise is a set of objects not located in clusters of a database. More
formally, noise can be defined as follows:

Definition 10 (Noise). Let C1, . . . ,Ck be the clusters of the database D. Then the noise is the set of points in
the database D not belonging to any cluster Ci, where i = 1, . . . ,k, i.e., noise = {p 2 D j"i: p 62 Ci}.

Existing density-based clustering algorithms [14] produce meaningful and adequate results under certain
conditions, but their results are not satisfactory when clusters of different densities exist. To illustrate, consider
the example given in Fig. 2. This is a simple dataset containing 52 objects. There are 25 objects in the first
cluster C1, 25 objects in the second cluster C2, and two additional noise objects o1 and o2. In this example,
C2 forms a denser cluster than C1. In other words, the densities of the clusters are different from each other.
DBSCAN algorithm identifies only one noise object o1. Because approximately for every object p in C1, the
distance between the object p and its nearest neighbor is greater than distance between o2 and C2. For this
reason, we can’t determine an appropriate value for the input parameter Eps. If the Eps value is less than
the distance between o2 and C2, some objects in C1 are assigned as noise object. If the Eps value is greater
than the distance between o2 and C2, the object o2 is not assigned as noise object.

The example in Fig. 2 shows that DBSCAN algorithm is not satisfactory when clusters of different densities
exist. In order to overcome this problem, we propose a new concept: density factor. We assign to each cluster a
density factor, which is the degree of the density of the cluster. We begin with the notion of density_distance.

Definition 11 (Density_distance). Let density_distance_max of an object p denote the maximum distance
between the object p and its neighbor objects within the radius Eps. Similarly, let density_distance_min of an
object p denote the minimum distance between the object p and its neighbor objects within the radius Eps.

(i) density_distance_max (p) = max{dist(p,q) jq 2 D ^ dist(p,q) 6 Eps},
(ii) density_distance_min(p) = min{dist(p,q) jq 2 D ^ dist(p,q) 6 Eps}.
Fig. 2. Example data set which contains clusters with different densities.



Fig. 3. Example data set which contains adjacent clusters.
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The density_distance of an object p is defined as density_distance_max(p)/density_distance_min(p).

So far, we define density factor of a cluster as follows.

Definition 12 (Density_factor). The density_factor of a cluster C is defined as Eq. (3).
density factorðCÞ ¼ 1

X
p2C

density distanceðpÞ
jCj

2
4

3
5,

ð3Þ
The density factor of a cluster C captures the degree of the density of the cluster. If C is a ‘‘loose’’ cluster,
density_distance_min would increase and so the density distance in Definition 11 would be quite small, thus
forcing the density factor of C to be quite close to 1. Otherwise, if C is a ‘‘tight’’ cluster, density_distance_min
would decrease and so the density distance in Definition 11 would be quite big, thus forcing the density factor

of C to be quite close to 0.
3.3. Problem of identifying adjacent clusters

The existing density-based clustering algorithms [17] are adequate if the clusters are distant from each
other, but not satisfactory when clusters are adjacent to each other (Fig. 3). If the values of neighbor objects
have little differences, the values of border objects in a cluster may be very different than the values of other
border objects in opposite side. In other words, the value of a border object may be very different than the
value of the most far border object. Because small value changes on neighbors can cause big value changes
between starting points and ending points of a cluster. However cluster objects should be within a certain dis-
tance from the cluster means. We solve this problem by comparing the average value of a cluster with new
coming value. If the absolute difference between Cluster_Avg( ) and Object_Value is bigger than the threshold
value, D�, then the new object is not appended to the cluster. Cluster_Avg( ) refers to the average or mean
value of the objects contained in the cluster. Object_Value refers to the non-spatial value of the object such
as temperature value of a location.

