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ABSTRACT

An Experimental and Theoretical Investigation of Internal Wave
Kinetic Energy Density in Variable Stratifications

Allison Marie Lee
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Internal waves are generated in a fluid if the density increases continuously with depth. The
variation in density with depth, or stratification, defines the natural frequency of the fluid N. Two
common examples of stratified fluids are the ocean and atmosphere; internal waves are generated
continuously in both mediums. Although there are many internal wave generation mechanisms,
one common and frequently studied method is tidal flow over oceanic bathymetry. If the local
natural frequency of the water near the topography is greater than the tidal frequency ω , internal
waves will be generated by the tidal flow over the topography. If N < ω , only evanescent waves
will be formed. Unlike internal waves, evanescent waves decay rapidly as they move vertically
away from their generation site. As evanescent waves pass from an evanescent region (N < ω),
through a turning depth (N = ω) and into a propagating region (N > ω), they become propagating
internal waves. Because internal waves can propagate energy across large distances, they play an
important role in oceanic mixing and the overall energy budget of the ocean. Knowing where these
waves are formed from evanescent waves and their corresponding energy improves understanding
of the impact on their surrounding area.

Kinetic energy density of evanescent and internal waves formed from oscillatory flow over
topography in evanescent regions is first estimated using synthetic schlieren experiments and a
novel linear theory model. Experiments were performed with two Gaussian topographies in an
exponential density profile. The linear theory model, which uses a set of equations that links the
evanescent and propagating regions with the Airy function to overcome the discontinuity inherent
with a turning depth, was compared to the experiments. Both methods showed that increasing Fr1,
the strength of the evanescent region relative to the excitation frequency, causes the propagating
kinetic energy to decrease. In addition, kinetic energy decreased with increasing distance between
the topography and the turning depth. Because the model does not account for nonlinearities
such as turbulence generation, it regularly overestimates propagating kinetic energy relative to
the experiments. After comparing the model with synthetic schlieren experiments, it was used to
estimate that 25% of the evanescent wave energy generated by an oceanic topography located at
15◦N, 130◦E can become propagating wave energy.

The influence of topography shape and fluid density profile on kinetic energy density was
also explored through a combination of experiments, a linear theory model, and numerical simula-
tions. From numerical simulations, kinetic energy can be directly calculated with the velocity pro-
file and indirectly with the density perturbation field, in the same manner as the synthetic schlieren
experiments. Average propagating internal wave kinetic energy (KE∗2 ) as a function of Fr1D/H,
which combines Fr1 with the relative distance between the topography and the turning depth D/H,
was compared for all methods. KE∗2 decreases with increasing Fr1D/H for all methods. Also, far
from the turning depth, the direct and indirect simulations indicate similar kinetic energy when



in the propagating region, where a distance from the turning depth can be quantified based on N
and ω . This work was expanded to include a medium Gaussian, steep Gaussian, sinusoidal, and
complex topography with two layer linear, parabolic, cubic, and exponential density profiles to
investigate the validity of assuming an average natural frequency in the evanescent region and the
impact of the topographic slope on KE∗2 . A comparison of the density profiles indicated that using
a two layer linear density profile has similar results compared to the other density profiles for es-
timating KE∗2 as a function of Fr1D/H. Also, KE∗2 is non-negligible for Fr1D/H < 4. Increasing
the maximum slope of a topography shape decreases the kinetic energy of the generated internal
waves, though it was found that the energy is dependent upon the actual shape of the topography
as well.

Particle image velocimetry (PIV) experiments were performed and compared to synthetic
schlieren (SS). While SS experiments generally resulted in an overestimate of kinetic energy rela-
tive to the PIV results, the trends from each experimental method matched well. It is recommended
that SS be used in regions away from turning depths, but that either are valid in the evanescent and
propagating regions. PIV methods should be used when results near the turning depth or the to-
pography are desired.

Keywords: stratified flow, internal waves, variable stratifications, oceanic bathymetry
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CHAPTER 1. INTRODUCTION

1.1 Internal waves

When the density of a fluid varies with height, it is termed a stratified fluid. One simple

stratification is a discrete two layer system with either two fluids or one fluid with two different

densities, such as fresh water on top of salt water. A disturbance in one layer, such as a ship,

generates surfaces waves, but also a wave at the interface, known as an interfacial wave [1] as seen

if Fig. 1.1. If the density of a fluid continuously varies, as shown in Fig. 1.2(a), then instead of one

interface, there are an infinite number of interfaces. A disturbance to this continuous stratification

under the right conditions, such as an oscillatory flow over a topography, will generate internal

waves as seen in Fig. 1.2(b).

Internal waves were recognized by Pettersson in 1908 and have been a topic of much in-

vestigation since then because they play a critical role in understanding atmospheric and oceanic

dynamics [2–4]. Both the atmosphere and ocean are stratified fluids. In the atmosphere, the de-

creasing temperature with increasing altitude causes a variation in the density [5]. In the ocean,

the decreasing temperature and increasing salinity cause combined effect of increasing the den-

Figure 1.1: A ship generates an interfacial wave between fresh (light blue) and salty (dark blue)
water.

1



z 

 

ρ(z) 

ω 

(a) (b)

Figure 1.2: (a) Continuously varying density profile and (b) internal waves generated from an
oscillatory flow.

sity with increased depth [4]. To define the strength of a stratification, the natural frequency is

calculated with

N2 =
−g
ρ0

∂ρ

∂ z
(1.1)

where g is the gravitational constant, ρ0 is a reference density (1000 kg/m3 for water), and ∂ρ/∂ z

is the variation of density with respect to height. The natural frequency is also known as the

buoyancy frequency or the Brunt-Väisälä frequency. Internal waves are generated in a stratified

fluid when the disturbance frequency, or excitation frequency, ω , is less than the natural frequency

of the fluid. As internal waves propagate away from their generation site, they suffer little to no

viscous dissipation [5] and are important factors in both the atmosphere [6] and ocean [7]. If

N < ω , evanescent waves are formed and the amplitudes of these waves decay at an exponential

rate as they move vertically away from their generation site [5]. If an evanescent wave travels

through a turning depth, where N = ω , then they become propagating internal waves which no

longer decay.
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This chapter will introduce internal and evanescent waves, provide motivation for their

study, outline several investigative techniques, give background on past research, and define the

specific research topics that will be discussed in the remainder of this work.

1.2 Motivation

Internal waves are generated almost continuously in both the ocean and atmosphere because

both mediums are stratified. Although internal waves in the atmosphere can be relatively small

compared to other atmospheric phenomena, they have an important impact on the thermal structure

of the atmosphere [4]. In the ocean, internal waves transport energy and their eventual breaking

directly influences oceanic mixing [4]. To provide motivation for the study of internal waves, this

section will detail the overall influence of these waves on both mediums. Because oceanic waves

are the main topic for this dissertation, atmospheric internal waves will be introduced here, but

oceanic internal waves will be focused on throughout the reminder of this chapter.

1.2.1 Atmospheric waves

Internal waves in the atmosphere are relatively small compared to the many other phe-

nomena occurring in the atmosphere, such as the jet stream, but they have a non-negligible effect

on climate, weather, and the overall thermal structure of the atmosphere [4, 5]. In general, at-

mospheric scientists and researchers investigate internal waves because of the vertical momentum

transport facilitated by internal waves [8] and if weather and climate models do not account for the

generation and breaking (overturning) of internal waves, they incorrectly predict wind speeds and

temperature of the atmosphere [4].

When internal waves approach a region of varying stratification, the angle of propagation

can steepen to the point where the wave overturns and breaks, similar to how a surface wave on the

ocean will break. Internal waves breaking in the atmosphere causes vertical mixing and is a method

wherein energy is dissipated into smaller scales in the atmosphere [8]. In addition researchers

have found that internal waves generated near or from mountain topographies generated Clear Air
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Turbulence (CAT) [9]. While all air turbulence can be dangerous for aircraft, CAT is particularly

hazardous because it is not visible and may come up unexpectedly. Research on internal waves is

improving forecast predictions of CAT to improve the safety of aircraft [9].

1.2.2 Oceanic waves

Other than in the first 100 m of the ocean where the fluid is well mixed, internal waves

can be formed. They an be generated in many ways, including through horizontal shear caused by

winds on the ocean surface and tidal motions over topography [10]. Oceanographers are interested

in internal waves because they transport energy across oceans and from the deep ocean upward and

induce oceanic mixing [8,11]. Off-shore drilling companies study internal waves to understand and

prevent the often negative impact of the motions caused by these waves on both drilling rigs and oil

pipelines [12], marine biologists use internal waves to help predict the influx of nutrients near the

coasts [13], and the U.S. Navy has investigated the effect of internal waves on submarines and as-

sociated equipment, along with the generation of these waves by submarines [14]. Although many

aspects of internal waves impact the ocean, this dissertation is focused mainly on internal wave

generation and propagation, where the potential impact on the ocean is known to be important.

As the diurnal and semidiurnal tides oscillate over topography in the ocean, satellite data

indicates that approximately 1 TW is converted from barotropic tides into internal waves in the

deep ocean [11]. When internal waves are initially formed from the tides, some tidal energy

is dissipated and creates local turbulent mixing [11]. As internal waves propagate away from

their generation site, they convert energy from the horizontal plane of the tides to a more vertical

motion, moving energy throughout the ocean and interacting with other internal waves, oceanic

topographies, or oceanic currents [11]. Observations of oceanic internal waves have recorded

varying sizes depending on where and how the internal waves are generated. For example, wave

packets near the Hudson Canyon, near the continental shelf of New York, have of wavelengths

of about 500 m and peak to trough amplitudes of close to 15 m, while internal waves packets

in the Andaman Sea have wavelengths of about 15 km [15]. For internal waves generated by
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the semidiurnal tide, Alford and Zhao reported group velocities, or the velocity associated with

internal wave energy, between 1 and 2 m/s [16].

Similar to atmospheric internal waves, oceanic internal waves can steepen, overturn, and

break. Breaking internal waves impact oceanic circulation and climate simulations [17] and models

that do not include internal waves do not accurately capture the turbulent diffusivity seen in the

ocean [4]. Turbulent mixing is important to oceanic circulation, such as meridional overturning

circulation, or the circulation of warm water near the surface of the water and cold water in the

deep ocean [10, 11]. Thus both internal waves and the motions caused by internal waves have far

reaching effects throughout the ocean.

1.3 Internal waves and evanescent waves

Because the focus of this dissertation is internal waves generated from flow over topogra-

phy in oceanic scenarios, an example of tidal flow over oceanic topography will be used to illustrate

the similarities and differences between internal and evanescent waves.

The most well known oceanic tide is the M2 semidiurnal tide, which regularly oscillates

on a 12.1 hour period within the ocean [18]. In the ocean, the density increases with depth due

to increasing salinity and decreasing temperature, and thus the natural frequency, N, of the ocean

varies also with depth [19]. For an oceanic topography, internal waves are generated when the

stratification is larger than the tidal oscillation frequency such that N(z) > ωM2. In this scenario,

internal waves will be generated and the angle of propagation of the waves is defined by the general

equation

ω = N cos(θ) (1.2)

where θ is defined from the vertical axis. This is called the dispersion relation and can also be

written as

ω
2 =

N2(k2 + l2)

k2 + l2 +m2 (1.3)
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Figure 1.3: Examples of (a) internal waves, (b) evanescent waves, and (c) internal waves formed
from evanescent waves shown with isopycnals.

where k, l, and m are wavenumbers corresponding to the x, y, and z directions, and corresponding

wavelengths are λx = 2π/k, etc. From Eq. (1.2), we see that as N approaches ω , the waves become

more vertical. Thus, as the M2 tides oscillate over an oceanic topography where N > ωM2, as is

shown in Fig. 1.3 (a), internal waves will form. In Fig. 1.3, the lines indicate isopycnals, or

lines of constant density, and depict how the density layers are disturbed by the tidal motions over

topography.

Due to the three dimensional nature of the internal waves, the group velocity of the waves,

which defines the direction and speed of the energy, will always be perpendicular to the phase

speed, or the movement of the crest and troughs of the wave. Thus, the energy of the internal

waves in Fig. 1.3(a) is moving up and to the right while the crests and troughs move down and to

the right.

Figure 1.3(b) illustrates an example of evanescent waves, or the disturbances created when

the tides pass of over topography in a region where N < ωM2, which occurs in many regions of the

deep ocean [19]. Because the excitation frequency is greater than the natural frequency, the fluid is
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pushed vertically upwards, but this amplitude of this motion decays exponentially with increasing

height [5].

A turning depth is the location where N = ω as shown by the horizontal dashed line in

Fig. 1.3(c). Below this line, near the topography is an evanescent region, where only evanescent

waves will be formed as the M2 tide oscillates over the topography. As the evanescent waves move

vertically, they decay until they reach the turning depth. As they pass through it, they move into a

propagating region and become propagating internal waves. This scenario has been proven through

linear theory, experiments, and simulations [5,18]. As indicated by sketch of the waves in Fig. 1.3,

the internal waves generated from the evanescent region have smaller amplitudes than those of the

waves generated directly from the topography, which is indicative of the decrease in kinetic energy

of the evanescent waves as they move through an evanescent region.

1.4 Wave generation mechanisms

Because internal waves are generated when a stratified fluid is disturbed, they are generated

almost continuously throughout the ocean. The exception to this is the mixed region at the top of

the ocean, about 100 m in depth [4]. Here, a few generation mechanisms for oceanic internal waves

are highlighted.

Immediately below the mixed region in the ocean is the pycnocline, a region of rapid den-

sity increase [20]. Internal waves can be formed in this region from tidal flow over topography

within this region [15] or by wave coming up from below the pycnocline and impinging on the

region [21]. In addition, they can be formed by strong surface winds which results in a shear

stress moving through the mixed region and moving the pycnocline, and nonlinear interactions

with surface waves [10].

Turbulence in or near stratified fluids is also a common generator of internal waves [22].

Turbulence generated waves can be formed when the turbulence occurs in a stratified fluid [23], or

if a mixed region is next to a stratified region. Dohan and Sutherland [24] found experimentally that

internal waves generated from a turbulent region propagated at angles of 42-55◦ regardless of the
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strength of the stratification. These results were later confirmed using numerical simulations [25].

Turbulence generated internal waves have been studied in many situations including turbulence

near boundaries [23], turbulent wakes [26], sheared turbulence [27], and turbulence generated by

oscillatory flow over rough topography [28], among others.

One of the most common generation mechanisms of oceanic internal waves is tidal flow

over oceanic topography [7]. These waves are an important mechanism for transferring horizontal

tidal motions into vertically propagating waves needed to transfer energy throughout the depth of

the ocean [29]. Significant research on this topic has occurred for a variety of scenarios including

deep ocean topography [3], mid-ocean topography [30], and waves generated from the continental

shelf [31]. Laboratory experiments [28, 32–34], numerical simulations [35–38], and linear theory

[39, 40] have all been employed to study topographically generated internal waves.

Within the ocean, internal waves can transfer energy through resonant and non-resonant

wave-wave interactions. In resonant interactions, two waves collide and form a third wave that

is a combination of the total wavenumbers (k) and frequencies (ω) of the other two waves such

that k1±k2 = k3 and ω1±ω2 = ω3 [7, 41, 42]. Stemming from resonant interactions is the idea

of parametric subharmonic instability (PSI) wherein a single, or primary, wave is disturbed and

emits two waves whose frequencies and wavenumbers are half those of the primary waves [43].

Non-resonant wave interactions can also produce other waves that are harmonics of the primary

waves [44–46].

1.5 Investigative methods for internal waves

The four main methods of studying internal waves are through observations, experiments,

numerical simulations, and analytical theory. In this work, all of these methods except observations

are used. A description of all standard methods is provided here, with further details for the exact

setups used in this research provided in Chapter 2.
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1.5.1 Observations

Internal waves have been an area of study since they were first observed in the Baltic Sea

by Pettersson [2]. Oceanic observations are an important method of internal wave investigations

because they provide information about actual oceanic conditions needed to validate theories on

internal waves. Data can be collected from a variety of sources such as current, temperature,

and depth (CTD) devices [47], sonar survey equipment [48], and satellite images [49]. Recent

large scale efforts by teams of university researchers to observe internal waves and other stratified

phenomena include the World Ocean Circulation Experiment (WOCE) [50], the Hawaiian Ocean

Mixing Experiment (HOME) [51], and Internal Waves Across the Pacific (IWAP) [16]. These

experiments ranged from 2 months of observations with 2 cruises on a single ship (IWAP), to

multi-year, multi-ship excursions (WOCE and HOME). These cruises have specific goals in mind

and significant preparation goes into selecting cruise locations and designing and building obser-

vational equipment that will travel between hundreds and thousands of meters below the surface

of the water. To provide a basic idea of the data collected on an observational experiment, details

of the IWAP cruise are given here.

During the IWAP experiment, the research vessel R/V Revelle placed 6 moorings at varying

intervals from 25-37◦N near the French Frigate Shoals, Hawaii as shown in Fig. 1.4. Along

these moorings, CTD data was collected every 1.5 hrs at depths from 80-1400m, velocity data

was collected at a rate of 300 KHz every few minutes from 5-40m, and temperature data was

collected at 3000 m. After placing the moorings, the ship traveled thousands of kilometers back

and forth along the same line of 25-37◦N collecting velocity and shear data using a Hydrographic

Sonar System. One of the main purposes of this experiment was to investigate the prevalence of

parametric subharmonic instability (PSI), or the breakdown of a primary wave into two daughter

waves, which had been seen previously in experiments and simulations occurring in locations

where the rational rate of the earth, f , is equal to ωM2. Among other results, the observation

data indicated that PSI does not substantially affect tidally propagating waves in those locations,
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Figure 1.4: Mooring, measurement, and ship locations of the R/V Revelle as part of the IWAP
experiment [16].

contrary to what the researchers had originally hypothesized from idealized theoretical models and

simulations.

1.5.2 Experimental techniques

This section will detail three experimental techniques: schlieren, synthetic schlieren, and

particle image velocimetry. Although each of these methods has been used for a wide variety of

research topics including visualization of hot supersonic jets [52], the temperature of a natural gas
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flame [53], and turbomachinery [54], this work will focus on how these methods have been used

previously to investigate internal waves.

Schlieren Imaging

While the first experiments on internal waves were performed by Görtler in 1943 [55], the

most well known experiments were performed by Mowbray and Rarity using a schlieren system

[56]. Schlieren imaging capitalizes on the fact that variations in the density of a fluid are directly

related to variations in the index of refraction. An example of a classical schlieren setup is shown

in Fig. 1.5. Original schlieren imaging focused parallel light sources with either parabolic mirrors

or lenses through an experimental field and then on to a knife edge. The variations in density

and index of refraction would bend certain light rays below the knife edge, and thus a dark spot

would be seen on the final image plane. If the density fluctuated in the opposite direction, the light

rays would still pass through and could be seen in the final image [57]. This created an excellent

qualitative way to view fluctuating density flows. Mowbray and Rairty used a schlieren system to

visualize the internal waves generated by an oscillating cylinder in a constant N fluid which creates

internal waves that propagate in four directions creating what is known as St. Andrew’s Cross. By

varying the oscillation frequency, the angle of the wave beams varied. Their experiments are well

known for matching the linear theory of internal waves in predicting the 90◦ angle of separation

between the group velocity and phase speed.

Synthetic schlieren

In an effort to improve the quantitative results of standard schlieren imaging, a novel tech-

nique known as synthetic schlieren was created [58]. The term synthetic schlieren is most com-

monly used in the internal waves community, but a similar technique known as Background Ori-

ented Schlieren (BOS) [59] is frequently used in other fields that focus on varying densities in

flows such as jets [59], supersonic air jets [60], and wildfires [61]. Both methods follow the same
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Figure 1.5: Using parallel light rays and an array of lenses, density fluctuating flows can be visual-
ized as the variations in density caused variation in the index of refraction. The knife edge on the
right side of the figure would prevent lights rays which were bent below the edge to be seen, thus
causing dark spots to be seen on the imaging lens. (Figure created by Jonathan Stoddard)

Figure 1.6: A top down view of the experimental arrangement for a synthetic schlieren image set
up. The important lengths noted here are necessary to find the change in the index of refraction
and are used in Equations (1.4) and (1.5). Notice that the y-coordinate follows the camera line of
sight while the x direction is parallel to the length of the tank. The z-direction is not shown here,
but follows the height of the tank.

principle as schlieren imaging, using the relationship between a varying index of refraction and the

corresponding variation in density.

Synthetic schlieren uses a simple experimental setup shown in Fig. 1.6 to find excellent

quantitative and qualitative data for two-dimensional flows. A camera is placed in front of the
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experiment and is focused on a lighted mask behind the experiment. The mask may consist of hor-

izontal lines or a random dot pattern as seen in Fig. 1.7(a). By comparing the original, undisturbed

image to those taken during the experiment (Fig. 1.7(b)), an apparent shift of the dots (or lines)

is recorded by the camera, although this variation is not visible to the naked eye. By calculating

this shift, it is possible to calculate the change in the index of refraction, which is proportional to

the change in the density. Dalziel et. al [58] found that the movement of the light rays could be

described by Eqs. (1.4) and (1.5), which relate the distance of each medium and their respective

index of refraction through which the dots are being viewed to the apparent mask displacement in

the x (∆x) and z (∆z) directions.
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In these equations, L is the distance between the camera and the light mask, T is the thickness of

one side of the tank, B is the distance from the outside of the tank to the light mask, and W is the

interior width of the tank as shown in Fig. 1.6. Here, density has been defined as ρ = ρ0 +ρ +ρ ′,

where ρ0 is the background or reference density of the fluid, ρ is the stratification profile, and ρ ′

is the perturbation density, or the small variations in the density caused by a disturbance in the

flow. The index of refraction for air and the wall of the experimental tank are represented with ηair

and ηwall, respectively, and are assumed to be constants. η0 is the reference index of refraction

for the experimental fluid and is also needed for the definition of β , where β = (ρ0/n0)(∂n/∂ρ).

Although the index of refraction of the fluid will vary with the density, the actual derivative of

∂n/∂ρ can be considered constant for water. Thus, with ρ0 = 1000 kg/m3 as the reference density

for water, β ≈ 0.184. These two equations assume that the experiment is two dimensional so the

variation in the y direction is negligible. Each equation represents the distance the mask has shifted

between images and can be used to solve for the rate of density change in the x and z directions,
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(a) (b) (c)

Figure 1.7: Digiflow images of the (a) undisturbed water, (b) experiment in progress, and (c)
processed data of ∂ρ ′/∂ z.

represented by ∂ρ ′/∂x and ∂ρ ′/∂ z respectively. Full details on this derivation are given by Dalziel

et al. [58].

Results from the comparison of Figs. 1.7(a) and (b) using Eqs. (1.4) and (1.5), is shown

in Fig. 1.7(c). Colors in the image correspond to ∂ρ ′/∂ z and thus crest and troughs of the waves

are represented by changing colors. Note here the waves are generated at the topography and then

propagate down and to the right. Vertical and horizontal wavelengths can be seen as the thickness

of the changing color beam. Wave packet size is the entire region (changing color) with waves.

PIV

Particle Image Velocimetry (PIV) is an experimental technique used to study a variety of

fluid flows [62], including internal waves [63]. With PIV, neutrally buoyant particles are seeded

into a fluid flow and tracked to estimate the velocity field in the fluid [62]. PIV can be used

to study both internal and evanescent waves [64]. To characterize the decay of evanescent waves,

Paoletti and Swinney [64] used PIV to validate numerical simulations of internal waves entering an

evanescent region. Looking at both evanescent and propagating internal waves, Paoletti et al. [18]

used PIV to estimate radiated power of internal waves formed from an evanescent region and their

results match very well with their numerical simulations.

Inherent to all stratified flow experiments is that the index of refraction of the fluid being

studied will vary as waves move through the fluid. While SS uses this in order to define variations
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in N2, a varying index of refraction could cause inaccurate particle tracking in PIV. To address this

problem, Dalziel et al. [63] used simultaneous SS and PIV experiments in a stratified flow. SS data

was used to define the density field while PIV defined the velocity field. Corrections were made

to the velocity field based on the SS data, and they found that particle movement caused by the

changing index of refraction is small, but not completely negligible. Using SS density field data is

important to correct PIV data when there are significant variations in the density field [63].

1.5.3 Simulations

Along with experiments, numerical simulations, which can be used to solve the full equa-

tions of wave motion, are often used to study internal waves [11]. Simulations can be performed

in two or three dimensions [25, 65] and allow for solving complex flows without some of the re-

strictive assumptions needed to solve analytical equations. Although considerable effort has been

made to model internal waves in a variety of applications [11], since this work focuses on two-

dimensional waves in varying stratification conditions, prior work in this area is reviewed only.

Using simulations, Sutherland found that internal gravity wave packets, as opposed to inter-

nal wave beams, can transmit energy through an evanescent level through the wave-induced mean

flow associated with the start and end of waves [66]. Effects of finite amplitude on internal wave

propagation in an abruptly changing N profile is explored numerically in the Boussinesq approxi-

mation, which assumes that a density perturbation is important when multiplied by gravity [4,67].

Another extreme change in N occurs in the ocean at the pycnocline, where the generation of har-

monics from approaching internal wave beams was shown to be a strong function of pycnocline

thickness using fully nonlinear direct numerical simulations [68]. Turning depths in exponential N

stratified Boussinesq flows have been analyzed numerically and showed relatively good agreement

with nonlinear theory [64]. Paoletti et al. [18] used 2-D numerical simulations in the Boussinesq

approximation to study wave generation by tidal flow over primarily Gaussian topographies in ex-

ponential N profiles and found that internal waves formed directly from tidal flow over topography

had greater radiated power than internal waves formed from evanescent waves.
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1.5.4 Theory

Theoretical methods to analyze internal wave generation and propagation must use a vari-

ety of assumptions if an exact solution is to be found. These assumptions may include that the flow

is inviscid, that waves have small amplitudes, that the wave amplitudes, wavenumber, frequency,

or N may slowly vary with wavelength, or that there are no wave packets (infinite waves). The

Boussinesq approximation, which assumes that the vertical variation in density is small relative to

the background density [4], is also frequently used. Many, or all, of these may be used to more

quickly analyze wave propagation. Ray theory, a linear method, represents one of the simplest

mathematical methods which results in tracing the path of wave energy. It has been used through-

out the ocean and atmosphere for waves propagating through varying velocity and N profiles with

great success [69–73]. Part of ray theory includes the Wentzel–Kramers–Brillouin (WKB) approx-

imation, wherein N and the amplitudes of wave velocity are allowed to vary slowly only in the

vertical direction [4, 5, 74]. Other analytical methods have been used for a plethora of internal

wave dynamics analysis: linear theory of wave generation over weak two-dimensional topogra-

phy [75]; Green’s function methods for wave generation by a moving point mass source [76];

small-amplitude, inviscid flow analysis in the Boussinesq approximation for wave propagation

through a sharp N profile [77]; linear theory for a two-dimensional plane wave at an N inter-

face [78]; and linear theory for two dimensional, small amplitude wave beam transmission and

reflection [79]; to name a few. In addition, although significant assumptions must be made for

these exact solutions, each result has contributed to our understanding of internal wave generation

and propagation in variable stratifications and flow situations.

1.6 Current research

As previously described, internal wave research covers many areas from the generation of

internal waves to their propagation and interactions, to their ultimate breaking and dissipation af-

fecting oceanic mixing and circulation. Given the wide variety of research possibilities, this section

will cover the current research directly applicable to the work presented in the upcoming chapters.
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These topics include the effect of varying stratifications on wave propagation, the influence of to-

pography shape on wave generation, and the influence of evanescent waves and turning depths on

wave energy.

1.6.1 Varying stratifications

Significant research has been accomplished in both varying stratifications and internal

waves approaching evanescent regions. Pedlosky [74] used linear theory and the WKB approx-

imation to account for wave propagation in non-uniform stratifications in propagating regions.

For multi-layered stratification profiles, internal waves have been shown to tunnel through an

evanescent region of fluid as is shown in Fig. 1.8, and the transmission coefficient of incident

internal wave energy across the evanescent region can be calculated with linear theory [80]. Fur-

ther work on tunneling includes smooth changes in natural frequency and the inclusion of a shear

flow [77, 81]. Gregory and Sutherland [79] found that the transmission coefficient was larger for

internal waves that tunneled through a weakly stratified region instead of a well-mixed region.

Mathur and Peacock [78] extended this work for transmission and reflection of internal waves and

varied the scale of the transitional region. They found that a wave beam will adjust to a varying

stratification and be either amplified or diminished based on the characteristics of the stratifica-

tion, as long as the changes in the stratification occurred over a sufficiently large distance. Rapid

changes in stratification led to wave scattering. Sutherland [82] found an analytical solution for the

transmission coefficient for an arbitrary number of density staircases that are all equal in size, and

also used simulations to calculate the transmission coefficient for uneven length staircases. Suther-

land found, similar to the results of Ghaemsaidi et al. [83], that density staircases can act as a filter

allowing only internal waves with long horizontal wavelengths and high frequencies to completely

pass through. Paoletti and Swinney [64] used exponential density profiles and stratifications to

investigate internal wave reflection and transmission from a turning depth. Their results compared

well with the viscous theory of Kistovich and Chashechkin [84] which allowed for arbitrary strat-

ifications. Each of these cases assumed that internal waves were formed in a propagating region
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Figure 1.8: An example of internal waves tunneling through and reflecting off of an evanescent
region.

and then pass into an evanescent region, but did not investigate waves formed in an evanescent

region passing into a propagating region.

1.6.2 Evanescent waves and turning depths

Although linear theory indicates that evanescent waves can become propagating internal

waves [5], this has not been a topic of significant research. This is because it was not known if

there were locations in the ocean that would generate these types of internal waves or if they would

be important because of the exponential decay of evanescent waves. This changed because of the

data collected in the World Ocean Circulation Experiment (WOCE) which conducted surveys of

hundreds of oceanic locations and collected thousands of casts to collect oceanic data from 1990-

1998 [50]. Using data from WOCE, King et al. [19] calculated the natural frequency in the ocean

for over 18,000 casts from all of the WOCE data in an effort to find oceanic turning depths. They

found that while turning depths were not prevalent throughout the entire ocean, they are often

found in locations where the depth of the water is greater than 5 km. Based on the work of King

et al., Paoletti et al. [18] used experiments and simulations to investigate the radiated power of

internal waves generated from evanescent waves formed over topography. Based on an iterative

averaging scheme, they found that they could match their results with those of the analytical theory

of Kistovich and Chashechkin [84]. Paoletti et al. found that that radiated power of the evanescent

to propagating waves was much weaker than the internal wave power.
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1.6.3 Topography shape

When investigating topographically generated internal waves, topographies are frequently

divided into different categories based on criticality. Criticality is defined as

ε = Stop,m/Swave (1.6)

where Stop,m is the maximum topographical slope and Swave =
√

ω2/(N2−ω2) is the slope of

the generated waves (assuming no rotation). Topographies in propagating regions are considered

subcritical (ε < 1), critical (ε = 1), or supercritical (ε > 1). Energy of internal waves generated

from subcritical topography increase with increasing ε , until ε = 1, where linear theory is no longer

applicable and wave beams overturn [39]. ε > 1 causes internal wave scattering [40]. Internal

wave energy has been estimated for subcritical topography for constant stratifications [29], depth

varying stratifications, and a finite depth ocean [75, 85]. Work has also been done for supercritical

topographies both experimentally and with a viscous linear theory model [86, 87]. However, for

evanescent waves, ε is undefined because Swave is imaginary in an evanescent region. Paoletti

et al. [18] used a novel technique to define an effective height of the topography, based on both

the slope of the topography and the stratification profile. Using this, they could estimate radiated

power for internal waves generated from evanescent waves formed from topography. They found

that internal wave power is significantly decreased in the presence of a turning depth. Their results

compared well with previous research on topographically generated internal waves and varying

stratifications.

Along with investigations of topographical slope, researchers have investigated the influ-

ence of topography shape. Paoletti et al. [18] included a knife-edge topography, four types of Gaus-

sian topographies, and a complex topography (multiple peaks and varying slopes) in their inves-

tigations of radiated internal wave power and found that increasing the maximum slope of the to-

pography decreased in the radiated power. Although these topographies were all two-dimensional,

three-dimensional topographies have also been used to investigate topographies that more realisti-
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cally represent oceanic topographies [88,89]. Another aspect of topography shape is the number of

peaks and the influence of the distance between peaks. Zhang and Swinney [90] found that succes-

sive peaks close to one another created a “virtual seafloor”, such that the internal waves generated

had less power than would have been expected based on the size of the topographies due to mixing

pockets between the peaks decreasing the effective amplitude of the topography.

1.7 Current research needs

While significant work has been accomplished on internal waves, there are still many new

research areas to be studied as new knowledge of realistic oceanic scenarios are uncovered. Specif-

ically, new interest in propagating energy from internal waves generated from common evanescent

regions will be explored. The influence of topography shape and location, the effects of variable

stratification, and multiple methods will be used to study evanescent to propagating internal waves.

Although the influence of topography shape has been well documented for topographically

generated internal waves, the same is not true for evanescent waves. Here, I will investigate the

influence of topography slope, height, shape, and relative location to the turning depth on the

kinetic energy of both evanescent and internal waves.

King et al. [19] found that many locations in the ocean can be described with exponential

density profiles, but it is common for researchers to average the density variation, and therefore

the natural frequency, when studying internal waves. Whether or not this averaging will produce

accurate results when applied to an evanescent region has not been discussed previously and will

be part of my investigations. This will be explored by using a variety of density profiles which

create varying stratifications.

Finally, there are many methods for studying internal waves, and each has different advan-

tages and disadvantages. To understand which method would be appropriate for various situations,

this work will present results from linear theory, two experimental methods, and numerical simu-

lations to study evanescent and propagating internal waves, and provide guidelines on when each
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method is best used. In addition, a direct comparison of kinetic energy for evanescent and internal

waves based on two experimental methods, PIV and synthetic schlieren, will be made.

Details and background on the various methods used to study evanescent and internal waves

in this work is given in Chapter 2. Chapter 3 is work previously published in the journal Physical

Review Fluids and compares a linear theory model to synthetic schlieren (SS) experiments. Ki-

netic energy predicted by the model and estimated by the SS experiments are further compared to

numerical simulations that were performed at Northeastern University in Chapter 4. Chapter 4 has

been submitted to the journal Experiments in Fluids. In Chapter 5, the effects of topography shape

and density profile on kinetic energy density investigated. Chapter 6 introduces particle image

velocimetry (PIV) experiments and explores under what circumstances PIV and SS can be used to

accurately describe the kinetic enrage density of evanescent and internal waves. A summary of the

work presented throughout this dissertation is provided in Chapter 7.
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CHAPTER 2. METHODOLOGY

To investigate the kinetic energy density of evanescent and internal waves, three methods

are used: a linear theory model, two types of experiments (synthetic schlieren and PIV), and nu-

merical simulations. For all of these methods except PIV, the Navier-Stokes equations must be

solved to calculate the velocity field of the generated waves. A general description of these equa-

tions will be given here, with more complete details in each section of this chapter. In addition,

the domain of the experiments and theory is a that of a flipped ocean, meaning the topography is

oscillated at the top of the domain, creating waves moving vertically downward. For the stratifica-

tions described throughout this work, there is no difference between a wave propagating up (from

a topography at the bottom of the domain) or down [28].

2.1 Navier-Stokes equations

There are many forms of the Navier-Stokes (NS) equations, based on the underlying as-

sumptions of the fluid flow. For internal waves, it is assumed that the flow is inviscid and incom-

pressible, and that the density perturbation is only important when multiplied by gravity. In addi-

tion, the Boussinesq approximation, which assumes that the vertical variation in density is small

relative to the background density [4], will be used here. Density is broken down into three parts

with the reference density of the fluid (ρ0), the stratification profile (ρ), and the wave perturbation

density (ρ ′). Combining these terms defines the total density

ρ = ρ0 +ρ(z)+ρ
′(x,y,z) (2.1)
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The Boussinesq approximation is valid when ρ/ρ0 ∼ 1, which is true for all cases presented in

this work. With the given assumptions, the x, y, and z momentum NS equations, along with

incompressibility and continuity can be written as

ρ
Du
Dt

=
−dP
dx

(2.2)

ρ
Dv
Dt

=
−dP
dy

(2.3)

ρ
Dw
Dt

=
−dP
dz
−ρg (2.4)

Dρ

Dt
= 0 (2.5)

∇ ···−→V = 0 (2.6)

By assuming that u, v, and w are small, and defining the pressure as P=P+P′, the above equations

can be simplified and put into linear form such that

∂u
∂ t

=
−1
ρ0

∂P′

∂x
(2.7)

∂v
∂ t

=
−1
ρ0

∂P′

∂y
(2.8)

∂w
∂ t

=
−1
ρ0

∂P′

∂ z
− ρ ′g

ρ0
(2.9)

∂ρ ′

∂ t
+w

∂ρ

∂ z
= 0 (2.10)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (2.11)

Equations (2.9) and (2.10) can be combined to define the natural frequency N such that

N2 =
−g
ρ0

dρ

dz
(2.12)

The previous equations with their five unknowns can be rearranged to form one equation with w,

t, and N as
∂ 2

∂ t2

(
∇

2w)+N2
∇

2
Hw = 0 (2.13)
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where ∇2
H is the Laplace operator in the horizontal directions of x and y. The solution to Eq. (2.13)

is a wave form solution with

w = w0 exp[i(kx+ ly+mz−ωt)] (2.14)

where w0 is the wave amplitude, k, l, and m are the wavenumbers in the x, y, and z directions, and

ω is the frequency of the wave. This equation will be further simplified in this work by assuming

two-dimensional waves and thus l = 0.

For evanescent waves, the form of the solution is different as the vertical wavenumber m

must be imaginary in order to account for the decay of the waves. A standard form for the velocity

of evanescent waves for regions where N is constant can be written as

w = w0 exp[i(kx+ ly−ωt)]exp(mz) (2.15)

Equations 2.14 and 2.15 will be used (with some variations) in the analytical model presented next,

the synthetic schlieren experiments in Sec. 2.3.2, and the numerical simulations in Sec. 2.4.

2.2 Analytical model

A linear, Boussinesq, 2D model was used to calculate the kinetic energy that passes from

the evanescent region through the turning depth and into the propagating region, accounting for

the exponential natural frequency profile. Linear theory is a good approximation for the cases

presented here because utop/(ωW )< 1 [75], where utop is the average velocity of the topography,

and W is the width of the topography. The WKB approximation, which assumes that wave am-

plitudes vary slowly in z, is also applied [74]. This approximation is valid away from the turning

depth where N2 >> λz(∂N2/∂ z) [74]. In the following sections I will analytically calculate kinetic

energy in the evanescent region and the propagating region, and then demonstrate how the two re-

gions can be matched at the turning depth where the WKB approximation is not valid. Because the

waves are first generated within the evanescent region, this region will be denoted with the sub-
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Figure 2.1: An example of the natural frequency profile in the tank (a) shown relative to the
experimental setup (b).

script 1, with a subscript 2 for the propagating region. A subscript “Ai” will be used for the Airy

region which links the evanescent and propagating region. Details on the size of this region are

provided in Sec. 2.2.3. Within each region the vertical velocity (w) is defined and the horizontal

velocity (u) is found from the 2D continuity equation

∂u
∂x

+
∂w
∂ z

= 0 (2.16)

Figure 2.1 provides an example of the natural frequency profile (a) and the domain for the

experiments and linear theory (b). In Fig. 2.1(b), evanescent and propagating regions are labeled

as N1 < ω and N2 > ω , respectively. The excursion length (L), height of the topography (H), and

distance between the topography and the turning depth (D) are indicated. The grey dashed box

shows the approximate location of the camera window, while the beginning and end of the Airy

region (z1,Ai, zAi,2) is shown with white dashed lines (see Sec. 2.2.3).

With both u and w defined, the kinetic energy is defined as

KE = u2 +w2 (2.17)
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for comparison with experiments. Each case is reproduced with a linear theory analysis using

the given experimental parameters; however, no data from the synthetic schlieren experiments are

needed to initialize the theoretical analysis.

2.2.1 Evanescent region

The vertical velocity in the evanescent region varies since N is a function of height, which

affects the vertical wavelength. First, in the evanescent region, q is defined as

q2(z) = k2(1−N2(z)/ω
2) (2.18)

where m = iq is the imaginary vertical wavenumber in the evanescent region. Following the work

of Pedlosky [74] in a propagating region with N = f (z), θ1 is introduced for the evanescent region:

θ1(z) =
∫ z

z1,0

qdz (2.19)

A1,0 and q1,0 are defined at a reference height z1,0 which varies based on the shape of the topography

used. The reference location will change the overall kinetic energy throughout the evanescent and

propagating region. However, if the kinetic energy is normalized by the energy at the tip of the

topography, z1,0 will not change the relative energy. Using q and θ , the vertical velocity can be

defined as

w1(x,z, t) = A1 exp[i(kx−ωt)]exp(θ1) (2.20)

A1(z) = A1,0/(q/q1,0)
1/2 (2.21)

Assuming a slip condition at the topography [34], the wave velocity can be calculated by

matching the velocity of the topography to Eq. (2.20). Using continuity [Eq. (2.16)], the horizontal
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velocity is computed as

u1(x,z, t) =
−w1

ik

[
−dq/dz

2q
+q
]

(2.22)

The kinetic energy in the evanescent region is calculated using KE1 = u2
1 +w2

1.

2.2.2 Propagating region

Following the work of Pedlosky [74] and solving the NS equations in Sec. 2.1, velocities

in the propagating region, assuming a varying natural frequency, are defined by

w2(x,z, t) = A2 exp(i(kx−ωt +θ2)) (2.23)

u2(x,z, t) =
−w2

k

[
−dm/dz

2im
+m

]
(2.24)

A2(z) = A2,0/(m/m0)
1/2 (2.25)

θ2(z) =
∫ z

z0

mdz (2.26)

m2(z) = k
[
N(z)2/ω

2−1
]

(2.27)

where continuity has again been used to define u2. Note that the subscript 2 refers to the propa-

gating region. The kinetic energy in the propagating region is calculated by KE2 = u2
2 +w2

2. In

both the evanescent and propagating regions, the amplitude, A, of the velocities varies with height.

This is due to the varying natural frequency, which causes the varying vertical wavenumber, and is

necessary to conserve energy [74].

2.2.3 Airy integral matching

As the evanescent wave moves from the topography toward the turning depth, the WKB

assumptions are violated near the turning depth because N2 ∼ λz(∂N2/∂ z). This also causes q to

decrease to zero, creating a discontinuity at the turning depth as the velocity amplitudes increase

towards infinity. In order to prevent this discontinuity and predict the correct amplitude of the prop-
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agating velocity, the Airy function can be used in this region [91,92] if the WKB approximation is

extended past where it is valid [81]. Although the equation for w2 has been defined, the amplitude

A2,0 was not and needs to be derived from wAi, or the vertical velocity in the Airy region. This

section will describe how the Airy region connects the velocities of the evanescent and propagating

region.

Following Lighthill [91], the vertical wave velocity with the Airy integral is

wAi(x,z, t) = Q0,w Ai(β 1/3z−β
1/3ztd)exp[i(kx−ωt)] (2.28)

where β is defined by β = m2/(ztd− z). The amplitude of Q0,w is found by matching Eq. (2.28)

to Eq. (2.20) at z1,Ai = ztd + 0.01(2π/q), or 1% of the average vertical wavelength (λz) above

the turning depth in the evanescent region. A range of percentages from 0.1% to 10% of λz was

compared to understand the effect of the locations of the start and end points of the Airy inte-

gral. Decreasing the percentage causes a decrease in the average kinetic energy, but the changes

of kinetic energy below 1% were minimal, both for the medium and steep topographies. This per-

centage away from the turning depth should be altered if there is a significant increase in the model

domain and may be dependent on the vertical resolution of the model.

Continuity (Eq. (2.16)) and Eq. (2.28) are used to derive the form of the horizontal velocity

in the Airy integral

uAi(x,z, t) = Q0,u
iβ 1/3

k
Ai′(β 1/3z−β

1/3ztd)exp[i(kx−ωt)] (2.29)

where Ai′ is the first derivative of the Airy function with respect to z.

Above the turning depth, the vertical velocities are set equal such that w1 = wAi at z = zAi,1

and Q0,w is solved. This procedure is repeated for the horizontal velocity with u1 = uAi at z = z1,Ai

to find Q0,u. It is assumed that both Q0,w and Q0,u are constant through the Airy integral region as

the variation in the natural frequency is small over the small change in height. A2,0 is calculated
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by setting wAi = w2 at zAi,2 = ztd− 0.01(2π/m), and continuity is used to define u2 from w2, as

shown in the previous section.

2.2.4 Accuracy of analytical model

The importance of the terms (−dq/dz)/2q and (−dm/dz)/2im in Eqs. (2.22) and (2.24),

respectively, will be explored in this section. These higher order terms, which are not usually found

in the horizontal velocity, appear because the amplitude of the velocity is a function of depth. When

assuming that the amplitude, natural frequency, and vertical wavenumbers vary slowly, these vari-

ations (dq/dz and dm/dz) are included, and thus are neglected. This assumption breaks down near

the turning depth, due to the rapid variation of q and m in that region, indicating they should remain

in the equations for velocity. However, the use of the Airy integral to connect the evanescent and

propagating regions does not include these terms. Figure 2.2 depicts the two different scenarios

with height on the ordinate and kinetic energy on the abscissa. The dashed line indicates the loca-

tion of the turning depth with the evanescent region above the turning depth and the propagating

region below. The horizontal dash-dot line below the turning depth marks the height corresponding

to a 10% increase in N relative to the excitation frequency of 0.95 s−1. Kinetic energy with the

higher order terms included is indicated by the solid line, while the dotted line represents kinetic

energy when these terms are neglected. For both scenarios, kinetic energy begins at a maximum

at the top of the figure and then decreases as the wave moves through the evanescent region. An

increase in energy is seen near the turning depth, with a larger increase when the higher order

terms are included. Below the turning depth, both scenarios decrease in kinetic energy through

the propagating region. Away from the turning depth, the kinetic energy collapses to a single line.

Each of the 24 experimental cases in Ch. 3 were compared with and without the higher order terms

and the average error from the region between the end of the Airy integral and a 10% increase in

N is 20%. However, the majority of this error is due to the increase in amplitude at the end of the

Airy integral. Neglecting this increase and again comparing the kinetic energy, the average error is
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Figure 2.2: The kinetic energy as a function of height is shown for the scenarios of including or
excluding dq/dz and dm/dz when calculating the horizontal velocity. The turning depth is shown
by the dashed horizontal line and the dash-dot line indicates the height of a 10% increase in N from
the turning depth.

13%. The higher order terms in this work will be ignored, but it may be necessary to retain them

in future work if more rapid changes in natural frequency are of interest.

An example of the MATLAB file used to calculate the kinetic energy in all three regions

is given in Appx. B and includes code for different topography shapes and different density pro-

files. To use the MATLAB files, an equation describing the motion of the topography, based on

topography shape, as a function x and t is required. For example,

ztop(x, t) = H exp
[
−(x−Lsinωt)2

B2

]
(2.30)

defines the equation of motion for a Gaussian topography. Assuming a slip condition at the to-

pography [34], the wave velocity can be calculated by using the time derivative of Eq. (2.30) and

setting it equal to Eq. (2.20) such that dztop/dt = w1(x = B, t = 0). Here, the location x = B as a

matching condition is chosen arbitrarily. Although the matching location does change the absolute

value of kinetic energy, it does not affect normalized values. Currently a topography shape that

can be defined analytically can be used in the model.
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2.3 Experimental processes

2.3.1 Tank preparation

This section will outline the steps to create a stratified salt water mixture in an experimental

tank as well as how to setup and control topography which oscillates on a track. These processes

remain unchanged regardless of the experimental method used after the stratification is created.

Filling the tank

The experimental tank is an acrylic tank that is 2.45 m long, 0.15 m wide, and 0.91 m tall

and is shown in Fig. 2.3. Before filling, cross beams are clamped to the top of the tank to maintain

the width of the tank (not shown in Fig. 2.3). Without the cross beams, the tank will bow in the

center, which will cause distortions when images are taken during the experimental process. Also

before filling, air filter matting, cut to the width of the tank, is placed two layers deep along the

bottom of the tank to dampen reflections. A single layer is placed along the width of the tank. Each

filter is washed and dried before being placed again in the tank. It is recommended that the filters

be replaced every few months as they begin to wear out. Although it is easier to place the track in

the tank before placing the cross beams, it can also be placed after the beams are on, as long as two

people are doing it together. In general, all process of setup, performing experiments, and cleaning

the tank should be done with two people for safety purposes.

The experimental tank is filled with a modified version of the “two-tank” or “double bucket”

method described by Hill [93]. Two peristaltic pumps are used to control the flow rate from a salt

water and a fresh water bucket separately. The pumps are calibrated by first allowing them to run

at high speed for at least 5 minutes to warm up, and then each pump is tested for flow rates at

25, 50, 100, and 175 rpms, with three tests at each speed. Flowrate and voltage input have been

previously calibrated and tested to ensure they remain constant. Knowing the desired N profile, the

density of the saltwater bucket, and values from pump calibration, conservation of mass is used to

define flowrates necessary from each bucket to create N. These flowrates are then converted back
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Figure 2.3: An example of a topography attached to the track in the experimental tank. The two
buckets used to fill the tank are on the left side, while the lightbox and mask are behind the tank.

to voltages based on the calibration. All calculations are done in MATLAB and then calculated

values are input into a LabView program which outputs voltages to the peristaltic pumps. Fresh

water and salt water streams are mixed in a T-connection to create the needed density immediately

before entering the tank. Although it is necessary for the fresh water and salt water streams to mix

to create the required density, it is also important that the flow into the tank does not generate sig-

nificant mixing with the water already in the tank. To prevent this secondary mixing (which would

create a uniform density within the tank), the mixed stream enters the tank through a sponge, ef-

fectively spreading out the stream and minimizing mixing. Flow rates are kept low, such that the

height of the water of the tank increases at a rate below 15 cm/hr. Higher flow rates cause more

mixing in the tank, which is undesirable. The slow filling rate generally means the tank will take

4-6 hours to fill, depending on the desired height of the water.

After the tank is filled, it is left to settle, generally overnight. Density measurements are

then taken throughout the tank to find the exact density profile. When density measurements are

first taken, the distance between density measurements is 2 to 3 cm. After a set of tests (usually

4), the density is checked again every 5 cm to ensure the density profile has not varied. The values
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from the density tests are input into a MATLAB program which interpolates the density for the

entire height of the water, ρ(z), and from this the natural frequency can be calculated from Eq.

(1.1) and the smoothed density profile (See Appx. B.1.2). A mixed region, or a region of constant

density, usually occurs near the surface of the water. Once this region is large enough to interfere

with the tests, the tank is emptied and cleaned.

Controlling the topography

All topographies are built with a dovetail on the base which allows for an easy connection

between the topography and the track on which the topography oscillates, shown in Fig. 2.3. The

current track was built by two undergraduate students, Jordan Freeman and Katie Pusey, specifi-

cally to oscillate the topography at a set frequency ω and to allow for quick changes of topography

shapes with the dovetail attachment. Three of the topographies in this work are similar lengths of

about 20 cm, while the steep topography is only 4.5 cm long. Each topography about 13 cm wide

to fit in the tank and also be away from the walls to reduce the influence of viscosity and other

edge effects. An ARDUINO controller and small motor are used to run the topography (See Appx.

B.2). The code which controls the oscillations takes as inputs the time period (or frequency) and

the desired excursion length, L, which is the distance the topography moves in half an oscillation.

It is recommended that the actual frequency be tested and adjusted as needed to ensure the correct

frequency of the topography based on the needs of the test.

2.3.2 Synthetic schlieren and Digiflow

Figure 2.4 gives a sketch of the experimental setup. Figure 2.4(a) specifically displays the

SS setup, showing a side view of the camera, mask, and light box used in SS. The camera focuses

on the mask, which is a random patterned of dots illuminated by the light box, and captures the

apparent motion of the dots needed for the SS process [58]. Figure 2.4(b) indicates the PIV setup

where the front view shows the general location of the laser sheet relative to the topography (See

Sec. 2.3.3).
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Figure 2.4: Experimental setup of (a) SS and (b) PIV experiments

When running a synthetic schlieren test, the lights in the room must be turned off and the

lightbox which illuminates the randomized dot pattern is turned on. The camera needs to be placed

at least 3 m in front of the lightbox. This measurement and all of the values listed in Fig. 1.6 need

to be recorded in Digiflow, which is a free software used to process the images of all SS tests to

calculate the density perturbation field as described in Sec. 1.5.2 [94].

Once the frequency of the topography has been set, two groups of pre-test images are

taken. In the first, a ruler is slowly placed into the tank and one picture is taken. In the code

used for Digiflow, this picture is referred to as the “with stick” image and is the reference picture

needed to establish the relationship between camera coordinates and real world coordinates. After

the ruler is removed and the water has again settled, a background image is taken. This image must

exactly match the images taken in the test, meaning that the lights in the room are turned off, the

lightbox is on, and the camera is focused. This background image is used as the reference image

and is compared against each image in the actual test. If the camera is accidentally bumped after

this background image is taken, it must be retaken. A new background image is needed for every

set of tests.

Once the pre-test images are taken, the topography is run for at least 15 periods to create a

steady-state experiment. The camera runs at 24 fps and should be set for 4320 images, or 3 minutes

worth of tests. Because of the large number of images, the computer must have RAM available for
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the capturing process, otherwise the images will overload the computer and the test will be lost.

After completing a test, the images are saved and then processed on Digiflow.

All experiments are processed at 6 fps, instead of the full 24 fps. The frequency of internal

waves is low enough that 6 fps is a good enough resolution to capture the motion of the waves

and is fast enough to prevent aliasing. This also saves on disk space, as the 1080 .dfi files (created

by Digiflow) for each test are each approximately 32GB. In Digiflow, the “with stick” image is

used to set the length scale of the test, and the background image is used in the Pattern Matching

process. Full details of the exact steps are given in Appx. A. One test takes about 4 hours to

process.

Estimating kinetic energy

After the tests are processed, kinetic energy can be estimated. Outputs from Digiflow in-

clude the x-gradient and z-gradient of density perturbations in a nondimensional form; ρ
−1
0 dρ ′/dx

and ρ
−1
0 dρ ′/dz. The Digiflow files are exported as .dat files, which are then read by MATLAB

using the BYU supercomputer, due to the large size of the files. By multiplying ρ
−1
0 dρ ′/dz by the

gravitational constant, g, the data then represents the variation in the natural frequency between

the initial undisturbed image and each subsequent image, and an equation similar to Eq. (1.1) is

derived:

∆N2 =
−g
ρ0

∂ρ ′

∂ z
(2.31)

With ∆N2, the kinetic energy of the internal waves can be estimated using the method described

by Wunsch and Brandt [20]. By using the continuity equation (Eq. (2.16)) and defining

∂∆N2

∂ t
=−∂ (N2w)

∂ z
(2.32)
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Wunsch and Brandt used the WKB approximation to estimate kinetic energy. Internal wave veloci-

ties and the natural frequency are defined as planar waves multiplied by slowly varying amplitudes:

u(x,z, t) =
∫

Ũ exp [i(kx+mz−ωt)]dkdω (2.33)

w(x,z, t) =
∫

W̃ exp [i(kx+mz−ωt)]dkdω (2.34)

∆N2(x,z, t) =
∫

∆Ñ2 exp [i(kx+mz−ωt)]dkdω (2.35)

where Ũ , W̃ and ∆Ñ2 are Fourier amplitudes. Using Eqs. (2.16) and (2.32), where the derivatives

of the amplitudes are assumed negligible, and taking a two dimensional Fourier transform along

the horizontal (x) direction and through time (t), Wunsch and Brandt derive

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

(2.36)

where KE = |Ũ |2 + |W̃ |2, k is the horizontal wavenumber, and the subscript “2” indicates the

propagating region. Unfortunately, this equation is not valid in the evanescent region because of

the exponential decay of evanescent wave amplitudes and imaginary vertical wavenumber. These

are accounted for by first using q as defined in Eq. (2.18). The velocities and natural frequency

then become

u(x,z, t) =
∫

Ũ exp(qz)exp[i(kx−ωt)]dkdω (2.37)

w(x,z, t) =
∫

W̃ exp(qz)exp[i(kx−ωt)]dkdω (2.38)

∆N2(x,z, t) =
∫

∆Ñ2 exp(qz)exp[i(kx−ωt)]dkdω (2.39)

Following the same methodology described above for Eq. (2.36), evanescent region kinetic energy

can be estimated with

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

(2.40)
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Figure 2.5: Fourier amplitudes of ∆N2 in the evanescent region (a) and propagating region (b) are
shown in contours increasing by 0.0025 for each line. Both figures use the same scaling. The
highest value for the contour lines for (a) is 0.01 s−2 and for (b) is 0.0125 s−2.

for the evanescent region. As this region is the first region where waves are formed, the kinetic

energy is denoted as KE1.

To use Eq. (2.36) and Eq. (2.40), the data is sorted into a timeseries of rows represent-

ing horizontal slices of the experimental data. Each row is the height of a single pixel. A two-

dimensional Fourier transform in x and t is then performed on a timeseries row to create ∆Ñ2.

Results are shown for Case 2 from Tab. 3.1 of Ch. 3 at two different locations in Fig. 2.5 with

contours of ∆Ñ2 plotted against frequency (ω) and horizontal wavenumber (k). In Fig. 2.5(a), the

horizontal slice is at z = 0.4 m, in the evanescent region, while the data in Fig. 2.5(b) is in the

propagating region at z = 0.22 m. The excitation frequency for this case is ωf = 1. Comparing

the two figures, this frequency peak is seen clearly. The expected dominant horizontal wavenum-

ber, kd, for a specific case is found by defining the horizontal wavelength, λx, as the width of the

topography plus the excursion length or

λx =W +L (2.41)
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Then the wavenumber for each case, kd = 2π/λx, gives kd = 28.26 m−1 for Fig. 2.5. Although

the Fourier amplitudes show a peak near the expected wavenumber and excitation frequency, ∆Ñ2

amplitudes do not match exactly with the expected frequency and wavelength and there is some

energy in nearby frequencies and wavenumbers. The kinetic energy is calculated at all wavenum-

bers and frequencies for each individual row with its corresponding N2 and ∂zN2 values using

Eq. (2.36) and Eq. (2.40). Kinetic energy data can then be filtered and averaged over a range of

wavenumbers or frequencies as required. Because of the topography and the local turbulence in its

wake, the kinetic energy of the evanescent region is only calculated below the tip of the topography.

Sample MATLAB and supercomputer files used to process synthetic schlieren data in MAT-

LAB and on the supercomputer are in Appx. B. An uncertainty analysis of the calculation of ∆N2

and kinetic energy density is performed with sequential perturbation in Appx. C.

2.3.3 Particle image velocimetry

Particle image velocimetry (PIV) uses lasers to illuminate relatively small particles seeded

into a flow in order to map the velocity field of the flow. Experiments in this work all used dual

ND:YAG lasers that were fired at a rate of 4.5 Hz with a 90 ms separation between the lasers.

Each test was run for over 3.7 minutes, capturing 1000 pairs of images. To perform the PIV

experiments, the tank was seeded with titanium dioxide particles, filtered to diameters between

150 µm - 850 µm. With a large diameter, and relatively large specific gravity of 4.23, some of the

larger particles fell quickly to the bottom of the tank, disturbing the water. The settling velocity

of the smaller particles was much lower (3 cm/min), and these particles needed almost half an

hour to completely fall to the bottom of the tank. Because of this, after seeding, the water was

allowed to sit for 5-10 minutes to allow larger particles to fall away and smaller particles to fill

the experimental window. Once the water was again quiescent, the motorized track was turned on

and the topography oscillated for multiple periods (at least 10) to reach steady state conditions for

wave generation.
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Tests using (PIV) were always performed following SS tests in order to correlate the two

experimental methods. SS images were processed and reviewed to locate areas of strong wave

activity in the evanescent and propagating regions of the tank and PIV tests were performed in

those regions. A ruler was placed in the tank at these regions, and a correlation picture was taken

with both the PIV and SS camera in order to correlate the locations of the two images with each

other. Care was taken to ensure that the track was not moved when particles were placed and when

the calibration images were taken, thus ensuring that the PIV and SS tests were performed under

the same conditions. PIV tests were run immediately after each SS test in the same tank and under

the same steady state conditions. A LaVision Imager Intense camera with a resolution of 1376 x

1040 pixels captured the PIV images. The camera was positioned approximately 3.5 m from the

front of tank.

After the test, the images were processed with DaVis software using cross-correlation be-

tween image pairs with two passes over the experiment window. The first pass used an interroga-

tion window of 64 x 64 pixels with a 50% window overlap. Then the interrogation window was

narrowed to 16 x 16 pixels with 75% overlap. DaVis processing generated horizontal (u) and ver-

tical (w) velocities in matrices of 344x256 points. This data was output as .DAT files from Davis

and then imported into MATALB. In order to compare the PIV results to those obtained with SS, a

2D Fourier transform in x and t was performed on the velocities and the Fourier amplitudes were

used to calculate kinetic energy following Eq. 2.17. Examples of the MATLAB import files and

kinetic energy calculation files are shown in Appx. B

2.4 Numerical Simulations

All numerical simulations were performed by Yuxuan Liu and Michael Allshouse at North-

eastern University. A summary of their methods is included here as a reference.

A CDP-2.4 algorithm was implemented to perform direct numerical simulations of the

Navier-Stokes equations under the Boussinesq approximation. This algorithm is a finite volume

solver that uses a fractional-step time-marching scheme [95,96]. This code was chosen because it
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has previously been used to study internal waves and has been validated with experiments [18, 86,

88, 97–100]. Simulations provided both the velocity and density perturbation fields.

Equations solved in the 2D simulations result in the total density ρ , pressure p, and velocity

uuuT over the domain x ∈ [−400,400] cm and z ∈ [0,150] cm. Equations include

∂uuu
∂ t

+uuuT ·∇uuuT = − 1
ρ0

∇p+ν∇
2uuuT−

gρ

ρ0
ẑzz+ fff tidal (2.42)

∂ρ

∂ t
+uuuT ·∇ρ = κs∇

2
ρ (2.43)

∇ ·uuuT = 0 (2.44)

where ρ0 = 1000 kg/m3 (density of water), ν = 10−6 m2/s (kinematic viscosity of water at 20◦C),

and κs = 2×10−9 m2/s (the diffusivity of NaCl in water). All simulations used the same domain,

with a structured grid containing resolutions that ranged from 0.02 to 10 cm, where the resolution

was increased for the complex topography cases due to the significant turbulence seen in prelimi-

nary tests. Initially, the system was set at rest with an unperturbed density field. The density field

matched the density profiles of the experiments. For the simulations, the topography was at the

bottom of the domain, with a no slip boundary condition. At the top of the domain, the bound-

ary condition was set to be free slip. Periodic boundary conditions with Rayleigh damping were

implemented along the left and right edges to force negligible velocities at both boundaries. In

addition, to reduce reflections, a sponge layer was placed at the top of the domain.

Each case was run twice, with an excursion length matching the experimental details, and

again with an excursion length 1/10 of the original value. These low amplitude cases were run to

investigate the importance of both excursion length and turbulence on the steeper sloped topogra-

phies. They will be referred to as the low amplitude or 1/10 amplitude cases. Simulations were

performed at temporal resolutions of 0.002 and 0.004 s for the low and high amplitude simulations,

respectively. Convergence studies were performed for each topography. Because the system was

initially at rest, each case was run for 30 periods to reach a steady state, and then an additional 30

periods which were used in the energy analysis.
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Kinetic energy density for the simulations was calculated either directly, using the Fourier

amplitudes of the velocity fields with Eq. (2.17), or indirectly. Indirect methods used the density

perturbation field to calculate ∆N2 and followed the same methodology as the experiments using

Eqs. (2.40) and (2.36).
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CHAPTER 3. TURNING DEPTHS: EVANESCENT TO PROPAGATING WAVE KI-
NETIC ENERGY DENSITY

This chapter is published in the journal Physical Review Fluids. The formatting of this

paper has been modified to meet the stylistic requirements of this dissertation.

3.1 Contributing authors and affiliations

Allison Lee, Julie Crockett, Department of Mechanical Engineering, Brigham Young Uni-

versity, Provo, UT 84602

3.2 Abstract

Tidal flow over oceanic topography generates internal waves when the natural frequency

(N) of the water is greater than the tidal frequency (ω). When N < ω , evanescent waves are gen-

erated. Although the amplitude and kinetic energy of evanescent waves decay rapidly, if the wave

reaches a turning depth, where N = ω , and moves into a region where N > ω , the evanescent

wave becomes an internal wave. This work expands upon previous research of varying stratifica-

tions by investigating the kinetic energy density in internal waves generated by evanescent waves

passing through a turning depth. An analytical model is presented and compared to synthetic

schlieren experiments of two Gaussian shaped topographies. The model and experiments both

indicate that the kinetic energy density of internal waves increases with decreasing topographic

slope, when the distance between the topography and the turning depth decreases, and when the

average Froude number in the evanescent region is close to one. The model is used to estimate

the normalized kinetic energy density of internal waves generated from an oceanic feature located

within an evanescent region.
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3.3 Introduction

Internal waves are uniquely formed in stratified fluids such as the atmosphere and ocean.

The strength of the stratification is proportional to the variation in density in a fluid and is defined

by the natural frequency of unforced oscillations, N which is defined as

N2 =
−g
ρ0

dρ

dz
(3.1)

where g is the gravitational constant, ρ0 is a reference density, and dρ/dz is the change in density

with respect to height. One well known generator of internal waves in the ocean is tidal flow

over oceanic bathymetry, specifically the M2 semidiurnal tide, with a frequency ωM2 = 1.4052×

10−4 s−1 [19]. The kinetic energy of internal waves generated from oceanic topography depends

on many factors, including the strength of the stratification and the shape of the topography. The

strength of the stratification defines whether internal waves or evanescent waves will be formed.

Internal waves are formed when N is greater than the excitation frequency (ω) and they suffer

little to no viscous dissipation as they propagate. Figure 3.1(a) depicts an internal wave generated

by tidal motion across an idealized oceanic topography. Evanescent waves form in the opposite

scenario, where N <ω as depicted in Fig. 3.1(b). An evanescent wave has no vertical structure as a

propagating wave does and as it transmits energy vertically the amplitude decays at an exponential

rate [5]. King et al. [19] used data from the World Ocean Circulation Experiment (WOCE) to

estimate variations in N across the oceans in order to locate evanescent regions and turning depths,

or locations where the natural frequency is equal to the forced wave frequency associated with

ωM2. They found that these turning depths occur frequently in deep oceans where east-west tides

dominate. If an evanescent wave reaches a turning depth, it becomes a propagating internal wave,

as shown in Fig. 3.1(c) where the evanescent wave reaches the turning depth (dashed line) and then

forms a propagating internal wave [5]. While internal waves are known to have significant energy

and are widely studied, evanescent waves are not often considered to have an impact on the ocean

due to the rapid decay rate of the amplitude and energy content. However, if a significant portion
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Figure 3.1: A propagating internal wave is shown in (a) and the vertically decaying evanescent
wave is seen in (b). In (c), the a turning depth indicates the boundary between the evanescent and
propagating regions, with the evanescent wave becoming an internal wave as it pass through the
turning depth.

of the original evanescent wave energy reaches a propagating region, the internal waves formed

may have an important impact on the ocean energy budget.

Significant research has been accomplished in both varying stratifications and internal

waves approaching evanescent regions. Pedlosky [74] used linear theory and the WKB approx-

imation to account for wave propagation in non-uniform stratifications in propagating regions. For

multi-layered stratification profiles, internal waves have been shown to tunnel through an evanes-

cent region of fluid and the transmission coefficient of incident internal wave energy across the

evanescent region can be calculated with linear theory [80]. Further work on tunneling includes

smooth changes in natural frequency and the inclusion of a shear flow [77,81]. Gregory and Suther-

land [79] found that the transmission coefficient was larger for internal waves that tunneled through

a weakly stratified region instead of a well-mixed region. Mathur and Peacock [78] extended this

work for transmission and reflection of internal waves and varied the scale of the transitional re-

gion. They found that a wave beam will adjust to a varying stratification and be either amplified

or diminished based on the characteristics of the stratification, as long as the changes in the strat-

ification occurred over a sufficiently large distance. Rapid changes in stratification led to wave

scattering. Sutherland [82] found an analytical solution for the transmission coefficient for an arbi-

trary number of density staircases that are all equal in size, and also used simulations to calculate
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the transmission coefficient for uneven length staircases. Sutherland found, similar to the results of

Ghaemsaidi et al. [83], that density staircases can act as a filter allowing only internal waves with

long horizontal wavelengths and high frequencies to completely pass through the staircase region.

Paoletti and Swinney [64] used exponential density profiles and stratifications to investigate inter-

nal wave reflection and transmission from a turning depth. Their results compared well with the

viscous theory of Kistovich and Chashechkin [84] which allowed for arbitrary stratifications. Each

of these cases assumed that internal waves were formed in a propagating region and then pass into

an evanescent region, but did not investigate waves formed in an evanescent region passing into a

propagating region.

Few studies have been conducted which investigate both evanescent and propagating re-

gions. Using linear theory, Nappo [5] showed that in a two-layer, constant N fluid, with an abrupt

change from an evanescent to a propagating region, propagating internal wave energy is dependent

upon the strength of the stratification in the propagating region. Paoletti et al. [18] used numerical

simulations validated with experiments to characterize the radiated power of internal waves gen-

erated from a turning depth with varying stratifications and compared their results to an estimated

maximum tidal power. The radiated power was calculated at a fixed location near the topography

while the turning depth location was varied. They found that steep-sloped topography generated

waves with less power than topography with more gentle slopes. They also saw that the presence

of a turning depth greatly reduced the radiated power compared to the internal waves formed in

a propagating region from the same topography. Their work provides valuable insight on relative

power transferred from the tides into wave motion near topography. In this work, we investigate

the kinetic energy transmitted to propagating waves only. We will use experiments and a linear the-

ory analysis to explore the effect of non-uniform stratification on wave generation in evanescent

regions and focus on the resultant internal wave kinetic energy in propagating regions.

As mentioned previously, the shape of the topography from which waves are generated

has an important affect on the energy content of the waves. When investigating topographically

generated internal waves, topographies are frequently divided into different categories based on
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criticality. Criticality is defined ε = Stop,m/Swave where Stop,m is the maximum topographical slope

and Swave =
√

ω2/(N2−ω2) is the slope of the generated waves (assuming no rotation). Topogra-

phies in propagating regions are considered subcritical (ε < 1), critical (ε = 1), or supercritical

(ε > 1). Internal wave energy has been estimated for subcritical topography for constant stratifica-

tions [29], depth varying stratifications and a finite depth ocean [75, 85]. Work has also been done

for supercritical topographies both experimentally and with a viscous linear theory model [86,87].

However, for evanescent waves, ε is undefined because Swave is imaginary in an evanescent re-

gion. Paoletti et al. [18] used a novel technique to define an effective height of the topography,

based on both the slope of the topography and the stratification profile. Using this, they could esti-

mate radiated power for internal waves generated from evanescent waves formed from topography.

They found that internal wave power is significantly decreased in the presence of a turning depth.

Their results compared well with previous research on topographically generated internal waves

and varying stratifications.

In this work we account for the effects of topography shape and the distance from the

topography to the turning depth in realistic stratifications to investigate the influence of turning

depths on the local kinetic energy of internal waves generated from evanescent regions. Specifi-

cally, experiments and a new linear model are used with an exponential N profile such that waves

are generated in an evanescent region and pass into a propagating region. Average internal wave

kinetic energy is quantified in the propagating region as a function of average Froude number in

the evanescent region (Fr1 = ω/N) and H/D, the relative distance between the topography and

the turning depth. These results represent the first ever analytical model of an evanescent wave

generating an internal wave through a turning depth with varying natural frequency and the kinetic

energy associated with each wave. The numerical theory is supported by experiments.

The paper is outlined as follows. Section 3.4 describes the experimental setup and analysis,

and details the analytical model. Results are given in Section 3.5, with an oceanic case study in

3.6. Section 3.7 concludes with a summary of the work.
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3.4 Methodology

3.4.1 Experimental procedures

All experiments were performed in an acrylic tank with a length, width, and height of

2.45 m, 0.15 m, and 0.91 m, respectively. To create the density profile, a modified version of the

double bucket method was used [93]. Two peristaltic pumps controlled the flow rates of fresh and

salt water which were joined and slowly filled the tank. Density measurements using an Anton Par

density meter were taken every 2 cm before experiments began, and then every 5 cm after every

fourth experiment. Density measurements were fit to the equation

ρ = aexp(bz)+ c (3.2)

where ρ and z have units of kg/m3 and meters, and a (kg/m3), b (m−1), and c (kg/m3) are coeffi-

cients calculated from the exponential fit with an average R2 = 0.997 for all cases. This density

profile ensures a varying N profile for every experiment, with N defined by Eq. (3.1) and ranging

from 0.3 to 2.0 s−1. In Fig. 3.2 the measured density and calculated exponential curve fit is shown.

These data come from Case 17 shown in Table 3.1. The density increases with decreasing height,

starting at the top of the tank (z = 0.6 m) and moving down to the bottom at z=0 m.

As shown in Fig. 3.3, the ocean-topography system is inverted with the topography at the

surface and lower values of N at the base of the topography. As z decreases, N increases. A stepper

motor controls the oscillation frequency and excursion length of the topography generating waves.

Matting was placed at the bottom of the tank to dampen reflections. Two Gaussian topographies

were used in the experiments with curves of the form

h = H exp(−x2/B2) (3.3)

where H is the peak height of the topography and B2 = W 2/18. Here, W is the width of the

topography when the height of the topography has decayed to 1% of H. The first topography is
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Figure 3.2: The measured density is shown in red points and the exponential curve fit is the black
line.

defined by W/H = 1.8 (medium topography) and the second by W/H = 0.45 (steep topography).

H = 10 cm for both topographies.

Two non-dimensional numbers were used to describe each experimental setup. First, H/D

is a ratio of the height of the topography to the distance between the tip of the topography and

the turning depth (D in Fig. 3.3(a)). This ratio provides a relative measure of the number of

topographic heights between the source and propagating region. Values of H/D ranged from

0.311 to 2.128, where the higher values indicate that the topography is closer to the turning depth.

The other non-dimensional number is the average Froude number in the evanescent region which

is defined as

Fr1 = ωf/N1 (3.4)

where the subscript “1” refers to the evanescent region (see Fig. 3.3(a)) and ωf is the forcing

frequency of the topography. The Froude number is used to characterize the stratification profile

in the evanescent region. Table 3.1 provides the details of each case, including the coefficients for

the density profile [Eq. (3.2)], the height of the water in the tank, the horizontal wavenumber, the
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Figure 3.3: Experimental tank and visualization system schematic. In (a), the front view of tank is
shown with internal wave regions and turning depth as labeled. In (b), the side view of the setup
with camera for synthetic schlieren imaging is shown.

oscillation frequency of the topography, the height of the turning depth, the excursion length of the

topography, and values for H/D and Fr1.

The topography was forced at an oscillation frequency ωf. The location of the Gaussian

profile in space and time is described as

ztop(x, t) = H exp
[
−(x−Lsinωt)2

B2

]
(3.5)

where L is the excursion length of the topography, −0.09 ≤ x ≤ 0.09 m for the medium topog-

raphy, and −0.0225 ≤ x ≤ 0.0225 m for the steep topography. After 15 oscillation periods of

the topography, which allowed the waves to reach steady state, images were recorded with a jAi

Cv-M4+Cl progressive scan camera for three minutes at 6 fps and processed with the commercial

software DigiFlow [58]. The camera shown in Fig. 3.3(b) was focused on the mask of random

dots illuminated by a light box behind the tank and synthetic schlieren was used to calculate varia-

tions in density for each experiment. Digiflow calculates values of ∇ρ ′/ρ0, where ρ ′ is the density

perturbation. Using the z derivative and multiplying these values by the gravitational constant, an
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Table 3.1: A summary of experiments and experimental parameters. Cases 1-14 used the medium
topography (W/H = 1.8), while cases 15-24 used the steep topography (W/H = 0.45). Water

height, ztd, and L are given in centimeters.

Case
a
(kg/m3)

b (m−1)
c
(kg/m3)

Water
Height

kd (m−1) ωf (s−1) ztd L H/D Fr1

1 100 -2.36 993 57.5 28.39 1.04 32.7 4.13 0.67 1.15
2 97.7 -2.35 994 57.3 28.26 1.00 34.9 4.23 0.81 1.14
3 95.2 -2.55 998 57.3 28.48 0.95 38.1 4.07 1.09 1.13
4 110.4 -1.35 975 67.3 28.57 0.95 35.9 3.99 0.47 1.11
5 101.6 -1.51 984 67.2 28.26 1.04 21.9 4.23 0.28 1.18
6 89.8 -2.17 999 63.4 28.29 0.85 45.3 4.21 1.23 1.10
7 84.9 -2.48 1005 63.3 28.09 0.85 42.4 4.37 0.92 1.14
8 92.6 -2.39 997 61.7 28.28 0.86 45.5 4.22 1.62 1.10
9 86.9 -2.81 1004 61.1 28.51 0.81 46.5 4.04 2.15 1.11
10 92.6 -2.39 997 57.5 28.26 0.93 38.4 4.24 1.10 1.12
11 95.2 -2.64 1003 61.7 32.29 1.21 19.8 1.46 0.31 1.30
12 95.2 -2.64 1003 61.4 31.04 1.08 28.1 2.24 0.43 1.24
13 119 -1.87 982 63.5 28.39 1.13 28.8 4.14 0.41 1.17
14 117 -1.76 981 63.3 28.15 1.00 40.3 4.32 0.77 1.10
15 88.8 -3.71 1008 69.3 67.64 1.04 29.7 4.34 0.38 1.41
16 87.8 -3.50 1007 69.3 62.85 1.24 19.3 5.05 0.28 1.50
17 87.8 -3.50 1007 60.6 63.95 1.17 22.6 4.88 0.41 1.37
18 92.2 -4.01 1011 60.5 70.96 0.96 34.1 3.90 0.71 1.29
19 94.7 -4.49 1014 61.0 57.67 0.81 41.2 5.94 1.25 1.24
20 85.1 -4.27 1014 60.9 67.38 0.86 36.9 4.38 0.85 1.28
21 89.6 -4.38 1014 60.8 65.76 0.86 37.8 4.61 0.91 1.27
22 91.8 -4.54 1014 60.5 67.57 0.77 42.7 4.35 1.62 1.22
23 91.8 -4.54 1014 60.4 67.52 1.00 31.1 4.36 0.60 1.37
24 89.8 -4.52 1015 60.2 66.03 1.00 30.6 4.57 0.59 1.37

equation for the variation in the natural frequency between the initial undisturbed image and each

subsequent image, similar to Eq. (3.1) is derived:

∆N2 =
−g
ρ0

∂ρ ′

∂ z
(3.6)

With ∆N2, the kinetic energy of the internal waves can be estimated using the method described

by Wunsch and Brandt [20]. By using the continuity equation

∂u
∂x

+
∂w
∂ z

= 0 (3.7)
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and defining
∂∆N2

∂ t
=−∂ (N2w)

∂ z
(3.8)

the WKB approximation is used to approximate kinetic energy. Internal wave velocities and the

natural frequency are defined as planar waves multiplied by slowly varying amplitudes:

u(x,z, t) =
∫

Ũ exp [i(kx+mz−ωt)]dkdω (3.9)

w(x,z, t) =
∫

W̃ exp [i(kx+mz−ωt)]dkdω (3.10)

∆N2(x,z, t) =
∫

∆Ñ2 exp [i(kx+mz−ωt)]dkdω (3.11)

where Ũ , W̃ and ∆Ñ2 are Fourier amplitudes. Using Eqs. (3.7) and (3.8), where the derivatives of

the amplitudes are assumed negligible, and taking a two dimensional Fourier transform along the

horizontal (x) direction and through time (t), Wunsch and Brandt derive

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

(3.12)

where KE = |Ũ |2 + |W̃ |2, k is the horizontal wavenumber, and the subscript “2” indicates the

propagating region. Unfortunately, this equation is not valid in the evanescent region because of

the exponential decay of evanescent wave amplitudes and imaginary vertical wavenumber. These

are accounted for by first defining

q2(z) = k2(1−N2(z)/ω
2) (3.13)
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where m = iq is the imaginary vertical wavenumber in the evanescent region [5,74]. The velocities

and natural frequency then become

u(x,z, t) =
∫

Ũ exp(qz)exp[i(kx−ωt)]dkdω (3.14)

w(x,z, t) =
∫

W̃ exp(qz)exp[i(kx−ωt)]dkdω (3.15)

∆N2(x,z, t) =
∫

∆Ñ2 exp(qz)exp[i(kx−ωt)]dkdω (3.16)

Following the same methodology described above for Eq. (3.12), we find

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

(3.17)

for the evanescent region. We will denote this by KE1 as it is the first region where waves are

formed.

To use Eq. (3.12) and Eq. (3.17), the experimental data are first filtered by performing

a Fourier transform in the vertical direction. The vertical wavenumber will vary throughout the

experiment due to the variation in N. The Fourier coefficients corresponding to the lowest possible

vertical wavenumber (m = 0) and above the highest expected wavenumber are zeroed. The highest

expected wavenumber is defined as m2
max = k2(N2

max/ω2−1). An inverse Fourier transform is then

applied to the filtered data and is sorted into a timeseries of rows representing horizontal slices of

the experimental data. Each row is the height of a single pixel. A two-dimensional (2D) Fourier

transform in x and t is then performed on a timeseries row to create ∆Ñ2. Results are shown

for Case 2 at two different locations in Fig. 3.4 with contours of ∆Ñ2 plotted against frequency

(ω) and horizontal wavenumber (k). In Fig. 3.4(a), the horizontal slice is at z = 0.4 m, in the

evanescent region, while the data in Fig. 3.4(b) is in the propagating region at z = 0.22 m. The

excitation frequency for this case is ωf = 1.00. Comparing the two figures, this frequency peak is

seen clearly. The expected dominant horizontal wavenumber, kd, for a specific case is found by
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defining the horizontal wavelength, λx, as the width of the topography plus the excursion length or

λx =W +L (3.18)

Then the wavenumber for each case, kd = 2π/λx, gives kd = 28.26 m−1 for Fig. 3.4. Although the

Fourier amplitudes show a peak near the expected wavenumber and excitation frequency, ∆Ñ2 am-

plitudes do not match exactly with the expected frequency and wavelength and there is some leak-

age into nearby frequencies and wavenumbers. The kinetic energy is calculated at all wavenum-

bers and frequencies for each individual row with its corresponding N2 and ∂zN2 values using Eq.

(3.12) and Eq. (3.17). Kinetic energy data is then filtered by summing energy values for the three

wavenumbers and three frequencies nearest to the expected values. This is done to allow for a

comparison to the linear theory model, which uses only one wavenumber, kd, and the forcing fre-

quency, ωf, while also preventing an underestimate of kinetic energy due to the k−ω spreading.

Also, because of the topography and the local turbulence in its wake, the kinetic energy of the

evanescent region is only calculated below the tip of the topography.

3.4.2 Theory

Using the WKB approximation, a linear, Boussinesq, 2D model was used to calculate the

kinetic energy that passes from the evanescent region through the turning depth and into the prop-

agating region, accounting for the exponential natural frequency profile. Linear theory is a good

approximation because utop/(ωfW )< 1 for all cases [75], where utop is the average velocity of the

topography, and W is the width of the topography. The maximum value in our cases is 0.38 and the

effects of this will be discussed further in Section 3.5. The WKB approximation is valid away from

the turning depth where N2 >> λz(∂N2/∂ z) [74]. In the following sections we will analytically

calculate kinetic energy in the evanescent region and the propagating region, and then demonstrate

how the two regions can be matched at the turning depth where the WKB approximation is not
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Figure 3.4: Fourier amplitudes of ∆N2 in the evanescent region (a) and propagating region (b) are
shown in contours increasing by 0.0025 for each line. Both figures uses the same scaling. The
highest value for the contour lines for (a) is 0.01 s−2 and for (b) is 0.0125 s−2.

valid. Within each region the vertical velocity (w) is defined and the horizontal velocity (u) is

found from continuity [See Eq. (3.7)].

With both u and w defined, the kinetic energy is defined as

KE = u2 +w2 (3.19)

for comparison with experiments. Each case in Table 3.1 is reproduced with a linear theory analysis

using the given experimental parameters, including the calculated λx and kd from Eq. (3.18). No

other data from the synthetic schlieren experiments are needed to initialize the theoretical analysis.

Evanescent region

The vertical velocity in the evanescent region varies due to the variation in the N profile

which affects the vertical wavelength. In the same manner as the experimental energy calculations

in Section 3.4.1, the vertical wavenumber will be defined as m = iq, with q defined by Eq. (3.13).
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Following the work of Pedlosky [74] in a propagating region with N = f (z), for the evanescent

region we introduce θ1,

θ1(z) =
∫ z

z1,0

qdz (3.20)

where the subscript “1” refers to the evanescent region. A1,0 and q1,0 are defined at the height

z1,0 = h(B) as shown in Fig. 3.3(a) for the medium Gaussian topography. Using q and θ , the

vertical velocity can be defined as

w1(x,z, t) = A1 exp[i(kx−ωt)]exp(θ1) (3.21)

A1(z) = A1,0/(q/q1,0)
1/2 (3.22)

Assuming a slip condition at the topography [34], the wave velocity can be calculated by

using the time derivative of Eq. (3.5) and setting it equal to Eq. (3.21) such that dztop/dt = w1(x =

B, t = 0) [See Eq. (3.3)]. Using continuity [Eq. (3.7)], the horizontal velocity is computed as

u1(x,z, t) =
−w1

ik

[
−dq/dz

2q
+q
]

(3.23)

The kinetic energy of the evanescent region is calculated using KE1 = u2
1 +w2

1.

Propagating region

Following the work of Pedlosky [74], velocities in the propagating region, assuming a

varying natural frequency, are defined by

w2(x,z, t) = A2 exp(i(kx−ωt +θ2)) (3.24)

u2(x,z, t) =
−w2

k

[
−dm/dz

2im
+m

]
(3.25)

A2(z) = A2,0/(m/m0)
1/2 (3.26)

θ2(z) =
∫ z

z0

mdz (3.27)

m2(z) = k
[
N(z)2/ω

2−1
]

(3.28)
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where continuity has again been used to define u2. Note that the subscript 2 refers to the propa-

gating region. The kinetic energy in the propagating region is calculated by KE2 = u2
2 +w2

2. In

both the evanescent and propagating regions, the amplitude, A, of the velocities varies with height.

This is due to the varying natural frequency, which causes the varying vertical wavenumber, and is

necessary to conserve energy [74].

Airy integral matching

As the evanescent wave moves from the topography toward the turning depth, the WKB

assumptions are violated near the turning depth because N2 ∼ λz(∂N2/∂ z). This also causes q to

decrease to zero, creating a discontinuity at the turning depth. The Airy function can be used to

patch over the discontinuity [91, 92] if the WKB approximation is extended past where it is valid

[81]. This patch is used to match the vertical velocity of the evanescent wave to the propagating

region. Following Lighthill [91], the vertical wave velocity with the Airy integral is

wAi(x,z, t) = Q0,w Ai(β 1/3z−β
1/3ztd)exp[i(kx−ωt)] (3.29)

where β is defined by β = m2/(ztd− z). The amplitude of Q0,w is found by matching Eq. (3.29)

to Eq. (3.21) at z1,Ai = ztd +0.01(2π/q), or 1% of the average vertical wavelength (λz) above the

turning depth in the evanescent region. A range of percentages from 0.1% to 10% was compared

to understand the effect of the start and end points of the Airy integral. Decreasing the percentage

causes a decrease in the average kinetic energy, but the changes of kinetic energy below 1% were

minimal, both for the medium and steep topographies. This percentage should be altered if there

is a significant increase in the model domain and may be dependent on the vertical resolution of

the model.
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Continuity and wAi, Eq. (3.7) & Eq. (3.29) are used to derive the form of the horizontal

velocity in the Airy integral

uAi(x,z, t) = Q0,u
iβ 1/3

k
Ai′(β 1/3z−β

1/3ztd)exp[i(kx−ωt)] (3.30)

where Ai′ is the first derivative of the Airy function with respect to z.

Above the turning depth, the vertical velocities are set equal such that w1 = wAi at z =

z1,Ai and Q0,w is solved. This procedure is repeated for the horizontal velocity with u1 = uAi at

z = z1,Ai to find Q0,u. While continuity is used to find the form of uAi, using the same amplitude

as wAi defines a horizontal velocity in the Airy region that is inconsistent with the horizontal

velocity in the evanescent and propagating regions. The amplitude Q0,u provides better consistency

throughout the Airy region, but is not used in the propagating region. Instead, the wave amplitude

below the turning depth, A2,0 is calculated by setting wAi = w2 at zAi,2 = ztd− 0.01(2π/m), and

continuity is used to define u2 from w2, as defined in the previous section. It is assumed that both

Q0,w and Q0,u are constant through the Airy integral region as the variation in the natural frequency

is small over the small change in height.

Completed model

We now explore the importance of the terms (−dq/dz)/2q and (−dm/dz)/2im in Eqs.