4. ST-DBSCAN algorithm

4.1. The description of the algorithm

While DBSCAN algorithm needs two inputs, our algorithm ST-DBSCAN requires four parameters Eps1,
Eps2, MinPts, and D� because of the extensions described in Section 3. Eps1 is the distance parameter for spa-
tial attributes (latitude and longitude). Eps2 is the distance parameter for non-spatial attributes. A distance
metric such as Euclidean, Manhattan or Minkowski Distance Metric can be used for Eps1 and Eps2. MinPts
is the minimum number of points within Eps1 and Eps2 distance of a point. If a region is dense, then it should
contain more points than MinPts value. In [5], a simple heuristic is presented which is effective in many cases
to determine the parameters Eps and MinPts. The heuristic suggests MinPts � ln(n) where n is the size of the
database and Eps must be picked depending on the value of MinPts. The first step of the heuristic method is to
determine the distances to the k-nearest neighbors for each object, where k is equal to MinPts. Then these
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k-distance values should be sorted in descending order. Then we should determine the threshold point which is
the first ‘‘valley’’ of the sorted graph. We should select Eps to less than the distance defined by the first valley.
The last parameter D� is used to prevent the discovering of combined clusters because of the little differences in
non-spatial values of the neighboring locations.

The algorithm starts with the first point p in database D and retrieves all points density-reachable from p

with respect to Eps1 and Eps2. If p is a core object (see Definition 4), a cluster is formed. If p is a border object
(see Definition 9), no points are density-reachable from p and the algorithm visits the next point of the data-
base. The process is repeated until all of the points have been processed.

As shown in Fig. 4, the algorithm starts with the first point in database D (i). After processing this point, it
selects the next point in D. If the selected object does not belong to any cluster (ii), Retrieve_Neighbors func-
tion is called (iii). A call of Retrieve_Neighbors(object,Eps1,Eps2) returns the objects that have a distance less
than Eps1 and Eps2 parameters to the selected object. In other words, Retrieve_Neighbors function retrieves
all objects density-reachable (see Definition 6) from the selected object with respect to Eps1, Eps2, and MinPts.
The result set forms the Eps-Neighborhood (see Definition 3) of the selected object. Retrieve_Neigh-

bours(object,Eps1,Eps2) equals to the intersection of Retrieve_Neighbours(object,Eps1) and Retrieve_Neigh-

bours(object,Eps2). If the total number of returned points in Eps-Neighborhood is smaller than MinPts
Fig. 4. ST_DBSCAN algorithm.
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input, the object is assigned as noise (iv). This means that the selected point has not enough neighbors to be
clustered. The points which have been marked to be noise may be changed later, if they are not directly den-
sity-reachable (see Definition 5) but they are density-reachable (see Definition 6) from some other point of the
database. This happens for border points of a cluster.

If the selected point has enough neighbors within Eps1 and Eps2 distances—if it is a core object—then a
new cluster is constructed (v). Then all directly density-reachable neighbors of this core object are also marked
as new cluster label. Then the algorithm iteratively collects density-reachable objects from this core object by
using a stack (vi). The stack is necessary to find density-reachable objects from directly density-reachable
objects. If the object is not marked as noise or it is not in a cluster, and the difference between the average
value of the cluster and the new coming value is smaller than D�, it is placed into the current cluster (vii). After
processing the selected point, the algorithm selects the next point in D and algorithm continues iteratively until
all of the points have been processed.

When the algorithm searches the neighbors of any object by using Retrieve_Neighbors function (line (iii) in
the algorithm), it takes into consideration both spatial and temporal neighborhoods. The non-spatial value of
an object such as a temperature value is compared with the non-spatial values of spatial neighbors and also
with the values of temporal neighbors (previous day in the same year, next day in the same year, and the same
day in other years). By this way, non-spatial, spatial and temporal characteristics of data are used in clustering
when the algorithm is applied on the table which contains temporal values, beside spatial and non-spatial
values.

If two clusters C1 and C2 are very close to each other, a point p may belong to both, C1 and C2. In this case,
the point p must be a border point in both C1 and C2. The algorithm assigns point p to the cluster discovered
first.

4.2. Performance evaluation

The average runtime complexity of the DBSCAN algorithm is O(n * logn), where n is the number of objects
in the database. Our modifications do not change the runtime complexity of the algorithm. DBSCAN has been
proven in its ability of processing very large databases. The paper [6] shows that the runtime of other cluster-
ing algorithms such as CLARANS [20], DBCLASD [30] is between 1.5 and 3 times the runtime of DBSCAN.
This factor increases with increasing size of the database.