(3.23) and (3.25), respectively. These higher order terms, which are not usually found in the hori-

zontal velocity, appear because the amplitude of the velocity is a function of depth. When assuming

that the amplitude, natural frequency, and vertical wavenumbers vary slowly, the variation of the

vertical wavenumbers (dq/dz or dm/dz) is relatively small and can be neglected. This assumption

breaks down near the turning depth, due to the rapid variation of q and m in that region, indicating

they should remain in the equations for velocity. However, the use of the Airy integral to con-

nect the evanescent and propagating regions does not include these terms. Figure 3.5 depicts the

two different scenarios for Case 4 with height on the ordinate and kinetic energy on the abscissa.
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The dashed line indicates the location of the turning depth with the evanescent region above the

turning depth and the propagating region below. The horizontal dash-dot line below the turning

depth marks the height corresponding to a 10% increase in N relative to the excitation frequency

of 0.95 s−1. Kinetic energy with the higher order terms included is indicated by the solid line,

while the dotted line represents kinetic energy when these terms are neglected. For both scenar-

ios, kinetic energy begins at a maximum at the top of the figure and then decreases as the wave

moves through the evanescent region. An increase in energy is seen near the turning depth, with a

larger increase when the higher order terms are included. Below the turning depth, both scenarios

decrease in kinetic energy through the propagating region. Away from the turning depth, the ki-

netic energy collapses to a single line. Each of the 24 experimental cases were compared with and

without the higher order terms and the average error from the region between the end of the Airy

integral and a 10% increase in N is 20%. However, the majority of this error is due to the sharp

increase that comes from the sharp increase in amplitude at the end of the Airy integral. Neglecting

this increase and again comparing the kinetic energy, the average error is 13%. We will ignore the

higher order terms in this work, but it may be necessary to retain them in future work if more rapid

changes in natural frequency are of interest.

3.5 Results

First, the normalized kinetic energy, KE∗, over the height of the experiment is analyzed.

Figure 3.6 shows both the experimentally calculated and theoretically predicted KE∗ over height

for four cases. The ordinate is height in meters where z = 0 is at the bottom of the tank. The

abscissa is KE∗, or KE/KEnorm where KEnorm is the average of the kinetic energy of the three

pixel locations below the topography height, z = ztotal−H. Because the presence of the topogra-

phy generated spurious values near the topography in the experimental data, only data below the

topography was analyzed. To maintain consistency between the model and the experimental anal-

ysis, the kinetic energy at the same three height locations were averaged to calculate KEnorm in the

theoretical model as well. However, the model was averaged over only one period and one hori-
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Figure 3.5: The kinetic energy as a function of height is shown for the scenarios of including or
excluding dq/dz and dm/dz when calculating the horizontal velocity. The turning depth is shown
by the dashed horizontal line and the dash-dot line indicates the height of a 10% increase in N from
the turning depth.

zontal wavelength because of its periodic nature. All experimental tests were run for three minutes

which provided between 21 and 35 periods for the different test cases. At least two horizontal

wavelengths were captured in the field of view in the experiments for the medium topography and

at least five for the steep. Figures 3.6(a) and 3.6(b) compare the model and experimental KE∗

values for Cases 1 and 8 respectively, where the medium topography was explored. Figures 3.6(c)

and 3.6(d) are Cases 18 and 20, steep topography test cases. In all graphs, the solid line represents

experimental data while the dotted line represents model results. The horizontal dashed line shows

the location of the turning depth (ztd), which is determined by N(ztd) = ωf. Although the ordinate

is the same across all four plots, the abscissa varies for each. Starting in the upper right hand

corner of each plot (near the topography), normalized kinetic energy is at a maximum; as height

decreases and N increases, the normalized kinetic energy decreases exponentially as the evanescent

wave travels downward and decays. At the turning depth there is a slight increase in energy due to

the decrease in q as N approaches ωf, which causes an increase in the amplitudes of u and v [See

Eqs. (3.21) and (3.22)]. The Airy integral is used to connect the two evanescent and propagating
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Figure 3.6: Normalized kinetic energy is shown as a function of height for two cases. The solid
lines are experimentally calculated KE∗ while the dotted represent model results. Data from (a) and
(b) come from Cases 1 and 8 which used the medium topography, while (c) and (d) are Cases 18
and 20 and used the steep topography. The turning depth location, ztd is marked with a dashed line.
The black x markers indicate the distance over which kinetic energy is averaged in the propagating
region.

region. Below this, a propagating internal wave exists with relatively constant normalized kinetic

energy. Within Fig. 3.6, there are variations in the vertical structure of the experimental energy,

the model generally overestimates the kinetic energy for the medium topography, and the model

significantly underestimates kinetic energy of the steep topography. Each of these results will be

explored in the following paragraphs.

Differences in the vertical structure of KE∗ between the model and the experiments may

be partially explained by the density profile. In Fig. 3.2, although the curve fit used in the model

follows the density measurements well, with R2 = 0.997, there are some local variations in the

density profile within the experimental tank that do not match exactly with the curve fit. Density

values vary both slightly above and slightly below the curve fit. These local fluctuations can lead

to variations in the experimental energy profile that is not reflected in the model. Also, because

each of the four cases shown here have different density profiles and experimental setups, they all
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have different structures so an averaging scheme is introduced below. The experimental energy for

Fig. 3.6(a) and (b) show an added decay in kinetic energy far from the turning depth. This decay is

possibly due to reflected wave beams destructively interfering with the main propagating wave as

it nears the bottom of the tank. For all cases, this interference was not seen near the turning depth.

Because of this, the kinetic energy in the propagating region was averaged over a region below the

turning depth by

KE2 =
1

∆zFr2

∫
KE dz (3.31)

where ∆zFr2 is the height from the end of the Airy integral (z2,Ai) to the height where the average

Froude number in the propagating region is 0.952. This corresponds to a 10% increase in N from

the turning depth into the propagating region. This relatively short distance is considered here

to focus directly on kinetic energy transferred through the turning depth and into the propagating

region. Starting and ending locations of ∆zFr2 are demarcated in Fig. 3.6 with black x’s for each

case. This average kinetic energy is also normalized giving KE∗2 = KE2/KEnorm.

For the medium topography in Figs. 3.6(a) and 3.6(b), the average, normalized kinetic

energy of the experiment is KE∗2 = 0.048 and KE∗2 = 0.335, respectively. This means that approx-

imately 5% and 34% of the kinetic energy near the topography is transferred into the propagating

region. The model predicts percentage of kinetic energy transfer for these two cases to be 9%

and 48%. This overestimate is most likely due to non-linearities, such as viscosity, within the

experiment that are not accounted for in the model.

In the steep topography cases shown in Fig. 3.6(c) and Fig. 3.6(d), the experiment and

model follow the same qualitative trends, however the model underestimates KE∗ throughout the

majority of both the evanescent region and propagating region. For Fig. 3.6(c), the model pre-

dicts KE∗2 = .00028 while the experiment indicates KE∗2 = 0.049. Similarly for Fig. 3.6(d),

KE∗2 = 0.00026 for the model and KE∗2 = 0.033 for the experiment. We explain this difference

by noting the movement of the steep topography creates turbulence near the topography and turbu-

lence generated internal waves are seen within the experiments. These turbulence generated waves

have a variety of wavelengths, but also show signs of resonant triad behavior in some cases. Near
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the turning depth, an exchange of energy was seen between the turbulence generated waves and

the topographically generated waves. For example, in Cases 15 and 16 the turbulence generated

waves had a frequency of approximately half of the forcing frequency, and as the topographically

generated evanescent wave passed into the propagating region, the turbulence waves lost energy

while the newly formed internal waves increased in energy. Similar to Fig. 3.4, Fig. 3.7 shows

the Fourier amplitudes of ∆Ñ2 (scaled by a factor of 103) in the evanescent (a) and propagating (b)

regions of Case 15. The scales for both (a) and (b) are the same, but here the frequency is normal-

ized by the forcing frequency, ωf, and the horizontal wavenumber is normalized by kd from Table

3.1. In Fig. 3.7(a), there are peaks at k∗ = 0.15 and 0.95, with ω∗f = 0.5. These peaks are no longer

clear in Fig. 3.7(b), but these two waves approximately sum to 1 in both frequency and wavenum-

ber, forming a triad with the expected frequency and wavenumber, and could be feeding into the

peak seen at (1,1) in Fig. 3.7(b). Because the linear theory model does not take into account the

generation or interaction of turbulence generated waves, there are steep topography cases where

the model underestimates KE∗. Further investigation into the combined effect of turning depths

and resonant triads could provide new information into the influence of turbulence generated waves

in the ocean, but is beyond the scope of this work.

To understand the effects of topography placement relative to the turning depth (see D in

Fig. 3.3(a)) on propagating internal wave energy, Fig. 3.8 shows KE∗2 as a function of H/D for all

24 cases. Circles represent the medium topography and triangles represent the steep topography.

Filled in markers are values from experiments and open markers are calculated using the linear

theory model. Normalized average kinetic energy is shown on the ordinate with a logarithmic

scale, and H/D is the abscissa with a linear scale. Four trend lines have been added to the data,

one for each of the four symbols. In all cases, the data show that increasing H/D, which decreases

the relative distance from the topography to the turning depth, leads to an increase in kinetic energy

in the propagating region. Since the evanescent wave decays over a shorter distance for high values

of H/D, more kinetic energy is present at the turning depth and is subsequently transferred to the

propagating region.
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Figure 3.7: Contours of ∆Ñ2 for Case 15 as a function of ω∗ and k∗ in the evanescent (a) and
propagating (b) regions. ∆Ñ2 values have been scaled by a factor of 103.

For the medium topography, the model trend line is similar to the experimental trend line.

Each fit is defined by

KE∗2 = exp[C1(H/D)C2] (3.32)

The experimental values of C1 and C2 are -1.68 and -1.89 with R2 = 0.86, while the model values

are -1.42 and -1.40 with R2 = 0.98. Here R2 refers to the goodness of fit between the trend line

and the data points, with R2 = 1 indicating a perfect fit. For H/D < 0.72, both the model and the

experiment trend lines show KE∗2 < 0.1 and further decreases in H/D leads to a large decrease in

kinetic energy transmitted into the propagating region. For H/D > 0.72, the model over estimates

the normalized kinetic energy of the experiment. At H/D = 2.2, the experiment trend indicates

that 43.5% of the initial energy from the evanescent region will pass into the propagating region,

while the model predicts 62.5%. When H/D > 0.72, the experiment and model values match well,

with the model indicating, on average, 11.9% more energy passing into the propagating region.

For the steep topography, the model generally underestimates the experimental values.

Equation (3.32) was also used to fit trend lines to the data with C1 = −5.04, C2 = −0.42 and
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Figure 3.8: The average, normalized, kinetic energy in the propagating region as a function of H/D
for both the medium and steep topographies with experimental and model values. Red circles
represent the medium topography, with closed filled circles representing experimental data and
open for the model. Steep topography data is represented with black triangles, again with the filled
triangles representing experimental data and open for the model. The inset contains five steep
topography model points with normalized kinetic energy values less than 10−5.

R2 = 0.53 for the experimental data and C1 = −5.13, C2 = −1.30 and R2 = 0.99 for the model

data. As mentioned previously, some of the tests showed an interaction between the turbulence

generated waves and the internal waves in the propagating region. The large difference in experi-

mental and model values occurs for low values of H/D and for KE∗2 < 0.001. It is possible that the

turbulence generated waves contribute a relatively constant amount of energy to the internal wave

field, and at lower values of H/D this is more significant because less topographically generated

energy is present. Also, one of the requirements for using linear theory is that the utop/(ωfW )< 1,

meaning that the excursion length must be less than the length scale of the topography [75]. While
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Figure 3.9: KE∗2 is shown as a function of Fr1. The symbols and lines follow the same legend as
shown in Fig. 3.8.

the medium topography always met this criteria with values of O(10−2) the steep topography had

values of O(10−1).

Figure 3.8 also indicates that for H/D > 0.25, the medium topography has a higher relative

kinetic energy in the propagating region than the steep topography. Linear theory shows that

without a turning depth present, a steep, narrow topography generates internal waves with higher

kinetic energy than shallower, wide topography [3]; however, the presence of a turning depth

introduces new dynamics. The medium topography, which has a larger wavelength, generates more

kinetic energy in the propagating region than the steep topography, which has a smaller wavelength.

This phenomena was seen by Paoletti et al. in their experiments and numerical models [18]. They

also used a medium and steep topography with the same W/H ratios as reported here and found

that in the presence of a turning depth, the medium topography has about an order of magnitude

higher radiated internal wave power. We also see this trend for normalized kinetic energy for

H/D > 0.25.

An approximation of the strength of the evanescent region can be represented by Fr1 [Eq.

(3.4)]. As Fr1 increases, the strength or size of the evanescent region also increases. The averaged,
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normalized kinetic energy in the propagating region as a function of Fr1 is shown in Fig. 3.9. For

both the medium and the steep topographies, increasing Fr1 decreases KE∗2 and at Fr1 > 1.2, KE∗2

decreases rapidly. A higher value of Fr1 is indicative of a high ω f or low N and thus a relatively

weak wave as the fluid cannot sustain the motion of the evanescent wave [See Eqs. (3.20)-(3.23)].

Fr1 has less of an influence on normalized, propagating kinetic energy for the steep topography

in the experiments than is seen for the medium topography. The greatest discrepancy between

the model and the experiments for the steep topography occurs when Fr1 > 1.3 and KE∗2 < 10−3.

This discrepancy for the steep topography is likely due to the non-linear effects seen in the steep

topography experimental data that are not accounted for in the model.

The curve fits follow Eq. (3.32), replacing H/D with Fr1. The medium topography ex-

perimental curve fit to the data (C1 = −0.90, C2 = 6.29, R2 = 0.37) follows the general trends of

the model curve fit (C1 = −0.35, C2 = 12.72, R2 = 0.94), but with greater kinetic energy when

Fr1 > 1.16. The curve fits for the steep topography experiment (C1 =−1.76, C2 = 2.68, R2 = 0.36)

and model (C1 = −0.49, C2 = 9.85, R2 = 0.90) show significant differences, but the model line

follows the trend of the medium topography curves, especially for the experimental values. While

not all of the cases are shown in Fig. 3.9, each curve was fit to the entire applicable set of data.

For high Fr1, the steep topography maintains more kinetic energy in the propagating region than

the medium topography. This will be explored further with the model in the following paragraphs.

The medium and steep topography trend lines for the model predict a maximum KE∗2 of 0.30,

meaning 30% of the original kinetic energy is retained in the propagating region. However, the ex-

periment trend line for the medium topography indicates almost 20%, while the steep topography

experiments are just over 10%.

With the experimental and model relation established, we now exercise the model further

to explore a more direct relationship between the different dimensionless variables. Figure 3.10

shows KE∗2 as a function of both H/D (shown with different line markers) and Fr1 (abscissa). Here

three different values of H/D are chosen for each topography and Fr1 is varied by changing the

height of the evanescent region and the height of the topography while other variables (ωf, W/H,
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Figure 3.10: KE∗2 as a function of H/D and Fr1 for the analytical model. The solid red line
indicates the medium topography, while the dashed black line is the steep topography. Markers for
H/D as shown.

and N profiles) are held constant. As seen in the previous figures, increasing H/D and decreasing

Fr1 leads to an increase in relative kinetic energy. For the medium topography at Fr1 = 1.11,

the average kinetic energy transmitted into the propagating region increases from 6% to 78% by

increasing H/D = 1 to H/D = 3. This increase is larger for the steep topography under the same

condition and KE∗2 increases from less than 0.001% to 8%. The model also shows that with a high

H/D for the steep topography and low H/D for the medium topography, the steep topography can

transmit greater kinetic energy to the propagating region than the medium topography for the same

Fr1. This was seen in Fig. 3.8 where some cases of the steep topography had higher kinetic energy

than the medium topography, but only when the steep topography has a higher H/D value.

Figure 3.11 depicts scenarios for varying topographic slope and stratification profiles. In

Fig. 3.11(a), KE∗2 increases with increasing W/H, which represents the relative slope of the to-

pography. The width of the topography was varied while maintaining a constant height of 10 cm,

which also varied the horizontal wavelength according to Eq. (3.18). The Gaussian parameter

B [Eq. (3.3)] was varied based on W . Parameters for the density profile were held constant and

follow Case 4 from Table 3.1. The excursion length and excitation frequency were also maintained
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as values from Case 4. With W/H = 10, almost 80% of the kinetic energy from the evanescent

region is transmitted into the propagating region. For Case 4, with W/H = 1.8, marked on Fig.

3.11(a) as a red circle, only 2.5% of the initial kinetic energy passes into the propagating region.

As shown previously, in the presence of a turning depth, topography with steep slopes generate

internal waves with less kinetic energy in the propagating region for a given H/D or Fr. Also W ,

the width of the topography, indicates an increase in the wavelength of the topography. A topog-

raphy with a larger wavelength will generate evanescent waves with higher kinetic energy which

will then pass into the propagating region.

In Fig. 3.11(b) and 3.11(c), the influence of the exponential stratification is explored. With

a density profile of ρ = aexp(bz)+ c, the stratification is defined as N2 = −gabexp(bz)/ρ0. For

both Fig. 3.11(b) and 3.11(c), H/D, ωf, W/H, L, and Fr1 are held constant and match Case 4.

The topography height varies to maintain H/D, and width is defined by W = 1.8H, maintaining

the same W/H ratio as the medium topography. In Fig. 3.11(b), a is normalized by the refer-

ence density ρ0. Increasing a/ρ0 from 0.092 to 0.149 causes a 95% decrease in the normalized,

average kinetic energy in the propagating region. Although a weaker stratification leads to ini-

tially more energetic evanescent waves, the stratification also increases more rapidly throughout

the evanescent region with a larger value of a, causing an overall decrease in the kinetic energy

in the propagating region. However, as shown in Fig. 3.11(c), increasing bH causes an overall

increase in the kinetic energy in the propagating region. Here, b is normalized by H, the height of

the topography. Increasing bH causes an initially weaker stratification but a larger b, meaning a

value that is less negative, causes the stratification to increase at a slower rate. Thus the evanescent

wave does not decay as rapidly and more kinetic energy passes through the evanescent region into

the turning depth. Although bH changes by less than one order of magnitude, KE∗ increases by

three orders of magnitude.
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Figure 3.11: KE∗2 is shown as a function of W/H, a/ρ0, and bH, showing the effects of topographic
shape (a) and an exponential density profile in (b) and (c). In (a), the square and circle indicate
W/H = 0.45 and 1.8, or the steep and medium topographies, respectively.

3.6 Ocean case study

We now use the linear model to investigate the propagating internal wave kinetic energy

generated by an oceanic feature. To use the linear model we estimate the shape of the topography,

the natural frequency profile, and the velocity of the tide and assume a frame of reference where

the topography moves through quiescent water. Feature data comes from the Ocean Data View 4

using a GEBCO 2014 6’ worldwide bathymetry map [101]. The feature is at 15◦ N, ranges from

129.6◦ to 130.2◦ E, and can be approximated as a Gaussian topography as seen in Fig. 3.12. In the

figure, the data from the GEBCO bathymetry map is shaded and the Gaussian curve fit laid over

the feature of interest with a dashed line. For use in the linear theory model, the Gaussian curve fit

is centered at zero. The equation for the fit is given by

ztop,ocean = 5868−831.3exp
(
−x2

109702

)
(3.33)
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with−20000 < x < 20000 m and the base of the feature at a depth of 5868 m. In order to apply the

feature to the model, it is assumed that the feature is two dimensional. We assume a tidal velocity

of 4 cm/s for the M2 semidiurnal tide based on the work by Poulain and Centurioni [102], who also

indicate that in the Philippine Sea the M2 tide oscillates zonally, or left to right over the topography

shown in Fig. 3.12.

Using data from the World Ocean Circulation Experiment (WOCE) for cruise P08N located

at 129.99◦ E, 15.01◦ N, the natural frequency profile was calculated. This location is the closest

data near the chosen oceanic topography [50]. We followed the method of King et al. [19] to

smooth and average the CTD data. Temperature and salinity data is averaged over a set depth or

bin size and then the natural frequency is calculated with the Gibbs Sea Water TEOS-10 Matlab

tool box [103]. King et al. recommend a bin size of between 100 and 200 m and we chose 200 m

for this data set because it provided a smooth curve while retaining the major characteristics of

the profile. The natural frequency profile indicates a turning depth at a height of 4367 m, which

is above the topography. However, the profile does not extend down to the bottom of the oceanic

feature. A curve fit was applied to the smoothed data to extend the profile to the bottom of the

topography. The curve fit is given by

ln(N2) = a1 exp

[
−(z−b1)

c1

2
]
+a2 exp

[
−(z−b2)

c2

2
]

(3.34)

where a1 =−15.14, b1 = 4831, c1 = 6553, a2 =−5.788×1012, b2 = 3.658×104, and c2 = 5993

and ln refers to the natural logarithm. The natural frequency profile is plotted in Fig. 3.13(a). To

maintain consistency between this figure and those given previously, the evanescent region is at

the top of the figure with the propagating region beginning at 4367 m.

Based on the oceanic feature and natural frequency profile, we use the analytical model

to calculate a kinetic energy profile shown in Fig. 3.13(b). Kinetic energy is again normalized

by the evanescent wave energy at the tip of the topography to be consistent with the previous

results. Starting at the top left corner, KE∗ decreases rapidly through the evanescent region until
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Figure 3.12: Data from the GEBCO worldwide bathymetry map is indicated by the shaded portion,
with a Gaussian curve fit through topographical feature analyzed in this work.

it reaches the turning depth. The Airy integral provides the needed patch into the propagating

region, where the kinetic energy of the internal wave at first decreases and then increases. In the

experimental cases, shown previously, this increase was not seen due to the limited depths of the

propagating region. Kinetic energy increases due to increasing N which causes an increase in m

as well. Although the velocity amplitudes are inversely proportional to m1/2, kinetic energy is

proportional to A2 and m2, leading to an overall increase in energy. However, the energy flux,

cgz{E}=−ρ0A2mω/(2k2), is constant throughout the propagating region [74].

The Airy integral in Fig. 3.13(b) uses a smaller percentage of the vertical wavelength than

the experiments. Testing the model with the experiments indicated that using 1% of the vertical

wavelength to start and end the Airy integral minimized the effects of the matching condition (See

Section 3.4.2). For this oceanic scenario, this percentage is reduced to 0.001%. Increasing or

decreasing this value led to an increase in the overall kinetic energy in the propagating region. The

minimum value was chosen to prevent an overestimate of the kinetic energy.

The average, normalized kinetic energy from the end of the Airy region to Fr2 = 0.952 at

a depth of 4587 m is KE∗2 = 0.57. The minimum KE∗ in the propagating region occurs near the
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Figure 3.13: WOCE data is used to calculate N2 indicated by the red dashed line in (a), while the
black line is the curve fit of the data used for the model analysis. The normalized kinetic energy
calculated from the model is shown in (b) as a function of depth.

turning depth at a depth of 4466 m with a value of 0.25. This 25% transmission could be taken

as the energy that is able to pass through the turning depth and into the propagating region, and

is a nontrivial portion of the original kinetic energy of the evanescent wave. While this model is

a linear approximation of a non-linear event, it does indicate that internal waves generated from

evanescent waves passing through the turning depth can still maintain a significant portion of

the original kinetic energy formed from M2 tidal oscillations across oceanic bathymetry within

evanescent regions.

3.7 Conclusion

Past investigations of the influence of evanescent regions on internal waves have focused on

an internal wave approaching an evanescent region and the subsequent reflection and/or transmis-

sion of internal wave energy at the turning depth. Here, we studied the scenario where evanescent
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waves approach a turning depth and become propagating internal waves. We expanded upon the

work of Paoletti et al [18] by creating an analytical model which predicts the kinetic energy of

internal waves generated from an evanescent region. The model is then compared to experiments

and the effects of topographical shape, stratification profile (Fr1), and the relative distance between

the topography and the propagating region (H/D) on internal wave kinetic energy were explored.

Similar to Paoletti et al [18], we found that the medium Gaussian topography, with a more

gentle slope, has a higher kinetic energy in the propagating region than the steep Gaussian topogra-

phy. For high H/D and low Fr1, the medium topography theory showed that the evanescent waves

transmit up to 62.5% of the kinetic energy at the topography surface into internal waves in the

propagating region, while the experiments indicated a maximum of 43.5% (See Fig. 3.8). While

not an exact match, the model predicts similar values to the experiment. However, the model does

not match well with the steep topography as it approaches the limit of criticality. The experiments

for the steep topography indicate the maximum kinetic energy in the propagating region is near

10% of the original kinetic energy at the tip of the topography, while the model indicates closer to

20% (See Fig. 3.9. As seen in Fig. 3.11, decreasing the slope, indicated by an increasing W/H, in-

creases the percentage of energy transmitted into the propagating region. Also, Fig. 3.10 indicates

that only with larger values of H/D does steep topography generate internal waves with higher

kinetic energy than medium topography.

The experiments and model also indicate the importance of the stratification in estimating

internal wave kinetic energy. Increasing Fr1, indicating a large, or strong, evanescent region,

causes a decrease in propagating region kinetic energy. For the exponential density profile, the

model indicates that low values of a/ρ and high values of bH increase KE∗2 due to a slow increase

in the natural frequency in the evanescent region, causing a slower decay of the evanescent waves

and more kinetic energy transferred into the propagating region.

To show a potential use of this analytical model, an oceanic case study was also explored

and results show the average kinetic energy that passed from the evanescent region, through the

turning depth and into the propagating region had 25% of the original kinetic energy of the evanes-
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cent wave. While this is only one case, it indicates that evanescent waves that become internal

waves could transfer significant energy from tidal motions away from the topography and into the

general ocean.

Future work with this model could include applying it to more oceanic topographies which

are situated in evanescent regions (relative to the M2 tidal frequency) to provide an overall estimate

of the kinetic energy of internal waves generated from tidal motions across topography. Also, con-

tinued investigations into the turbulence generated waves could provide insight in how to improve

the model, possibly by including viscosity. As both topography shape and stratification profile im-

pact the overall kinetic energy, this work could also be expanded upon by exploring more complex

topographies and other realistic stratification profiles.
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CHAPTER 4. EVANESCENT TO PROPAGATING INTERNAL WAVES IN SIMULA-
TIONS, EXPERIMENTS, AND LINEAR THEORY

This chapter was submitted to the journal Experiments in Fluids.

4.1 Contributing authors and affiliations

Allison Lee, Kyle Hakes, Julie Crockett, Department of Mechanical Engineering, Brigham

Young University, Provo, UT 84602

Yuxuan Liu, Michael R. Allshouse, Mechanical and Industrial Engineering, Northeastern

University, Boston, Massachusetts 02115

All simulations were performed at Northeastern University through the Texas Advanced

Computing Center.

4.2 Abstract

Internal waves can be generated by evanescent waves which pass through a turning depth.

The kinetic energy density of these waves is investigated with experiments, numerical simulations,

and linear theory using a Gaussian shaped topography placed in an exponential density profile. Ki-

netic energy density is estimated in two manners: directly calculating kinetic energy from velocity

and indirectly by relating variations in the natural frequency to kinetic energy. All methods show

similar trends in the percentage of energy retained by the internal waves as a function of Fr1D/H.

A correlation between linear theory and numerical simulations is presented, along with guidelines

for when each of the discussed methods is most accurate.
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4.3 Introduction

Internal waves play an important role in both the ocean and atmosphere as they transfer

energy and effect mixing in both mediums [3, 8, 11]. However, observing internal waves in the

ocean or atmosphere is complex due to their lack of visibility: they only exist as small variations

in density within a fluid, which are generally imperceptible to the eye. Field observations must

rely on direct readings of density whereas experimental methods can use optical techniques such

as synthetic schlieren (SS), which uses the variation in the index of refraction of different salinity

water, or particle image velocimetry. However, experiments must be confined, and even these tech-

niques have disadvantages. Mathematical analysis is another option, but significant assumptions

must be made to solve spatially varying, three-dimensional, velocity, pressure, and density fields

through time. Numerical methods may be used to provide traction to the problem, but issues of

resolution are regularly present. A discussion of the state of these methodologies, SS, theory, and

numerical methods, with specific examples relating to internal waves in nonuniform stratifications

(which will be explored here) follows.

A common experimental methodology for studying internal waves over the past few decades

has been synthetic schlieren. This represents a variation on schlieren imaging where the index of

refraction associated with water salinity is used to evaluate the apparent motion of a mask consist-

ing of a series of dark lines or dots placed behind a tank filled with varying salinity water. A com-

parison between the mask with no disturbance of the stratified liquid and the perceived displace-

ment of the mask during wave propagation can be related to the density perturbation [58,104,105].

The density perturbation defines the natural or buoyancy frequency, N, through

N2 =
−g
ρ0

dρ

dz
(4.1)

where g is the gravitational constant, ρ0 is a reference density, and z is the vertical coordinate.

An estimate of the variation in N is often accomplished experimentally and the ∆N2 field, which

is directly related to the apparent displacement of the mask, is displayed to show general wave
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propagation dynamics including flow field amplitudes and spectra. This methodology has been

used to explore internal wave dynamics ranging from simple wave generation by an oscillating

cylinder [86, 104] or two dimensional topography [28, 34] to more complex wave fields expected

from wave generation by three dimensional objects [106] or wave-wave interactions [46]. SS has

even been extended to three-dimensions [107–109] and microscale applications [110]. It can be

used with varying N profiles as well [20, 100]. Most of these prior works display the general

dynamics of the flow field, including wave amplitude, wavenumber, and frequency in conjunction

with a visual image of the propagating wave. Recently, however, it was shown that the ∆N2 field

could also be manipulated mathematically to estimate kinetic energy density [20, 100] as well as

energy flux and the pressure field [99, 111].

Theoretical methods to analyze internal wave generation and propagation must use a vari-

ety of assumptions if an exact solution is to be found. These assumptions may include that the flow

is inviscid, that waves have small amplitudes, or that wave amplitude, wavenumber, frequency,

and N slowly vary over wavelengths. Frequently, the Boussinesq approximation, indicating the

variation in density is small relative to the background density [4], is valid for oceanic internal

wave investigations. Many or all of these may be used to more quickly analyze wave propagation.

Ray theory represents one of the simplest mathematical methods, which results in tracing the path

of wave energy. It has been used throughout the ocean and atmosphere for waves propagating

through varying velocity and N profiles with great success [69–73]. Other analytical methods have

been used for a plethora of internal wave dynamics analysis: linear theory of wave generation

over weak two-dimensional topography [75]; Green’s function methods for wave generation by a

moving point mass source [76]; small-amplitude, inviscid flow analysis in the Boussinesq approx-

imation for wave propagation through a sharp N profile [77]; linear theory for a two-dimensional

plane wave at an N interface [78]; linear theory for two dimensional, small amplitude wave beam

transmission and reflection [79]; linear theory with the Boussinesq and small amplitude approxi-

mations with Airy function matching for evanescent waves travelling through a turning depth due

to varying stratification [100]; to name a few. Although significant assumptions must be made for
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these exact solutions, each result has contributed to our understanding of internal wave generation

and propagation in variable stratifications and flow situations.

Using numerical methods, the full equations of wave motion in two or three dimensions

can be solved. Nonlinearities can be included and assumptions regarding the scales of the waves

and changing parameters are no longer necessary. Although considerable effort has been made

to model internal waves in a variety of applications [11], we will focus on prior work involving

two-dimensional solutions in varying stratification conditions. Gravity wave packets, as opposed

to beams, can transmit energy through an evanescent level through the wave-induced mean flow

[66]. Effects of finite amplitude on internal wave propagation in an abruptly changing N profile

is explored numerically in the Boussinesq approximation [67]. An extreme change in N occurs in

the ocean at the pycnocline where the generation of harmonics from incident internal wave beams

was shown to be a strong function of pycnocline thickness using fully nonlinear direct numerical

simulations [68]. Turning depths in exponential N stratified Boussinesq flows have been analyzed

numerically and showed relatively good agreement with nonlinear theory [64]. Paoletti et al. [18]

used 2-D numerical simulations in the Boussinesq approximation to study wave generation by tidal

flow over primarily Gaussian topographies in exponential N profiles. In these types of numerical

simulations, the kinetic energy density can be estimated directly from the velocity field or using the

∆N2 field, similar to how it must be estimated when analyzing SS data. Thus a direct comparison

between the two methods can be made.

Here we present the effect of the difference in methodology on the kinetic energy density

approximation using a direct calculation or the ∆N2 field. In SS, only the ∆N2 field can be used.

For analytical solutions, however, kinetic energy may be calculated directly from the velocity field.

With numerical simulations both methods of estimating kinetic energy can be assessed and each are

used to explore both large amplitude (to compare with experiments) and small amplitude (to verify

large) topographic disturbances. Differences between the capabilities of the testing methods and

kinetic energy calculation methods are discussed for lab based wave generation and propagation.

Specifically, an exponential N profile is used such that generated waves will be evanescent and then
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undergo a transition (at the turning depth) to propagating waves as N increases, similar to what is

seen in deep ocean regions [19]. Recent works have shown that these resultant propagating waves

contribute to the overall global energy balance within the ocean [18, 100].

This investigation provides significant insight into the strengths and weaknesses of the dif-

ferent methods, with a specific emphasis on the kinetic energy density in the propagating region.

Mathematically, the region of the turning depth must be estimated using an Airy function ap-

proximation and these are found to hold quite well. In the SS experiments, the region where the

approximation of kinetic energy from ∆N2 is valid is clarified and described. Numerical simula-

tions provide a bridge between the methods and show good agreement with both. In Sec. 4.4 all

three methodologies are described in detail. Results are presented in Sec. 4.5, a discussion of the

efficacy of each method is given in 4.6, and conclusions of the work are discussed in Sec. 4.7.

4.4 Methodology

This section begins with the parameters that were constant for each method and then details

the three different processes used to investigate the kinetic energy of internal waves generated from

an evanescent region. Figure 4.1 provides an example of the natural frequency profile (a) and the

domain for the experiments and linear theory (b). In Fig. 4.1(b), evanescent and propagating

regions are labeled as N < ω and N > ω , respectively. The excursion length (L), height of the

topography (H), and distance between the topography and the turning depth (D) are indicated.

The grey dashed box shows the approximate location of the camera window, while the beginning

and end of the Airy region (z1,Ai, zAi,2) (See Sec. 4.4.1) is shown with white dashed lines. The

simulations were performed with a flipped domain (topography at the bottom of the domain), but

will be discussed throughout this work in the same orientation shown in Fig. 4.1(b).

A Gaussian topography was used and is given by the profile

h = H exp(−x2/B2) (4.2)

B2 = W 2/18 (4.3)
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Figure 4.1: An example of the natural frequency profile in the tank (a) shown relative to the
experimental setup (b)

where H = 0.10 m is the peak height of the topography. For this topography, W = 0.18 m is the

width of the topography where the height of the topography is 1% of H. For the experiments and

linear theory analysis, the topography oscillated back and forth, while the simulations set a fixed

topography and used tidal oscillations to generate waves.

Density profiles used in the simulations and theory were based off the actual density profiles

from the experiments. A modified version of the double bucket method [93] was used to create

an exponential density profile. After filling the tank, density measurements were taken every 3 cm

and the points were fit to the equation

ρ = aexp(bz)+ c (4.4)

where ρ and z have units of kg/m3 and meters, and a (kg/m3), b (m−1), and c (kg/m3) are co-

efficients calculated from the exponential fit. The goodness of fit parameter, R2, was above 0.99

for all cases. Cases 1 through 4 used the same density profile with coefficients for Eq. (4.4)

were a = 109.1 kg/m3, b = −2.57 m−1, and c = 1016.3 kg/m3, while the coefficients for Case

5 were a = 106.2 kg/m3, b = −2.76 m−1, and c = 1020.1 kg/m3. In all cases, the water height

was 68.0 cm, such that the tip of the topography is at 58.0 cm. The natural frequency profile was
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Table 4.1: A summary of the parameters of each case.

Case kL (m−1) ωf (s−1) ztd (cm) L (cm) D/H Fr1 Fr1D/H

1 25.0 0.80 56.4 5.1 0.13 1.01 0.13
2 25.0 0.89 48.5 5.1 0.95 1.06 1.00
3 24.4 1.01 39.3 5.7 1.87 1.13 2.11
4 24.4 1.10 32.0 5.7 2.60 1.18 3.06
5 24.6 1.21 24.5 5.5 3.35 1.25 4.18

calculated with Eq. (4.1). N is plotted against height in Fig. 4.1(a) with the turning depth (N = ω)

labeled in Fig. 4.1(b).

A complete set of case parameters is given in Table 4.1 where kd is the dominant horizontal

wavenumber, ωf is the topography or tidal forcing frequency, ztd is the location of the turning depth.

The horizontal wavenumber is calculated as kL = 2π/λx where λx is the horizontal wavelength

which, based on the results of Lee and Crockett [100], can be defined as

λx =W +L (4.5)

Also listed in Table 4.1 are three non-dimensional numbers: D/H, Fr1, and Fr1D/H. D is

the distance between the tip of the topography and the turning depth [see Fig. 4.1(b)]. The ratio

D/H indicates the number of topographic heights between the topography and the turning depth,

and provides a measure of the distance evanescent waves will travel and decay before reaching

the propagating region. Fr1 is the average Froude number in the evanescent region and is used

to describe the stratification strength of that region. It is defined as Fr1 = ω/N1, where N1 is the

average natural frequency over the height D. Throughout this work the subscript 1 refers to the

evanescent region. Because ω > N throughout the evanescent region, Fr1 is always greater than

unity. Combining D/H and Fr1 gives a non-dimensional number that provides insight into the

combined effects of topography placement and the influence of the stratification.
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Kinetic energy density is calculated as

KE = Ũ2 +W̃ 2 (4.6)

where U and W are the horizontal and vertical wave velocities, respectively, and the tilde indicates

Fourier amplitudes. Kinetic energy, in this work, is either calculated directly using the amplitudes

of velocity, or it is estimated indirectly by relating ∆N2 to Ũ and W̃ . Further details on the indirect

method are given in Sec. 4.4.2. The indirect method is used in the experimental analysis while the

direct calculation is used in the theory. Both methods are used with the numerical simulations and

compared to the experimental results and theoretical calculations.

4.4.1 Theory

Linear theory is used to calculate the horizontal and vertical velocity of the waves in the

evanescent and propagating regions. Following the work of Lee and Crockett [100], the velocity

can be calculated starting at the topography into the evanescent region, through the discontinuity

of the turning depth with the Airy function, and into the propagating region. Full details for this

method can be found in [100], but the main points are summarized here.

In the evanescent region, the Gaussian topography oscillates in space and time as

ztop(x, t) = H exp
[
−(x−Lsinωt)2

B2

]
(4.7)

with z1,0 = ztop(B,0) as a matching location between the topography and the vertical velocity of

the generated waves. The vertical velocity is defined as

w1(x,z, t) = A1(z)exp[i(kx−ωt)]exp
[
θ1(z)

]
(4.8)
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Taking the time derivative of Eq. (4.7) and matching it to Eq. (4.8) at z1,0 provides the initial

amplitude of the velocity A1,0 such that

A1,0 =
dz/dt

exp[i(kB)]exp[θ1(z0)]
(4.9)

Both the amplitude, A1, and the term θ1 vary with height to account for the varying stratification.

They are defined as

A1(z) = A1,0/(q/q1,0)
1/2 (4.10)

θ1(z) =
∫ z

z1,0

qdz (4.11)

where q2 = k2[1−N(z)2/ω2] is the imaginary vertical wavenumber in the evanescent region, again

with q0 calculated at z1,0. Using the continuity equation

∂u
∂x

+
∂w
∂ z

= 0 (4.12)

the horizontal velocity in the evanescent region is calculated as

u1(x,z, t) =
−w1

ik

[
q− dq/dz

2q

]
(4.13)

where it is assumed that dq/dz is negligible [100]. This assumption fails near the turning depth,

where the assumption of a slowly varying amplitude breaks down. To account for this failing

assumption and the singularity at the turning depth, the Airy function is used.

The Airy region begins at z1,Ai = ztd + 0.01(2π/q), or 1% of the average vertical wave-

length (λz) above the turning depth in the evanescent region. It passes through the turning depth

and ends at zAi,2 = ztd−0.01(2π/m), 1% of average vertical wavelength in the propagating region

83



(See Fig. 4.1). Following Lighthill [91], the equations for velocity in the Airy region are

wAi(x,z, t) = Q0,w Ai(β 1/3z−β
1/3ztd)exp[i(kx−ωt)] (4.14)

uAi(x,z, t) = Q0,u
iβ 1/3

k
Ai′(β 1/3z−β

1/3ztd)exp[i(kx−ωt)] (4.15)

where β = m2/(ztd− z) and Ai′ is the first derivative of the Airy function with respect to z. The

amplitudes Q0,w and Q0,u are found by matching Eq. (4.14) to Eq. (4.8), and Eq. (4.15) to Eq.

(4.13), with each matching condition at z1,Ai. It is assumed that both Q0,w and Q0,u are constant

through the Airy region. The wave amplitude below the turning depth, A2,0 is calculated by setting

wAi equal to the vertical velocity in the propagating region, w2, at zAi,2. This region specifically

will be explored further and compared to the numerical simulations in Sec. 4.5 and 4.6 to quantify

the accuracy of the kinetic energy calculations.

Following the work of Pedlosky [74], the propagating region equations for velocity can be

found by assuming a wave equation for the vertical velocity (w2) and using the continuity equation

(4.12) to define the horizontal velocity (u2). The vertical velocity again includes the terms A2(z)

and θ2(z) to account for the variation in N with height. These are defined as

w2(x,z, t) = A2(z)exp
[
i
(
kx−ωt +θ2(z)

)]
, (4.16)

A2(z) = A2,0/(m/m0)
1/2, (4.17)

θ2(z) =
∫ z

zAi,2

mdz, (4.18)

u2(x,z, t) =
−w2m

k

[
m− dm/dz

2im

]
(4.19)

where the vertical wavenumber m is also a function of height, but dm/dz is assumed negligible

[100].

Because a Gaussian topography is made of a range of wavenumbers, the waves generated

by an oscillating Gaussian topography will also have a range of wavenumbers. Nappo [5] showed

that for internal waves generated by a constant background wind over a Gaussian topography the
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waves with the most energy correspond to

kmax =
√

2/B (4.20)

where B is defined in Eq. (4.3). However, Lee and Crockett [100] found that, for oscillating

topography, the wavenumber associated with the peak energy would include the excursion length,

and B is re-defined to include the excursion length as

B2
L = (W +L)2/18 (4.21)

Nappo [5] also found that the amplitude of the generated wave velocity as a function of

wavenumber could be defined according to the response function

CA(k) = kBL exp[−(kBL/2)2] (4.22)

Thus, the velocity amplitude of a wave generated at any wavenumber for a Gaussian topography

could be defined as

Ak = A1,0
CA

CA,max
(4.23)

where the amplitude of the main wave generated,A1,0, is calculated from Eq. (4.9) and all others

are attenuated by this response function. Note for Eq. (4.22), CA increases from k = 0 until it

reaches a maximum at CA,max(kmax) =
√

2exp(−1/2) [Eq. (4.20)]. For k > 5/BL, CA becomes

negligible [5]. Thus, waves with wavenumbers in the range 0 < kBL < 5 will have the most energy,

while waves outside of this range have negligible energy. This was seen in the results presented

here, however because of the resolution limitations on the experiments, the lower limit of the

wavenumber range must be adjusted. Thus the kinetic energy for all methods will be averaged

over 0.5 < kBL < 5.

With initial velocities defined for a range of wavenumbers, the velocities of the waves in the

evanescent, Airy, and propagating regions are calculated, and then averaged over one horizontal
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wavelength and one period. Kinetic energy is calculated by squaring and summing the amplitudes

of velocity for each wavenumber.

4.4.2 Experimental procedure

Experiments were performed in an acrylic tank with the topography oscillating on a track

situated at the top of the tank. In order to maintain two-dimensional (2D) waves, the tank is 2.45 m

long, 0.91 m tall, and only 0.15 m wide. An exponential density profile was created using two

peristaltic pumps and the density was measured every 3 cm using an Anton Par density meter and

then interpolated to generate a complete density profile for the tank.

In all cases, the topography oscillated for 15 periods before a jAi Cv-M4+Cl progressive

scan camera with a resolution of 1360x1080 pixels was focused on a random dot pattern behind the

tank and recorded three minutes of images at 6 frames per second. A sketch of the experimental

window is outlined by a box with dashed lines in Fig. 4.1(b). Two tests were run for each case,

with time in between the tests to allow the water to again become quiescent. Images were analyzed

using synthetic schlieren [58] and the software Digiflow [94]. This process provides values of

∆N2, or the squared perturbation of the natural frequency. From this data an estimate of kinetic

energy can be made by assuming plane waves with slowly varying amplitudes. Based on the work

of Lee and Crockett [100] and Wunsch and Brandt [20] for the evanescent and propagating regions,

respectively, the Fourier amplitudes of ∆N2 can be used to estimate kinetic energy density in each

region using Eq. (4.6).

For the evanescent region, the equations for velocity and the variation in the natural fre-

quency are

u(x,z, t) =
∫

Ũ exp(qz)exp[i(kx−ωt)]dkdω (4.24)

w(x,z, t) =
∫

W̃ exp(qz)exp[i(kx−ωt)]dkdω (4.25)

∆N2(x,z, t) =
∫

∆Ñ2 exp(qz)exp[i(kx−ωt)]dkdω (4.26)
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where Ũ , W̃ and ∆Ñ2 are Fourier amplitudes from a 2D Fourier transform taken through time and

the horizontal direction (x). The vertical wavenumber m is imaginary in the evanescent region and

q is defined as m = iq. Because the evanescent wave energy travels downward, the negative branch

of q is used in all calculations. Using the continuity equation (4.12) and by defining

∂∆N2

∂ t
=−∂ (N2w)

∂ z
(4.27)

the kinetic energy of the evanescent region can be estimated by combining (4.24) - (4.26) with

(4.27). Rearranging all the terms generates an equation for kinetic energy in terms of ∆Ñ2 such

that

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

. (4.28)

This equation is valued if the temporal and spatial (vertical) derivatives of the amplitudes are

assumed to be negligible. This assumption is known to be accurate away from the turning depth,

but will be further explored near the turning depth in this work.

Similarly, in the propagating region, the velocities and natural frequency are defined as

u(x,z, t) =
∫

Ũ exp [i(kx+mz−ωt)]dkdω, (4.29)

w(x,z, t) =
∫

W̃ exp [i(kx+mz−ωt)]dkdω, (4.30)

∆N2(x,z, t) =
∫

∆Ñ2 exp [i(kx+mz−ωt)]dkdω. (4.31)

Again, using Eq. (4.12) and Eq. (4.27) with Eqs. (4.29)-(4.31) and assuming that the derivatives

of the amplitudes are negligible, the kinetic energy of the propagating region can be estimated as

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

. (4.32)

From these equations, kinetic energy is found at all frequencies and wavenumbers present. To

compare with the theoretically estimated kinetic energy, the kinetic energy of the experiments is
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averaged over the same wavenumber range of 0.5 < kBL < 5. As will be shown in Sec. 4.5, the

peak kinetic energy varies slightly over a small range of frequencies, specifically just above and

just below ωf. Because of this, the kinetic energy is also averaged over those three frequencies.

4.4.3 Numerical simulations

To model the generation of internal waves, we perform direct numerical simulations of the

Navier-Stokes equations in the Boussinesq approximation. These simulations provide the density

perturbation and velocity fields. The density perturbation field is needed to calculate ∆N2 and

subsequently the kinetic energy, which is used to compare to the experiments, while the velocity

fields are used to directly calculate kinetic energy and can be compared to the theoretical energy

calculations. The simulations use the CDP-2.4 algorithm, which is a finite volume solver that

implements a fractional-step time-marching scheme [95, 96]. This code has previously been used

to simulate internal waves and has been validated with experiments [18, 86, 88, 97–99].

The 2D simulations span the domain x ∈ [−400,400] cm and z ∈ [0,150] cm. The simu-

lation solves for the total density ρ , pressure p, and velocity uuuT:

∂uuu
∂ t

+uuuT ·∇uuuT =− 1
ρ0

∇p+ν∇
2uuuT−

gρ

ρ0
ẑzz+ fff tidal, (4.33)

∂ρ

∂ t
+uuuT ·∇ρ = κs∇

2
ρ, (4.34)

∇ ·uuuT = 0, (4.35)

where ρ0 = 1000 kg/m3 (density of water), ν = 10−6 m2/s (kinematic viscosity of water at 20◦C),

and κs = 2×10−9 m2/s (the diffusivity of NaCl in water). The tidal flow is implemented using a

body force on the cells as was performed by [86, 88, 97, 98]. The system is initially at rest and the

density field is unperturbed. The initial density field is analytically derived from Eq. (4.4). The

simulations used a unstructured grid with resolutions that ranged from 0.02 to 10 cm. Boundary

conditions at the bottom and top are no slip and free slip, respectively, where the topography

is positioned at the bottom of the domain. The left and right boundaries are set to be periodic;
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however, Rayleigh damping is used along the perimeter of the domain, thus forcing the velocity

perturbation to be negligible at the left and right boundary. Rayleigh damping is also used at the

top of the domain to minimize any reflections off the top boundary. To investigate the impact of

the excursion length on each case, the simulations were performed with two different excursion

lengths while all remaining parameters were held constant. First, the simulation was run with the

excursion length L10 = L/10, and then again at L (see Tab 4.1). Temporal resolution was 0.002

and 0.004 s for the low and high amplitude simulations, respectively. Convergence studies were

performed to ensure that the energy profiles changed by less than 1% when the spatial and temporal

resolution were varied. A total of 60 periods were simulated with the last 30 periods being at steady

state and used for the Fourier analysis. Simulations using the L/10 amplitude will be referred to as

1/10-amplitude cases throughout the remainder of this work. The smaller excursion length directly

impacts the initial amplitude of evanescent wave velocity. A comparison of the two scenarios,

full and 1/10 amplitude, also provides information about how turbulence affects the kinetic energy

density in the evanescent and propagating waves and will be discussed in Sec. 4.5.

4.5 Results

This section presents physical, spectral, and kinetic energy density results of each of the

four methods and provides comparisons of each. The kinetic energy density is shown both as a

function of height and nondimensional numbers. An estimate of the differences between the direct

and indirect methods is presented to explore where the WKB assumptions are valid away from the

turning depth. Finally, the kinetic energy of the direct simulations is estimated using the theoretical

calculations, and a function relating these variables and Fr1D/H is presented.

4.5.1 Qualitative comparison

First, the results of the experiments and simulations are compared to each other qualita-

tively using ∆N2 and vertical velocity fields for case 1. Figure 4.2 shows snapshots in time for

three of the four methods for case 1. A horizontal green dashed line in each figure represents
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Figure 4.2: Snapshots in time of experimental ∆N2 data (a), full amplitude ∆N2 simulation data
(b,c), full amplitude simulation velocity field (d), 1/10 amplitude ∆N2 simulation data (e), and 1/10
amplitude simulation velocity field (f) for case 1. The topography location is masked in grey
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the location of the turning depth (ztd = 0.56 m) and the topography is at the top of the image. In

Fig 4.2(a), the experimental ∆N2 field is shown. Figures 4.2(b) and 4.2(c) are the full amplitude

simulation ∆N2 field, where (b) is set to the same vertical and horizontal axis as (a). Note that the

all simulation images have been flipped to match the domain of the experiments. However, the

horizontal and vertical distances are much larger than the image of Figs. 4.2(a) and (b), causing

the angles of propagation to look different relative to Fig. 4.2(c)-(f). To provide perspective, a

rectangle indicating the location of the experiment window has been added to (c)-(f). This box

matches the full size of (a) and (b). Figures 4.2(e) and (f) are similar images to Figs.4.2(c) and (d),

but are the results from the 1/10 amplitude simulation.

For case 1, the topography is 2 cm away from the turning depth, resulting in a relatively

small evanescent region and large propagating region. The wave beam begins at the topography

and then moves vertically through the evanescent region and across the turning depth. In the prop-

agating region, the internal wave beam near the turning depth begins with a very steep slope that

gradually decreases as the natural frequency increases. Turbulence generated by the topography is

manifest in Figs. 4.2(a)-(d) where the vertical velocity deviates from the dominant waves. Because

of this turbulence in Fig. 4.2(b), guide lines for the wave beams have been added as green lines.

These guide lines were created for Fig. 4.2(a) first (black lines), and then added to Fig. 4.2(b), and

shifted 7 cm in the x-direction to match the actual location of the beam. From these guide lines, it

is easier to see that the wave angles match well between the experiments and simulations. Wave

beams are clearer in Fig. 4.2(c) away from the topography, and also throughout Fig. 4.2(d) Low

amplitude simulations of 4.2(e) and (f) show only clear beams, without any interference because

the lower amplitude does not induce overturning and turbulence in the evanescent region.

As mentioned in Sec. 4.4, a Gaussian shaped topography will generate waves at a range

of wavelengths and this work focuses on the energy in a specific range of wavelengths and fre-

quencies. Contour plots of ∆Ñ2 are shown in Fig. 4.3 to demonstrate this range, provide a gen-

eral comparison of the experiments and simulations, and illustrate the dynamics of waves moving

through an evanescent region into a propagating region. The abscissa in the nine figures is the
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Figure 4.3: Contour plots of the experiments (a-c), full amplitude simulation (d-f) and 1/10 ampli-
tude simulation (g-i) for case 1. A sketch of the relative height of each scenario is shown on the
left. Each column of figures is at the same location, meaning figures (a), (d), and (g) are at the tip
of the topography
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normalized wavenumber, k∗ = k/kN, with the normalized frequency ω∗ = ω/ωf on the ordinate.

Each figure corresponds to data from case 1 from three different heights for three of the methods:

experiment (a-c), full amplitude simulation (d-f), and low amplitude simulation (g-i). A schematic

of the relative depths for each contour plot is shown at the top of the figure: (a), (d), and (g) are

located at the tip of the topography; (b), (e), and (h) are in the evanescent region halfway between

the topography and the turning depth; (c), (f), and (i) are in the propagating region at the height

corresponding to N/ω = 1.1. Scales for ∆Ñ2 are the same for the experiments and full amplitude

simulation, but are an order of magnitude lower for the 1/10 amplitude simulations. In each figure,

a box is plotted indicating the values of 0.3 < k∗ < 3.7, which is equivalent to 0.5 < kBL < 5 or

the range of wavenumbers over which the kinetic energy is averaged (See Sec. 4.4.1).

For all methods and heights, there is a large peak at ω∗ = 1 in ∆Ñ2, which corresponds to

high wave energy. However, the energy is more spread in wavenumber space with the largest peaks

generally within the plotted box. These peaks are most clearly seen in the experiments and 1/10

amplitude simulation, but the full amplitude simulation has a less pronounced peak at the expected

values. The turbulence and noise seen in Fig. 4.2(b) results in ∆Ñ2 spreading over a larger range

of ω∗ and k∗ for the full amplitude simulation, especially near the topography [Fig. 4.3(d)]. Also,

near the topography in the 1/10 amplitude simulation [Fig. 4.3(g)] it is clear that ∆Ñ2 extends

above kBL = 5 (outside the rectangle), but that energy quickly dies away with depth and is not

present as the wave propagates.

In Fig. 4.3 a harmonic is present in each of the evanescent region figures (columns 1 and

2) at ω∗ = 2, which is consistently a smaller peak than the peaks seen at ω∗ = 1. This harmonic

decays and is generally not visible in the propagating region. Note also that the harmonic of ω∗= 2

is strongest in the low amplitude case and remains throughout the evanescent region, in both Fig.

4.3(g) and (h), but is nearly imperceptible approaching the turning depth and below it. In the

full amplitude simulation, the harmonic decays quickly in the evanescent region and is not clearly

visible in Fig. 4.3(e), but the harmonic wave does remain in the propagating region in (f).
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These results confirm that the kinetic energy is spread over a range of wavenumbers and

also indicates that there is energy within the harmonics of the excitation frequency near the topog-

raphy. However, throughout the remainder of this work, the kinetic energy is averaged only at the

excitation frequency ωf and excludes the energy at the harmonics as these are shown to be unim-

portant in the propagating region. The 1/10 amplitude data is not quite exactly 1/10 smaller than

the experiments and full amplitude simulation data, due to the lack of turbulence, but it is clear it

will still be necessary to individually normalize the data from each of the methods. Additionally,

Fig. 4.3 shows that turbulent fluctuations are more prominent in the numerical simulations than in

the experiments, which is possibly due to the increased resolution of the simulations.

Throughout the remainder of this work, directly calculating kinetic energy from the velocity

fields or indirectly estimating kinetic energy based on the derived relationship between ∆N2 and

velocity, will be referred to as the direct or indirect methods using equations (4.28) and (4.32),

respectively. The experiments exclusively used the indirect method of kinetic energy calculations,

while the theory used only the direct methods, and each will be discussed as such throughout the

work.

4.5.2 Kinetic energy variation with depth

In Fig. 4.4 kinetic energy density (J/kg) is plotted against height for all cases and com-

pares the experiments to the full amplitude simulations with (a)-(e) corresponding to cases 1-5,

respectively. Experimental kinetic energy is indicated by a red line with a diamond marker, the

indirect simulation is a black line, the direct simulation is represented by a black dashed line, and

the turning depth is shown with a horizontal dotted line. In all cases and for all methods, the kinetic

energy starts at a high value near the topography at z = 0.58 cm, and then decreases through the

evanescent region. In the propagating region, the kinetic energy is nearly constant for the simu-

lations once a sufficient distance from the turning depth has been reached. For the experiments

and indirect simulations, there are oscillations in the energy. It has been seen previously that small

variations in the actual density field in the experimental tank can cause oscillations in the kinetic
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Figure 4.4: Kinetic energy of the experiments (red line with diamond marker), indirect simulations
(black line), and direct simulations (black dashed line) are compared for each of the five cases.
Case 1 corresponds to (a), case 2 to (b), etc.

energy calculations [100], which is one cause of the variations in the experiments. Although the

simulations were performed using a smoothed density profile, there are still some oscillations in

the kinetic energy obtained indirectly from the simulations, which could be due to the ∆N2 cal-

culation. A second order method was used to find gradients of dρ ′/dz in the simulations. These

values are then directly related to ∆N2. The oscillations would potentially decrease if higher order

methods for calculating ∇ρ ′ were implemented. In addition, the oscillations are more significant

in the evanescent region, which could be due to wave overturning and turbulence in the region,

especially near the topography. Overturning has a detrimental affect on the density perturbation

field, and thus would present as errors of the data for the indirect analysis of the simulations and

for the synthetic schlieren experiments, but would not be present in the propagating region. How-

ever, these small variations in kinetic energy do not greatly affect the average kinetic energy of the

indirect simulations in the propagating region in this work and were thus not explored further.
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Comparing each of the cases, it is most noticeable that the experimental energy is gen-

erally greater than that of the simulations throughout the depth. This will be addressed through

normalizing. Also, the kinetic energy in the propagating region is the smallest for case 5, Fig.

4.4(e), which has the highest value of Fr1D/H, meaning that the turning depth is far from the

topography with a relatively weak stratification. In addition, the two methods for analyzing the

simulations match each other best far from the evanescent region. In the evanescent region, the

two methods have similar values and are the same order of magnitude, but there are fluctuations

in the indirect method throughout the region preventing the methods from matching well. There is

also an increase in kinetic energy density in the indirect and experimental methods near the turning

depth. Near the turning depth the vertical wavenumbers, which are found in the denominators of

Eq. (4.28) and (4.32), approach zero and cause an increase in KE. This increase is an artifact of

the WKB approximation no longer being valid. After the increase in KE, which dies away quickly

in the simulations, the indirect and direct methods match well in the propagating region away from

the turning depth. This trend will be discussed further later in this section and an estimate for the

region where the indirect methods is valid will be given.

In order to make a quantitative comparison between each of the four methods, the kinetic

energy density is normalized by the energy generated near the topography for each method. This

normalization is necessary to accurately compare the relative amount of energy transferred into

the propagating region, especially for the 1/10 amplitude simulation, which contains less overall

kinetic energy relative to the other four methods. Also, the value of the theoretical energy is depen-

dent upon the input boundary conditions, but the normalized energy remains constant regardless of

the initial condition. Due to the oscillations of the experiments and indirect simulations within the

evanescent region, curve fits were applied to these methods within the evanescent region near the

tip of the topography. The first three points immediately below the tip of the topography were then

averaged together to create KEnorm. These values are shown in Figure 4.5 as a function of Fr1D/H.

The solid symbols represent indirect methods of calculating KE, while the open symbols are the

direct methods. Along with the experiments (red diamonds) and full amplitude simulations (black
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Figure 4.5: Normalizing values for the kinetic energy density for each of the methods as a function
of Fr1D/H

squares), we now include the theoretical calculations (open red diamonds) and 1/10 amplitude sim-

ulations (blue circles). The 1/10 amplitude simulations used the same setup as the full amplitude

simulations except the excursion length is 1/10 the size of the value listed in Tab. 4.1 (see Sec.

4.4.3). KEnorm for the full amplitude simulations are approximately 2 orders of magnitude higher

than the 1/10 amplitude simulations, as expected due to the order of magnitude higher velocity

amplitude. For increasing Fr1D/H, it is expected the initial kinetic energy would also increase

because a high value of Fr1 indicates a relatively large ωf, causing a larger initial velocity of the

topography and evanescent wave. The direct simulation shows this expected increase for all values

of Fr1D/H. However, the experiments, theory, and indirect analysis of the simulations only follow

this expected behavior when Fr1D/H > 1. Case 1, with Fr1D/H = 0.13, has the smallest evanes-

cent region of the cases with the turning depth very near the topography, which we note causes
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Figure 4.6: Normalized kinetic energy for each of the four methods for case 1 (a) and case 4 (b)

errors to arise even near the topography in the methods which use the WKB approximations. The

direct simulations, for the full and 1/10 amplitude, do not use these approximations.

Examples of the normalized kinetic energy density as a function of height for each method

are shown in Fig. 4.6(a) and (b), for cases 1 and 4, which represent extreme cases with relatively

small and large evanescent regions respectively. KE∗ = KE/KEnorm is on the abscissa with water

height on the ordinate. There are six sets of lines and symbols. Similar to the previous figure,

solid lines and filled symbols represent indirect KE calculation methods, where ∆Ñ2 is used to

estimate KE, while dashed lines and open symbols are a direct calculation of KE using velocities.

Thus the experiments are shown in red with the closed diamond, while the model is the red dash

line with the open diamond. Full amplitude simulations using the indirect method of estimating

kinetic energy are a solid black line and filled square, with the direct calculation method in the

dashed black line and open square. Finally, the 1/10 amplitude simulation indirect calculation is

depicted with a solid blue line and filled blue circle and the direct calculation is a blue dashed
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line with an open blue circle. A horizontal black dotted line indicates the height of the turning

depth which is 56.1 cm for case 1 and 32 cm for case 4. In each case, the kinetic energy starts at

a high value near the topography at the top of the figure. As z decreases, the normalized kinetic

energy decreases through the evanescent region until there is an increase near the turning depth

for all of the methods except the simulation with the direct calculations, which is also seen in Fig.

4.4. For the experiments, theory, and indirect simulations, the kinetic energy always increases

close to the turning depth. With the theoretical calculations of kinetic energy, this increase is

caused by the relationship between vertical wavenumber and velocity amplitude (Eq. (4.10) &

(4.17)), such that a decreasing vertical wavenumber increases the amplitude and thus the kinetic

energy. Experiments, theory, and indirect simulations all use the same equations based on the

WKB approximation, which fails near the turning depth. The increase in energy for the theory

and indirect methods is due to these approximations. The direct simulations do not use the WKB

approximations and show no increase in energy near the turning depth. Within the propagating

region, the kinetic energy decreases after the turning depth and then remains nearly constant, and

the direct and indirect simulations match each other very well.

In case 1, Fig. 4.6(a), a very small evanescent region exists with D/H = 0.13. Here, the

1/10 amplitude indirect simulations closely match the theoretical calculations, such that the two

lines are almost directly on top of each other. No turbulent losses would occur in either of these

methods. Experimental results are more similar to the 1/10 direct and full amplitude direct KE∗.

The full amplitude indirect simulation indicates the lowest normalized energy, while the other

methods are all within the same order of magnitude for the majority of the propagating region. Far

from the turning depth, the experimental energy decays and matches more closely with the full

amplitude indirect simulation. Differences in the propagating region kinetic energy for this case

will be discussed further later in this section.

For case 4, Fig. 4.6(b), the evanescent region is much larger than in case 1, with D/H =

3.35. Similar to case 1, the theory and 1/10 amplitude indirect simulations maintain the highest

KE∗ throughout the majority of the evanescent and propagating regions. Unlike case 1, experi-
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Table 4.2: N/ω shown for each case indicates where in the
propagating region the difference between the direct

and indirect methods is less than 5%.

Case 1 2 3 4 5

N/ω
Full Amplitude 1.48 1.12 1.12 1.30 1.60
1/10 Amplitude 1.11 1.11 1.11 1.11 1.10

mental energy is much smaller than the other methods in the evanescent region, but similar to the

indirect simulation in the propagating region. There are also significant oscillations in both the ex-

periments and full amplitude simulations within the evanescent region due to the turbulence caused

by the vortex shedding at the topography peak. These oscillations decay in the propagating region

and both the full amplitude simulation methods show similar average KE∗, 0.003 and 0.006 for

the direct and indirect methods, respectively. Direct and indirect estimates of kinetic energy from

the simulations match best far from the turning depth because the indirect calculations are based

on WKB theory. This theory fails near the turning depth where the evanescent and internal waves

experience relatively rapid variations in m and A instead of the slow variations required by the

WKB assumptions. However, once the wave is far from the turning depth, the energy calculated

by both simulations and predicted by the theory match well, such that variations due to poor local

assumptions are not propagated. An exploration of when the linear theory and indirect calculations

closely approximate the direct methods is discussed next.

To quantify the distance away from the turning depth where the indirect method closely

approximates the kinetic energy of the direct method, the two calculation methods in the simu-

lations are compared. The error, calculated as a percent difference between the two methods, is

reported in Tab. 4.2 and the non-dimensional value of N/ω is used to compare all of the cases.

Because N = f (z), comparing N and ω provides a relative height at which the effects of the WKB

approximation are negated for each case. The tabulated values indicate where the error between

the two methods is less than 5%. Looking first at the full amplitude simulations, the value of N/ω

decreases with increasing Fr1D/H and then gradually increases with a larger N/ω indicating that
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the two methods do not coincide until farther from the turning depth. This increase in Fr1D/H

indicates an increasing excitation frequency and larger evanescent regions. This may be the cause

of the increasing N/ω for the full amplitude cases, as the larger evanescent region may allow for

the growth of nonlinear terms which will eventually need to be damped out in the propagating re-

gion. The decrease from case 1 to case 2 could be due to the small and relatively weak evanescent

region in case 1, indicated by Fr1D/H = 0.13, which is an order of magnitude smaller than the

other 4 cases. There is also evidence of turbulence generated waves and noise in case 1 (See Fig.

4.2(b)). In contrast, the 1/10 amplitude simulations show very similar values of N/ω ≥ 1.11 for

all cases. In the smaller amplitude cases there was little to no turbulence and the wave beams in

the propagating region were very smooth as seen in Figs. 4.2(e) and (f). With a low amplitude, the

1/10 amplitude simulations fall well within the small amplitude approximations needed for linear

theory, and increasing Fr1D/H has almost no effect on N/ω . The full amplitude cases are further

from the small amplitude assumptions than the 1/10-amplitude cases, and thus the linear theory

equations which dictate the indirect method need a larger distance in the propagating region to

overcome the non-linearities generated by these poor assumptions and turbulence.

These results indicate that for low amplitude scenarios with little turbulence, the indirect

methods will be most accurate when N/ω > 1.1, or a distance corresponding to a 10% increase in

N away from the turning depth. Given the current trends, this is true for a wide range of Fr1D/H.

However, when turbulence is present, as would be expected in many oceanic situations, indirect

methods should only be trusted further away from the turning depth, depending on Fr1D/H. From

the data in Tab. 4.2, a minimum N/ω can be chosen for large amplitude cases based on Fr1D/H

with the equation

N/ω = 0.1028(Fr1D/H)2−0.4035Fr1D/H +1.507. (4.36)

As the only topography used in this work is the Gaussian shaped profile (See Sec. 4.4), Eq. 4.36 is

only valid for this profile. Further research with multiple topographies would be needed to generate
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an equation which covers more scenarios. However, this equation does provide a good baseline for

future work.

4.5.3 Average kinetic energy

In order to further compare each of the methods and investigate the kinetic energy trans-

ferred from the evanescent region into the propagating region, we find an average, normalized

kinetic energy in the propagating region. The average kinetic energy is calculated from the loca-

tion where the Airy region ends (zAi,2) until the bottom of the experimental window, (zw). General

locations of these values are shown on Fig. 4.1b by white dashed lines and can be written as

∆zprop = zAi,2− zw. The average KE is defined as

KE2 =
1

∆zprop

∫ zw

zAi,2

KE dz (4.37)

Using the normalizing values described above, the non-dimensional kinetic energy in the propa-

gating region is KE∗2 = KE2/KEnorm. It would be beneficial to perform all averaging starting at the

locations indicated in Sec. 4.5.2. However, the experiments were limited base on the size of the

tank. Although the numerical simulations could be averaged over specific heights corresponding

to N/ω , this could not be matched in the experimental domain and a smaller ∆zprop was chosen to

maintain consistency across the methods.

Figure 4.7 is KE∗2 as a function of Fr1D/H. The symbols are the same as Fig. 4.5, with

the addition of three lines, which are curve fits to the model data (red dashed line), full amplitude

direct simulation data (black dotted line), and 1/10 amplitude direct simulation data (blue dash-dot

line). The curve fits for each scenario follow the equation

ln(KE∗2) =C1(Fr1D/H)+C2 (4.38)

where C1 and C2 are constants for each scenario. These values are listed in Table 4.3. For al-

most every method, KE∗2 decreases with increasing Fr1D/H. Although the kinetic energy of the
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Figure 4.7: Average, normalized kinetic energy in the propagating region as a function of Fr1D/H,
with curve fits for the theory, direct simulations, and 1/10 amplitude direct simulations

Table 4.3: Constants and goodness of fit values for Eq. (4.38).

Method C1 C2 R2

Theory -0.8503 -0.339 0.9935
Direct Simulation-Full Amplitude -1.323 -0.859 0.9969
Direct Simulation-1/10 Amplitude -1.340 -0.632 0.9994

normalizing value will increase with increasing Fr1D/H because of the increased initial energy

from a relatively larger forcing frequency (see Fig. 4.5), the evanescent waves will decay more

rapidly with an increased difference between N at the turning depth and ωf. Also, the larger dis-

tance between the tip of the topography and the turning depth, indicated by an increasing D/H,

allows a larger distance for the evanescent wave to decay, decreasing the internal wave energy in

the propagating region.

KE∗2 is greatest in the theory, where inviscid, linear theory was utilized and there were no

losses due to turbulence, viscosity, or wave-wave interactions. Because of this, the linear theory
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can be assumed to be an upper limit for kinetic energy transfer from the evanescent region to the

propagating region. For Fr1D/H < 2, the experiments show the second highest normalized kinetic

energy, but the 1/10 indirect simulations are larger than the experiments for Fr1D/H > 2. The 1/10

indirect simulations always indicate a larger kinetic energy than the full amplitude simulations,

where turbulence in present. For direct KE calculations, the difference between the large and

small amplitude simulations is very small, and each case has the same order of magnitude of KE∗2 .

Note that for case 5, with Fr1D/H = 4.18, the indirect, full amplitude simulation significantly

overestimates the direct simulation. From Tab. 4.2, it is indicated that for case 5 the indirect method

will be valid below N/ω = 1.6, however the experiments only reach a depth of N/ω = 1.11. Thus

the indirect simulation for case 5 is averaged over a region where it is known that the effects of the

WKB approximation are still important and KE∗2 will be too high. Therefore, the gap between the

points is expected.

Figure 4.7 can also be viewed as the percentage of initial kinetic energy from the topogra-

phy that passes into the propagating region. Case 1, corresponding to the lowest value of Fr1D/H,

results in the greatest propagating energy. For this case, the largest and smallest KE∗2 values are

1/10 amplitude indirect and full amplitude indirect methods at 70% and 20%, respectively. How-

ever, the indirect methods are not as reliable for this case due to the relatively small separation

between the topography and turning depth. It is more likely that the upper limit of energy transfer

at this Fr1D/H is defined by the theoretical value of KE∗2 = 60%. Yet, a more realistic upper es-

timate of KE∗2 would be the experimental value of KE∗2 = 45%. Similarly, a more accurate lower

limit is the full amplitude direct value of 30%. Thus, we predict that 30-45% of the initial kinetic

energy associated with waves at the excitation frequency will pass from the evanescent region

into the propagating region for Fr1D/H < 0.5, with 60% being the highest possible transmission

percentage. This percentage decreases with increasing Fr1D/H and the propagating energy be-

comes negligible when Fr1D/H > 3 as less than 1% of the initial energy is transferred into the

propagating region for all methods.
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Evaluating only the 1/10 amplitude simulations, the indirect method shows a much higher

KE∗2 than the direct method for all cases. Although the 1/10-amplitude cases had little turbulence,

there was still some noise near the topography which generates errors in the normalizing values

for the indirect simulations. Although the average kinetic energy between the direct and indirect

simulations for the 1/10-amplitude cases differed by only 25% or less for all 5 cases, there is a

significant difference in the normalizing values (See Fig. 4.5). For cases 2-5, the normalizing value

of the direct simulations is a different order of magnitude. Thus, while the actual kinetic energy

values are very similar, the variations of the normalization values cause an artificial separation

between the indirect and direct methods, such that the indirect cases have similar values KE∗2

compared to the theoretical cases.

For the full amplitude simulation, the greatest difference between the direct and indirect

methods of calculating KE∗2 occurs at the lowest Fr1D/H, where the indirect method is four times

greater than the direct. The smallest difference occurs at Fr1D/H = 3.06 with only a 0.04%

increase from the direct to the indirect method. In the other cases, all values of KE∗2 are the same

order of magnitude and show little variation. Only in case 1, where the turning depth is close to

the topography, the indirect method is an underestimate of the direct method. This, along with the

variation in the 1/10 amplitude simulations for case 1, lead to the idea that for very small evanescent

regions, Fr1D/H < 1, the indirect methods are less accurate, due to inaccurate calculations even

near topography.

Based on Fig. 4.7, it can be seen that the theory follows the same trends as the full ampli-

tude simulations, although it over predicts those trends because of turbulence in the simulations.

As the theory is less expensive than the simulations and experiments both computationally and

financially, we use Eq. (4.38) to create a relationship between the theory and the full simulations.

A ratio of KE∗2 of the simulations to the theory is shown as a function of Fr1D/H in Fig. 4.8.

Triangles are actual ratios from each of the 5 cases and a curve fit is applied to the points. With
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Figure 4.8: A ratio of the full amplitude simulation and theory kinetic energies as a function of
Fr1D/H

R2 = 0.9991, the curve fit is defined as

KE∗2,sim/KE∗2,theory = 0.5894exp(0.465Fr1D/H) (4.39)

With this equation, a prediction of the realistic kinetic energy in the propagating region can be

formed without performing a complete series of simulations or experiments for the medium to-

pography in an exponential profile. Further work is needed to explore if this equation is valid for

different topographies and varying stratification profiles.

4.6 Summary of methodologies

Of the four methods presented in this work, the theory is the fastest and least expensive.

It is a direct method of calculating the kinetic energy, but uses the WKB approximations which
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fail near the turning depth. It also does not take into account any nonlinearities such as viscosity

or turbulence that would decrease the overall kinetic energy density throughout the evanescent

and propagating regions. This method is presented as an upper limit of kinetic energy density

that passes into the propagating region (see Fig. 4.7) and is best used for scenarios where average

energy in a propagating wave region is desired. However, it can also be related to the full amplitude

simulations using Eq. (4.38) and a more realistic estimate of KE∗2 can then be calculated for the

medium Gaussian topography in an exponential density profile.

Although computationally expensive, the direct analysis of numerical simulations provides

a significant amount of data and insight into regions where assumptions such as the WKB and

small amplitude approximations fail and where nonlinearities are present. This occurs near the

turning depth and very near the topography. In addition, the direct simulations show that the full

and 1/10 amplitude simulations have similar percentages of kinetic energy passed from the evanes-

cent region to the propagating region, with the trend line for the 1/10 amplitude approximately

30% higher than the full amplitude in Fig. 4.7 for the regions shown. Although the excursion

length for the smaller amplitude simulations is 1/10 that of the full amplitude, the relative energy

is comparable. It is possible that turbulence or turbulence generated internal waves cause the dif-

ference between the two methods. For scenarios where the main interest is the relative amount of

wave energy generated from topography, performing simulations at 1/10 the amplitude will still

provide accurate data. Investigations focused on turbulence or other nonlinearities should use full

amplitude simulations.

The indirect analysis of simulations was accomplished in this work to provide insight on

when the indirect methods of the synthetic schlieren experiments were valid, and should not nec-

essarily be used as a specific method for investigating internal wave kinetic energy. In general,

the direct analysis of numerical simulations can provide data needed to estimate kinetic energy

without the added WKB assumptions used by the indirect analysis methods.

Synthetic schlieren experiments were performed to help ensure that the theory and simula-

tions accurately model the kinetic energy density of the evanescent and internal waves. Based on
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the information of Tab. 4.2, it is recommended that experiments investigating the kinetic energy

of evanescent to propagating waves should have a propagating region large enough that there is an

increase in N of at least a 10%. A larger propagating region will provide better estimates of the

energy in that region. In addition, case 1 shows that kinetic energy density estimates are poor when

the topography and turning depth are relatively close (Fr1D/H < 1).

4.7 Conclusion

This work compared four methods of estimating the kinetic energy density of internal

waves generated by evanescent waves passing through a turning depth. Kinetic energy was calcu-

lated directly with velocity using linear theory and numerical simulations, and estimated indirectly

using a derived relationship between velocity and the Fourier amplitudes of ∆N2 in experiments

and simulations for comparison. For each method, kinetic energy was averaged over a narrow

band of frequencies near ωf and over a wide range of wavenumbers of 0.5 < kBL < 5, which was

necessary because a range of wavenumbers is generated by a Gaussian topography.

Kinetic energy density was calculated over the height domain with each method and com-

pared to the nondimensional Fr1D/H. A small value of Fr1D/H indicates that the topography

is far from the turning depth and that the oscillation frequency is similar to the average natural

frequency of the evanescent region. When Fr1D/H < 1, all methods indicate between 10% and

80% of the initial kinetic energy generated at the topography passes into the propagating region,

with the theory, experiments, and 1/10 indirect method simulations predicting that over 30-60% of

the initial energy is retained from evanescent waves.

Numerical simulations provided insight into the validity of the indirect calculations, indi-

cating that the direct and indirect methods collapse far from the turning depth, where N/ω > 1.1

for the 1/10 amplitude simulations. With the full amplitude, a larger propagating region is required

to minimize the difference between the methods. Based on this, it is recommended that any calcu-

lations of kinetic energy in the propagating region of experiments involving turning depths also use
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Eq. (4.36) to ensure that the errors associated with the WKB approximation failing at the turning

depth do not artificially increase the estimate of propagating wave energy..

A correlation between the direct simulations and theory provides a future research oppor-

tunity to estimate the kinetic energy density of internal waves generated by tidal motions over

actual oceanic topography. Theoretical estimates of KE∗2 can be calculated quickly and Eq. (4.38)

provides an estimate of the predicted simulation energy, which would more closely correlate to

realistic situations. However, this work used only one topography shape and one density pro-

file. Further investigations into the effects of topography shape and density profiles are needed to

increase the usability of this function.
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and the Texas Advanced Computing Center.
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CHAPTER 5. EFFECTS OF STRATIFICATION AND TOPOGRAPHY SHAPE ON
KINETIC ENERGY DENSITY OF EVANESCENT AND INTERNAL WAVES

This chapter represents a full manuscript in preparation for submission to Physical Review

Fluids.
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All simulations were performed at Northeastern University through the Texas Advanced

Computing Center.

5.2 Abstract

Evanescent waves formed from tidal motions over oceanic topography can generate inter-

nal waves as they pass through a turning depth, or the location where the natural frequency (N) of

the fluid is equal to the excitation frequency. The kinetic energy density of these internal waves

is dependent upon the shape of the topography and the relative strength of the natural frequency

in the evanescent region. Using experiments, analytical theory, and numerical simulations, the ki-

netic energy density of internal waves generated from evanescent regions is compared for multiple

topography shapes and multiple density profiles using Fr1D/H. Propagating internal wave kinetic

energy relative to the initial evanescent wave kinetic energy decreases with increasing Fr1D/H,
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and can be assumed negligible for Fr1D/H > 4. Effects of topography shape and average natural

frequency on kinetic energy predictions are also discussed.

5.3 Introduction

As the tides oscillate over oceanic topography, internal waves are generated when the local

stratification of the ocean water is greater than the oscillation frequency (ω). Fluid stratification is

indicated by the natural frequency (N) which is defined as

N2 =
−g
ρ0

∂ρ

∂ z
(5.1)

where g and ρ0 are the gravitational constant and a reference density for the fluid. Smaller values of

N are indicative of a weak stratification, while larger values indicate a strong stratification. Internal

waves generated where N is strong relative to the excitation frequency, or N > ω . These waves

suffer little to no viscous dissipation and are important factors in the ocean energy budget and

oceanic mixing [30]. In contrast, when N < ω , evanescent waves are generated. The amplitudes

of these waves decay at an exponential rate as they move vertically away from their generation

site [5]. Because of the rapid decay, researchers generally do not focus on the impact of evanescent

waves. However, in regions where the stratification increases with height, evanescent waves can

pass through a turning depth and become propagating internal waves [5, 18]. A turning depth is

the location where the local stratification is equal to the original excitation frequency such that

N(ztd) = ω . Previous investigations have found that under certain conditions a significant portion

of the kinetic energy of the generated evanescent wave can pass through the turning depth and be

retained in the internal waves which propagate away [18,100,112]. This work explores the impact

of topographical shape and density profile on the relative kinetic energy density of propagating

internal waves formed from evanescent waves.

When exploring topographical shape, it is standard to investigate the criticality of the to-

pography where criticality is defined as ε = Stop,m/Swave [3, 18]. Here, Stop,m is the maximum
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slope of the topography and Swave =
√

ω2/(N2−ω2). A topography is considered subcritical,

critical, or supercritical when ε < 1, ε = 1, or ε < 1, respectively. Criticality defines the type

of internal waves and possibility of wave breaking. It has been explored for multiple topography

types [11, 34, 39, 40, 86]. Unfortunately, this definition of criticality and resultant wave generation

parameters requires the topography to be in a propagating region, where N > ω . In all of the cases

presented here, the topography is in an evanescent region, where N < ω , and thus Swave is unde-

fined. Because of this, we will focus on Stop,m and the presence of multiple peaks and investigate

how these parameters affect the kinetic energy of the generated waves.

Density profiles throughout the ocean were mapped with 18,000 World Ocean Circulation

Experiment casts in an effort to find oceanic locations where the local stratification is less than the

M2 semidiurnal tide [19]. It was found that the natural frequency of the deep ocean can frequently

be described with an exponential equation with density as a function of depth [19, 64]. Although

the effect of varying stratification on internal wave generation has been explored [75, 84, 113],

few studies have investigated the impact of stratification on evanescent wave generation. Lee and

Crockett [100] used an average N in the evanescent region to characterize the relative energy of

internal waves generated from an evanescent region with exponential density profiles. They found

that both the average strength of the stratification and the distance from the topography to the

turning depth defined propagating wave energy, where large average evanescent stratifications and

shorter distances resulted in significant kinetic energy transfer to propagating waves.

Internal and evanescent waves can be studied through observations, analytical solutions to

linear and nonlinear equations, experiments, and numerical simulations. Of those methods, three

will be used in this work. Synthetic schlieren experiments, analytical calculations, and numerical

simulations will each be presented and compared. Synthetic schlieren uses the relationship be-

tween the index of refraction and the density of a fluid to find variations in the natural frequency,

or ∆N2 [58]. This, in turn, can be used to estimate kinetic energy of evanescent [100] and in-

ternal waves [20]. Using the WKB approximation, linear theory can be applied throughout the

evanescent region and propagating region, individually, to calculate horizontal (u) and vertical (v)
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Table 5.1: Names, equations and images of the four topography profiles. All units are in meters.

Name Equation Range (m) Profile

Medium
Gaussian

h = 0.1e−x2/0.04242 −0.09 < x < 0.09

Steep
Gaussian

h = 0.1e−x2/0.01062 −0.0112 < x < 0.0112

Sinusoidal h = 0.0355sin(2πx/0.11) −0.0275 < x < 0.1925

Complex −0.1214 < x < 0.1214
h = 0.1672e−x2/0.05662 |14 sin(520x)+ cos(115x)|

velocities [100]. Numerical simulations expound upon the data available through experimentation

and allow for a direct comparison with both the theoretical velocities and the experimental varia-

tion in stratification [112]. Lee et al. [112] used each of these methods to investigate the validity

of the methods, but was limited to a singular topography and density profile. By including more

topographies and density profiles, this work will expand upon the previous research to allow for

a stronger relationship between each of the methods and a better understanding of other realistic

oceanic scenarios of tidally generated internal waves.

5.4 Methods

This section will first describe in detail the four topographies and density profiles, along

with the parameters of each case. Details of the three methods and the corresponding kinetic energy

calculations will then be summarized.
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Table 5.2: Density Profile Equations

Profile Number Profile Equation

1 Two Layer Linear ρ1 = az+b; ρ2 = cz+d
2 Quadratic ρ = az2 +bz+ c
3 Cubic ρ = az3 +bz2 + cz+d
4 Exponential ρ = aebz + c

To explore the effects of maximum topography slope and varying number of peaks, four

different topographies were chosen for the cases. Each is listed in Tab. 5.1 and will be referred to

as the medium, steep, sinusoidal, and complex topographies. Each topography was 3D printed to

ensure the shape matched the desired equation. Both the medium and sinusoidal topographies have

the same maximum slope of Stop,m = 2.02, while the steep and complex have maximum slopes

of 8.09 and 39.05, respectively. Although the medium topography is taller than the sinusoidal,

the width of the sinusoidal is slightly greater than the medium. With these small differences,

maintaining the same maximum slope between the medium and sinusoidal topographies allows

for a comparison of the effect of multiple peaks. The steep topography represents an increase

in maximum slope, while the complex topography provides a more realistic topography and can

be seen as an approximation of the ocean floor [18]. Results based on each topography will be

presented in Sec. 5.5.

Density profiles are listed in Tab. 5.2. From the work of King et al. [19], it is known that

the density in the deep ocean can often be described as an exponential profile. However, varying

oceanic conditions can create other density profiles that are better fit with linear, quadratic or cubic

curves as shown in Tab. 5.2. Because the kinetic energy of evanescent and internal waves is

dependent on N, the rate of density change will affect the overall energy of the internal waves. In

addition, a comparison of two layer profiles to average N values in each of the other density profiles

will provide insight on the effect of averaging the natural frequency of non-uniform stratifications.

Summarized details for all cases are listed in Tab. 5.3 with the topography used, the density

profile (associated with Tab. 5.2), the number of cases for each profile, and ranges for ω , D/H,
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Table 5.3: Summarized details of all cases including the topography shape and density
profile listed in Tab. 5.2 and the range of values for ω , D/H, Fr1, and Fr1D/H.

Topography
Density
Profile

Number of
Cases ω D/H Fr1 Fr1D/H

Medium 1 4 0.80-1.40 2.90 1.38-2.40 4.00-6.97
2 9 1.00-1.30 0.45-3.52 1.02-1.12 0.45-2.87
3 2 1.21-1.30 1.50-2.66 1.09-1.11 1.63-2.95
4 5 0.81-1.21 0.19-3.35 1.01-1.25 0.19-4.19

Steep 1 4 0.80-1.40 2.89 1.37-2.39 3.97-6.92
2 5 1.01-1.29 0.61-3.01 1.03-1.10 0.63-3.32
3 3 1.10-1.30 1.37-4.17 1.07-1.13 1.47-4.71
4 5 0.80-1.20 0.61-3.34 1.05-1.28 0.63-4.26

Sinusoidal 1 4 0.81-1.44 4.49 1.40-2.47 6.28-11.1
2 4 1.09-1.30 1.00-5.08 1.03-1.11 1.03-5.65
3 5 0.81-1.21 0.80-3.65 1.13-1.25 0.90-4.55
4 6 0.81-1.30 1.21-5.73 1.06-1.33 1.29-7.62

Complex 1 5 0.90-1.40 0.87 1.61-4.71 1.40-4.10
2 1 1.13 0.78 1.05 0.81
3 3 1.10-1.30 0.19-1.59 1.02-1.09 0.19-1.73
4 3 0.19-1.10 0.32-1.08 1.04-1.16 0.33-1.26

and Fr1 and Fr1D/H. D is the distance between the tip of the topography and the turning depth

and H is the height of the topography. This ratio indicates a relative size of the evanescent region,

with larger values indicating a larger region as the topography is farther away from the turning

depth. Fr1 is the average Froude number in the evanescent region, defined as the ωd/N1. The

natural frequency is also averaged over the distance D. Because all cases involve an evanescent

region, Fr1 is always larger than 1. This value provides a relative strength for the evanescent

region. As Fr1 increases, the stratification decreases causing evanescent waves to decay more

rapidly. Combining the two terms into Fr1D/H illustrates the importance of both density profile

and relative topography distance in the overall kinetic energy density of the resultant internal waves

in the propagating region. Full details of each case including the case number, parameters of the

density profile, excursion length L, the overall water height ZH , and height of the turning depth ztd

are all listed in Appendix A.1.
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5.4.1 Experiments

Experiments were performed and data was captured using synthetic schlieren imaging

methods [58]. An inverted topography was placed at the water line in an acrylic tank with di-

mensions of 2.45 x 0.91 x 0.15 m, corresponding to length, height and width. The tank was filled

to a water height between 0.55-0.75 m using a modified double bucket method [93] to match one

of the density profiles outlined in Table 5.2. Matting was placed along the bottom of the tank to

reduce reflections. Before each test, the density was measured every 3 cm, then every 5 cm after

the fourth test. The topography was oscillated 15 times before starting the imaging to ensure a

steady state had been reached. Experiments were processed at 6 fps in the commercial software

Digiflow [94], which uses the apparent motion of a random dot pattern behind the experiment to

estimate ∇ρ ′/ρ0, or dimensionless variations in density in the horizontal and vertical directions.