As in all databases, fast access to raw data in spatial–temporal databases depends on the structural orga-
nization of the stored information and the availability of suitable indexing methods. While a well designed
data structure can facilitate to rapidly extract the desired information from a set of data, suitable indexing
methods can provide to quickly locate single or multiple objects [1]. Well known spatial indexing techniques
include Quadtrees [22], R-Trees [11], X-Tree [4] and others, see [10] for an overview. An R-Tree is a spatial
indexing technique that stores information about spatial objects such as object ids, the Minimum Bounding
Rectangles (MBR) of the objects or groups of the objects. Each entry of a leaf node is of the form (R,P) where
R is a rectangle that encloses all the objects that can be reached by following the node pointer P. In our study,
we made an improvement of the R-Tree indexing method to handle spatial–temporal information. We created
some nodes in R-Tree for each spatial object and linked them in temporal order. During the application of the
algorithm, this tree is traversed to find the spatial or temporal neighbor objects of any object. Two objects are
temporal neighbors if the values of these objects are observed in consecutive time units such as consecutive
days in the same year or in the same day in consecutive years.

In addition to spatial index structure, some filters should also be used to reduce the search space for spatial
data mining algorithms. These filters allow the operations on neighborhood paths by reducing the number of
paths actually created. They are necessary to speed up the processing of queries.

5. Application

In order to demonstrate the applicability of our algorithm to real world problems; we present three data
mining applications by using a spatial–temporal data warehouse. The task of clustering is to discover the
regions that have similar seawater characteristics. The aim of the clustering is obtain a number of clues about



Fig. 5. The schematic diagram of the system.
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how the physical properties of the water are distributed in a marine environment. The first application discov-
ers the regions that have similar sea surface temperature values. In the second application, the goal is to iden-
tify spatially based partitions which have the similar sea surface height residual values. The third application
includes cluster analysis on significant wave height data.

Fig. 5 shows the structure of the system. In visualization part of the study, remotely sensed data on the
historical extent of marine areas were used in a spatial metrics analysis of geographical form of countries
and islands. User-friendly interfaces were developed allowing relatively inexperienced users to operate the sys-
tem. Special functions were developed for data integration, data conversion, query, visualization, analysis and
management. Marine environmental data (e.g., sea surface temperature, wave height values, bathymetric
data), from a variety of sources, were integrated as coverages, grids, shapefiles, and tables.

The process of KDD involves several steps such as data integration and selection, data preprocessing and
transformation, data mining, and the evaluation of the data mining results. Our efforts on each step are
described below.

5.1. Data integration and selection

We designed a spatial data warehouse system which contains information about four seas: the Black Sea,
the Marmara Sea, the Aegean Sea, and the east of the Mediterranean Sea. These seas surround the countries
Turkey to the north, west, south; Greece to the east, south, west; and Cyprus. The geographical coordinates of
our work area are 30� to 47.5� north latitude and 17.0� to 42.5� east longitude.

As shown in Fig. 6, the data model contains a central fact table, STATIONS, which interconnects the
tables: Sea_Surface_Temperature, Sea_Surface_Height, Wave_Height, and Sea_Winds. The data size is
approximately 0.8 GB. In data warehouse, the dimensions are time and space. The time dimension can be
grouped into year, month, and day. Similarly, the space dimension can be grouped into StationID RegionID



Fig. 6. General overview of data warehouse.
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and ClusterID. The first column, StationID, identifies the geographic location of monitoring station. The col-
umn, RegionID, identifies the name of the sea (Black Sea, Marmara Sea, Aegean Sea, or Mediterranean Sea).
The last column, ClusterID, identifies a particular cluster of stations that have similar characteristics.