By multiplying the z derivative by gravity, this data becomes ∆N2 such that

∆N2 =
−g
ρ0

∂ρ ′

∂ z
(5.2)

which is similar to Eq. (5.1). From this data, a relationship can be made between the Fourier

amplitudes ∆N2 and those of the horizontal (u) and vertical (v) velocity of both evanescent and

internal waves. Because the vertical velocity of evanescent waves must take into account the

imaginary vertical wavenumber, the relationships between natural frequency and velocity varies

based on the type of wave. However, both functions assume a kinetic energy density defined as

KE = Ũ2 +W̃ 2 (5.3)

where the tilde indicates Fourier amplitudes. Lee and Crockett [100] found that kinetic energy can

be estimated in an evanescent region with

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

(5.4)
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where k is the horizontal wavenumber and q is the imaginary vertical wavenumber such that m =

iq. The subscript 1 indicates the evanescent region and the subscript on the partials indicate the

dimension of the derivative. Similarly, Wunsch and Brandt [20] defined the kinetic energy density

of propagating internal waves as

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

. (5.5)

Experiments were imaged with a jAi Cv-M4+Cl progressive scan camera with a resolution of

1360x1080 pixels. A 2D Fourier transform in x and t was performed for each row of pixels and

amplitudes from the transform were entered into either Eq. (5.4) or Eq. (5.5) depending on the

height of the pixel row.

5.4.2 Linear theory

To calculate the kinetic energy of the evanescent and internal waves in a non-uniform strat-

ification, the WKB approximation can be applied to both regions and the velocities of the waves

can be calculated. WKB approximations are valid where N2 >> λz(∂N2/∂ z) [74], where λz is the

vertical wavelength of the wave. These assumptions breakdown near the turning depth as λz varies

rapidly. By applying the Airy function instead of the standard velocity equations, it is possible to

smoothly transition from the evanescent region to the propagating region [91, 100].

In both regions, the natural frequency is a function of height, which must be accounted

for in both the vertical wavenumber and the amplitude of the velocities [74]. This is done by

introducing θ , or the integrated wavenumber in each region, and allowing the amplitude, A, to also
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be a function of height. Starting with the evanescent region, the equations for velocity include

θ1(z) =
∫ z

z1,0

qdz (5.6)

w1(x,z, t) = A1 exp[i(kx−ωt)]exp(θ1) (5.7)

u1(x,z, t) =
−w1

ik

[
q− dq/dz

2q

]
(5.8)

A1(z) = A1,0/(q/q1,0)
1/2 (5.9)

Here, it is assumed that the term (dq/dz)/2q is negligible [100]. The continuity equation

∂u
∂x

+
∂w
∂ z

= 0 (5.10)

is used to calculate u. An initial amplitude of A1,0 is defined by the velocity of the topography and

matched at the height z1,0. q1,0 is the vertical wavenumber at the height z1,0.

Before reaching the turning depth, the evanescent region velocity equations are matched

with the Airy region equations. This region begins at the height corresponding to 1% of the average

vertical wavelength (λz) above the turning depth, or z1,Ai = ztd + 0.01(2π/q). The Airy region

continues to zAi,2 = ztd− 0.01(2π/m), which is 1% of the average λz in the propagating region

defined by the experimental domain. Based on the work of Lighthill [91] and Lee and Crockett

[100], the Airy region equations for velocity are

wAi(x,z, t) = Q0,w Ai(β 1/3z−β
1/3ztd)exp[i(kx−ωt)] (5.11)

uAi(x,z, t) = Q0,u
iβ 1/3

k
Ai′(β 1/3z−β

1/3ztd)exp[i(kx−ωt)] (5.12)

where Q0,w and Q0,u are constant amplitudes in the region, β = m2/(ztd− z), and Ai′ is the first

derivative of the Airy function with respect to the vertical. Q0,w and Q0,u are found by matching

Eq. (5.11) to Eq. (5.7) and Eq. (5.12) to Eq. (5.8) at z1,Ai.

In the propagating region, the amplitude of vertical velocity is found by matching wAi to w2

at zAi,2, and then continuity (Eq. (5.10)) is used to defined the horizontal velocity. These equations
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for velocity are similar to those for the evanescent region and are defined by Pedlosky [74] as

w2(x,z, t) = A2 exp(i(kx−ωt +θ2)) (5.13)

A2(z) = A2,0/(m/m0)
1/2 (5.14)

θ2(z) =
∫ z

zAi,2

mdz. (5.15)

u2(x,z, t) =
−w2m

k

[
m− dm/dz

2im

]
(5.16)

and again, dm/dz is considered to be negligible [100].

With u and w fully defined in all three regions, the kinetic energy can be calculated by

squaring and summing their amplitudes as in Eq. (5.3).

5.4.3 Numerical simulations

A CDP-2.4 algorithm was implemented to perform direct numerical simulations of the 2D

Navier-Stokes equations under the Boussinesq approximation. This algorithm is a finite volume

solver that uses a fractional-step time-marching scheme [95,96]. This code was chosen because it

has previously been used to study internal waves and has been validated with experiments [18, 86,

88, 97–100]. Simulations provided both the velocity and density perturbation fields. Thus kinetic

energy can be estimated directly using velocity or indirectly using ∆N2 with Eqs. (5.4) and (5.5).

These two methods will be referred to as such throughout the work.

The equations solved by the 2D simulations calculate the total density ρ , pressure p, and

velocity uuuT over the domain x ∈ [−400,400] cm and z ∈ [0,150] cm with the following equations:

∂uuu
∂ t

+uuuT ·∇uuuT = − 1
ρ0

∇p+ν∇
2uuuT−

gρ

ρ0
ẑzz+ fff tidal (5.17)

∂ρ

∂ t
+uuuT ·∇ρ = κs∇

2
ρ (5.18)

∇ ·uuuT = 0 (5.19)
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where ρ0 = 1000 kg/m3 (density of water), ν = 10−6 m2/s (kinematic viscosity of water at 20◦C),

and κs = 2×10−9 m2/s (the diffusivity of NaCl in water). All simulations used the same domain,

with a structured grid containing resolutions that ranged from 0.02 to 10 cm though the resolution

was increased for the complex topography cases due to the significant turbulence seen in prelimi-

nary tests. Initially, the system was set at rest with an unperturbed density field. The density field

matched the density profiles of the experiments. For the simulations, the topography was at the

bottom of the domain, with a no slip boundary condition. At the top of the domain, the bound-

ary condition was set to be free slip. Periodic boundary conditions with Rayleigh damping were

implemented along the left and right edges to force negligible velocities at both boundaries. In

addition, to reduce reflections, a sponge layer was placed at the top of the domain.

Each case was run twice, with an excursion length matching the above tables, and again

with smaller excursion length such that Llow = L/10. These low amplitude cases were run to both

investigate the importance of excursion length and to minimize turbulence for the steeper sloped

topographies. They will be referred to as the low amplitude or 1/10 amplitude cases. Simula-

tions were performed at temporal resolutions of 0.002 and 0.004 s for the low and high amplitude

simulations, respectively. Convergence studies were performed for each topography. Because the

system was initially at rest, each case was run for 30 periods to reach a steady state, and then an

additional 30 periods which were used in the energy analysis.

5.4.4 Average kinetic energy

Prior experiments and simulations indicate that waves generated by any topography result

in energy in a narrow of range of frequencies, but a wide range of horizontal wavenumbers. This

spread is dependent upon the topography. To accurately compare the three methods and four to-

pographies used here, it is necessary to average kinetic energy over a range of k values in a manner

individual to the topography. Nappo [5] showed that the magnitude of the vertical velocity of inter-

nal waves generated by oscillating flow over Gaussian shaped topography is defined by the func-

tion kBexp[−(kB/2)2], where B is a term in a Gaussian equation such that hGaus = exp(−x2/B2).
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Vertical velocity is a maximum at a wavenumber such that

kmaxB =
√

2 (5.20)

However, Lee et al. [112] showed that the predicted peak wavenumbers based on this value do not

match with what is seen both in experiments and in numerical simulations. Instead they found that

a new Gaussian parameter which takes into account an adjusted wavelength based on the width

and excursion length is needed. By defining λL = W +L, where W is the width associated with

the location where height of the topography has decreased to 1% of the maximum height, the new

Gaussian parameter is

BL =
λL
√

2
6

(5.21)

By combining Eqs. (5.20) and (5.21), the new predicted maximum wavenumber matches that of

the experiments and simulations. In addition, Nappo indicated that the function kBexp[−(kB/2)2]

decayed significantly for kB > 5. Similarly, Lee et al. saw a rapid decay in the kinetic energy

associated with kB > 5. Because of this, kinetic energy will be averaged over the range 0.5 <

kBL < 5.

For the complex topography, although the Gaussian curve is multiplied by sine and cosine

terms, B from the original equation in Tab. 5.1 still applies to the general shape. A Gaussian fit

can be applied a single peak of the sinusoidal topography with with B = 0.0314. To encompass

both peaks, B is doubled and the resulting fit is hsine,Gaus = 0.071exp[−(x− 0.0819)2/0.06282).

Even though this shape has only one peak, it matches the overall width of the sinusoidal topog-

raphy. To include the excursion length, according to experiments, BL for the medium topography

is approximately equal to B+L/4. As both the sinusoidal and complex topographies are similar

widths to the medium Gaussian, this was used to account for the excursion length for these two

topographies.

Experimental and simulation data were averaged over 0.5 < kBL < 5 for each topography.

Because the frequency band in the experiments and simulations was so narrow, it is assumed that
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only waves at the forcing frequency are present. To account for a changing k in the analytical

theory, for each distinct k, an initial amplitude is calculated by

Ak,0 = A1,0
kBL exp[−(kBL/2)2]

kpBL exp[−(kpBL/2)2]
(5.22)

where A1,0 is calculated by matching the velocity of the topography to the vertical velocity at the

expected peak wavenumber as detailed in Sec. 5.4.2. This equation forces a decreasing amplitude

away from the peak wavenumber allowing for a more accurate representation of the range of kinetic

energy seen in the experiments and simulations.

5.5 Results

This section will compare the general trends of kinetic energy density for each of the meth-

ods indicated in Sec. 5.4 based on topography shape and density profile. Both of these factors will

also be discussed individually and estimates of the percentage of kinetic energy that passes into the

propagating region will be provided.

To compare the kinetic energy of each method, all kinetic energy will each be normalized

by the energy near the tip of the topography. Referred to as KEnorm, it is the average of the kinetic

energy at the tip of the topography and at the first three locations below the topography (moving

into the evanescent region). Normalized kinetic energy is then calculated as KE∗ = KE/KEnorm.

For experiments and indirect simulations kinetic energy fluctuates in the evanescent region and

thus curve fits are applied to each case individually and KEnorm is calculated from the fit.

Four steep topography cases with four density profiles are shown in Fig. 5.1. From left

to right, the density profiles for each figure are two layer linear, parabolic, cubic, and exponential

which correspond to cases 20, 27, 31, and 34 (See Tab. A.2). Each figure shows the normalized

kinetic energy (KE∗) on a log scale on the abscissa with height on the ordinate. There are six lines

plotted in the figures indicating kinetic energy from the experiments (blue line), theory (red line),

indirect simulation (green line), direct simulation (green dashed line), 1/10 indirect simulation
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Figure 5.1: Normalized kinetic energy for the steep topography with (a) two layer, (b) parabolic, (c)
cubic, and (d) exponential density profiles. Each method of estimating kinetic energy is indicates
in the legend and the location of the turning depth is the horizontal dotted line.

(black line), and 1/10 direct simulation (black dashed line). The final line is a horizontal grey

dotted line marking the location of the turning depth (ztd).

In each figure, the kinetic energy is greatest at the top where the top of the topography

resides. Away from the topography, kinetic energy decrease through the evanescent region until

the turning depth. It then remains fairly constant within the propagating region where the parabolic

and cubic density profiles keep more energy in the propagating region than the two layer and

exponential cases. These two high energy cases also have the smaller values of Fr1D/H compared

to the low energy cases, which has been shown to influence the relative kinetic energy of internal

waves [112]. This will be explained further for this work later in this section.

In all cases, the theory matches very well with the direct simulation, both the full and 1/10

amplitude, in the evanescent and propagating regions. There is some separation in these methods
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near the turning depth due to the transition in the Airy region, but in the propagating region the

theory follows the same trends as the direct methods. Because the theoretical calculations do not

include any losses, such as turbulence, the theory generally indicates the largest kinetic energy,

especially within the propagating region. Near the turning depth the indirect simulations show

a significant increase in energy just before and at the turning depth. In Fig. 5.1(a), a sudden

spike is seen 0.02 m above the turning depth at z = 0.35 m, followed by a rapid decrease. In the

other three cases, the increase in energy occurs larger distances away from the turning depth and

is accompanied by rapid oscillations in energy until the turning depth. Experimental data also

show some oscillations, but they are not as severe as the simulation data. Variations in kinetic

energy near the turning depth are expected for these indirect methods because the small amplitude

approximations fail near the turning depth because m decreases causing the amplitudes of velocity

to increase towards infinity [112]. Although each graph in Fig. 5.1 corresponds to a different

density profile, the methods show similar trends for kinetic energy in the propagating region, with

the highest energy indicated by the theory and then the direct simulations. In Fig. 5.1(d), the

experimental energy is almost an exact match for the theoretical energy, but that is not generally

the case.

While Fig. 5.1 compared kinetic energy for one topography and multiple density profiles,

Fig. 5.2 compares kinetic energy for one density profile and each of the four topographies: (a)

medium, (b) steep, (c) sinusoidal, and (d) complex. The four figures correspond to cases 13, 31,

46, and 62. This figure matches the setup of Fig. 5.1 with the same legends and axes. Similar

to the previous figure, the kinetic energy decays in the evanescent region and then remains rela-

tively constant in the propagating region. In Fig. 5.2, the oscillations of the indirect methods are

larger and more frequent, especially for the sinusoidal topography in Fig. 5.2(c) and the complex

topography in Fig. 5.2(d). This is likely due to the multiple peaks of each topography. Although

the maximum slope (Stop,m) of the sinusoidal topography is the same as the medium, two peaks

generated more turbulence, which the indirect methods struggle to represent accurately. For the

complex topography, the large value of Stop,m and the multiple peaks create significant error for
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Figure 5.2: Normalized Kinetic energy of cubic density profiles corresponding to the (a) medium,
(b) steep, (c) sinusoidal, and (d) complex topographies. Data for (b) is the same as Fig. 5.4(c).

the indirect methods in the evanescent region. In Fig. 5.2, the propagating kinetic for the medium

topography is the largest, followed by the steep, complex and sinusoidal topographies. Note that

there is a spread in the energy for each of the methods due to the normalizing process.

In Fig. 5.2(a), the kinetic energy associated with the 1/10 indirect simulation is larger

than the other methods and also follows closely with the direct simulation in Fig. 5.2(b). In

both cases, the full amplitude indirect kinetic energy shows significantly less energy relative to the

direct methods. One of the errors that can be associated with indirect methods is an under/over

estimate of the energy in the evanescent region. Because of this, the normalized energy is much

larger/smaller than the other methods, but these values been inflated (deflated) by the normalizing

process. Lee et al. [112] found that the indirect simulations are good estimates of kinetic energy,

but only far from the turning depth and the topography. However, in Fig. 5.2(a), the 1/10 indirect

simulation underestimates the kinetic energy in the evanescent region, causing a very large relative
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Figure 5.3: KE∗2 as a function of Fr1D/H for the medium topography for cases with (a) two layer,
(b) parabolic, (c) cubic, and (d) exponential density profiles.

energy in the propagating region. Conversely, the full amplitude indirect method overestimates the

direct method by two orders of magnitude in the evanescent region of Fig. 5.2(b)-(d), leading to an

underestimate of the normalized energy in the propagating region. Interestingly, the experimental

data, while not a perfect match with the direct methods or the theory, does not show near the

variation of energy in the evanescent region. This is unusual as both the experiments and the

indirect methods use the same set of equations to estimate energy.

Kinetic energy is averaged in the propagating region and normalized for easier comparison

and is denoted as KE∗2 . It can be considered as the percentage of kinetic energy of the evanescent

waves generated by the topography at the forcing frequency that passes into the propagating re-

126



gion. KE∗2 is calculated for each case and shown as a function of Fr1D/H for the medium, steep,

sinusoidal, and complex topographies in Figs. 5.3-5.6, providing a relative percentage of energy

that passes from the evanescent waves generated at the topography into the internal waves in the

propagating region. In each figure, the four graphs correspond to the four density profiles: (a) two

layer, (b) parabolic, (c) cubic, and (d) exponential. Kinetic energy corresponding to each of the

methods are indicated with different shapes with the experimental data as closed diamonds, theory

as open diamonds, full amplitude indirect simulation as closed squares, direct simulations as open

squares, 1/10 indirect simulations as closed circles, and 1/10 direct simulations as open circles.

We note that not all of the experimental and theoretical data points have corresponding simulation

data. Because of this, and as a guide for a simple comparison between each of the density profiles,

a trendline fit only to the theoretical data is included in each figure and the scales for all of the

figures are the same to quickly compare each figure. In all cases, the trendline is a linear fit with a

constant slope such that

log
(
KE∗2) =C1x+C2 (5.23)

R2 values are not included because some topography and density profiles have only a few data

points, which would increase this value for those fits without actually indicating the confidence in

the data as a whole.

A consistent trend in Figs. 5.3-5.6 is that as Fr1D/H increases, there is a decrease in

KE∗2 . As Fr1 increases, the evanescent region has a relatively weaker stratification, meaning the

evanescent waves will decay more rapidly. In addition, increasing D/H increases the distance the

evanescent waves travel and decay before crossing the turning depth. Combining the two effects

shows a clear trend of decreasing energy transmitting into the propagating region. With this trend

established for each of the four topographies, we will now explore each topography individually.

In Fig. 5.3, with the medium topography, the theoretical estimate of energy is the largest

in only the exponential density profile, (a). Here, all simulation methods indicate higher energy

than the theory and experiments. Experiments and 1/10 indirect simulations are the largest in Fig.

5.3(b) when a parabolic density exists. Direct simulations match well with the theoretical values
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Table 5.4: Slopes of the trendlines based on the theoretical
data points in Figs. 5.3-5.6 for each topography and

each density profile using Eq. 5.23.

Two layer Parabolic Cubic Exponential

Medium -0.24 -0.25 -0.17 -0.43
Steep -0.06 -0.37 -0.25 -0.45
Sine -0.22 -0.22 -0.26 -0.28
Complex -0.36 -0.47 -0.95

for parabolic and cubic profiles. All plots show that each method varies somewhat in the estimate

of KE∗2 , with the exponential density profile indicating the least separation between the methods.

To compare the propagating kinetic energy for each density profile, the slopes of the trend-

lines are listed in Tab. 5.4. As each topography will be discussed in a similar manner, the slopes

for all topographies and all density profiles are listed. Comparing the decay rate for each density

profile for the medium topography of Fig. 5.3, it is clear that the kinetic energy in the exponen-

tial profile decays the most rapidly, while the two layer and parabolic trends indicate very similar

slopes. The smallest decay is seen in the theoretical trend of the cubic profile, but there are only

two cases for this profile.

KE∗2 for the steep topography and individual densities is plotted in Fig. 5.4, with the two

layer, parabolic, cubic, and exponential density profiles in Figs. 5.4(a), (b), (c), and (d) respectively.

Here, the exponential density profile again has the largest slope with a value similar to the medium

topography (See Tab. 5.4). Following the exponential density slope are the parabolic, cubic, and

the two layer density slopes. For the two layer density, in Fig. 5.4(a), the range of Fr1D/H values

is higher than in Figs. 5.4(b)-(d), which could account for the significantly smaller slope of the

trendline.

Although the theoretical trendline and direct simulation data in Fig. 5.4 all show that

KE∗2 decreases with increasing Fr1D/H, the trend is not as clear in the experimental data for this

topography. A slight increase in energy is seen in Figs. 5.4(b) and (c), while the experimental

energy in Fig. 5.4(d) stays fairly constant. Simulation data for Figs. 5.4(a), (b), and (d) follow the
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Figure 5.4: KE∗2 as a function of Fr1D/H for the steep topography for cases with (a) two layer, (b)
parabolic, (c) cubic, and (d) exponential density profiles.

same trends as the theoretical data, including the indirect methods, which use the same equations as

the experiments. Experimental data may contain more errors associated with the steep topography

because of the increased Stop,m relative to the medium topography. As the physical slope of the

topography increases, it is more likely that turbulence will be generated by the topography, which

leads to errors in the indirect methods near the topography where KEnorm is calculated. In an effort

to overcome these errors, curve fits are applied to the data near the topography to smooth out the

oscillations and noise. Unfortunately, the effectiveness of the curve fits decreases with increasing

turbulence, causing both over and underestimates of the normalizing values for the experimental

kinetic energy, and thus the almost constant energy regardless of Fr1H/D.

129



0 2 4 6 8 10
-4

-3

-2

-1

0

1
(a)

0 2 4 6 8 10
-4

-3

-2

-1

0

1
(b)

Experiment

Theory

Indirect

Direct

1/10 Indirect

1/10 Direct

0 2 4 6 8 10
-4

-3

-2

-1

0

1
(c)

0 2 4 6 8 10
-4

-3

-2

-1

0

1
(d)

Figure 5.5: KE∗2 as a function of Fr1D/H for the sinusoidal topography for cases with (a) two
layer, (b) parabolic, (c) cubic, and (d) exponential density profiles.

All the trendlines for the sinusoidal topography indicated in Tab. 5.4 and Fig. 5.5 are

nearly the same. While the exponential density profile still indicates the most rapid decay, similar

to the medium and steep topographies, it is only slightly larger than the other three density profiles

for the sinusoidal topography. This consistency across all density profiles leads to the idea that

topographical shape is a more important factor than density profile when predicting internal wave

kinetic energy.

For the data of the sinusoidal topography, shown in Fig. 5.5, the theoretical energy is almost

always the largest energy, except for one or two experimental data points in Figs. 5.5(a), (b) and

(c). Although the sinusoidal topography has two peaks, it has the same Stop,m as the medium
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Figure 5.6: KE∗2 as a function of Fr1D/H for the complex topography for cases with (a) two layer,
(b) parabolic, (c) cubic, and (d) exponential density profiles.

topography, which decreases the variations in the experimental data seen in Fig. 5.4 with the steep

topography. In each figure, simulation data always indicates less energy than the theoretical data,

but the data points follow a similar decay in energy as the theoretical trendline.

For the complex topography in Figure 5.6, there is only one set of data for the parabolic

density profile in Fig. 5.6(b), and a trendline is not included. Following the same trend as the

previous three figures, the exponential density profile has the largest slope of the density profiles

and is more than twice as large as the other topographies for exponential densities (Tab. 5.4).

Slopes for the two layer and cubic profiles are also larger than the corresponding profiles for the

other topographies. Comparing all of the decay rates for the theoretical trends in Tab. 5.4, there

131



is more variability in the kinetic energy of the propagating internal waves for one density profile

across multiple topographies than there is for one topography across multiple density profiles, even

with the variation in decay rates indicated by the complex topography.

With multiple peaks and the largest Stop,m, nonlinearities and turbulence become more im-

portant for the complex topography. Although the theoretical model is a linear model, it still

matches well with the direct simulations in Fig. 5.6, which does account for turbulence generation.

Smaller values of Fr1D/H indicate a relatively smaller excitation frequency, which would decrease

the turbulence generation of the complex topography, allowing for the theory and direct methods to

indicate similar energy. In contrast, the experiments and indirect methods are negatively affected

by low Fr1D/H because it also indicates the topography is relatively close to the turning depth.

Even if the turbulence generation is low, it will still cause inaccuracies in estimating KEnorm for

these methods and causes the experiments to indicate an increasing kinetic energy with increasing

Fr1D/H. Each experimental data point indicating log(KE∗2)> 0 is indicative of an underestimate

of KEnorm.

Figure 5.7 combines individual density profiles of the medium topography data of Fig. 5.3

into one graph, now with KE∗2 as a function of Fr1 in Fig. 5.7(a), D/H in (b), and Fr1D/H in

(c). Each graph contains data for the four density profiles and six methods, along with a trendline

created from a curve fit of all the data associated with the specific abscissa. Trends in each figure

indicate that KE∗2 decreases with increasing Fr1, D/H, and Fr1D/H as is expected. In Fig. 5.7(a),

the data for Fr1 = 1− 1.5 shows a sharp decrease in energy, with the two layer cases indicating

a slower decay rate. This slower rate of decay seen in the two layer cases could be an inherent

problem with calculating energy with constant N in the evanescent region. However, these two

layer cases do not overlap with the other density profiles, so it is possible that the overall decay of

KE∗2 does slow for all density profiles. In Fig. 5.7(b), there is more of an overlap between the two

layer and the other density profiles, but each of the two layer cases were completed with the same

experimental setup such that D is constant for all experiments tests. Slight differences in the setup

between the simulations and experiments indicate two values of D/H, but they are very similar
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Figure 5.7: KE∗2 as a function of (a) Fr1, (b) D/H, and (c) Fr1D/H for all density profiles.

values. By plotting KE∗2 as only D/H, the two layer cases do not follow the same trends as the

other density profiles.

Figure 5.7(c) combines the previous two nondimensional numbers and creates a better col-

lapse of all the data, including the two layer cases. One of the purposes of this paper is to investigate

whether or not assuming a two layer linear density profile is accurate for investigations of varying

density profiles. Based on the trendlines of Fig. 5.7, the two layer density data follows the same

trends as the data for the other density profiles for Fr1D/H, but not for each term individually.

Although small, there is an overlap of the two layer and exponential data for this topography also
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Figure 5.8: KE∗2 as a function of Fr1D/H for the (a) steep, (b) sinusoidal, and (c) complex to-
pographies.

providing evidence that two layer cases can approximate the same conditions as the varying density

cases as long as both Fr1 and D/H are included when estimating KE∗2 .

With all of the density profiles for the medium topography in Fig. 5.7(c), the data from the

three remaining topographies from Figs. 5.4-5.6 are shown in Fig. 5.8 with data from the steep

topography in Fig. 5.8(a), sinusoidal in (b), and complex in (c). Each graph, including the medium

topography data in Fig. 5.7(c), contains a curve fit of all the data associated with the specific

topography, except for the complex topography where theory and direct simulation data are the

best fit as proximity to the topography and turning depth decrease confidence in the other methods.
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Table 5.5: Coefficients corresponding to Eq. (5.23)
for the trendlines associated with

each topography.

Topography C1 C2 R2

Medium -0.4793 -0.0758 0.7234
Steep -0.3015 -0.8051 0.4275
Sinusoidal -0.2617 -0.4930 0.3593
Complex -0.2898 -0.5462 0.4971

Coefficients and R2 values for the trendlines in Figs. 5.7(c) and 5.8 are listed in Tab. 5.5.

Comparing these values to those listed for individual density profiles in Tab. 5.4, we note that the

sinusoidal topography has the most similar slope (C1) between the two tables, though it also has

the smallest R2 value indicating the largest differences between each of the methods. Interestingly,

the slope of the curve fit for all the medium topography data is larger here than for any of the fits

listed in Tab. 5.4, though it is similar to the exponential density profile. Ranges of Fr1D/H for

the different density profiles for the medium topography vary, but the data together shows a clearer

overlap of the methods and the density profiles, and the trendline fits the data very well. This

improved fit is due to the medium topography having the smallest slope, Stop,m, which generates

the least amount of turbulence so the indirect simulations and experiments are more accurate.

To better understand the impact of topography shape on the relative kinetic energy in the

propagating region, the trendlines from Figs. 5.7(c) and 5.8 are plotted together in Fig. 5.9. Al-

though the trendline for the complex topography is a fit only to the theory and direct simulation

data, it is still included here as general estimate of KE∗2 . For Fr1D/H < 2, the highest propagating

energy is from waves generated by the medium topography because it has the smallest maximum

slope and generates the least turbulence. Sinusoidal and complex topographies have nearly the

same propagating energy, and the steep topography has the lowest. Both the medium and sinu-

soidal topographies have the same Stop,m and similar widths, but the kinetic energy of the medium

topography internal waves decays more rapidly with Fr1D/H, such that the waves associated with

sinusoidal topography will have a larger energy when Fr1D/H > 2. A higher overall propagating
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Figure 5.9: Trendlines for each topography matching those from Fig. Figs. 5.7(c) and 5.8.

kinetic energy is also seen for the complex topography compared to the steep topography, although

the complex topography has a larger Stop,m based on the individual peaks. When calculating Stop,m

for the overall Gaussian fit of the complex topography excluding the peaks, Stop,m = 2.5, which

is only slightly larger than the medium and sinusoidal topographies. Past research has shown a

topography with a smaller Stop,m will have generally result in internal waves with more kinetic en-

ergy [64,100]. Based on actual values of Stop,m, the steep topography would have greater KE∗2 than

the complex topography, but the Gaussian fit and the trendlines of Fig. 5.9 indicate the opposite.

In this case, although there are many peaks in complex topography, the overall energy transfer is

based more on the general shape of the topography. However, this is not true for the sinusoidal

topography where, based on the Gaussian fit described in Sec. 5.4.4, Stop,m = 0.98, smaller than

the medium topography. It is likely that the relative closeness of the individual peaks of the topog-

raphy affects whether or not the energy in the propagating region is affected more by the individual

peaks or the overall shape of the topography [90]. Thus, both Stop,m and the actual shape of the

topography, including peaks, must be taken into account in predicting KE∗2 .
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With trendlines defined for both density and topography, estimates of KE∗2 can be made for

a wide variety of scenarios using Eq. 5.23 and Tab. 5.5. Based on these equations, an estimate of

the kinetic energy of internal waves generated from an evanescent region can be made for oceanic

scenarios where the topographies are similar to those listed here. In addition, the trends of Fig. 5.9

provide general guidelines for all topographies and density profiles. When Fr1D/H > 4 internal

wave kinetic energy is between 1.5 and 2 orders of magnitude less than the kinetic energy of the

originally generated evanescent wave. From this, we recommend using Fr1D/H = 4 as a limit for

when non-negligible kinetic energy may pass from evanescent waves into a propagating region.

5.6 Conclusion

This work has presented a comparison of the kinetic energy density of four topographical

shapes and four density profiles using six different methods. Each of the methods showed similar

trends in energy. Based on trends in the average, normalized propagating wave energy, KE∗2 , the

effects of topography slope (Stop,m), the presence of multiple peaks, and density profile were each

explored.

Direct comparisons of the different methods for normalized energy, KE∗, were made in

Figs. 5.1 and 5.2, where it was seen that the indirect simulations and experiments show significant

oscillations in the data in the evanescent region and near the turning depth. These methods perform

best when far from either a topography or a turning depth. Also, the direct simulation data showed

very similar values to the theoretical data, both for the full and 1/10 amplitude simulations.

In Figs. 5.3-5.6, comparisons of the methods were discussed for KE∗2 . In general, all

methods follow the same trends as indicated by the theoretical data that propagating kinetic energy

decreases with increasing Fr1D/H. Experimental data did not follow the trends as well for steep

and complex topographies, both of which have the highest values for Stop,m while the complex

topography cases had the smallest evanescent regions. From the slopes of the density data for

each topography in Tab. 5.4, the data collapses best when all density data is combined for one

topography, indicating the importance of Fr1 over individual density profiles.
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From Fig. 5.7, the two layer density profiles only follow the same propagating kinetic

energy trends as the other density profiles when KE∗2 is calculated as a function of the combined

nondimensional term Fr1D/H. This provides evidence that using a two layer density profile can

approximate the kinetic energy density of constantly varying density scenarios when both the ef-

fects of stratification and the relative location of the topography are included.

Figures 5.7(c) and 5.8 includes all methods and all density profile data for each individual

topography, along with trendlines based on all (medium, steep, sinusoidal), or some (complex) of

the data. These trends are explored Fig. 5.9. While the medium and sinusoidal topographies have

the same Stop,m, the medium topography has greater KE∗2 for Fr1D/H < 2, and the sinusoidal is

greater for Fr1D/H > 2. Similarly, the complex topography has the largest Stop,m, but indicates

more energy than the steep topography. These findings indicate that a combination of both Stop,m

and the actual topography shape, including peaks, directly influence the amount of kinetic energy

transferred into the propagating region. Based on the trends, we recommend that Fr1D/H = 4

be set as an upper limit for estimating propagating energy from an evanescent region. In these

situations, a simple estimate of KE∗2 can be made using Eq. (5.23) and Tab. 5.5.

138



CHAPTER 6. SYNTHETIC SCHLIEREN AND PARTICLE IMAGE VELOCIME-
TRY: AN INVESTIGATION OF TWO EXPERIMENTAL TECHNIQUES FOR INTER-
NAL WAVE KINETIC ENERGY DENSITY

This chapter represents a full manuscript in preparation for submission to Experiments in

Fluids.

6.1 Contributing authors and affiliations

Allison Lee, Kyle Hakes, Julie Crockett, Department of Mechanical Engineering, Brigham

Young University, Provo, UT 84602

6.2 Abstract

Kinetic energy density of internal waves generated from evanescent regions is compared for

two different experimental methods: synthetic schlieren (SS) and particle image velocimetry (PIV).

Multiple topography shapes and density profiles are used with each method. Both experimental

processes show similar wave beam characteristics in the evanescent and propagating regions, and

the same trends for variations in the kinetic energy density of the propagating internal waves.

Specifically, kinetic energy decreases as (1) the relative strength of the natural frequency in the

evanescent region decreases and (2) the size of the evanescent region increases. SS experimental

methods generally overestimate kinetic energy relative to PIV methods. However, SS and PIV

data correlate well in both the evanescent and propagating regions away from the topography and

turning depth, regions where SS processing assumptions break down.
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6.3 Introduction

The density of stratified fluids, such as the ocean and atmosphere, varies with height. When

a stratified fluid is disturbed, for instance by the tides in the ocean or winds in the atmosphere over

topography, internal waves can be generated. If the frequency of the disturbance (ω) is less than

the natural frequency of the fluid (N), internal waves are generated. Stratification strength is based

on the rate of density change, which defines N,

N2 =
−g
ρ0

dρ

dz
(6.1)

where g is the gravitational constant and ρ0 is a reference density. When N < ω , evanescent waves

are formed. Evanescent waves move vertically and their amplitude decays at an exponential rate.

Previous work has shown that evanescent waves can become propagating waves if they pass into a

propagating region (N > ω) [5, 18, 82, 100]. The location where the evanescent wave becomes a

propagating wave (N = ω) is called a turning depth.

To investigate the amount of energy in internal waves passing through a turning depth,

experiments can be a valuable addition to observations and simulations. Synthetic schlieren (SS) is

a prevalent experimental method for internal wave studies as seen by the work of [20,34,58,63,99,

104,108], among others. SS takes advantage of the deflection of light rays passing through a fluid.

In a stratified fluid, as both evanescent and internal waves travel away from their generation point,

the waves heave the fluid up and down altering the local density. A camera focused on a random

dot pattern behind the experimental apparatus captures the apparent movement of the dots created

by local variations in density which leads to local variations in index of refraction. Comparing the

refracted image to an image taken of the undisturbed stratified water in the tank, the change in N

can be obtained. Further processing allows pressure and kinetic energy estimates [20, 58, 99, 100].

SS has been used previously to investigate number of internal waves flows including harmonic

generation [20], microscale waves [110], and colliding wave beams [46]. Here, our interest is in

internal waves propagating through varying density profiles.
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SS has been used to study internal waves tunneling through multi-layered density profiles,

where the waves move from a propagating region, through a mixed (N = 0) or evanescent region,

and into another propagating region. A transmission coefficient (T ) describes the percentage of in-

cident internal wave energy that passes through the weakly stratified region and into a propagating

region. Sutherland and Yewchuk [80] used SS to confirm linear theory results for the transmission

coefficient for internal waves passing through a mixed region, and this work was expanded by

Gregory and Sutherland [79] who found T based on evanescent regions. Tunneling has also been

studied with SS by Mathur and Peacock [78] who found transmission and reflection coefficients

for variety of nonuniform density profiles. In each of these scenarios, the time rate of change of N2

gathered from SS experiments is used to approximate T and compare experimental data to linear

theory. These examples also focused on internal waves passing through small evanescent regions.

Here, we will use the methods described by Wunsch and Brandt [20] concerning SS data to directly

estimate kinetic energy of both evanescent and internal waves.

Another imaging method has also been used with internal waves, Particle Image Velocime-

try (PIV) [63]. With PIV, neutrally buoyant particles are seeded into a fluid flow and tracked to

estimate the velocity field in the fluid [62]. PIV can be used to study both internal and evanes-

cent waves. To characterize the decay of evanescent waves, [64] used PIV to validate numerical

simulations of internal waves entering an evanescent region. These experiments are different than

tunneling examples provided earlier because there were only two regions being explored. Looking

at both evanescent and internal waves, Paoletti et al. [18] used PIV to estimate radiated power of

internal waves formed from an evanescent region and their results matches very well with their

numerical simulations.

Inherent to all stratified flow experiments is that the index of refraction of the fluid being

studied will vary as waves move through the fluid. While SS uses this in order to define variations

in N2, a varying index of refraction could cause inaccurate particle tracking in PIV. To address this

problem, Dalziel et al. [63] used simultaneous SS and PIV experiments in a stratified flow. SS data

was used to define the density field while PIV defined the velocity field. Corrections were made to
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the velocity field based on the SS data, and they found that particle movement caused by the index

of refraction is small, but not completely negligible. Using SS density field data is important to

correct PIV data when there are significant variations in the density field.

Although both PIV and SS can be used to study internal waves, the kinetic energy results

of each method have not been directly compared. It is know that the cost of setting up a PIV

experiment can be prohibitive, but the results easily translate from velocity fields to energy or

power. In contrast, SS experiments are less expensive to setup, but results are generally used to

define density fields or stratification profiles. Recent work by Lee et al. [111] used SS experiments

to estimate energy flux by from density field data, which can be used to estimate internal wave

energy flux in the ocean. Here, we present a comparison of kinetic energy estimates using both

PIV and SS in order to allow confident use of the best or cheapest method available. To explore

capabilities of each method in a range of situations, a variety of density profiles are used. The

majority of the generated waves are initially evanescent that pass through a turning depth becoming

propagating internal waves. Kinetic energy is estimated throughout the wave depths for a variety

of topographic shapes. Both PIV and SS are performed for all tests and regions where each are

accurate are defined.

In Sec. 6.4 experimental setup for both the SS and PIV methods are described. Section 6.5

contains results and side by side comparisons of each method, with a discussion of the results and

future work presented in Sec. 6.6.

6.4 Methods

This section will outline the density profiles and topographies used for each set of exper-

iments, provide information on the individual processes of SS and PIV, and describe the filtering

process used to estimate final propagating wave kinetic energy.

Figure 6.1 is a sketch of the experimental setup. Figure 6.1(a) specifically displays the SS

setup, showing a side view of the camera, mask, and light box used in SS. The camera focuses

on the mask, which is a random patterned of dots illuminated by the light box, and captures the
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Figure 6.1: Experimental setup of (a) SS and (b) PIV experiments

Table 6.1: Equations for each of the density profiles.

Profile Number Profile Equation

1 One Layer Linear ρ = az+b
2 Two Layer Linear ρ1 = az+b;ρ2 = cz+d
3 Quadratic ρ = az2 +bz+ c
4 Cubic ρ = az3 +bz2 + cz+d
5 Exponential ρ = aebz + c

apparent motion of the dots needed to for the SS process [58]. Figure 6.1(b) indicates the PIV

setup where the front view shows the general location of the laser sheet relative to the topography.

The tank shown is acrylic with a length, width and height of 0.15 m, 2.45 m, and 0.91 m. To

reduce wave reflections in the tank, the bottom was lined with matting. A modified version of

the double bucket method [93] was used to fill the tank to a height between 0.55 m and 0.75 m

with one of the following density profiles: one layer linear, two layer linear, quadratic, cubic, or

exponential. These correspond with N2 profile types; uniform, two layer uniform, linear, quadratic,

and exponential, respectively. Specific density profiles fit the equations outlined in Table 6.1 where

ρ has units of kg/m3, z has units of meters, and a, b, and c are coefficients calculated from the

corresponding curve fit. Units for each coefficient vary based upon density profile. Density profile

curve fits had an average R2 = 0.997 for all cases. Due to mixing, tank was emptied, cleaned, and

re-filled every 10 tests. Before the first test, density measurements were taken every 3 cm, and then

every 5 cm after every fourth test.
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Table 6.2: Names, equations and images of the four topography
profiles. All units are in meters.

Name Equation Profile

Medium
Gaussian

h = 0.1e−x2/0.04242

Steep
Gaussian

h = 0.1e−x2/0.01062

Sinusoidal h = 0.0355sin(2πx/0.11)

Complex h = 0.16715e−x2/0.05662 |14 sin(520x)+ cos(115x)|

To create internal waves, a topography was inverted and placed at the water line of the tank

(Fig. 6.1), with z = 0 at the bottom of the tank. Four topography profiles were used and they will

be referenced in this paper as medium, steep, complex, and sinusoidal topographies. Governing

equations and profiles for each topography are listed in Table 6.2. Medium and steep topographies

are based on Gaussian distributions whereas the complex topography was modeled after the topog-

raphy outlined by [18]. For comparison, the sinusoidal topography consisted of two periods with

a maximum slope that is equivalent to the maximum slope of the medium topography. All den-

sity profiles are with the medium topography and all topographies are tested with the exponential

density profile.

Specific details for each experimental case are listed in Tab. 6.3 including case number,

excitation frequency ωd, height of the turning depth ztd, total water height ZH, excursion length

L, and three nondimensional numbers, D/H, Fr1, and Fr1D/H. D/H is a ratio of the distance

between the tip of the topography and the turning depth (D) to the height of the topography (H)
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Table 6.3: Experimental details for each case. The medium topography was used for cases 1-12,
steep for case 13, sinusoidal for cases 14 and 15, and complex for case 16. All lengths are in

meters. The units of a, b, c, and d are defined by the appropriate density profile
in Tab. 6.1.

Case Density a b c d ωd ztd ZH L Fr1 D/H Fr1D/H

1 1 -166 1123 0 0 0.8 NA 0.61 0.05 NA NA NA
2 1 -166 1123 0 0 0.9 NA 0.61 0.05 NA NA NA
3 1 -146 1117 0 0 0.81 NA 0.70 0.05 NA NA NA
4 1 -146 1117 0 0 1.41 NA 0.70 0.05 1.18 NA NA
5 2 -215 1114 -13 1031 0.8 0.41 0.63 0.045 2.25 1.2 2.70
6 2 -215 1114 -13 1031 1.0 0.41 0.62 0.045 2.77 1.1 3.05
7 3 59 -161 1109 0 1.01 0.48 0.66 0.05 1.02 0.77 0.79
8 4 -27 172 -230 1097 1.22 0.24 0.61 0.044 1.16 2.65 3.08
9 4 -27 172 -230 1097 1.12 0.24 0.61 0.045 1.07 2.65 2.83
10 5 104 -3 995 0 1.05 0.34 0.66 0.05 1.15 2.21 2.53
11 5 118 -2 1000 0 0.91 0.51 0.70 0.045 1.05 0.87 0.91
12 5 114 -2 1003 0 1.09 0.34 0.70 0.048 1.16 2.56 2.98
13 5 129 -2 984 0 1.0 0.45 0.63 0.04 1.03 0.85 0.87
14 5 121 -2 979 0 1.05 0.39 0.59 0.049 1.07 1.93 2.06
15 5 129 -2 984 0 1.0 0.45 0.63 0.041 1.05 1.64 1.72
16 5 131 -2 980 0 1.04 0.4 0.63 0.04 1.01 0.17 0.17

as shown in Fig. 6.1(b). Fr1 = ωd/N1 is the average Froude number in the evanescent region. N1

is the average natural frequency over the height D. Combining the two terms, Fr1D/H provides

insight on the combined effect of the distance the evanescent wave travels and the strength of the

stratification in the evanescent region. Note that cases 1-4 are one layer, uniform N cases. As such,

there is no turning depth and D/H does not exist. In cases 1-3, N > ω and thus no evanescent

region exists and Fr1 is not applicable.

For both methods, the kinetic energy density of the waves is calculated as

KE = Ũ2 +W̃ 2 (6.2)

where Ũ and W̃ are the Fourier amplitudes of the horizontal and vertical velocities, respectively.

Only kinetic energy near the excitation frequency (±5%) are included.
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6.4.1 Average kinetic energy

Previous research has shown that each of the topographies used here generate evanescent

and internal waves at a narrow range of frequencies, but a wide range of horizontal wavenumbers

depending on the topography [100, 112]. To accurately compare the two experimental methods

and four topographies used here, it is necessary to average kinetic energy over a range of k values

in a manner individual to the topography. Nappo [5] showed that the vertical velocity of internal

waves from a Gaussian shaped topography is dependent upon the term kBexp[−(kB/2)2] and is at

a peak where

kB =
√

2 (6.3)

where k is the horizontal wavenumber of the wave and B is the Gaussuan parameter of the topgor-

pahy. For the medium and steep topographies, B = 4.24 cm and 1.06 cm, respectively (See Tab.

6.2). However, Lee et al. [112] showed the predicted peak wavenumbers based on this value do

not match with what is seen both in the experiments and the numerical simulations. Instead, they

found a new Gaussian parameter, based on both the width of the topography and the excursion

length is needed. By defining

BL =
W +L

6

√
2 (6.4)

where W is the width of the topography, then the new predicted dominant wavenumber calculated

from Eq. 6.3 matches that of the experiments and numerical simulations. Based on Nappo’s work,

kinetic energy was averaged over the range of 0.5 < kBL < 5 for the Gaussian topographies as the

kinetic energy decayed rapidly for kBL > 5.

For the complex topography, although the Gaussian curve is multiplied by sine and cosine

terms, B from the original equation in Tab. 6.2 still applies to the general shape. A Gaussian fit can

be applied a single peak of the sinusoidal topography with with B = 0.0314. To encompass both

peaks, B is doubled and the resulting fit is hsine,gaus = 0.071exp[−(x− 0.0819)2/0.06282). Even

though this shape has only one peak, it matches the overall width of the sinusoidal topography. To

include the excursion length in B, it was found that BL for the medium topography is approximately
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equal to B + L/4. As both the sinusoidal and complex topographies are similar widths to the

medium Gaussian, this was used to account for the excursion length for these two topographies.

With BL full defined for each topography, kinetic energy for both SS and PIV was averaged

over 0.5 < kBL < 5 for each of the topographies to provide a uniform way to accurately compare

the two experimental methodologies.

6.4.2 Synthetic schlieren

For the SS experiments, a light box behind the tank illuminated a matrix of dots. The topog-

raphy was oscillated at the set frequency, ω , for 15 periods to bring the experiment to steady state

conditions. Images were taken with a jAi Cv-M4+Cl progressive scan camera for three minutes.

Images then were processed at 6 fps through the commercially available software, Digiflow [58].

Processing the data in Digiflow provides ∇ρ ′/ρ0 , or the variation in density with respect to x and

z. Using the ∂ρ ′/∂ z component and multiplying by gravity, a variation on Eq. 6.1 can be written

as

∆N2 =
−g
ρo

∂ρ ′

∂ z
(6.5)

which represents the local difference in natural frequency.

By assuming that the generated waves are planar with small amplitude, a relationship be-

tween Ũ , W̃ , and ∆Ñ2 (Fourier amplitudes of ∆N2) can be made for the evanescent and propagating

regions. Kinetic energy density is calculated using Eq. 6.2. Complete details of the process are

found in [20]. Specifically, in the evanescent region, [100] defined

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

(6.6)

where k is the horizontal wavenumber and q is the imaginary vertical wavenumber such that m = iq

in the evanescent region. The subscript 1 refers to the evanescent region. For the propagating
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region, [20] defined

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

(6.7)

with the subscript 2 denoting the propagating region. Near the turning depth, the small amplitude

approximation breaks down and [100] recommend using kinetic energy away from the turning

depth beginning at heights where N/ω > 10%. However, due to experimental setup limitations,

this is not always possible.

6.4.3 Particle image velocimetry

SS test images were processed and reviewed to locate areas of strong wave activity in the

evanescent and propagating regions and PIV tests were performed in those regions. A ruler was

placed in the tank at these regions, and a correlation picture was taken with both the PIV and SS

camera in order to correlate the locations of the two images with each other. PIV tests were run

immediately after each SS test in the same tank and under the same steady state conditions. A

LaVision Imager Intense camera situated 3.5 m from the tank with a resolution of 1376 x 1040

pixels captured the PIV images.

To perform the PIV experiments, the tank was seeded with titanium dioxide particles with

a settling velocity of 3 cm/min. Dual ND:YAG lasers were fired at a rate of 4.5 Hz with a 90 ms

separation between the lasers. Test were run for 3.7 minutes, capturing 1000 pairs of images which

were processed by DaVis software using cross-correlation between image pairs with two passes

over the experiment window. The first pass used an interrogation window of 64 x 64 pixels with

a 50% window overlap. Then, the interrogation window was narrowed to 16 x 16 pixels with

75% overlap. DaVis processing generated horizontal (u) and vertical (w) velocities in matrices

of 344x256 points. In order to compare the PIV results to those obtained with SS, a 2D Fourier

transform in x and t was performed on the velocities and the Fourier amplitudes were used to

calculate kinetic energy using Eq. 6.2.
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Figure 6.2: ∆N2 data from case 14 for SS tests in (a) and (b), u data from PIV tests in (c)-(f).
Unfiltered data is shown in the left column, while the right column shows data that has been
filtered.

6.5 Results

To compare the SS and PIV imaging methods, experimental results will be compared both

qualitatively and quantitatively. First, two cases will be explored in depth with experimental images

and analysis. Then, the two methods will be compared across varying topographies and density

profiles to explore the validity of SS and PIV in different applications.
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Figure 6.3: Images from case 16 with the same setup as Fig. 6.2, including both SS and PIV data.

Figs. 6.2 and 6.3 are ∆N2 and horizontal velocity (u) fields for cases 14 (sinusoidal) and 16

(complex) with exponential density profiles. Each image is the view from the camera looking at

the experimental tank, with height (cm) on the abscissa and width (cm) on the ordinate. SS images

are shown in (a) and (b) and the colorbar corresponds to ∆N2 (See Eq. 6.5). In the SS images,

two black boxes outline the location of the PIV images of u shown in (c)-(f). In (a), (c), and (e),

the figures are not filtered and in the second column, images (b), (d), and (f) are filtered in k. A

150



band pass filter was applied to include only the wavenumbers k = 8.6−76.0 cm−1 (wavelengths of

8.2-73.1 cm) to enhance visual clarity and to isolate wavenumbers used in the energy calculations.

Regarding Fig. 6.2, associated with case 14, both the SS and PIV data show clear wave

beams at similar angles in the experimental window although the type of data is different between

the methods. Here, the turning depth is located at ztd = 0.39 which is near the intersection of the

two PIV tests. Near the topography, turbulence from the oscillations is observed in both meth-

ods and can be visualized by non-coherent variations in ∆N2 or u magnitudes. Interestingly, the

evanescent region wave beams captured by both the SS and PIV tests are not vertical as would

be expected because N < ω in this region. However, there is a distinct difference in beam angle

between the evanescent and propagating region as seen in Figs. 6.2(d) and (e). This difference is

caused by turbulence generated waves, which have a smaller frequency such that they are prop-

agating internal waves, are overlapping the topographically generated evanescent waves in (d).

However, the evanescent waves generated by topographic oscillations clearly become propagating

internal waves, which are the waves in (e) and (f).

In case 16, shown in Fig. 6.3, the turning depth is at ztd = 0.4 m where significant noise

can be seen in the SS image in (a) due to the complex topography. Filtering removes this noise

and show horizontal wave beams from 25 < x < 50 cm. Here the topography is very close to

the turning depth such that general fluid oscillates back and forth with the topography are more

apparent. In the PIV images of the evanescent region, (c) and (d), vertical beams of evanescent

waves are apparent, with a discontinuity in the waves right below the turning depth. Propagating

waves are clear in (e) and (f) especially in the lower left corner with an angle about 24◦ below

the horizontal and a horizontal wavelength of 6 cm. In the same region of Fig. 6.3(b), the SS

data indicates a wave angle near 28◦ with a wavelength of 8 cm. Again, the SS and PIV data are

showing qualitatively similar wave beam phenomena in both sets of images.

To further explore the makeup of the waves indicated by both PIV and SS, Figs. 6.4 and 6.5

compare Fourier amplitudes of horizontal velocity, Ũ , (PIV) and ∆Ñ2 (SS) in the evanescent and

propagating regions for cases 14 and 16, respectively in phase space. Wavenumber (k) is plotted
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Figure 6.4: Contours of Fourier amplitudes of velocity in the left column and ∆N2 in the right for
case 14 in the evanescent region (a,b) and propagating region (c,d).

on the abscissa and frequency (ω)is on the ordinate. In both figures, (a) and (c) are from SS tests,

while (b) and (d) are from PIV. Data for (a) and (b) are at z = 0.45 m and z = 0.43 m, respectively.

These heights correspond to the horizontal lines halfway between the tip of the topography and the

turning depth in each case. Data for (c) and (d) are in the propagating region along a horizontal

line where N/ω = 1.1, or a 10% increase in N away from the turning depth at z = 0.28 m (case

14) and z = 0.25 m (case 16).

In case 14, the excitation frequency is ω = 1.05, which also corresponds to the large ampli-

tudes present in (a)-(d) of Fig. 6.4. in the evanescent region both methods show a spread of energy

to a range of frequencies. A particularly clear peak in the second harmonic is captured by the PIV

which is not seen in the SS. This trend holds for many other cases as well. Both methods appear to

152



(b)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

10
-3

(d)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

10
-3

(a)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

10
-3

(c)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

10
-3

Figure 6.5: Fourier amplitudes of velocity and ∆N2 as in Fig. 6.4 for the complex topography (case
16).

capture the propagating waves well. The spread in wavenumber is expected due to the two peaks

of the topography.

Next we explore the waves generated by the complex topography in Fig. 6.5. Here in the

evanescent region, relatively clear waves are seen at the excitation frequency ωd = 1.05 and har-

monics, however the waves are less clear in the propagating region. This more realistic topography

consists of varying slopes and multiple peaks resulting in a wider range of generated waves. In

addition, the multiple peaks and steep slopes lead to greater turbulence further increasing the range

of generated waves. Due to these multiple waves it seems triad interactions are occurring and in

the propagating region for both PIV and SS tests, there are peaks in amplitude near ω = 0.55, 1.05

(ωd), and 1.50. These peaks in frequency are more clear in the SS test. However, in calculating the

kinetic energy, we will focus only on the energy at the forcing frequency.
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Figure 6.6: Kinetic energy density for case (a) 1, (b) 2, (c) 3, and (d) 4 each with one layer density
profiles. Cases 1-3 are full propagating regions while case 4 is an evanescent region.

To begin a more qualitative comparison between the SS and PIV data, cases 1-4 are plotted

in Figs. 6.6(a)-(d), respectively. All four cases used the medium topography and each have a one

layer linear density profile and thus do not contain turning depths. Figures 6.6(a)-(c) are entirely

propagating regions, while Fig. 6.6(d) is an evanescent region. SS energy is the blue solid line,

while PIV energy is the red dashed line. Kinetic energy on the abscissa with varying scales for

each figure, while the scales are the same for the height on the ordinate. SS energy shows some

local oscillations in each figure, with signification variations in Fig. 6.6(d), while the PIV energy is

smoother, especially in Fig. 6.6(d). These oscillations were also seen in the SS data and numerical

simulation data of Lee et al. [112] and are likely inherent to the ∆N2 data used to estimate kinetic

energy.

Because Figs. 6.6(a)-(c) are wholly in a propagating region, we use Fr2 = ωd/N2 to define

the region, where N2 is the natural frequency of that region. N2 = 1.276s−1 for cases 1 and 2, and
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N2 = 1.197s−1 for case 3. As such, Fr2 = 0.63, 0.70, and 0.67 for cases 1-3 respectively. Internal

waves are known to increase in energy as Fr2 approaches unity [4]. Figures 6.6(a)-(c) do show an

increase in the overall kinetic energy for PIV and SS with Fig. 6.6(a) indicating the least energy,

followed by (c), and finally (b). Also, the PIV and SS energy follow similar trends and have similar

values for different portions of the data. In Figs. 6.6(a) and (b), the SS energy is larger than the

PIV energy, while the opposite is true for the majority of Fig. 6.6(c). As Fig. 6.6(c) has the same

excitation frequency as (a), and neither the largest nor smallest Fr2 value, there is not a distinct

reason as to why the PIV energy is greater than SS in that particular case.

In Fig. 6.6(d) there is an excellent agreement between the SS and PIV tests. Kinetic

energy decreases throughout this evanescent region, as is expected for decaying evanescent waves.

Although there are more oscillations in the SS data for this figures compared to Fig. 6.6(a)-(c), the

PIV energy passes directly through the oscillations and matches the average trend of the SS data

very well. In all of the graphs of Fig. 6.6, the PIV and SS data show good agreement.

Continuing the comparison between the SS and PIV data, four cases, all with exponential

density profiles, have been chosen and plotted in Fig. 6.7 with kinetic energy on the ordinate and

height on the abscissa. As before, SS energy is plotted as a solid blue line, PIV energy is the dashed

red line. In addition, the turning depth is the horizontal black dash-dot line. Note that the scales are

different for each individual figure. In Fig. 6.7(a) and (b), cases 14 and 16 are shown, which are

the same cases from Figs. 6.2-6.5 with the sinusoidal and complex topographies. Figures 6.7(c)

and (d) are the kinetic energy of case 13 (steep topography) and case 12 (medium topography).

In Figs. 6.7(a), (c), and (d), the kinetic energy decreases through the evanescent region,

and then remains relatively constant through the propagating region. In the SS data, there is an

increase near the turning depth due to the breakdown of the low amplitude assumption needed to

estimate the kinetic energy. Because of this, the energy in the evanescent in Fig. 6.7(b) shows an

immediate increase due to the relatively close proximity of the turning depth. In contrast, the PIV

data does not indicate a significant increase or decrease of energy at the turning depth and there is

a decay of the kinetic energy in the evanescent region in each of the figures.
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Figure 6.7: Kinetic energy as a function of height for the (a) sinusoidal, (b) complex, (c) steep, and
(d) medium topographies in an exponential density profile.

For case 14, the energy estimates from PIV decreases through the evanescent region, across

the turning depth, and into the propagating region with almost no visible variations between the

upper and lower PIV tests. The two PIV tests overlap at 0.37 m. There is some overlap of PIV

and SS kinetic energy in the evanescent region, and the general trend of a decrease in KE in the

evanescent region is seen, but then there is an increase in SS energy at the turning depth, which is

to be expected with the breakdown of assumptions [100]. In the propagating region, both the PIV

and SS show a slight decrease in energy, but the SS energy is larger.

In case 16, which used the complex topography, there is a significant separation between

the PIV and SS energy in the evanescent region. The complex topography is known to generate

turbulence near the topography due to the multiple sharp-sloped peaks. This creates nonlinear

effects, which adversely affects the SS method of estimating kinetic energy seen by the separation

between the PIV and SS energy. Also, the topography is very near to the turning depth, which also
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negatively impacts SS estimates of energy. This separation remains until the internal waves have

propagated away from the turning depth. Once the nonlinear elements of the wave have decayed,

the two methods again match well in the propagating region, with the second PIV test lying almost

exactly on top of the SS kinetic energy.

Figure 6.7(c) shows the energy associated with the steep topography (case 13). Here, in the

single PIV test performed, the kinetic energy is generally less than the SS kinetic energy, similar

to the previous two cases. Significant turbulence is generated near the steep topography, which

accounts for the separation in the evanescent region. Unfortunately, since the PIV test does not

extend for into the propagating region, it is not possible to see if the two methods match away from

the turning depth, though the SS values do seem to be approaching the PIV.

In the final case of the medium topography, Fig. 6.7(d), unlike the majority of the cases, the

PIV kinetic energy is larger than the SS energy for much of the evanescent region. At the turning

depth, the SS energy increases rapidly and in the propagating region, the PIV energy and SS energy

match well. Both show a rapid decay in energy near the bottom of the tank, due to waves breaking

up near the filtering mats places in the bottom of the tank.

Each of these four graphs in Fig. 6.7 indicate that the PIV and SS kinetic energy match quite

well in the propagating region. As this is generally the region of most interest due to propagating

energy, we expect either method provides similar results and thus may be used for propagating

energy estimates past the evanescent region and turning depth. Greater differences within the

evanescent region and near the turning depth occur regardless of topography shape and results of

SS are not valid near the topography or turning depth.

The previous figure focused on four different topographies for an exponential density pro-

file. Next, we present experiments that were performed with the medium topography for multiple

density profiles. Figure 6.8 shows the kinetic energy of cases 4, 5, 7, and 8 which are the one-layer,

two-layer, quadratic, and cubic density profiles, corresponding to (a)-(d) in the figure. The final

density profile, the exponential profile, is Fig. 6.7(d). In case 4, previously shown in Fig. 6.6(d),

there is no turning depth is present in Fig. 6.8(a) due to the constant N. Scales vary for each axis
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Figure 6.8: Kinetic energy as a function of height for the medium topography with (a) one layer,
(b) two layer, (c) quadratic, and (d) cubic density profiles.

for each figure, which allows for a close inspection of each individual figure. Similar to Fig. 6.7,

in Fig. 6.8 the SS data shows significant oscillations in energy in the evanescent region. However,

in these cases, and in Fig. 6.7(d), the SS oscillations decrease in the propagating region. In both

figures, the PIV data has little to no local variations. Similar oscillations were seen by Lee et

al. [112] in both the SS data and in simulation data that used the SS equations to estimate kinetic

energy. While some variation in the energy can be attributed to local variations of density in the

experimental tank, it is likely that there is some inherent error in the SS method which causes these

oscillations.

Comparing the kinetic energy of the PIV and SS data for each of the five figures, the best

match is seen for Fig. 6.8(a), a portion of (b), and the lower PIV test of 6.8(d) and 6.7(d). There is

no specific pattern here, as Figs. 6.8(a) and (d) are in the evanescent region, and Figs. 6.8(b) and

6.7(d) are in the propagating region, including near the turning depth.
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Figure 6.8(c) is also in the propagating region, but this parabolic density profile case shows

a separation between the PIV and SS energy. Similarly, in Fig. 6.8(b), the PIV and SS data is

separated for 0.25 < z < 0.32 m, but is almost an exact match between z = 0.32 and the turning

depth. In (c), it would be expected that these values match more closely as the heights covered

by the PIV test are far from the turning depth, which is the preferred scenario for the least error

between the methods. However, a similar separation is seen in the propagating region for Fig.

6.7(a).

We note that in the propagating region of Fig. 6.8(b), the PIV and SS kinetic energy match

well near the turning depth, but then the SS energy decreases further away. This is one of the few

cases where the PIV and SS energy are so similar near the turning depth. In calculating SS kinetic

energy density, the variation in the vertical wavenumber is assumed to be small, which breaks

down near the turning depth. However, in this case N is constant until an abrupt change to a new

constant N at the turning depth. This rapid change from low to high natural frequency does not

include the transition through an undefined vertical wavenumber. Thus the SS method of energy

calculation more accurately captures the energy in the internal waves for a two layer scenario.

Based on both Figs. 6.7 and 6.8, we conclude that, generally, the kinetic energy of the

PIV data matches well with SS data in the propagating region, but that the SS energy will gener-

ally overestimate this energy. More details of how much of an overestimate this may be will be

discussed further in this section.

Looking now at the data only in the evanescent region, note that in Fig. 6.8(a), the kinetic

energy decreases throughout the entire window because this one-layer case is entirely evanescent.

Although there are significant oscillations in the SS energy, the PIV energy is a good fit to the

general trend. In addition, the majority of the data in Fig. 6.8(d) is in the evanescent region and

both PIV tests match well with the general trends and average values of the SS energy, which

again oscillates more than the PIV. In all of the graphs of Fig. 6.7, the evanescent regions have

more separation between the PIV and SS data, but figures 6.8(a) and (d) indicate that it is not

inherently the evanescent region which increases the error between the two methods. Instead, it is
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Figure 6.9: Average kinetic energy in the propagating region for all topographies. Symbols follow
the legend shown, with the specific shapes for each topography. All SS points are in open blue
symbols and PIV points are filled red symbols.

the relative closeness to the tip of the topography and the turning depth which cause difficulties.

The tip of the topography can generate turbulence, which would affect the linear assumptions of

the SS estimate, as does the turning depth and rapid decrease in wavenumber.

Kinetic energy in the propagating region was averaged and is shown as a function of

Fr1D/H in Fig. 6.9. Synthetic schlieren results are shown with open symbols, while PIV re-

sults are filled symbols. Squares represent the medium topography, circles represent the steep,

triangles represent the sinusoidal, and diamonds represent complex. Since the vertical data of the

PIV tests were smaller than the SS domain, averages for each were defined over the PIV window.

In some cases, two PIV tests were run in the propagating region for one SS test. In these cases,

averages were taken for each individual PIV test and both points are included.

160



Two curve fits for the two experimental methods are also plotted. Both fits use the equation

ln(KE2) =C1xC2 (6.8)

with C1 =−15.51 and C2 = 0.096 for the SS fit and C1 =−16.26 and C2 = 0.070 for the PIV fit.

Goodness of fit is defined by the R2 values, with R2 = 0.713 for the SS curve and R2 = 0.660 for the

PIV curve. Trends from the data points indicate that increasing Fr1D/H results in a decrease in the

propagating kinetic energy. This trend is expected as an increasing Fr1 corresponds to a weakening

evanescent region, causing the kinetic energy of the evanescent waves to decay rapidly. In addition,

increasing D/H increase the space between the turning depth and providing a longer distance for

the evanescent waves to decay. Although there is error between the SS and PIV points, the overall

trends match well and the order of magnitudes are consistent across both methods. Based on the

curve fit for the Fr1D/H values shown, the SS kinetic energy is, on average, 1.7 times larger than

the PIV energy.

Regardless of shape, all topographies fit their respective curves well, as shown in Fig. 6.9.

Difference between PIV and SS decrease with increasing Fr1D/H, yet the error associated with

each topography is not consistently above or below the fir or altered with Fr1D/H. The largest

difference between PIV and SS kinetic energy is for the medium topography at Fr1D/H = 0.91,

from data taken in the propagating region. SS kinetic energy data for this point is decreasing and

approaching the PIV energy, but the average is still significantly higher than would be expected

for a comparison in the propagating region. The second set of data for the medium topography at

Fr1D/H = 0.91 is closer match, though still an order of magnitude apart, as would be expected for

data taken near the turning depth as these points are.

For the complex topography there are only two data points and both are for the same test

[See Fig. 6.9(b)]. PIV results are the same, while one of the SS data points is significantly larger.

At this point, half of the kinetic energy averaging distance is very near the tunic depth, which is

prone to error in SS calculations. However, the second set of PIV data, far from the turning depth,
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Figure 6.10: Average kinetic energy in the propagating region for the medium topography SS and
PIV data with three density profiles.

matches well with the SS data, once again leading to the conclusion that PIV and SS tests indicate

similar results when in the propagating region and far from the turning depth.

Exploring the effect of density profile, average kinetic energy in the propagating region of

tests with the medium topography and various density profiles is shown in Fig. 6.10. As indicated

by the legend, three density profiles are plotted with both SS and PIV data. Trend lines for each

data set are indicated by a blue dashed line for SS and a red dotted line for PIV. Each trend line

follows the same format as Eq. 6.8 with C1 = −15.06 and C2 = 0.118 with R2 = 0.702 for the

SS trend line and C1 =−15.97 and C2 = 0.088 with R2 = 0.636 for the PIV trend line. As is also

seen in Fig. 6.9, Fig. 6.10 indicates that KE2 decreases with increasing Fr1D/H. Similarly, there

is no distinctive trend in error between the SS and PIV data based on Fr1D/H. However, the error

between the two layer cases increases with increasing Fr1D/H, while the opposite is true for the
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exponential cases. Based solely on the trend lines, the difference between the cases is decreasing

overall, with the SS curve 1.7 times larger (on average) than the PIV curve fit.

Because the two cubic cases, cases 8 and 9, had data only in the evanescent region, they

are not plotted in Fig. 6.10. However, the data for case 8 was shown in Fig. 6.8(d). In addition,

case 9 had relatively good agreement between the PIV and SS data in the evanescent region, but

is one of the few cases where the PIV energy is higher than SS energy. Using the same averaging

scheme mentioned previously, case 8 has two PIV points for the average kinetic energy in the

evanescent region. Near the topography, the PIV energy is KE1 = 1.82x10−7 J/kg and SS is KE1 =

8.76x10−7 J/kg. Away from the topography the PIV energy is KE1 = 1.24x10−7 J/kg and the SS

energy is slightly higher with KE1 = 1.37x10−7 J/kg. Near the topography SS overestimates the

PIV energy, but matches it well away from the topography while still in the evanescent region. For

case 9 the average PIV kinetic energy in the evanescent region is KE1 = 5.65x10−8 J/kg while the

SS test is KE1 = 2.40x10−8 J/kg. The error for cases 8 and 9 is similar to that seen in both Figs.

6.9 and 6.10.

6.6 Discussion

This work compares data from two different experimental methodologies, particle image

velocimetry (PIV) and synthetic schlieren (SS), both qualitatively and quantitatively. Processed

images from the two cases show similar wave beam characteristics in the evanescent and propa-

gating regions of Figs. 6.2 and 6.3. Also, there are similar peaks in frequency and wavenumber

when the Fourier amplitudes of each method are compared in both regions (Figs. 6.4 and 6.5).

Although the type of data is different, with SS providing information about changes in the natural

frequency and PIV indicating velocity both are directly related to wave amplitude and properties of

propagation. Each method indicates the same excitation frequency and a similar spread of energy

over a range of wavenumbers.

Kinetic energy of the SS data is estimated using two different equations depending on

whether the data is in the evanescent region (Eq. 6.6) or propagating region (Eq. 6.7), though both
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rely on the Fourier amplitudes of ∆N2 and the small amplitude assumption. To provide a similar

data set to that of SS tests, all PIV velocities were also Fourier transformed to create Ũ and Ṽ .

Kinetic energy as a function of height for the different topographies and different density profiles

indicates that the difference between the two methods is the greatest when the SS data is near the

topography or the turning depth. Conversely, when far from either, the two methods match very

well, though the SS energy is in general 1.5-2 times greater than the PIV energy. Normalizing the

data would mitigate this difference. Exceptions include the 2 layer density profile where the PIV

and SS energy were almost an exact match.

Averaging the kinetic energy in the propagating region, based on the location of the PIV

data, and plotting it against Fr1D/H indicated that KE2 decreases with increasing Fr1D/H for all

topographies and all density profiles. In addition, the various topographies collapsed well onto the

same trend lines (Fig. 6.9), as did the multiple density profiles (Fig. 6.10). Based on these findings,

it is recommended that SS be used in experiments that are far from a turning depth or topography.

Results for SS compared well to PIV in both evanescent and propagating regions where the small

amplitude approximation needed for the kinetic energy calculations is still valid. We expect SS

results to be an overestimate of the data relative to PIV data in these regions, however, this ef-

fect could be mitigated in the future by using a normalizing method to compare relative energy

in future experiments. For experiments involving turning depths or which focus on the generation

mechanisms of waves use, we recommend PIV as the experimental process.
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CHAPTER 7. CONCLUSION

This dissertation has investigated propagating internal wave energy from topographically

generated evanescent waves passing through a turning depth. A linear theory model was created

and compared to experiments and direct numerical simulations. Propagating kinetic energy re-

sults from experiments, linear theory, and numerical simulations indicate that increasing Fr1D/H

causes a decrease in the kinetic energy of internal waves generated from an evanescent region.

Based on a range of topographies and multiple density profiles, the average, normalized kinetic

energy in the propagating region, KE∗2 , is significant only when Fr1D/H < 4. The comparison of

synthetic schlieren experiments to PIV experiments and numerical simulations indicate that syn-

thetic schlieren is a valid experimental method for both evanescent and propagating regions as long

as data is taken far from the turning depth.

An analytical model using linear theory and the WKB approximation was created. Hori-

zontal and vertical velocities are calculated for evanescent and internal waves in varying stratifi-

cations, which are then used to calculate kinetic energy density. As part of the completed model,

a smooth transition over a turning depth is estimated using the Airy function. Trends from the

model match those of the synthetic schlieren experiments for KE∗2 . However, due to experimental

non-linearities such as turbulence generation, the model kinetic energy is greater than that of the

experiments. Both the model and experiments with the medium and steep Gaussian topographies

indicate that the strength of the stratification in the evanescent region, Fr1 is an important factor for

the total energy transfer into the propagating region. The model was also used to estimate KE∗ for

a specific oceanic topography at 15◦N and 130◦E using data from WOCE and approximating the

topography as a Gaussian shape. Given the natural frequency profile and the tidal frequency, the
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model estimates 25% of the initial energy of the evanescent waves can be transferred into internal

waves propagating through the open ocean (See Fig. 3.13).

Kinetic energy density results from the model and experiments were compared to direct

numerical simulations for the medium Gaussian topography in an exponential density profile. To

more accurately capture the range of waves generated from the topography, results were expanded

such that a range of wavenumbers was included in KE∗2 . Using an adjusted Gaussian parameter

(BL) which includes the excursion length (L), kinetic energy was averaged over 0.5 < kBL < 5. In

numerical simulations, kinetic energy can be calculated in two ways: directly and indirectly. Direct

calculations refer to using the velocity fields to find kinetic energy, while indirect methods use the

density perturbation fields and the same set of equations used with the experiments to estimate

kinetic energy. A comparison of the direct and indirect methods indicated that the error between

the methods decreased in propagating regions away from the turning depth. For the 1/10 amplitude

simulations, the height where N/ω = 1.1 was sufficiently far to have less than 5% error between

the two methods. For the full amplitude simulations, this distance varied based on Eq. (4.36)

which is dependent upon Fr1D/H. Fr1D/H is a combined parameter which accounts for both the

strength of the stratification and the relative distance from the topography to the turning depth in

the evanescent region. All of the methods indicated that increasing Fr1D/H decreased KE∗2 . An

equation which correlates the kinetic energy of the theoretical model to the full amplitude direct

simulations was provided to easily estimate KE∗2 for the medium topography in an exponential

density profile for a range of Fr1D/H.

After comparing the above mentioned methods for one topography and one density profile,

this research was expanded to four topographies and four density profiles. Topography shapes

included a medium Gaussian, steep Gaussian, two peak sinusoidal, and complex. Two-layer linear,

parabolic, cubic, and exponential density profiles were used with all of the topographies. Again,

results were consistent with previous data, indicating that increasing Fr1D/H results in decreased

KE∗2 . Along with this trend, results from the Gaussian and sinusoidal topographies indicated that

KE∗2 for different density profiles collapsed well for individual topographies. Curve fits for all
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methods and all profiles were created for these topographies to create trendlines. Trends for the

indirect simulations and experiments were more prone to error for the complex topography due

to turbulence generated by the topography, and the trendline was fit only to the theoretical and

direct simulation data. All trendlines for the topographies indicated that an increasing maximum

slope, Stop,m, is a good indicator for decreasing KE∗2 for single-peak topographies (See Fig. 5.9).

Both the number of peaks and Stop,m need to be taken when estimating which topography will have

the largest KE∗2 . From a comparison of the four trends for the various topographies, KE∗2 is only

significant, or greater than 0.01, for Fr1D/H < 4.

Continuing with multiple topographies and multiple density profiles, experiments were

performed both with synthetic schlieren and particle image velocimetry (PIV). Previous results

indicated that indirect methods of calculating kinetic energy density were not as reliable in the

evanescent region compared to the propagating region. To explore this further, the direct method

of PIV was compared to the indirect method of synthetic schlieren. Different from previous results,

the kinetic energy density was not normalized, but the trends between the methods matched well.

Synthetic schlieren results were similar to PIV when far from a turning depth in both the evanes-

cent and propagating regions for all topographies and the multiple density profiles used with the

medium topography. Based on trendlines, synthetic schlieren experiments had 1.5-2 times more

kinetic energy than the PIV experiments, but these differences would decrease if the data from each

method was normalized. It is recommended that for experiments performed near topography or a

turning depth, PIV be used. However, synthetic schlieren is a good option for either evanescent or

propagating regions.

The material in this dissertation has been published in one archival journal, Physical Review

Fluids, with another journal article submitted to Experiments in Fluids, and two more in prepara-

tion for submission. In addition, this work has been presented at the American Physical Society

Division of Fluid Dynamics annual conference 5 times, with a paper presented at the International

Symposium on Stratified Flows once.
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Scientific contributions from this work include the completed linear theory model which

is the first model to estimate kinetic energy density of topographically formed evanescent waves

which move through a turning depth and become propagating internal waves. This model follows

the same trends as both experiments and numerical simulations and has been used to estimate

the percentage of kinetic energy for internal waves generated from an oceanic topography. Similar

estimates can be made for various oceanic locations given the density profile and topography shape

for the region in question. Another contribution is the comparison of synthetic schlieren and PIV

experiments which indicate that synthetic schlieren experiments, which are less expensive to setup,

are viable in both evanescent and propagating regions. Finally, based on the combined information

of experiments, theory, and numerical simulations, the average kinetic energy density of internal

waves formed from topography generated evanescent waves is significant only when Fr1D/H < 4.

A simple calculation of density profile and relative distance from the topography to the turning

depth provides guidelines for where energetic internal waves could be generated and interact with

the surrounding ocean.

Motivated by the work completed here, future research is encouraged in a number of areas.

First, the theoretical model can be expanded to an ocean scale for easier accessibility for oceanog-

raphers and other researchers to use in understanding the impact of evanescent waves. Also, not

shown in this work was that for the sinusoidal and complex topography, numerous internal waves

were generated at higher harmonics of the excitation frequency, at ω = 2ωd . All of the kinetic

energy shown here isolated only the kinetic energy associated with ωd . Future work could include

an investigation of the energy within these harmonic waves and the influence of the number of

peaks of a topography on the energy in harmonic waves. In addition, it was seen that the complex

topography generated waves with more energy than the steep Gaussian topography, even though

Stop,m is larger for the complex topography. An investigation of the influence of the number of

topography peaks relative to the maximum slope of the topography would also provide researchers

with a better understanding of where evanescent and internal waves have an important influence in

the ocean without need to individually model each topography in the ocean.
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APPENDIX A. SUPPLEMENTAL EXPERIMENTAL DETAILS

This appendix details the experimental cases of Ch. 5 and the step by step process for
filling the tank, running experiments, setting up the stepper motor, and processing experiments.

A.1 Cases of Chapter 5

Table A.1: Case details for the medium topography. All heights are given in centimeters and a, b,
c, and d correspond to the density profile listed in the second column and detailed in Tab. 5.2.

Simulations were performed on cases with an asterisk.

Case Density a b c d L ZH ω zTD D/H Fr1 Fr1D/H

1* 1 -242.3 1103 -34.39 1034 5.6 71.3 0.80 33.5 2.90 1.38 4.00
2* 1 -242.3 1103 -34.39 1034 5.4 71.3 0.99 33.5 2.90 1.70 4.94
3 1 -242.3 1103 -34.39 1034 4.8 71.3 1.20 33.5 2.90 2.06 5.99
4* 1 -242.3 1103 -34.39 1034 4.8 71.3 1.40 33.5 2.90 2.40 6.97
5* 2 70.42 -177.9 1105 5.5 68.3 1.00 54.3 0.45 1.02 0.45
6* 2 70.42 -177.9 1105 5.1 68.3 1.10 38.9 1.99 1.06 2.12
7 2 70.42 -177.9 1105 5.0 68.8 1.19 23.7 3.52 1.10 3.87
8* 2 115.1 -229.5 1129 4.6 66.0 1.09 47.1 0.79 1.04 0.82
9 2 115.1 -229.5 1129 4.6 65.0 1.22 33.8 2.12 1.09 2.32
10* 2 115.1 -229.5 1129 4.6 66.0 1.30 24.9 3.01 1.12 3.38
11* 2 52.68 -187.9 1119 5.2 66.4 1.20 40 1.72 1.03 1.78
12* 2 52.68 -187.9 1119 5.2 66.44 1.27 22.3 3.49 1.06 3.71
13 2 58.61 -160.5 1110 5.0 65.9 1.01 48.2 0.77 1.02 0.79
14* 3 150.9 -29.08 -183.3 1121 5.7 58.2 1.21 34.9 1.50 1.09 1.63
15* 3 150.9 -29.08 -183.3 1121 5.6 58.2 1.30 23.3 2.66 1.11 2.95
16* 4 109.1 -2.57 1016 5.1 68.0 0.81 56.7 0.19 1.01 0.19
17* 4 109.1 -2.57 1016 5.1 68.0 0.89 48.5 0.95 1.06 1.01
18* 4 109.1 -2.57 1016 5.7 68.0 1.01 39.3 1.94 1.13 2.19
19* 4 109.1 -2.57 1016 5.7 68.0 1.10 32 2.60 1.18 3.06
20* 4 106.2 -2.76 1020 5.5 68.0 1.21 24.5 3.35 1.25 4.19
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Table A.2: Case details for the steep topography.

Case Density a b c d L ZH ω zTD D/H Fr1 Fr1D/H

21* 1 -242.3 1103 -34.39 1034 4.7 72.4 0.80 0.335 2.89 1.37 3.97
22* 1 -242.3 1103 -34.39 1034 5.2 72.4 0.98 0.335 2.89 1.68 4.86
23 1 -242.3 1103 -34.39 1034 4.9 72.4 1.20 0.335 2.89 2.06 5.95
24 1 -242.3 1103 -34.39 1034 4.8 72.4 1.40 0.335 2.89 2.39 6.92
25* 2 76.43 -179.6 1104 5.2 68.6 1.01 0.494 0.91 1.04 0.95
26 2 76.43 -179.6 1104 5.0 68.6 1.11 0.359 2.27 1.08 2.45
27* 2 100.3 -220.5 1128 4.6 65.0 1.10 0.488 0.61 1.03 0.63
28* 2 100.3 -220.5 1128 4.6 65.0 1.21 0.359 1.91 1.07 2.05
29 2 100.3 -220.5 1128 4.5 65.0 1.29 0.249 3.01 1.10 3.32
30 3 40.80 43.10 -197.6 1125 4.50 74.0 1.30 0.223 4.17 1.13 4.71
31 3 40.80 43.10 -197.6 1125 4.80 74.0 1.21 0.368 2.72 1.11 3.01
32* 3 40.80 43.10 -197.6 1125 4.50 74.0 1.10 0.503 1.37 1.07 1.47
33 4 104.9 -3.00 1004 4.7 68.3 0.80 0.522 0.61 1.05 0.63
34* 4 104.9 -3.00 1004 4.7 68.3 0.90 0.448 1.34 1.10 1.48
35* 4 103.2 -3.05 1006 4.7 68.3 1.00 0.387 2.14 1.17 2.51
36 4 103.2 -3.05 1006 4.7 68.3 1.11 0.302 2.81 1.23 3.45
37 4 103.2 -3.05 1006 4.7 68.3 1.20 0.249 3.34 1.28 4.26

Table A.3: Case details for the sinusoidal topography.

Case Density a b c d L ZH ω zTD D/H Fr1 Fr1D/H

38* 1 -242.3 1103 -34.39 1034 5.0 72.5 0.81 0.335 4.49 1.40 6.28
39* 1 -242.3 1103 -34.39 1034 4.9 72.5 1.00 0.335 4.49 1.72 7.73
40 1 -242.3 1103 -34.39 1034 4.8 72.4 1.22 0.335 4.48 2.09 9.38
41 1 -242.3 1103 -34.39 1034 4.9 72.4 1.44 0.335 4.48 2.47 11.07
42* 2 52.68 -187 1119 5.2 67.2 1.20 0.39 2.97 1.04 3.09
43* 2 89.38 -214.9 1128 5.0 67.0 1.09 0.528 1.00 1.03 1.03
44 2 89.38 -214.9 1128 5.0 67.0 1.21 0.367 3.27 1.08 3.52
45 2 89.38 -214.9 1128 4.8 67.0 1.30 0.238 5.08 1.11 5.65
46* 3 157.4 -21.46 -195.5 1124 5.0 69.6 0.81 0.568 0.80 1.13 0.90
47* 3 157.4 -21.46 -195.5 1124 5.0 69.6 0.91 0.534 1.27 1.17 1.49
48 3 157.4 -21.46 -195.5 1124 5.5 69.6 0.99 0.498 1.79 1.20 2.16
49 3 157.4 -21.46 -195.5 1124 5.5 69.6 1.11 0.432 2.71 1.23 3.34
50 3 157.4 -21.46 -195.5 1124 4.6 69.6 1.21 0.365 3.65 1.25 4.55
51* 4 106.8 -2.95 1002 5.1 68.2 0.81 0.525 1.21 1.06 1.29
52* 4 106.8 -2.95 1002 5.2 68.2 0.91 0.449 2.29 1.12 2.57
53 4 106.8 -2.95 1002 5.0 68.2 1.00 0.385 3.18 1.18 3.74
54 4 106.8 -2.95 1002 5.7 68.2 1.09 0.324 4.05 1.23 4.97
55 4 106.8 -2.95 1002 5.0 68.2 1.20 0.259 4.96 1.28 6.35
56 4 106.8 -2.95 1002 5.7 68.2 1.30 0.205 5.73 1.33 7.62
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Table A.4: Case details for the complex topography.

Case Density a b c d L ZH ω zTD D/H Fr1 Fr1D/H

57* 1 -239.3 1102 -14.39 1021 4.5 73.9 0.60 0.365 0.87 1.61 1.40
58 1 -239.3 1102 -14.39 1021 4.5 73.9 0.81 0.365 0.87 2.16 1.88
59* 1 -237.0 1101 -9.00 1012 4.5 73.9 1.00 0.365 0.87 3.36 2.92
60 1 -237.0 1101 -9.00 1012 4.5 73.9 1.20 0.365 0.87 4.04 3.51
61 1 -237.0 1101 -9.00 1012 4.5 73.9 1.40 0.365 0.87 4.71 4.10
62* 2 76.43 -179.6 1104 4.9 68.6 1.13 0.331 0.78 1.05 0.81
63* 3 40.80 43.10 -197.6 1125 5.4 74.0 1.10 0.503 0.19 1.02 0.19
64 3 40.80 43.10 -197.6 1125 5.0 74.0 1.21 0.368 0.86 1.06 0.91
65 3 40.80 43.10 -197.6 1125 4.8 74.0 1.30 0.223 1.59 1.09 1.73
66 4 112.41 -2.70 1003 4.8 74.4 0.90 0.48 0.32 1.04 0.33
67* 4 110.12 -2.82 1006 5.4 74.4 1.00 0.395 0.75 1.11 0.83
68* 4 110.12 -2.82 1006 5.5 74.4 1.10 0.327 1.08 1.16 1.26

A.2 Filling the tank

1. Calibrate the pumps

(a) Allow pumps to warm up by running for at least 5 minutes

(b) Test flow rates at 25, 100, 175, and 250 rpms and take 3 measurements for each flow
rate tested

i. Increase in rpms for the fresh water pump during calibration
ii. Decrease in rpms for the salt water pump during calibration

(c) Put calibration values into Excel sheet “Pump Testing.xlsx”

2. Put the green filters in the tank along the bottom (2 layers) and both sides (1 layer). Leave
the laser side clear if PIV testing will occur.

3. Put the beam supports on (2 person job)

(a) The point of the supports is to keep the tank width constant along the whole length of
the tank. Check this distance with a ruler as the width should be about 6” from outside
edge to outside edge.

4. Open “Filling Tank Varying Profiles AL 10 20 17.m” (groups folder, intwaves, matlab)

(a) Input calibration from excel sheet

(b) Choose desired profile (linear, two-layer, exponential, parabolic, etc.)

(c) Make sure N low and N high are set to the desired values

5. Run program to find:

(a) Volume of fresh water used
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(b) How long it will take the fill the tank

(c) The initial volume of the salt water bucket (including salt)

6. Adjust the density and N low and N high values to make sure that the flow rates never go
below 0 mL/s.

7. Put salt into the salt water bucket

(a) Remember that we put so much salt in that the volume will change. Keep that in mind
as you may need to add more salt.

(b) Rule of thumb: For a density of about 1080 for a final volume 80 L of water, you will
use an entire bag of salt.

(c) This is a little bit of a guess and check game. That’s ok. It’s better to have too high of a
density that too low. It’s also ok to add more water in order to bring the density down.