Sea_Surface_Temperature table contains weekly daytime and nighttime temperature records, which were
measured in years between 2001 and 2004. The data has been provided by NOAA-Series Satellites (National
Oceanic and Atmospheric Administration).1 It contains approximately 1.5 million rows. Data in Sea_Sur-
face_Height table has been provided by Topex/Poseidon Satellite2 and it was collected over five-day periods
in years between 1992 and 2002. Wave_Height table contains significant wave height values which are col-
lected over ten-day periods in years between 1992 and 2002. Similar to the significant sea surface height values,
the significant wave height values have also been provided by Topex/Poseidon Satellite. Sea_Winds table con-
tains information about wind speed, zonal wind and meridional wind. The data measured daily in years
between 1999 and 2004 has been provided by QuikSCAT Satellite.3

5.2. Data preprocessing and transformation

Satellite data generally contain false information and sometimes several values can be missing. We filled
missing values with the average of adjacent object values. The missing values generally located at the coasts
of the Aegean Sea. Because the Aegean coast is extremely indented with numerous gulfs and inlets.

The maps derived from the NOAA-AVHRR (Polar Orbiting Advanced Very High Resolution Radiometer)
are used to compute Sea Surface Temperatures (SSTs) by applying the Multi-Channel Sea Surface Tempera-
ture algorithm (MCSST). The latest version of this algorithm uses the following formula in the calculation of
the SST:
1 NO
2 To
3 Qu
SST ¼ a � T 4þ b � ðT 4� T 5Þ � Tf þ c � ðsecðqÞ � 1Þ � ðT 4� T 5Þ � d ð4Þ
AA/AVHRR Satellite Data Web Site, http://podaac.jpl.nasa.gov/.
pex/Poseidon Sea Level Grids Description, http://podaac.jpl.nasa.gov/woce/woce3_topex/topex/docs/topex_doc.htm.
ikSCAT SeaWinds, Gridded Ocean Wind Vectors, http://podaac.jpl.nasa.gov/products/product109.html.

http://podaac.jpl.nasa.gov/
http://podaac.jpl.nasa.gov/woce/woce3_topex/topex/docs/topex_doc.htm
http://podaac.jpl.nasa.gov/products/product109.html
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where q is the satellite zenith angle or the incidence angle of the incoming radiation based on the horizontal
plane of the satellite, T4 and T5 are the brightness temperatures from AVHRR channels 4 and 5, respectively.
Tf is a first-guess sea surface temperature estimate (obtained from the 1 km MCSST AVHRR mosaic SSTs),
and a, b, c, d are empirically derived coefficients [27]. These coefficients are predetermined by comparing
AVHRR radiance values to temperature measurements taken from moored and drifting buoys. For example,
the nighttime and daytime equations for NOAA-14 Satellite are:
Daytime SST¼ .9506 � T 4þ .0760 � ðT 4� T 5Þ � Tf þ .6839 � ðsecð0Þ � 1Þ � ðT 4� T 5Þ � 258:0968

Nighttime SST¼ .9242 � T 4þ .0755 � ðT 4� T 5Þ � Tf þ .6040 � ðsecð0Þ � 1Þ � ðT 4� T 5Þ � 250:4284
ð5Þ
The Sea Surface Height Residual values are calculated by the formula in Eq. (6).
SSHR ¼ SSH�MSS� Tide Effects� Inverse Barometer ð6Þ

where SSHR is the Sea Surface Height Residual value, SSH is the Sea Surface Height value, and MSS is Mean
Sea Surface height value. The residual sea surface is defined as the sea surface height minus the mean sea sur-
face and minus known effects, i.e., tides and inverse barometer.

Significant wave height from TOPEX is calculated from altimeter data based on the shape of a radar pulse
after it bounces off the sea surface. A calm sea with low waves returns a sharply defined pulse whereas a rough
sea with high waves returns a stretched pulse. The significant wave height is the average height of the highest
one-third of all waves in a particular time period.

5.3. Spatial–temporal data mining

In this step of the study, our clustering algorithm is applied three times to discover the spatial–temporal
distributions of three physical parameters. The first application uses Sea_Surface_Temperature data to find
the regions that have similar sea surface temperature characteristics. The input parameters designated as
Eps1 = 3, Eps2 = 0.5, and MinPts = 15. The second application uses Sea_Surface_Height data to find the
regions that have similar sea surface height residual values. The input parameters designated as Eps1 = 3,
Eps2 = 1, and MinPts = 4. The third application uses Wave_Height table to find the regions that have similar
significant wave height values. The input parameters assigned as Eps1 = 1, Eps2 = 0.25, and MinPts = 15.
These values for the input parameters are determined by using the heuristics given in [5].