(d) You will need about 20% more water in the salt water bucket than the matlab file calls
for. So if it calls for 80L, I usually put in 100L.

8. Get the sponges wet in the salt water tank, then put them in the sponge box and put it in the
tank

(a) Connect one freshwater and one saltwater line in the box with the T-connection

9. Copy and paste the “output1” matrix (first three columns) into the txt file “input to labview pump program.txt”

10. Plug in the green usb cord that runs the DAQ into the computer

(a) This generally opens up LabVIEW. If not, then open the folder “Profiles Program”,
select “Run a Program”, and choose “Main2 pumps.vi”

11. Make sure that the tubing is at the bottom of the buckets to prevent the pumps from pulling
air instead of water

12. Run the saltwater pump for a moment to put saltwater through the lines

13. Make sure the pumps say “EXT” and are turning the correct direction

14. Go to Operate (top tool bar) then Run.

15. In Labview, select “Load and Run Profile”

(a) This will open a dialog box where you can go and find
“input to labview pump program.txt” in the groups folder

16. Select “Page 2” in the LabView file to see the loop delay and pump output

(a) Each cycle is one complete loop, which is indicated by the loop delay in seconds

(b) When you first turn on the pump, there will be no flow until it’s completed a cycle
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(c) If you are using more than one sponge box, check the freshwater lines to make sure
that water running all the way through. You may need to clamp down on one of the
lines to force water through the other one. Do not clamp down in the same place twice

17. Create a new excel file for this setup

After filling:

1. Remove the sponge box and droppers from the tank as carefully as possible to reduce mixing

2. At the end of the fill, run fresh water the through salt water lines to help clean them out

3. Take out MasterFlex tubing from pumps

4. Take density measurements the follow morning

A.3 Density measurements and finding N

This details how to find the density and N profiles

1. Take density measurements and record them in the correct location in the excel file

(a) If this the first time you are taking density measurements after filling the tank, take
measurements every 2 cm. For subsequent times, you can do it every 5 cm.

(b) Add more sheets if necessary

(c) Record the total Height of the water in the tank.

2. Open the MATLAB file “Finding N and more Lee 6 17 16.m”

3. Copy the height and density data and paste it into the variable “excel”

4. Run the program

5. Input the total water height, in METERS.

6. It will output a curve for N.

(a) Check the density curve matches the given points. You may need to run it a few times
for the curve fitting program to correctly match the profile.

7. Copy down the values for a, b, and c into the excel file for future reference

8. Repeat for each time you take density measurements.

9. It’s time to choose a frequency to run the topography at.

(a) Measure the height of the topography in the water and record it.

(b) The frequency will be based off either Froude number or H/D
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A.4 Taking SS images

Immediately before running a test, put up the signs preventing people from coming in or
out of the lab. Take them down as soon as you are ready to turn the lights back on.

You will take 3 sets of images per test (in this order):

1. With stick

(a) It’s best to focus the camera with the lights off, then turn the lights back on to take this
image

(b) DO NOT bump the camera after this image has been taken

(c) Slowly place the ruler in the center of the tank. This image needs to be taken in the
center of the experiment. WRITE DOWN the height of the water based on this ruler.
This value is needed to accurately match the density heights to locations within the
image.

2. Background

(a) Turn off the lights and shut the door for this image

(b) DO NOT bump the camera after this image. If you think it may have been moved even
a little, retake this image before performing the test

3. The actual test images

Process for running a test

1. Close Google Chrome and Matlab.

2. Tighten the turnbuckle

(a) Check the lab notebook for the required frequency for that day’s tests.

(b) Check that the track is moving at the correct period and that the turnbuckle is working
correctly (not sagging too much)

3. Put the track into the water

(a) Don’t let the string be in the water

(b) Make sure it is level

4. Turn on the backlight

5. Plug in the camera

6. Place the camera in the correct spot and measure the distance from the camera to the dots

(a) Fill out the requested information in the lab notebook

7. On bottom panel of the desktop, open Biflow
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(a) This is the icon in the task bar

8. Select the number of desired images

(a) If doing the images with the stick background, or the actual background images set the
number of images to 2

(b) If running a full test, set number of images to 4320.

(c) CHECK that the max allowable frames are at least 4600. If not then:

(d) Set the frames to a large number near (but below) the max allowed and hit OK

(e) On the top toolbar, hit Acquisition−→Setup.

(f) Once the program finishes thinking, close BiFlow, and reopen it.

(g) If the max allowable frames are still below 4320, you’ll need to restart the computer.

(h) If the allowable frames are too close to 4320, the computer will freeze when you try to
save and you’ll lose your test images.

9. On the top tool bar, select Preview and then Start Preview

(a) Focus the camera on the dots, not the topography

(b) Keep the image as big as possible, but avoid dead space. Don’t film above or below
the water. Keep the topography in the left corner so we can capture the right leg of the
internal waves.

10. On the top tool bar, select Preview and then Stop Preview

11. DO NOT move the camera after finishing the preview.

12. On the top tool bar, select Acquisition −→ Setup

13. Select Process−→Start Acquisition

14. File-Save

(a) If taking images with the stick in place, save as “with stick” (the lights should be on so
you can read the ruler)

(b) If taking background images, save as “background” (the lights should be off, and the
door shut)

15. To run the camera again for the same number of images go to Acquisition −→ Clean up and
then start with step 10

(a) Once you have done a background images, you cannot move the camera again. The
Background and Test Images must be in exactly the same location.

16. Wait at least 30 minutes before running another test. This allows the water to settle.

17. When completely done using the camera-UNPLUG the black cord to prevent the camera
from overheating.
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18. Pull the track out of the water

19. Unplug the stepper motor

20. Write down all of the info needed for this test in the lab notebook (see below)

21. If you are the last person running tests, put the camera to the side.

Write in Lab notebook:

• Date

• Your name

• Test name (ex: 09-12-16-Test a)

• Distance from camera to light box (meters)

• Actual frequency

• Total height of the water (the actual height AND the height based on the with stick ruler)

• Type of topography and it’s height

• Comments for anything unusual you noticed while running tests

• Horizontal distance the topography moves (specify if it’s the full distance or only half)

A.5 Running the stepper motor

1. (This step is usually already done. As long as the board is still hooked up to the motor, skip
to step 2.) Hook up wires to microcontroller

(a) Stepper motor wires go to the M3 and M4 connections (blue box thing at edge of
controller). The center connection is not connected to anything. The red and green
wire from the motor are paired together.

(b) Middle pin on switch goes to digital I/O pin number 2. Other two wires go to ground
and +5V

2. Plug in external power source and USB cable. If it starts to move just flip the switch to the
opposite position to stop after loop

3. Open Arduino on desktop, and open motor control AL.ino:
MyDocuments\Arduino\motor control\motor control AL.ino

4. Enter desired Period and length

(a) Remember that Period = 2*pi/frequency
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(b) What you enter as the period may not be exactly correct. It’s about 1 off. If you put
in T = 6s, the actual period of the track will be about 7s. You will need to check the
period a couple of times before it will be correct. Try to do this out of the water.

(c) Do not change the Excursion length unless you feel the topography is moving so slowly
that it is no longer a smooth movement.

5. Hit upload (the arrow, not the check mark) in upper left corner

6. Flip the switch hooked to microcontroller to start running

7. Sometimes you will need to keep the motor plugged into both the computer and the wall in
order to pull enough power to move the track.

A.6 Processing the images with Digiflow

1. Using the command prompt, type Digiflow64.exe to open Digiflow

2. File−→Open Image −→ Find correct background image for test you want to process−→Open

3. If the image is black: View−→ Color Scheme −→ Default

(a) Or Ctrl+Shift+B −→ Default

(b) This allows you to see the corners of the sheet better for the next step

4. Edit−→Coordinates −→ CenterRuler

(a) After selecting CenterRuler, hit Edit on the top right, then Edit Points

(b) Move the three Points to the three points on the ruler, bottom left, top left, top right.
Edit the real world coordinates of these three points by double clicking on the points

(c) You will only need to do this once for each time you process, since every image in a
run will have the same corner locations

(d) Ok−→ Ok

5. Analyse−→Synthetic Schlieren−→Pattern Match

6. (Inputs) Experiment

(a) File−→Choose the first of the actual run images

(b) Sift

i. Change fps to 24
ii. Select Default Colors

iii. Input correct Step (usually 4)
iv. Ok

7. Background Image
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(a) File−→Choose first of Background Images

(b) Select Default Colors

8. Lengths (Generally only need to change Camera to Texture)

(a) Input the correct Camera to Texture length (m)

(b) Experiment to Texture: 0.75

(c) Experiment Thickness: 0.12

(d) Wall Thickness: 0.018

9. Check (Shouldn’t need to change)

(a) Resolution: High

(b) Accuracy: High

(c) Fluid medium: Water Salt

(d) Tank Wall: Acrylic

(e) Coordinate System: Four Corners

(f) Flow Geometry 2D

10. Outputs Tab

11. X-Gradient

(a) File−→Save files in X-gradient

(b) Save as type: Image files

(c) Save

(d) Options-Default Colors

12. Y-Gradient

(a) File−→Save files in Y-Gradient

(b) Save as type: Image files

(c) Save

13. Saturation Values:

(a) Checked: Gradient: 0.1

(b) Not checked: Automatic

14. Ok (This begins the processing)

The previous steps only allow for processing one test at a time. To process multiple tests in
a row, complete the previous list up until step 5. Instead, use the Digiflow dlg command line with
the following code, replacing important information such as the actual file names and the correct
distance between the camera and the topography.
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# S y n t h e t i c S c h l i e r e n
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Accuracy := ‘ ‘ High ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . A lgo r i t hm := ‘ ‘ Pre 2009 ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . A u t o m a t i c I n t e r r o g a t i o n := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . AutomaticMeans := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . A u t o m a t i c S c a l e s := f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . A u t o m a t i c V a l i d a t i o n := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . B a c k g r o u n d M a t c h I n t e n s i t y . Kind : = ‘ ‘

Conform ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Ba ck g r ou nd O p t io ns . D i s p l a y := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Ba ck g r ou nd O p t io ns . UseArchive :=

f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Ba ck g r ou nd O p t io ns . A u t o P r e p r o c e s s :=

f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Background Region . Kind := ‘ ‘ Conform ”

;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Background Time . T i m e S t e p F i l e : = 1 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . CompactOutput := f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . D e n s i t y S c a l e := 1 .00000E−02;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . D i f f e r e n t i a l M o d e := f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . D i s p l a y O n E x i t := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t O p t i o n s . D i s p l a y := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t O p t i o n s . UseArchive :=

t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t O p t i o n s . A u t o P r e p r o c e s s :=

f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t R e g i o n . Kind : = ‘ ‘ Conform ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Exper iment Time . T i m e S t e p F i l e

: = 4 . 1 6 6 7 0 E−02;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Exper iment Time . StepBy : = 4 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Exper iment Time . ToStep : = 4 3 1 9 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Exper iment Time . FromStep : = 0 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . FlowGeometry := ‘ ‘2D” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . G r a d i e n t S c a l e : = 0 . 1 0 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . MaskZeros := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Medium := ” W a t e r S a l t ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . R e s o l u t i o n : = ‘ ‘ High ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . U s e O p t i c s C o r r e c t i o n := f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . U s e U s e r I n t e r p o l a t i o n := f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . WallMedium : = ‘ ‘ A c r y l i c ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . X G r a d i e n t O p t i o n s . Comments : = ‘ ‘No

u s e r comments ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . X G r a d i e n t O p t i o n s . Co lour : = ‘ ‘ ( d e f a u l t

) ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . X G r a d i e n t O p t i o n s . D i s p l a y := t r u e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . X G r a d i e n t O p t i o n s . UseArchive :=

f a l s e ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . X G r a d i e n t O p t i o n s . Resample := ‘ ‘ none

” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Y G r a d i e n t O p t i o n s . Comments := ‘ ‘No

u s e r comments ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Y G r a d i e n t O p t i o n s . Co lour := ‘ ‘ (

d e f a u l t ) ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Y G r a d i e n t O p t i o n s . D i s p l a y := t r u e ;
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d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Y G r a d i e n t O p t i o n s . UseArchive :=
f a l s e ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Y G r a d i e n t O p t i o n s . Resample := ‘ ‘ none
” ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . p r o c e s s : = ‘ ‘
A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h ” ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . xMaxShi f t : = 3 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . xSpace : = 8 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . yMaxShi f t : = 3 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . ySpace : = 8 ;

# P a s t e SS i n f o h e r e :
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Background := ‘ ‘ background ######## .

t i f ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . B a c k g r o u n d F o l d e r : = ‘ ‘H:\2018\ F i l l
−3−5−18\3−7−18−T e s t f \” ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . CameraToTexture := 4 . 0 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . CoordSystem : = ‘ ‘ c e n t e r r u l e r ” ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . D e n s i t y S c a l e : = 1 . 0 0 0 0 0 E−02;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Expe r imen t : = ‘ ‘ Sequence ######## . t i f ”

;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t T h i c k n e s s := 0 . 1 2 0 0 0 0 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . Ex p e r i me n tT o Te x tu r e := 0 . 9 3 ;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . E x p e r i m e n t F o l d e r := ‘ ‘H:\2018\ F i l l
−3−5−18\3−7−18−T e s t f \ images \ ” ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . W a l l T h i c k n e s s : = 1 . 8 0 0 0 0 E−02;
d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . XGrad ien t : = ‘ ‘H:\2018\ F i l l
−3−5−18\3−7−18−T e s t f \ xgrad \ x g r a d i e n t ######## . d f i ” ;

d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h . YGrad ien t : = ‘ ‘H:\2018\ F i l l
−3−5−18\3−7−18−T e s t f \ ygrad \ y g r a d i e n t ######## . d f i ” ;

p r o c e s s d l g A n a l y s e S y n t h e t i c S c h l i e r e n P a t t e r n M a t c h ;
# Dat f i l e s
#################### S t a r t Here #################
d l g F i l e E d i t S t r e a m . D i s p l a y O n E x i t := f a l s e ;
d l g F i l e E d i t S t r e a m . I n p u t O p t i o n s . D i s p l a y := t r u e ;
d l g F i l e E d i t S t r e a m . I n p u t O p t i o n s . UseArchive := f a l s e ;
d l g F i l e E d i t S t r e a m . I n p u t O p t i o n s . A u t o P r e p r o c e s s := f a l s e ;
d l g F i l e E d i t S t r e a m . I n p u t R e g i o n . Kind := ‘ ‘ A l l ” ;
d l g F i l e E d i t S t r e a m . I n p u t T i m e . T i m e S t e p F i l e := 0 . 1 6 6 6 6 8 ;
d l g F i l e E d i t S t r e a m . O u t p u t O p t i o n s . D i s p l a y := t r u e ;
d l g F i l e E d i t S t r e a m . O u t p u t O p t i o n s . UseArchive := f a l s e ;
d l g F i l e E d i t S t r e a m . ReviewCapture := f a l s e ;
d l g F i l e E d i t S t r e a m . p r o c e s s := ‘ ‘ F i l e E d i t S t r e a m ” ;
# P a s t e d a t i n f o h e r e
d l g F i l e E d i t S t r e a m . I n p u t := ‘ ‘ y g r a d i e n t ######## . d f i ” ;
d l g F i l e E d i t S t r e a m . I n p u t F o l d e r : = ‘ ‘H:\2018\ F i l l −3−5−18\3−7−18−T e s t f \ ygrad \” ;
d l g F i l e E d i t S t r e a m . Outpu t := ‘ ‘H:\2018\ F i l l −3−5−18\3−7−18−T e s t f \ y g r a d d a t \

y g r a d i e n t ######## . d a t ” ;
p r o c e s s d l g F i l e E d i t S t r e a m ;
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APPENDIX B. COMPUTER CODE

B.1 MATLAB

B.1.1 Generating natural frequency profile and output voltages

c l e a r
% c l o s e a l l
% c l c

%% E s t a b l i s h V a r i a b l e s
% r h o f = f r e s h w a t e r d e n s i t y , s e t
% r h o s = s a l t w a t e r d e n s i t y , s e t
% rho m = m i x t u r e d e n s i t y ( a s a f u n c t i o n ove r t ime )
% Q f = f r e s h w a t e r f l o w r a t e , t o be s o l v e d
% Q s = s a l t w a t e r f l o w r a t e , t o be s o l v e d
% Q m = m i x t u r e f l o w r a t e , s e t
% A t = Tank a r e a
% z d o t = Tank d e p t h p e r u n i t t ime
% t = t ime
% V o l f = t o t a l volume of f r e s h w a t e r used ( L )
% Vol s = t o t a l volume of s a l t w a t e r used ( L )
%% User s u p p l i e d i n p u t s
% D e s i r e d h e i g h t
z t o t a l = . 7 0 ; %(m)

% D e n s i t y o f s a l t w a t e r t a n k
r h o s = 1 1 0 6 . 4 ; % kg /mˆ3

% % Type o f p r o f i l e d e s i r e d
% % e x p o n e n t i a l rho = a * exp ( bz ) +c ( b i s n e g a t i v e )
N p r o f i l e = 1 ;
N low = 0 . 4 8 ;
N high = 1 . 9 5 ;

% % Two l a y e r N
% % rho1 = az+b ; rho2 = cz+d ;
% N p r o f i l e = 2 ;
% N low = . 5 ;
% N high = 1 . 5 ;
% s w i t c h h e i g h t = . 3 0 ;

% % C o n s t a n t N
% % rho = az+b
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% N p r o f i l e = 3 ;
% N low = 0 . 9 ;
%
% % L i n e a r Nˆ2
% rho = az ˆ2 + bz + c
% N p r o f i l e = 4 ;
% N low = 0 . 4 ;
% N high = 1 . 5 ;
%
% P a r a b o l i c Nˆ2
% rho = az ˆ3 + bz ˆ2 + cz + d
% N p r o f i l e = 5 ;
% N low = 0 . 2 ;
% N high = 1 . 7 ;

e x c e l f r e s h = [25 64
50 127.3333333
100 240.6666667
175 452
250 609.3333333
] ;

e x c e l s a l t = [250 605 .3333333
175 482.6666667
100 245.3333333
50 134.6666667
25 71 .33333333
] ;

%% C o n s t a n t s
g = 9 . 8 1 ; %m/ s ˆ2

%D e n s i t y o f f r e s h w a t e r
r h o f = 9 9 8 . 5 ; % kg /mˆ3

% S t a n d a r d d e n s i t y t o c a l c u l a t e N
r h o o = 1000 ;

% D e s i r e d Volume f low r a t e
Q m = 10e−06; % mˆ 3 / s
% Q m = 5e−06; % mˆ 3 / s s m a l l f i s h t a n k

% Area o f Tank
A t = 0 . 1 1 7 4 7 5 * 2 . 4 0 8 2 4 ; % mˆ2 f u l l t a n k
% A t = . 5 1 2 7 * . 2 6 5 1 ; %mˆ2 s m a l l f i s h t a n k

% d h d t = Q m / A t *100*3600;

%% C r e a t i n g z and t a r r a y s
% Depth a r r a y
z = 0 : . 0 0 0 5 : z t o t a l ; % m
dz = ( z ( 2 )−z ( 1 ) ) ; %d e l t a z i n m, t o be used t o f i n d N

% R e l a t i o n s
z d o t = Q m / A t ; % m/ s
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t = z / z d o t ; % c r e a t i n g t h e t ime a r r a y

i f N p r o f i l e == 1
b = l o g ( N high ˆ 2 / N low ˆ 2 ) /(− z t o t a l ) ;
a = −r h o o *N low ˆ 2 . / ( g*b* exp ( b* z t o t a l ) ) ;
c = r h o s−a−10;
rho m = a * exp ( b* z ) +c ;
N = s q r t (−g / r h o o * a *b* exp ( b* z ) ) ;

% f i g u r e ( 1 ) ; c l f ; p l o t ( rho m , z ) ; f i g u r e ( 2 ) ; c l f ; p l o t (N, z )
e l s e i f N p r o f i l e == 2

a = N low ˆ2*(− r h o o / g ) ;
c = N high ˆ2*(− r h o o / g ) ;
d = r h o s −25;
b = ( c−a ) * s w i t c h h e i g h t +d ;
f o r i = 1 : l e n g t h ( z )

i f z ( i )<s w i t c h h e i g h t
%p r o f i l e f o r N2
rho m ( i ) = c * z ( i ) +d ;
N( i ) = s q r t (−g / r h o o * c ) ;

e l s e
%p r o f i l e f o r N1
rho m ( i ) = a * z ( i ) +b ; %(−( N low ˆ 2 ) * r h o f / g ) *z m ( i ) +( r h o f *

s w i t c h h e i g h t / g * ( N lowˆ2−N high ˆ 2 ) ) + r h o s −25;
N( i ) = s q r t (−g / r h o o * a ) ;

end
end

e l s e i f N p r o f i l e == 3
a = N lowˆ2*− r h o o / g ;
b = r h o s −15;
rho m = a * z+b ;

e l s e i f N p r o f i l e == 4
b = N high ˆ 2 ;
a = ( N lowˆ2−b ) / z t o t a l ;
rho m = −r h o o / g * ( a / 2 * z . ˆ 2 + b* z ) + r h o s −10;
N = s q r t ( a * z+b ) ;

e l s e i f N p r o f i l e == 5
N med = ( N high+N low ) / 2 ;
z med = z t o t a l / 2 ;
z m a t r i x = [0 0 1 ;

z med ˆ2 z med 1 ;
z t o t a l ˆ2 z t o t a l 1 ] ;

N mat r ix = [ N high ˆ 2 ; N med ˆ 2 ; N low ˆ 2 ] ;
A = z m a t r i x \N mat r ix ;
a = A( 1 ) ; b = A( 2 ) ; c = A( 3 ) ;
rho m = −r h o o / g * ( a / 3 * z . ˆ 3 + b / 2 * z . ˆ 2 + c * z ) + r h o s −15;
N = s q r t ( a * z . ˆ 2 + b* z+c ) ;

end
%%
% Solve f o r Q f & Q s
Q f = Q m * ( rho m − r h o s ) / ( r h o f − r h o s ) ;
Q s = Q m * ( rho m − r h o f ) / ( r h o s − r h o f ) ;

f o r n = 2 : 1 : l e n g t h ( rho m )−1
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drhodz ( n ) = ( rho m ( n +1)− rho m ( n−1) ) . / ( 2 * dz ) ;
end
drhodz ( 1 ) = drhodz ( 2 ) ;
d rhodz ( l e n g t h ( rho m ) ) = drhodz ( l e n g t h ( rho m )−1) ;
N c a l c = s q r t (−g /1000* drhodz ) ;

i f min ( Q f )<0
f p r i n t f ( ’ The f r e s h w a t e r f low r a t e goes below z e r o d u r i n g t h e program \n ’ )

end

i f min ( Q s )< 0
f p r i n t f ( ’ The s a l t w a t e r f low r a t e goes below z e r o d u r i n g t h e program \n ’ )

end

%% F i n d i n g t o t a l volumes o f f r e s h and s a l t w a t e r
d e l t a t = z e r o s ( s i z e ( t ) ) ;
d e l t a t ( 1 : end−1) = d i f f ( t ) ;
d e l t a t ( end ) = d e l t a t ( end−1) ;
V o l f = sum ( d e l t a t . * Q f ) *1000 ;
Vo l s = sum ( d e l t a t . * Q s ) *1000 ;

%% On s c r e e n v a l u e s

f p r i n t f ( [ ’N a t t a n k bot tom ( 1 / s ) : ’ , num2s t r ( N c a l c ( 1 ) ) , ’\n ’
] ) ;

f p r i n t f ( [ ’N a t t a n k t o p ( 1 / s ) : ’ , num2s t r ( N c a l c ( end ) ) , ’\n
’ ] ) ;

f p r i n t f ( [ ’ volume of f r e s h w a t e r used ( L ) : ’ , num2s t r ( V o l f ) , ’\n ’ ] ) ;
f p r i n t f ( [ ’ volume of s a l t w a t e r used ( L ) : ’ , num2s t r ( Vo l s ) , ’\n ’ ] ) ;
f p r i n t f ( [ ’ I n i t i a l d e n s i t y i n s a l t w a t e r b u c k e t : ’ , num2s t r ( r h o s ) , ’\n ’ ] )
f p r i n t f ( [ ’ Time e l a p s e d ( h o u r s ) : ’ , num2s t r ( t ( end ) / 3 6 0 0 ) , ’
\n ’ ] )

%% S e t t i n g The Pump V o l t a g e s
f r e s h r p m = e x c e l f r e s h ( : , 1 ) ;
f r e s h q = e x c e l f r e s h ( : , 2 ) ;
f i t o r d e r f r e s h = 1 ;
f r e s h p u m p f i t r p m t o q = p o l y f i t ( e x c e l f r e s h ( : , 1 ) , e x c e l f r e s h ( : , 2 ) ,

f i t o r d e r f r e s h ) ;
f r e s h p u m p f i t q t o r p m = p o l y f i t ( e x c e l f r e s h ( : , 2 ) , e x c e l f r e s h ( : , 1 ) ,

f i t o r d e r f r e s h ) ;
s a l t r p m = e x c e l s a l t ( : , 1 ) ;
s a l t q = e x c e l s a l t ( : , 2 ) ;
f i t o r d e r s a l t =1 ;
s a l t p u m p f i t r p m t o q = p o l y f i t ( e x c e l s a l t ( : , 1 ) , e x c e l s a l t ( : , 2 ) ,

f i t o r d e r s a l t ) ;
s a l t p u m p f i t q t o r p m = p o l y f i t ( e x c e l s a l t ( : , 2 ) , e x c e l s a l t ( : , 1 ) ,

f i t o r d e r s a l t ) ;
b o b c h e c k f r e s h = p o l y v a l ( f r e s h p u m p f i t r p m t o q , 0 : 3 7 5 ) ;
b o b c h e c k s a l t = p o l y v a l ( s a l t p u m p f i t r p m t o q , 0 : 3 7 5 ) ;

d t = d e l t a t ;
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f r e s h f l o w d e s i r e d = Q f *1000000*60; %mL/ min
s a l t f l o w d e s i r e d = Q s *1000000*60; %mL/ min

RPM fresh = p o l y v a l ( f r e s h p u m p f i t q t o r p m , f r e s h f l o w d e s i r e d ) ;
RPM sal t = p o l y v a l ( s a l t p u m p f i t q t o r p m , s a l t f l o w d e s i r e d ) ;

%% F i n d i n g V o l t a g e s from new RPMS−Need t o check t h e s e s t i l l
% V o l t s f r e s h = ( 0 . 0 1 6 6 * RPM fresh + 0 . 0 1 4 8 ) ;
% V o l t s s a l t = ( 0 . 0 1 6 7 * RPM sal t + 0 . 0 2 0 3 ) ;
V o l t s f r e s h = round ( 0 . 0 1 6 6 * RPM fresh + 0 . 0 1 4 8 , 2 ) ;
V o l t s s a l t = round ( 0 . 0 1 6 7 * RPM sal t + 0 . 0 2 0 3 , 2 ) ;

%% F i n d i n g Flow r a t e s based o f f o f a c t u a l f l o w s
R P M l i n e f r e s h = 60 .172* V o l t s f r e s h −0.882;
R P M l i n e s a l t = 60 .02* V o l t s s a l t −1.2108;

Q l i n e f r e s h = p o l y v a l ( f r e s h p u m p f i t r p m t o q , R P M l i n e f r e s h ) ;
Q l i n e s a l t = p o l y v a l ( s a l t p u m p f i t r p m t o q , R P M l i n e s a l t ) ;
t = ( 1 : 1 : l e n g t h ( d t ) ) . * d t ;
t h o u r s = t / 3 6 0 0 ;

%% F i n d i n g new d e n s i t i e s based o f f o f a c t u a l f low r a t e s
f o r i = 1 : l e n g t h ( d t ) ;

i f Q l i n e f r e s h ( i )<0
Q l i n e f r e s h ( i ) = 0 ;

end
i f Q l i n e s a l t ( i ) <0;

Q l i n e s a l t ( i ) = 0 ;
end

end
Qm = Q l i n e f r e s h + Q l i n e s a l t ;
r h o m f = r h o s + Q l i n e f r e s h . /Qm. * ( r h o f−r h o s ) ;
rho m s = r h o f + Q l i n e s a l t . /Qm. * ( r h o s−r h o f ) ;
f i g u r e ( 2 ) ; c l f
p l o t ( t h o u r s , r h o m f )
t i t l e ( ’ d e n s i t y vs t ime ( h o u r s ) ’ )
x l a b e l ( ’ t ime ( h o u r s ) ’ )
A t = 0 . 1 1 7 4 7 5 * 2 . 4 0 8 2 4 ; % mˆ2

Q m m s = Qm*10ˆ−6/60;

z d o t = Q m m s . / A t ; % m/ s

z = t . * z d o t ;

o u t p u t 1 ( : , 1 ) = d t ;
o u t p u t 1 ( : , 2 ) = V o l t s f r e s h ;
o u t p u t 1 ( : , 3 ) = V o l t s s a l t ;
o u t p u t 1 ( : , 4 ) = rho m f ’ ;

%% F i g u r e s
f i g u r e ( 1 0 0 ) ; c l f ;
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p l o t ( z , N c a l c )
p l o t ( N ca lc , z )
x l a b e l ( ’ Depth ( cm ) ’ )
y l a b e l ( ’N’ )
t i t l e ( ’ N a t u r a l F requency i n t h e Tank ’ )

f i g u r e ( 3 ) ; c l f ;
p l o t ( t h o u r s , f r e s h f l o w d e s i r e d , t h o u r s , s a l t f l o w d e s i r e d , t h o u r s , Q l i n e f r e s h

, t h o u r s , Q l i n e s a l t ) ;
x l a b e l ( ’ Time ( h o u r s ) ’ )
y l a b e l ( ’ F l o w r a t e (mL/ min ) ’ )
l e g e n d ( ’ F r e s h d e s i r e d ’ , ’ S a l t d e s i r e d ’ , ’ F r e s h a c t u a l ’ , ’ S a l t a c t u a l ’ )
t i t l e ( ’ F l o w r a t e s o f F r e s h and S a l t Water Tanks ’ ) ;

B.1.2 Measuring the density profile

% This f i l e a l l o w s you c a l c u l a t e t h e n a t u r a l f r e q u e n c y of t h e e x p e r i m e n t a l
% t a n k . The d a t a f o r ” d e p t h ” and ” r h o m e a s u r e d ” come from t h e d e n s i t y
% s h e e t s i n t h e e x c e l f i l e f o r each f i l l . The v a l u e s f o r a , b , c , and d
% s h o u l d be w r i t t e n down f o r f u t u r e use , b u t a r e n o t n e c e s s a r y f o r r u n n i n g
% t e s t s . Th i s program w i l l a l s o o u t p u t t h e N/ omega and H/D v a l u e s f o r a
% r a n g e of f r e q u e n c i e s .
c l e a r

% c l c
% c l o s e a l l
%% I n p u t s
% Choose t o p o g r a p h y shape
% t o p o g r a p h y = 1 ; % Medium
% t o p o g r a p h y = 2 ; % s t e e p
% t o p o g r a p h y = 3 ; % complex

t o p o g r a p h y = 4 ; % s i n e
i f t o p o g r a p h y ==1

H = 0 . 1 ;
e l s e i f t o p o g r a p h y == 2

H = 0 . 1 ;
e l s e i f t o p o g r a p h y == 3

H = 0 . 2 ;
e l s e i f t o p o g r a p h y == 4

H = . 0 7 1 ;
end

% Choose P r o f i l e
% E x p o n e n t i a l P r o f i l e ( a * exp(−bz ) +c )

d e n s i t y p r o f =1 ;

% Cubic P r o f i l e ( a *x ˆ3+ b*x ˆ2+ c *x+d )
% d e n s i t y p r o f = 2 ;

% Q u a d r a t i c P r o f i l e ( a *x ˆ2+ b*x+c )
% d e n s i t y p r o f = 3 ;

% L i n e a r P r o f i l e ( a *x+b )
% d e n s i t y p r o f = 4 ;
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% Two Layer L i n e a r P r o f i l e ( a *x+b , c *x+d )
% d e n s i t y p r o f = 5 ;
% s w i t c h h e i g h t = 0 . 4 1 ;

% Needed Values
H water = . 6 6 3 ;
omega = 0 . 6 9 6 1 ;

% Put i n d e n s i t y v a l u e s
%J u s t copy p a s t e bo th columns i n from e x c e l f i l e
e x c e l = [ 1 1 0 0 . 4 0 . 0 6
1095 .7 0 . 0 8
1089 .8 0 . 1 1
1086 .3 0 . 1 4
1081 .1 0 . 1 7
1076 .4 0 . 2
1072 .2 0 . 2 3
1067 .6 0 . 2 6
1063 .2 0 . 2 9
1059 .1 0 . 3 2
1055 .4 0 . 3 5
1051 .8 0 . 3 8
1048 .4 0 . 4 1
1045 .0 0 . 4 4
1041 .8 0 . 4 7
1039 .2 0 . 5
1036 .7 0 . 5 3
1034 .7 0 . 5 6
1032 .2 0 . 5 9
1030 .2 0 . 6 2
] ;

%% C a l c u l a t i o n s
g = 9 . 8 1 ;
r h o o = 1000 ;
d e p t h = e x c e l ( : , 2 ) ;
r h o m e a s u r e d = e x c e l ( : , 1 ) ;
d r h o d z m e a s u r e d = d i f f ( r h o m e a s u r e d ) . / d i f f ( d e p t h ) ;
N measured = s q r t (−9.81/1000* d r h o d z m e a s u r e d ) ;
z f i t = 0 : . 0 0 1 : d e p t h ( end ) ;
syms z t d % needed t o f i n d t h e a c t u a l t d l o c a t i o n n u m e r i c a l l y ( g i v e n omega )
i f d e n s i t y p r o f ==1

f t = f i t t y p e ( ’ a * exp(−b*x ) +c ’ , ’ i n d e p e n d e n t ’ , ’ x ’ , ’ d e p e n d e n t ’ , ’ y ’ ) ;
o p t s = f i t o p t i o n s ( ’ Method ’ , ’ N o n l i n e a r L e a s t S q u a r e s ’ ) ;
o p t s . A lgo r i t hm = ’ Levenberg−Marquard t ’ ;
o p t s . D i s p l a y = ’ Off ’ ;
[ xData , yData ] = p r e p a r e C u r v e D a t a ( depth , r h o m e a s u r e d ) ;
[ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , o p t s ) ;
c o e f f = c o e f f v a l u e s ( f i t r e s u l t ) ;
a = c o e f f ( 1 )
b = −c o e f f ( 2 )
c = c o e f f ( 3 )
r h o p l o t = a * exp ( b* z f i t ) +c ;
N f i t = s q r t (−g / r h o o *( a *b* exp ( b* z f i t ) ) ) ;
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Nmin = s q r t (−g / r h o o *( a *b* exp ( b* H water ) ) ) ;%+c *d* exp ( d* H water ) ) ) ;
Nmax = s q r t (−g / r h o o *( a *b* exp ( b *0) ) ) ;%c *d* exp ( d *0) ) ) ;
z t d = do ub l e ( v p a s o l v e (−omega+ s q r t (−g / r h o o *( a *b* exp ( b* z t d ) ) ) ) ) ;
N evan = N f i t ( N f i t <omega ) ;
D = H water−z td−H;
H D = H/D;
Fr1 = omega / mean ( N evan )
D H = D/H
Fr1D H = Fr1 *D H

e l s e i f d e n s i t y p r o f ==2
f t = f i t t y p e ( ’ a *x ˆ3+ b*x ˆ2+ c *x+d ’ , ’ i n d e p e n d e n t ’ , ’ x ’ , ’ d e p e n d e n t ’ , ’ y ’ ) ;
o p t s = f i t o p t i o n s ( ’ Method ’ , ’ N o n l i n e a r L e a s t S q u a r e s ’ ) ;
o p t s . A lgo r i t hm = ’ Levenberg−Marquard t ’ ;
o p t s . D i s p l a y = ’ Off ’ ;
[ xData , yData ] = p r e p a r e C u r v e D a t a ( depth , r h o m e a s u r e d ) ;
[ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , o p t s ) ;
[ p , S ] = p o l y f i t ( depth , rho measured , 3 ) ;
a = p ( 1 ) ;
b = p ( 2 ) ;
c = p ( 3 ) ;
d = p ( 4 ) ;
r h o p l o t = p o l y v a l ( p , z f i t ) ;
N f i t = s q r t ( −9 .81 /1000*( p ( 1 ) *3* z f i t . ˆ 2 + 2 * p ( 2 ) * z f i t +p ( 3 ) ) ) ;
Nmax = s q r t ( −9 .81 /1000*( p ( 1 ) *3*0 . ˆ2+2* p ( 2 ) *0+p ( 3 ) ) ) ;
Nmin = s q r t ( −9 .81 /1000*( p ( 1 ) *3* H water . ˆ 2 + 2 * p ( 2 ) * H water +p ( 3 ) ) ) ;
z t d = do ub l e ( v p a s o l v e (−omega+ s q r t (−g / r h o o *( p ( 1 ) *3* z t d ˆ2+2* p ( 2 ) * z t d +p

( 3 ) ) ) ) ) ;
D = H water−z td−H;
H D = H/D;
N evan = N f i t ( N f i t <omega ) ;
Fr1 = omega / mean ( N evan ) ;
D H = D/H
Fr1D H = Fr1 *D H ;

e l s e i f d e n s i t y p r o f ==3
f t = f i t t y p e ( ’ a *x ˆ2+ b*x+c ’ , ’ i n d e p e n d e n t ’ , ’ x ’ , ’ d e p e n d e n t ’ , ’ y ’ ) ;
o p t s = f i t o p t i o n s ( ’ Method ’ , ’ N o n l i n e a r L e a s t S q u a r e s ’ ) ;
o p t s . A lgo r i t hm = ’ Levenberg−Marquard t ’ ;
o p t s . D i s p l a y = ’ Off ’ ;
[ xData , yData ] = p r e p a r e C u r v e D a t a ( depth , r h o m e a s u r e d ) ;
[ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , o p t s ) ;
[ p , S ] = p o l y f i t ( depth , rho measured , 2 ) ;
a = p ( 1 ) ;
b = p ( 2 ) ;
c = p ( 3 ) ;
r h o p l o t = p o l y v a l ( p , z f i t ) ;
N f i t = s q r t ( −9 .81 /1000*( p ( 1 ) *2* z f i t +p ( 2 ) ) ) ;
Nmax = s q r t (−g / r h o o *( p ( 1 ) *2*0+p ( 2 ) ) ) ;
Nmin = s q r t (−g / r h o o *( p ( 1 ) *2* H water +p ( 2 ) ) ) ;
z t d = do ub l e ( v p a s o l v e (−omega+ s q r t (−g / r h o o *( p ( 1 ) *2* z t d +p ( 2 ) ) ) ) ) ;
D = H water−z td−H;
H D = H/D;
N evan = N f i t ( N f i t <omega ) ;
Fr1 = omega / mean ( N evan ) ;
D H = D/H
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Fr1D H = Fr1 *D H ;
e l s e i f d e n s i t y p r o f ==4

f t = f i t t y p e ( ’ a *x+b ’ , ’ i n d e p e n d e n t ’ , ’ x ’ , ’ d e p e n d e n t ’ , ’ y ’ ) ;
o p t s = f i t o p t i o n s ( ’ Method ’ , ’ N o n l i n e a r L e a s t S q u a r e s ’ ) ;
o p t s . A lgo r i t hm = ’ Levenberg−Marquard t ’ ;
o p t s . D i s p l a y = ’ Off ’ ;
[ xData , yData ] = p r e p a r e C u r v e D a t a ( depth , r h o m e a s u r e d ) ;
[ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , o p t s ) ;
[ p , S ] = p o l y f i t ( depth , rho measured , 1 ) ;
a = p ( 1 )
b = p ( 2 )
r h o p l o t = p o l y v a l ( p , z f i t ) ;
N f i t = s q r t ( −9 .81 /1000*( p ( 1 ) *2* ones ( l e n g t h ( z f i t ) ) ) ) ;
Nmax = s q r t (−g / r h o o *( p ( 1 ) *2*0+p ( 2 ) ) ) ;
Nmin = s q r t (−g / r h o o *( p ( 1 ) *2* H water +p ( 2 ) ) ) ;
z t d = do ub l e ( v p a s o l v e (−omega+ s q r t (−g / r h o o *( p ( 1 ) *2* z t d +p ( 2 ) ) ) ) ) ;
D = H water−z td−H;
H D = H/D;
N evan = N f i t ( N f i t <omega ) ;
Fr1 = omega / mean ( N evan )
D H = D/H
Fr1D H = Fr1 *D H

e l s e i f d e n s i t y p r o f == 5
f t = f i t t y p e ( ’ a *x+b , c *x+d ’ , ’ i n d e p e n d e n t ’ , ’ x ’ , ’ d e p e n d e n t ’ , ’ y ’ ) ;
o p t s = f i t o p t i o n s ( ’ Method ’ , ’ N o n l i n e a r L e a s t S q u a r e s ’ ) ;
o p t s . A lgo r i t hm = ’ Levenberg−Marquard t ’ ;
o p t s . D i s p l a y = ’ Off ’ ;
[ xData , yData ] = p r e p a r e C u r v e D a t a ( depth , r h o m e a s u r e d ) ;
[ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , o p t s ) ;
p r o p i n d i c e s = f i n d ( depth<s w i t c h h e i g h t ) ;
e v a n i n d i c e s = f i n d ( depth>s w i t c h h e i g h t ) ;
d e p t h p r o p = d e p t h ( p r o p i n d i c e s ) ;
d e p t h e v a n = d e p t h ( e v a n i n d i c e s ) ;
r h o m e a s u r e d p r o p = r h o m e a s u r e d ( p r o p i n d i c e s ) ;
r h o m e a s u r e d e v a n = r h o m e a s u r e d ( e v a n i n d i c e s ) ;
[ p prop , S ] = p o l y f i t ( d e p t h p r o p , r h o m e a s u r e d p r o p , 1 ) ;
a = p p r o p ( 1 )
b = p p r o p ( 2 )
[ p evan , S ] = p o l y f i t ( d e p t h e v a n , r h o m e a s u r e d e v a n , 1 ) ;
c = p evan ( 1 )
d = p evan ( 2 )
z m e a s u r e d e v a n = z f i t ( z f i t >=s w i t c h h e i g h t ) ;
z m e a s u r e d p r o p = z f i t ( z f i t <s w i t c h h e i g h t ) ;
r h o p l o t p r o p = p o l y v a l ( p prop , z m e a s u r e d p r o p ) ;
r h o p l o t e v a n = p o l y v a l ( p evan , z m e a s u r e d e v a n ) ;
r h o p l o t = [ r h o p l o t p r o p r h o p l o t e v a n ] ;
N e v a n e x t r a p = z e r o s ( 1 , l e n g t h ( z m e a s u r e d e v a n ) ) +( s q r t (−g / r h o o * c ) ) ;
N p r o p e x t r a p = z e r o s ( 1 , l e n g t h ( z m e a s u r e d p r o p ) ) +( s q r t (−g / r h o o * a ) ) ;
N f i t = [ N e v a n e x t r a p N p r o p e x t r a p ] ;
D = H water−s w i t c h h e i g h t−H;
N evan = N f i t ( N f i t <omega ) ;
Fr1 = omega / mean ( N evan )
D H = D/H
Fr1D H = Fr1 *D H
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end

%%
f i g u r e ( 1 ) ; c l f ;

f i g u r e 1 = f i g u r e ( 6 ) ; c l f ; ho ld on ;
p l o t ( z f i t , N f i t )
p l o t ( d e p t h ( 1 : end−1) , N measured )
x l a b e l ( ’ Depth (m) ’ )
y l a b e l ( ’N’ )
t i t l e ( ’ N a t u r a l F requency i n E x p e r i m e n t a l Tank ’ )
l e g e n d ( ’N F i t ’ , ’N from measurements ’ )
ho ld o f f

B.1.3 MATLAB setup from Digiflow DATs

%% C r e a t i n g Time S e r i e s Example

%% C r e a t i n g Time S e r i e s
% A l l i s o n Lee , 3−21−18
% Thi s f i l e c r e a t e s two s e t s o f mat f i l e s . The f i r s t c o n t a i n s a l l o f t h e
% i n f o r m a t i o n needed on a t e s t such as omega and t h e d e n s i t y p r o f i l e i n f o .
% The second f i l e c r e a t e s j u s t t h e t i m e s e r i e s wi th t h e s e t s o f rows r e a d y
% t o be F o u r i e r Trans fo rmed .
c l e a r

%% %%%%%%%%%%%%%%%%%%%% V a r i a b l e s t h a t change wi th e v e r y t e s t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% I n p u t v a l u e s− These must a l l be checked f o r each t e s t

% Date and t e s t l e t t e r ( f o r m a t : 3 2 1 1 8 a )
t i m e s e r i e s i n f o . d a t e = ’ 3 6 1 9 a ’ ;