5.4. The evaluation of data mining results

The example database contains weekly daytime and nighttime temperature records, which were measured
at 5340 stations in years between 2001 and 2004. In other words, sea surface temperature values stored in the
Fig. 7. (a) The locations of 5340 stations. (b) The results of cluster analysis on sea surface temperature data.
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database were collected at 5340 stations which are shown in Fig. 7a as black dots. The spatial distribution of
temperature in surface water (30–47.5�N and 17–42.5�E) is shown in Fig. 7b. Each cluster has data points that
have similar sea surface temperature characteristics. Cluster number 1 is bordered by Ukraine and Russia.
This region is the coldest area. Cluster number 2 at the north of the Ukraine is the second coldest area.
The seawater temperatures of other parts of the Black sea are similar with the Marmara Sea. Cluster number
4 covers the north of the Aegean Sea. Cluster number 5 form a great single cluster. The temperature values of
the stations in Cluster 6 have also similar characteristics. Cluster number 7 is the hottest region, because it is
the closest area to equator. In winter seasons, C5 and C7 clusters can be marked as one cluster, because they
cannot be distinguished very well. In summer seasons, C6 cluster becomes a little small. Many factors can
effect this distribution of seawater temperature. The temperature varies both attitudinally and depth-wise in
response to changes in air-sea interactions. Heat fluxes, evaporation, river in flow, the movement of water
and rain all influence the distribution of seawater temperature.

Topex/Poseidon Satellite provides sea surface height residual data as a two-dimensional grid separated by
one degree in latitude and longitude. So SSHR values stored in the database are available at 134 stations
which are shown in Fig. 8a as black dots. The clusters obtained by the usage of the Sea_Surface_Height table
are showed in Fig. 8b. Each cluster has data points that have similar sea surface height residual values. The
Fig. 8. (a) The locations of 134 stations. (b) The results of cluster analysis on sea surface height residual data.

Fig. 9. (a) The locations of 1707 stations. (b) The results of cluster analysis on significant wave height values.
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clusters named by C1, C2, C3 and C4 are located in Black Sea. The cluster named by C7 is located in Aegean
Sea. The rest of the clusters are located in Mediterranean Sea. Many factors contribute to changes in sea sur-
face height including sea eddies, temperature of the upper seawater, tides, sea currents, and gravity.

Significant wave height values stored in database were collected at 1707 stations which are shown in Fig. 9a
as black dots. Fig. 9b shows an example clustering result obtained by the usage of the dataset measured on
January 28, 2001. Each cluster has data points that have similar significant wave height values. For example,
while the region at the east of the Crete Island has the wave height values approximately 0.5 m, the region
(cluster 11) which is circled in dashed lines has the wave height values approximately 3.6 m. The region which
is circled in dashed lines has the maximum wave height values.

6. Conclusions and future work

Clustering is a main method in many areas, including data mining and knowledge discovery, statistics, and
machine learning. This study presents a new density-based clustering algorithm ST-DBSCAN which is con-
structed by modifying DBSCAN algorithm. The first reason of this modification is to be able to discover
the clusters on spatial–temporal data. The second modification is necessary to find noise objects when clusters
of different densities exist. We introduce a new concept: density factor. We assign to each cluster a density fac-

tor, which is the degree of the density of the cluster. The third modification provides a comparison of the aver-
age value of a cluster with new coming value. In order to demonstrate the applicability of our algorithm to real
world problems, we present an application using a spatial–temporal data warehouse. Experimental results
demonstrate that our modifications appear to be very promising when spatial–temporal data is used to be
clustered.

Very large databases need extreme computing power. In future studies, it is intended to run the algorithm in
parallel in order to improve the performance. In addition, more useful heuristics may be found to determine
the input parameters Eps and MinPts.
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