% l o c a t i o n where program f i n d s t h e y g r a d i e n t f i l e s on t h e s u p e r c o m p u t e r
l o c a t i o n = s t r c a t ( ’ y g r a d s t o b e r u n p i v / y g r a d d a t ’ , t i m e s e r i e s i n f o . da t e , ’ / ’ ) ;

% l o c a t i o n where t h e t i m e s e r i e s f i l e s w i l l be saved
m a t f i l n a m e = s t r c a t ( ’ c o m p l e t e d t i m e s e r i e s p i v / t i m e s e r i e s y ’ , t i m e s e r i e s i n f o

. da t e , ’ . mat ’ ) ;

t i m e s e r i e s i n f o . e n d t i m e = 1079 ; % max e n d t i m e = 1079 ;
t i m e s e r i e s i n f o . dx = ( . 3 7 1 + . 1 3 7 ) / 1 3 6 0 ; % m/ p i x e l from d i g i f l o w
t i m e s e r i e s i n f o . dz = ( . 3 5 1 + . 0 2 6 ) / 1 0 3 0 ; % m/ p i x e l from d i g i f l o w
t i m e s e r i e s i n f o . omega = 0 . 7 7 ; % r a d s / s e c
t i m e s e r i e s i n f o . num rows = 1030 ; % number o f rows t o be a n a l y z e d
t i m e s e r i e s i n f o . z t d = 0 . 5 2 4 ; % L o c a t i o n o f t h e t u r n i n g d e p t h (m)

t i m e s e r i e s i n f o . z t o t a l h e i g h t = . 6 6 3 ; % t o t a l w a t e r h e i g h t (m) ( d e n s i t y s t i c k
)

% s t a r t and end h e i g h t s o f t h e camera image
t i m e s e r i e s i n f o . z en d = . 5 5 2 ;
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t i m e s e r i e s i n f o . z s t a r t = t i m e s e r i e s i n f o . z end− t i m e s e r i e s i n f o . dz *1029 ;
t i m e s e r i e s i n f o . f p s = 6 ; % a n a l y z e d f r am es p e r second

% Type of t o p o g r a p h y
t i m e s e r i e s i n f o . t o p = ’ S t e e p ’ ; % O p t i o n s a r e ’Medium ’ ’ Steep ’ ’ Complex ’ ’ Sine ’
t i m e s e r i e s i n f o . L= . 0 4 5 * 2 ; % d i s t a n c e t o p o g r a p h y moves d u r i n g an ENTIRE p e r i o d

( l e f t + r i g h t )
t i m e s e r i e s i n f o . u t o p = t i m e s e r i e s i n f o . L / ( 2 * p i / t i m e s e r i e s i n f o . omega ) ;

t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 0 4 9 5 ) ; % Steep ,
c a l c u l a t e d wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 2 ) ; % Medium ,
c a l c u l a t e d wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 2 3 5 ) ; % Complex ,
c a l c u l a t e d wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% t i m e s e r i e s i n f o . k wave = 2* p i / ( . 1 1 ) ; % . 1 1 ? S i n u s o i d a l , c a l c u l a t e d
wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% C a l c u l a t e d v a r i a b l e s
g = 9 . 8 1 ;
r h o o = 1000 ;
t i m e s e r i e s i n f o . z = t i m e s e r i e s i n f o . z s t a r t : t i m e s e r i e s i n f o . dz : t i m e s e r i e s i n f o

. z en d ;

%% F i n d i n g N
% Use t h e f o l l o w i n g i f s t a t e m e n t s t o c r e a t e t h e c o r r e c t N and dN2 / dz
% p r o f i l e

% Choose one of t h e f o l l o w i n g p r o f i l e o p t i o n s , t h e n a d j u s t t h e a , b , c and / o r
% d v a l u e s i n t h e a p p r o p r i a t e s e c t i o n o f t h e i f s t a t e m e n t
% p r o f i l e = 1 ; % Two Layer
% p r o f i l e = 2 ; % ” E x p o n e n t i a l ” ;
% p r o f i l e = 3 ; % P a r a b o l i c
p r o f i l e = 4 ; % Q u a d r a t i c

% p r o f i l e = 5 ; % One Layer

t i m e s e r i e s i n f o . p r o f i l e t y p e = p r o f i l e ;

i f p r o f i l e == 1
% f o r 2 Layer N
% Two l a y e r p r o f i l e
t i m e s e r i e s i n f o . a = −151.96; % E v a n e s c e n t Region
t i m e s e r i e s i n f o . b = 1 1 1 5 . 4 ; % E v a n e s c e n t Region
t i m e s e r i e s i n f o . c = −20; % P r o p a g a t i n g r e g i o n
t i m e s e r i e s i n f o . d = 1 0 5 5 . 6 ; % P r o p a g a t i n g r e g i o n

f o r i i = 1 : l e n g t h ( t i m e s e r i e s i n f o . z )
i f t i m e s e r i e s i n f o . z ( i i )< t i m e s e r i e s i n f o . z t d

% Prop r e g i o n
t i m e s e r i e s i n f o .N( i i ) = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . c ) ;
t i m e s e r i e s i n f o . dN2 dz ( i i ) = 0 ;

e l s e
% Evan r e g i o n
t i m e s e r i e s i n f o .N( i i ) = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . a ) ;
t i m e s e r i e s i n f o . dN2 dz ( i i ) = 0 ;
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end
end

e l s e i f p r o f i l e == 2
% rho = a * exp ( b* z ) +c ( b i s n e g a t i v e )
t i m e s e r i e s i n f o . a = 1 3 1 . 3 7 7 8 ;
t i m e s e r i e s i n f o . b = −1.5628;
t i m e s e r i e s i n f o . c = 9 8 0 . 4 1 9 7 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *( t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . b* exp

( t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z ) ) ) ;
t i m e s e r i e s i n f o . dN2 dz = −g / r h o o * t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . b ˆ2*

exp ( t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z ) ;

e l s e i f p r o f i l e == 3
% rho = az ˆ3 + bz ˆ2 + cz + d
t i m e s e r i e s i n f o . a = 1 5 0 . 8 9 3 1 ;
t i m e s e r i e s i n f o . b = −29.0792;
t i m e s e r i e s i n f o . c = −183.2962;
t i m e s e r i e s i n f o . d = 1 1 2 0 . 5 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *(3* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . z

. ˆ 2 + 2 * t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z+ t i m e s e r i e s i n f o . c ) ) ;
t i m e s e r i e s i n f o . dN2 dz = −g / r h o o *(6* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . z

+2* t i m e s e r i e s i n f o . b ) ;
e l s e i f p r o f i l e == 4

% rho = az ˆ2 + bz + c
t i m e s e r i e s i n f o . a = 1 4 4 . 9 7 8 7 ;
t i m e s e r i e s i n f o . b = −212.6409;
t i m e s e r i e s i n f o . c = 1 0 9 7 . 5 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *(2* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . z+

t i m e s e r i e s i n f o . b ) ) ;
t i m e s e r i e s i n f o . dN2 dz = z e r o s ( 1 , l e n g t h ( t i m e s e r i e s i n f o . z ) ) +(−g / r h o o *(2*

t i m e s e r i e s i n f o . a ) ) ;
e l s e i f p r o f i l e == 5

% rho = az+b ;
t i m e s e r i e s i n f o . a = −140.82;
t i m e s e r i e s i n f o . b = 1 0 9 2 . 7 ;
t i m e s e r i e s i n f o .N = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . a ) + z e r o s ( l e n g t h (

t i m e s e r i e s i n f o . z ) ) ;
t i m e s e r i e s i n f o . dN2 dz = z e r o s ( l e n g t h ( t i m e s e r i e s i n f o . z ) ) ;

end
%% %%%%%%%%%%%%%%%%%%%%%%%% Values t h a t ( g e n e r a l l y ) don ’ t need t o be changed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sometimes an e x t r a z e r o g e t s added or removed from y g r a d i e n t 0 0 0 0 0 0 0 . d a t .
% Sometimes t h e number o f rows , columns , o r t i m e s might change ( r a r e l y )
%% Read i n f u l l t ime s e r i e s
myClus t e r = p a r c l u s t e r ( ’ l o c a l ’ ) ;
t i c

t i m e s t e p s = z e r o s ( 1 0 3 0 , 1 3 6 0 , 1 0 8 0 ) ;
f i l e n a m e = ’ y g r a d i e n t 0 0 0 0 0 0 0 0 . d a t ’ ;
f u l l f i l e n a m e = s t r c a t ( l o c a t i o n , f i l e n a m e ) ;
t i m e s t e p s ( : , : , 1 ) = i m p o r t f u l l d a t a s e t ( f u l l f i l e n a m e ) ;
t o c
t i c
p a r f o r i = 1 : t i m e s e r i e s i n f o . e n d t i m e
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i f i <10
f o r m a t s p e c = ’ y g r a d i e n t 0 0 0 0 0 0 0%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

e l s e i f i <100
f o r m a t s p e c = ’ y g r a d i e n t 0 0 0 0 0 0%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

e l s e i f i <1000
f o r m a t s p e c = ’ y g r a d i e n t 0 0 0 0 0%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

e l s e
f o r m a t s p e c = ’ y g r a d i e n t 0 0 0 0%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

end

f u l l f i l e n a m e = s t r c a t ( l o c a t i o n , f i l e n a m e )
t i m e s t e p s ( : , : , i +1) = i m p o r t f u l l d a t a s e t ( f u l l f i l e n a m e ) ;

end
t o c

t i c
f o r i = 1 :1030

f o r m a t s p e c = ’ row %d ’ ;
s e r i e s = s p r i n t f ( f o r m a t s p e c , i −1) ;
f u l l m a t r i x = t i m e s t e p s ( i , : , : ) ;
t i m e s e r i e s . ( s e r i e s ) = s q u e e z e ( f u l l m a t r i x ) . ’ ;

end

save ( m a t f i l n a m e , ’− s t r u c t ’ , ’ t i m e s e r i e s ’ )
m a t f i l e n a m e i n f o = s t r c a t ( ’ c o m p l e t e d t i m e s e r i e s p i v / t i m e s e r i e s i n f o y ’ ,

t i m e s e r i e s i n f o . da t e , ’ . mat ’ ) ;
s ave ( m a t f i l e n a m e i n f o , ’− s t r u c t ’ , ’ t i m e s e r i e s i n f o ’ )
t o c
d e l e t e ( myClus t e r . Jobs )
c l e a r
e x i t

f u n c t i o n [ t i m e s t e p ] = i m p o r t f u l l d a t a s e t ( f i l e n a m e )%, s t a r tRow , endRow )
%IMPORTFILE I mpo r t numer ic d a t a from a t e x t f i l e a s column v e c t o r s .
% [VARNAME1,VARNAME2,VARNAME3] = IMPORTFILE (FILENAME) Reads d a t a from
% t e x t f i l e FILENAME f o r t h e d e f a u l t s e l e c t i o n .
%
% [VARNAME1,VARNAME2,VARNAME3] = IMPORTFILE (FILENAME, STARTROW, ENDROW)
% Reads d a t a from rows STARTROW t h r o u g h ENDROW of t e x t f i l e FILENAME .
%
% Example :
% [ VarName1 , VarName2 , VarName3 ] = i m p o r t f i l e ( ’ Sequence00000000 . da t ’ , 2 ,

1400801) ;
%
% See a l s o TEXTSCAN .

% Auto−g e n e r a t e d by MATLAB on 2 0 1 6 / 0 5 / 2 4 1 7 : 4 7 : 1 7

%% I n i t i a l i z e v a r i a b l e s .
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i f n a r g i n <=2
s t a r t R o w = 2 ;
endRow = 1400801;

end

%% Format s t r i n g f o r each l i n e o f t e x t :
% column1 : d oub l e (% f )
% column2 : d oub l e (% f )
% column3 : d oub l e (% f )
% For more i n f o r m a t i o n , s e e t h e TEXTSCAN d o c u m e n t a t i o n .
f o r m a t S p e c = ’%5f%5f%f %[ˆ\n\ r ] ’ ;

%% Open t h e t e x t f i l e .
f i l e I D = fopen ( f i l e n a m e , ’ r ’ ) ;

%% Read columns of d a t a a c c o r d i n g t o f o r m a t s t r i n g .
% Th i s c a l l i s based on t h e s t r u c t u r e o f t h e f i l e used t o g e n e r a t e t h i s
% code . I f an e r r o r o c c u r s f o r a d i f f e r e n t f i l e , t r y r e g e n e r a t i n g t h e code
% from t h e Im po r t Tool .
% t i c
d a t a A r r a y = t e x t s c a n ( f i l e I D , fo rmatSpec , endRow ( 1 )−s t a r t R o w ( 1 ) +1 , ’ D e l i m i t e r ’ ,

’ ’ , ’ Whi teSpace ’ , ’ ’ , ’ Heade rL ines ’ , s t a r t R o w ( 1 ) −1, ’ Re tu rnOnEr ro r ’ ,
f a l s e ) ;

f o r b l o c k =2: l e n g t h ( s t a r t R o w )
f r e w i n d ( f i l e I D ) ;
d a t a A r r a y B l o c k = t e x t s c a n ( f i l e I D , fo rmatSpec , endRow ( b l o c k )−s t a r t R o w ( b l o c k

) +1 , ’ D e l i m i t e r ’ , ’ ’ , ’ Whi teSpace ’ , ’ ’ , ’ Heade rL ines ’ , s t a r t R o w ( b l o c k )
−1, ’ Re tu rnOnEr ro r ’ , f a l s e ) ;

f o r c o l =1: l e n g t h ( d a t a A r r a y )
d a t a A r r a y { c o l } = [ d a t a A r r a y { c o l } ; d a t a A r r a y B l o c k { c o l } ] ;

end
end

%% Close t h e t e x t f i l e .
f c l o s e ( f i l e I D ) ;

%% P o s t p r o c e s s i n g f o r u n i m p o r t a b l e d a t a .
% No u n i m p o r t a b l e d a t a r u l e s were a p p l i e d d u r i n g t h e impor t , so no p o s t
% p r o c e s s i n g code i s i n c l u d e d . To g e n e r a t e code which works f o r
% u n i m p o r t a b l e da t a , s e l e c t u n i m p o r t a b l e c e l l s i n a f i l e and r e g e n e r a t e t h e
% s c r i p t .

%% A l l o c a t e i m p o r t e d a r r a y t o column v a r i a b l e names
% x p i x = d a t a A r r a y { : , 1} ;
% y p i x = d a t a A r r a y { : , 2} ;
d a t a = d a t a A r r a y { : , 3} ;

%% A l l o c a t e i m p o r t e d a r r a y t o column v a r i a b l e names
% x t o t a l = x p i x ( 1 ) ;
% y t o t a l = y p i x ( 1 ) ;
% x p i x ( 1 ) = [ ] ;
% y p i x ( 1 ) = [ ] ;
% d a t a ( 1 ) = [ ] ;
t i m e s t e p = z e r o s ( 1 0 3 0 , 1 3 6 0 ) ;

% t i c
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% f o r i = 1 : l e n g t h ( d a t a )
% % t i m e s t e p ( i , i ) = d a t a ( i ) ;
% t i m e s t e p ( y p i x ( i ) +1 , x p i x ( i ) +1) = d a t a ( i ) ;
% end

f o r i = 1 : 1 0 3 0 ;
a = ( i −1) *1360+1;
b = a +1359;
t i m e s t e p ( i , : ) = d a t a ( a : b ) ;

end
% t o c
end

B.1.4 Supercomputer MATLAB file to calculate kinetic energy

%% Supercompute r C a l c u l a t i n g E x p e r i m e n t a l Energy
% Thi s f i l e does t h e i n i t a l s e t u p and t h e n s e n d s d a t a t o a f u n c t i o n
% e n t i t l e d ” E x p e r i m e n t a l E n e r g y A L 1 0 2 6 1 8 . Tha t f i l e c a l c u l a t e s KE a t a
% row and s e n d s i t back h e r e .

% l e n g t h e x p = 4 2 ; %number o f e x p e r i m e n t s

%Choose t o p o g r a p h y t y p e
topo = 1 ; mm = 4 2 ; %Medium 42
%topo = 2 ; mm = 3 6 ; %S t e e p 36
%topo = 3 ; mm = 3 0 ; %Complex 30
%topo = 4 ; mm = 42;% S i n u s o i d a l 42

% kk =1;
myClus t e r = p a r c l u s t e r ( ’ l o c a l ’ ) ;
p a r f o r kk = 1 : 5%mm

f p r i n t f ( num2s t r ( ( kk ) ) )
f p r i n t f ( ’ , ’ )

% i f j j == 1
% name = ’5 1 5 1 8 a ’ ;
% e l s e i f j j == 2
% name = ’5 15 18 b ’ ;
% end
[ t e s t d a t e s , ˜ ] = p a p e r 3 t e s t s 2 4 1 9 ( topo , ( kk ) ) ;

% t e s t d a t e s = ’5 8 1 8 a . mat ’ ;
t e s t d a t e = t e s t d a t e s ; %Rep lace wi th t e s t d a t e s and comment o u t f o r loop t o

run s p e c i f i c t e s t s

%% Read i n t i m e s e r i e s d a t a
l o c a t i o n d a t a = ’ c o m p l e t e d t i m e s e r i e s p i v / ’ ;
l o c a t i o n i n f o = ’ c o m p l e t e d t i m e s e r i e s p i v / ’ ;
name da ta = s t r c a t ( ’ t i m e s e r i e s y ’ , t e s t d a t e )
n a m e i n f o = s t r c a t ( ’ t i m e s e r i e s i n f o y ’ , t e s t d a t e )

m a t f i l n a m e = s t r c a t ( ’ E x p E n e r g y n o z f i l t e r / Energy ’ , n a m e i n f o ) ;
e n e r g y c a l c ( l o c a t i o n d a t a , l o c a t i o n i n f o , name data , name info , m a t f i l n a m e )
end

203



d e l e t e ( myClus t e r . Jobs )
c l e a r
e x i t

f u n c t i o n [ ] = e n e r g y c a l c ( l o c a t i o n d a t a , l o c a t i o n i n f o , name data , name info ,
m a t f i l n a m e )

i n f o d a t a = l o a d ( s t r c a t ( l o c a t i o n i n f o , n a m e i n f o ) ) ;
% The i n f o d a t a f i l e needs t o have o t h e r i n f o r m a t i o n i n i t i n c l u d i n g :
% N, dN ˆ 2 / dz , k wave , omega , z , number o f rows ,
% r a w d a t a = l o a d ( name da ta ) ;

%% Setup b a s i c p a r a m e t e r s
N = i n f o d a t a .N;
dN2 dz = i n f o d a t a . dN2 dz ;
omega = i n f o d a t a . omega ;
k wave = i n f o d a t a . k wave ;
z = i n f o d a t a . z ;
num rows = i n f o d a t a . num rows ;
rows = 0 : num rows−1;
Peak Energy = z e r o s ( l e n g t h ( z ) , 2 ) ;
dx = i n f o d a t a . dx ;
f p s = i n f o d a t a . f p s ;
r a w d a t a = l o a d ( s t r c a t ( l o c a t i o n d a t a , name da ta ) ) ;

%% Run e x p e r i m e n t e ne r gy
f o r i i = 1 : l e n g t h ( z )

f o r m a t s p e c = ’ row %d ’ ;
s e r i e s = s p r i n t f ( f o r m a t s p e c , rows ( i i ) ) ;
d a t a = r a w d a t a . ( s e r i e s ) ;
i f N( i i )<omega

evan ( i i ) = 1 ;
[ tmp ene rgy ] = E x p e r i m e n t a l E n e r g y A L 1 0 2 6 1 8 ( da t a ,N( i i ) , dN2 dz ( i i

) , dx , fps , evan ( i i ) , k wave , omega ) ;
Peak Energy ( i i , 1 ) = tmp ene rgy ;
Peak Energy ( i i , 2 ) = z ( i i ) ;

e l s e
evan ( i i ) = 0 ;
[ tmp ene rgy ] = E x p e r i m e n t a l E n e r g y A L 1 0 2 6 1 8 ( da t a ,N( i i ) , dN2 dz ( i i

) , dx , fps , evan ( i i ) , k wave , omega ) ;
Peak Energy ( i i , 1 ) = tmp ene rgy ;
Peak Energy ( i i , 2 ) = z ( i i ) ;

end
end

%% Save Data
i n f o d a t a . KE exp = Peak Energy ( : , 1 ) . ’ ;
i n f o d a t a . z ex p = Peak Energy ( : , 2 ) . ’ ;
s ave ( m a t f i l n a m e , ’− s t r u c t ’ , ’ i n f o d a t a ’ )
c l e a r r a w d a t a
end
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f u n c t i o n [ Peak Energy , E n e r g y r a n g e ] =
E x p e r i m e n t a l E n e r g y f u l l r a n g e A L 9 1 6 1 9 ( da t a , N, dN2 dz , dx , fps , evan ,
k wave , omega )

%E x p e r i m e n t a l E n e r g y A L 1 0 2 6 1 7
% Thi s f u n c t i o n s e n d s t h e d a t a t o e i t h e r t h e p r o p a g a t i n g o r e v a n e s c e n t
% f u n c t i o n n e s t e d i n t h i s f i l e
g = 9 . 8 1 ;

% S y n t h e t i c S c h l i e r e n comes i n t h e form ( 1 / r h o o ) * drho / dz . Need t o
% m u l t i p l y by g r a v i t y t o have Nˆ2 v a l u e s

da ta N2 = d a t a *−g ;

% Take t h e 2D F o u r i e r Trans fo rm
[ f r q , k , amp ] = IW FFT2 ( data N2 , fps , dx ) ;

i f evan ==1
[ E sum , E r a n g e ] = IW Evan Energy ( f r q , k , N, dN2 dz , amp , omega , k wave ) ;

e l s e
[ E sum , E r a n g e ] = IW Prop Energy ( f r q , k , N, dN2 dz , amp , omega , k wave ) ;

end

Peak Energy = E sum ;
E n e r g y r a n g e = E r a n g e ;
% f i g u r e ;
% c o n t o u r ( k , f r q , amp ) ; x l im ( [ 0 1 5 0 ] ) ; y l im ( [ 0 3 ] )
% t i t l e ( ’\ D e l t a Nˆ2 a m p l i t u d e ’ )
% f i g u r e
% c o n t o u r ( k , f r q , E n e r g y r a n g e ) ; x l im ( [ 0 1 5 0 ] ) ; y l im ( [ 0 3 ] )
% t i t l e ( ’ Energy ’ )

end

f u n c t i o n [ f r q , k , amp ] = IW FFT2 ( data N2 , fps , dx )
% Purpose : pe r fo rm an FFT of a r e a l−v a l u e d i n p u t s i g n a l , and g e n e r a t e t h e
% s i n g l e−s i d e d o u t p u t , i n a m p l i t u d e and phase , s c a l e d t o t h e same u n i t s a s
%t h e i n p u t . E d i t s : AL ( 5 / 4 / 2 0 1 6 ) a l l o w i n g f o r an FFT2 l o o k i n g bo th a t
%f r e q u e n c y and wavenumber

% Assume t h a t f p s i s l i t e r a l l y f r am es / second
ScanRate = f p s *2* p i ;

% Assume dx i s m e t e r s / p i x e l , needs t o be t r a n s f o r m e d t o r a d s / me te r )
x r e s = 1 / ( dx / ( 2 * p i ) ) ;

% Find t h e s i z e o f t h e d a t a s e t . n c o r r e s p o n d s t o t ime and number o f f r am e s
% w h i l e m c o r r e s p o n d s t o number o f h o r i z o n t a l p o i n t s ( p i x e l s )
[ n ,m] = s i z e ( da ta N2 ) ;

%g e n e r a t e t h e v e c t o r o f f r e q u e n c i e s
h a l f n = round ( n / 2 ) ;
d e l t a f = 1 / ( n / ScanRate ) ;
f r q = ( 0 : ( h a l f n −1) ) * d e l t a f ;
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hal fm = f l o o r (m/ 2 ) ;
d e l t a k = 1 / ( m / x r e s ) ;
k = ( 0 : ( halfm −1) ) * d e l t a k ;

% Per fo rm t h e FFT2
f f t 2 t x = abs ( f f t 2 ( da ta N2 ) / (m*n ) ) ;
f f t 2 t x ( 2 : l e n g t h ( f r q ) , 2 : l e n g t h ( k ) ) = f f t 2 t x ( 2 : l e n g t h ( f r q ) , 2 : l e n g t h ( k ) ) * 2 ;
amp = f f t 2 t x ( 1 : l e n g t h ( f r q ) , 1 : l e n g t h ( k ) ) ;
end

f u n c t i o n [ E sum , E r a n g e ] = IW Evan Energy ( f r q , k , N, dN2 dz , amp , omega , k wave )
% Thi s f u n c t i o n c a l c u l a t e s e n e r gy o f a l i n e i n an e v a n e s c e n t r e g i o n

t i m e s i z e = l e n g t h ( f r q ) ;
x s i z e = l e n g t h ( k ) ;
Evan E2 = z e r o s ( t i m e s i z e , x s i z e ) ;
q = − s q r t ( ( k . ˆ 2 ) ’*(1−N ˆ 2 . / f r q . ˆ 2 ) ) ’ ;
f o r i i = 1 : t i m e s i z e

%Evan E2 ( i i , : ) = ( abs (−(1−Nˆ 2 / f r q ( i i ) ˆ 2 ) ˆ . 5 * f r q ( i i ) *amp ( i i , : ) . / ( dN2 dz−k ( 1 , : )
*(1−Nˆ 2 / f r q ( i i ) ˆ 2 ) ˆ . 5 *Nˆ 2 ) ) ) . ˆ 2 + ( abs (1 i * f r q ( i i ) *amp ( i i , : ) . / ( dN2 dz−k ( 1 , : )
*(1−Nˆ 2 / f r q ( i i ) ˆ 2 ) ˆ . 5 *Nˆ 2 ) ) ) . ˆ 2 ;

Evan E2 ( i i , : ) = ( abs (−q ( i i , : ) . * f r q ( i i ) . * amp ( i i , : ) . / ( k ( 1 , : ) . * ( dN2 dz+q ( i i , : ) . *N
ˆ 2 ) ) ) ) . ˆ 2 + ( abs (1 i * f r q ( i i ) *amp ( i i , : ) . / ( dN2 dz+q ( i i , : ) . *Nˆ 2 ) ) ) . ˆ 2 ;

end

% We on ly want t h e e ne r gy n e a r t h e peak of k wave and omega
[ ˜ , i n d e x k ] = min ( abs ( k−k wave ) ) ;
[ ˜ , index omega ] = min ( abs ( f r q−omega ) ) ;
E s e l e c t = Evan E2 ( index omega −1: index omega +1 , i n d e x k : i n d e x k +1) ;

% Sum t h e e ne r gy n e a r t h e peak
E sum = sum ( sum ( E s e l e c t ) ) ;
E r a n g e = Evan E2 ( index omega −1: index omega + 1 , : ) ;
end

f u n c t i o n [ E sum , E r a n g e ] = IW Prop Energy ( f r q , k , N, dN2 dz , amp , omega , k wave
)

t i m e s i z e = l e n g t h ( f r q ) ;
x s i z e = l e n g t h ( k ) ;
E = z e r o s ( t i m e s i z e , x s i z e ) ;
f o r i i = 1 : l e n g t h ( f r q )

E ( i i , : ) = ( f r q ( i i ) . ˆ 2 *N . ˆ 2 ) . / ( k ( 1 , : ) . ˆ 2 * abs (N.ˆ2− f r q ( i i ) . ˆ 2 ) +( f r q ( i i ) *
dN2 dz . / Nˆ 2 ) . ˆ 2 ) . * ( abs ( amp ( i i , : ) /Nˆ 2 ) ) . ˆ 2 ;

end

% We on ly want t h e e ne r gy n e a r t h e peak of k wave and omega
[ ˜ , i n d e x k ] = min ( abs ( k−k wave ) ) ;
index omega = f i n d ( f r q<omega ) ;
i ndex omega end = index omega ( end ) ;
E s e l e c t = E ( index omega end −1: index omega end +1 , i ndex k −1: i n d e x k +1) ;

% Sum t h e e ne r gy n e a r t h e peak
E sum = sum ( sum ( E s e l e c t ) ) ;

206



E r a n g e = E ( index omega end −1: index omega end + 1 , : ) ;

end

B.1.5 PIV calculations

%% C r e a t i n g t ime s e r i e s PIV
% Annie Wesolek
% 1 0 / 3 1 / 1 8

c l e a r
%% %%%%%%%%%%%%%%%%%%%% V a r i a b l e s t h a t change wi th e v e r y t e s t

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% S p e c i f i c s e t u p f o r 9−27−18−T e s t b

% F i l e l o c a t i o n o f d a t f i l e s
l o c a t i o n = ’ I :\ A l l i s o n R e s e a r c h \PIV\9−27−18−T e s t b \ ’ ;

% F i l e l o c a t i o n t o save t h e f i l e s
m a t f i l n a m e = s t r c a t ( l o c a t i o n , ’ t i m e s e r i e s P I V 9 2 7 1 8 t e s t b . mat ’ ) ;

%T e s t S p e c i f i c i n f o r m a t i o n needed t o a n a l y z e e n e r gy
t i m e s e r i e s i n f o . omega = 1 . 4 1 0 ;
t i m e s e r i e s i n f o . f = 4 . 5 ; % Frequency
t i m e s e r i e s i n f o . d t = . 0 9 ; % Time between p a i r s o f images
t i m e s e r i e s i n f o . num images = 1000 ; % T o t a l number o f images

% Type of t o p o g r a p h y
t i m e s e r i e s i n f o . t o p = ’Medium ’ ; % O p t i o n s a r e ’Medium ’ ’ Steep ’ ’ Complex ’ ’ Sine

’
t i m e s e r i e s i n f o . L= . 0 4 8 * 2 ; % d i s t a n c e t o p o g r a p h y moves d u r i n g an ENTIRE p e r i o d

( l e f t + r i g h t )
t i m e s e r i e s i n f o . u t o p = t i m e s e r i e s i n f o . L / ( 2 * p i / t i m e s e r i e s i n f o . omega ) ;

% t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 0 4 9 5 ) ; % Steep ,
c a l c u l a t e d wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 2 ) ; % Medium , c a l c u l a t e d
wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% t i m e s e r i e s i n f o . k wave = 2* p i / ( t i m e s e r i e s i n f o . L / 2 + . 2 3 5 ) ; % Complex ,
c a l c u l a t e d wavenumber ( depends upon t h e shape o f t h e t o p o g r a p h y )

% t i m e s e r i e s i n f o . k wave = 2* p i / ( . 1 1 ) ; % S i n u s o i d a l , c a l c u l a t e d wavenumber (
depends upon t h e shape o f t h e t o p o g r a p h y )

% C a l c u l a t e d v a r i a b l e s
g = 9 . 8 1 ;
r h o o = 1000 ;

% Use t h e c o r r e l a t i o n p i c t u r e t o match t h e SS d a t a l o c a t i o n s t o t h e PIV
% p i c t u r e s
%SS l o c a t i o n i n Rea l World c o o r d i n a t e s
t i m e s e r i e s i n f o . dx SS = ( . 3 6 1 + . 2 3 9 ) / 1 3 5 9 ; % m/ p i x e l from d i g i f l o w
t i m e s e r i e s i n f o . dz SS = ( . 4 4 2 + . 0 2 2 ) / 1 0 2 9 ; % m/ p i x e l from d i g i f l o w
t i m e s e r i e s i n f o . x l e f t S S = 0 ;
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t i m e s e r i e s i n f o . x r i g h t S S = t i m e s e r i e s i n f o . x l e f t S S + t i m e s e r i e s i n f o . dx SS
*1359 ;

t i m e s e r i e s i n f o . z end SS = . 5 + 170* t i m e s e r i e s i n f o . dz SS +( .695 − . 660 ) ; %Top
of camera h e i g h t +( Dens i ty−w i t h s t i c k )

t i m e s e r i e s i n f o . z s t a r t S S = t i m e s e r i e s i n f o . z end SS− t i m e s e r i e s i n f o . dz SS
*1029 ;%bot tom of camera

t i m e s e r i e s i n f o . z SS = t i m e s e r i e s i n f o . z s t a r t S S : t i m e s e r i e s i n f o . dz SS :
t i m e s e r i e s i n f o . z end SS ; %r e a l wor ld l o c a t i o n s o f SS

t i m e s e r i e s i n f o . x SS = t i m e s e r i e s i n f o . x l e f t S S : t i m e s e r i e s i n f o . dx SS :
t i m e s e r i e s i n f o . x r i g h t S S ; %r e a l wor ld l o c a t i o n s o f SS

%PIV l o c a t i o n s i n Rea l World c o o r d i n a t e s
t i m e s e r i e s i n f o . dx PIV = ( . 0 6 1 3 + . 1 7 6 9 9 ) / (344−1) ;
t i m e s e r i e s i n f o . dz PIV = ( . 0 1 6 6 7 + . 1 6 0 4 9 ) / (256−1) ;
t i m e s e r i e s i n f o . j e n d P I V = 712 ; %SS l o c a t i o n o f t o p o f PIV camera
t i m e s e r i e s i n f o . j s t a r t P I V = 351 ; %SS l o c a t i o n o f bot tom of PIV camera
t i m e s e r i e s i n f o . i l e f t P I V = 513 − ( . 0 6 1 6 6 2 1 + . 0 0 0 6 9 4 ) / t i m e s e r i e s i n f o . dx SS ;

%SS l o c a t i o n o f l e f t o f PIV camera
t i m e s e r i e s i n f o . i r i g h t P I V = 513 +( .176 996 − . 0 0 0 6 9 4 ) / t i m e s e r i e s i n f o . dx SS ;

%SS l o c a t i o n o f r i g h t o f PIV camera

%r e a l wor ld l o c a t i o n s o f s t a r t and f i n i s h based on SS c o n v e r s i o n
t i m e s e r i e s i n f o . z s t a r t P I V = t i m e s e r i e s i n f o . z s t a r t S S + t i m e s e r i e s i n f o .

dz SS * t i m e s e r i e s i n f o . j s t a r t P I V ;
t i m e s e r i e s i n f o . z end PIV = t i m e s e r i e s i n f o . z s t a r t P I V + t i m e s e r i e s i n f o .

dz PIV *255 ;
t i m e s e r i e s i n f o . x l e f t P I V = t i m e s e r i e s i n f o . x l e f t S S + t i m e s e r i e s i n f o . dx SS

* t i m e s e r i e s i n f o . i l e f t P I V ;
t i m e s e r i e s i n f o . x r i g h t P I V = t i m e s e r i e s i n f o . x l e f t P I V + t i m e s e r i e s i n f o .

dx PIV *343 ;
%r e a l wor ld c o o r d i n a t e s
t i m e s e r i e s i n f o . x PIV = t i m e s e r i e s i n f o . x l e f t P I V : t i m e s e r i e s i n f o . dx PIV :

t i m e s e r i e s i n f o . x r i g h t P I V ;
t i m e s e r i e s i n f o . z PIV = t i m e s e r i e s i n f o . z s t a r t P I V : t i m e s e r i e s i n f o . dz PIV :

t i m e s e r i e s i n f o . z end PIV ;

% The l o c a t i o n o f t h e t u r n i n g d e p t h
t i m e s e r i e s i n f o . z t d = . 3 ;

%% F i n d i n g N
% Use t h e f o l l o w i n g i f s t a t e m e n t s t o c r e a t e t h e c o r r e c t N and dN2 / dz
% p r o f i l e

% Choose one of t h e f o l l o w i n g p r o f i l e o p t i o n s , t h e n a d j u s t t h e a , b , c and / o r
% d v a l u e s i n t h e a p p r o p r i a t e s e c t i o n o f t h e i f s t a t e m e n t
% p r o f i l e = 1 ; % Two Layer
% p r o f i l e = 2 ; % E x p o n e n t i a l
% p r o f i l e = 3 ; % P a r a b o l i c
% p r o f i l e = 4 ; % Q u a d r a t i c

p r o f i l e = 5 ; % One Layer

t i m e s e r i e s i n f o . p r o f i l e t y p e = p r o f i l e ;
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i f p r o f i l e == 1
% f o r 2 Layer N
% Two l a y e r p r o f i l e
t i m e s e r i e s i n f o . a = 1 1 3 . 7 9 2 9 ; % E v a n e s c e n t Region
t i m e s e r i e s i n f o . b = −2.4107; % E v a n e s c e n t Region
t i m e s e r i e s i n f o . c = 1 .0025 E3 ; % P r o p a g a t i n g r e g i o n
t i m e s e r i e s i n f o . d = 0 ; % P r o p a g a t i n g r e g i o n

f o r i i = 1 : l e n g t h ( t i m e s e r i e s i n f o . z PIV )
i f t i m e s e r i e s i n f o . z PIV ( i i )< t i m e s e r i e s i n f o . z t d

% Prop r e g i o n
t i m e s e r i e s i n f o .N( i i ) = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . c ) ;
t i m e s e r i e s i n f o . dN2 dz ( i i ) = 0 ;

e l s e
% Evan r e g i o n
t i m e s e r i e s i n f o .N( i i ) = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . a ) ;
t i m e s e r i e s i n f o . dN2 dz ( i i ) = 0 ;

end
end

e l s e i f p r o f i l e == 2
% rho = a * exp ( b* z ) +c ( b i s n e g a t i v e )
t i m e s e r i e s i n f o . a = 1 1 3 . 7 7 4 7 ;
t i m e s e r i e s i n f o . b = −2.3823;
t i m e s e r i e s i n f o . c = 1 .0046 E3 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *( t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . b* exp

( t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z PIV ) ) ) ;
t i m e s e r i e s i n f o . dN2 dz = −g / r h o o * t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o . b ˆ2*

exp ( t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z PIV ) ;

e l s e i f p r o f i l e == 3
% rho = az ˆ3 + bz ˆ2 + cz + d
t i m e s e r i e s i n f o . a = 2 7 7 . 4 2 7 2 ;
t i m e s e r i e s i n f o . b = −331.0401;
t i m e s e r i e s i n f o . c = 1 .1244 E3 ;
t i m e s e r i e s i n f o . d = 0 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *(3* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o .

z PIV . ˆ 2 + 2 * t i m e s e r i e s i n f o . b* t i m e s e r i e s i n f o . z PIV+ t i m e s e r i e s i n f o . c ) )
;

t i m e s e r i e s i n f o . dN2 dz = −g / r h o o *(6* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o .
z PIV +2* t i m e s e r i e s i n f o . b ) ;

e l s e i f p r o f i l e == 4
% rho = az ˆ2 + bz + c
t i m e s e r i e s i n f o . a = 1 1 5 . 0 4 5 1 ;
t i m e s e r i e s i n f o . b = −229.5245;
t i m e s e r i e s i n f o . c = 1 1 2 9 . 3 ;
t i m e s e r i e s i n f o .N = s q r t (−g / r h o o *(2* t i m e s e r i e s i n f o . a * t i m e s e r i e s i n f o .

z PIV+ t i m e s e r i e s i n f o . b ) ) ;
t i m e s e r i e s i n f o . dN2 dz = z e r o s ( 1 , l e n g t h ( t i m e s e r i e s i n f o . z PIV ) ) +(−g / r h o o

*(2* t i m e s e r i e s i n f o . a ) ) ;
e l s e i f p r o f i l e == 5

% rho = az+b ;
t i m e s e r i e s i n f o . a = −145.5148;
t i m e s e r i e s i n f o . b = 1 .1174 E3 ;
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t i m e s e r i e s i n f o .N = s q r t ( −g / r h o o * t i m e s e r i e s i n f o . a ) + z e r o s ( l e n g t h (
t i m e s e r i e s i n f o . z PIV ) ) ;

t i m e s e r i e s i n f o . dN2 dz = z e r o s ( l e n g t h ( t i m e s e r i e s i n f o . z PIV ) ) ;
end
%% %%%%%%%%%%%%%%%%%%%%%%%% Values t h a t ( g e n e r a l l y ) don ’ t need t o be changed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sometimes an e x t r a z e r o g e t s added or removed from y g r a d i e n t 0 0 0 0 0 0 0 . d a t .
% Sometimes t h e number o f rows , columns , o r t i m e s might change
%% Read i n l a r g e t ime f i l e
e n d t i m e = t i m e s e r i e s i n f o . num images ;

t i c
f o r i = 1 : e n d t i m e

i f i <10
f o r m a t s p e c = ’ B0000%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

e l s e i f i <100
f o r m a t s p e c = ’ B000%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

e l s e i f i <1000
f o r m a t s p e c = ’B00%d . d a t ’ ;
f i l e n a m e = s p r i n t f ( f o r m a t s p e c , i ) ;

end
f u l l f i l e n a m e = s t r c a t ( l o c a t i o n , f i l e n a m e ) ;
[ x v a l u e s , z v a l u e s , Vx matr ix , V z m a t r i x ] = i m p o r t f i l e P I V p r o c e s s (

f u l l f i l e n a m e ) ;
x ( : , i ) = x v a l u e s ;
z ( : , i ) = z v a l u e s ;
Vx ( : , : , i ) = Vx mat r ix ;
Vz ( : , : , i ) = V z m a t r i x ;

end
t o c

t i c
f o r i = 1 : l e n g t h ( z ( : , 1 ) )

f o r m a t s p e c 1 = ’ Vx row %d ’ ;
f o r m a t s p e c 2 = ’ Vz row %d ’ ;
s e r i e s 1 = s p r i n t f ( f o r m a t s p e c 1 , i ) ;
s e r i e s 2 = s p r i n t f ( f o r m a t s p e c 2 , i ) ;
f u l l m a t r i x 1 = Vx ( i , : , : ) ;
f u l l m a t r i x 2 = Vz ( i , : , : ) ;
t i m e s e r i e s i n f o . ( s e r i e s 1 ) = s q u e e z e ( f u l l m a t r i x 1 ) . ’ ;
t i m e s e r i e s i n f o . ( s e r i e s 2 ) = s q u e e z e ( f u l l m a t r i x 2 ) . ’ ;

end

t i m e s e r i e s i n f o . z = z ( : , 1 ) / 1 0 0 0 ;
t i m e s e r i e s i n f o . x = x ( : , 1 ) / 1 0 0 0 ;
t i m e s e r i e s i n f o . dx = abs ( t i m e s e r i e s i n f o . x ( end )− t i m e s e r i e s i n f o . x ( 1 ) ) / l e n g t h (

t i m e s e r i e s i n f o . x ) ;
t i m e s e r i e s i n f o . dz = abs ( t i m e s e r i e s i n f o . z ( end )− t i m e s e r i e s i n f o . z ( 1 ) ) / l e n g t h (

t i m e s e r i e s i n f o . z ) ;
t i m e s e r i e s i n f o . num rows = l e n g t h ( z ( : , 1 ) ) ;
s ave ( m a t f i l n a m e , ’− s t r u c t ’ , ’ t i m e s e r i e s i n f o ’ )
t o c
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f u n c t i o n [ x v a l u e s , y v a l u e s , Vx matr ix , Vy mat r ix ] = i m p o r t f i l e P I V p r o c e s s (
f i l e n a m e )

%IMPORTFILE2 I mpo r t numer ic d a t a from a t e x t f i l e a s column v e c t o r s .
% [VARIABLES ,VARNAME2, POSITION ,VARNAME4] = IMPORTFILE2 (FILENAME) Reads
% d a t a from t e x t f i l e FILENAME f o r t h e d e f a u l t s e l e c t i o n .
%
% [VARIABLES ,VARNAME2, POSITION ,VARNAME4] = IMPORTFILE2 (FILENAME,
% STARTROW, ENDROW) Reads d a t a from rows STARTROW t h r o u g h ENDROW of t e x t
% f i l e FILENAME .
%
% Example :
% [VARIABLES , VarName2 , p o s i t i o n , VarName4 ] = i m p o r t f i l e 2 ( ’ B00011 . da t ’ , 4 , 1379)

;
%
% See a l s o TEXTSCAN .

% Auto−g e n e r a t e d by MATLAB on 2 0 1 7 / 0 6 / 2 7 1 6 : 3 6 : 2 6

%% I n i t i a l i z e v a r i a b l e s .
d e l i m i t e r = { ’ , ’ , ’ ’ } ;
i f n a r g i n <=2

s t a r t R o w = 4 ;
endRow = i n f ;

end

%% Format s t r i n g f o r each l i n e o f t e x t :
% column1 : d oub l e (% f )
% column2 : d oub l e (% f )
% column3 : d oub l e (% f )
% column4 : d oub l e (% f )
% For more i n f o r m a t i o n , s e e t h e TEXTSCAN d o c u m e n t a t i o n .
f o r m a t S p e c = ’%f%f%f%f%*s%*s%*s%*s%*s %[ˆ\n\ r ] ’ ;

%% Open t h e t e x t f i l e .
f i l e I D = fopen ( f i l e n a m e , ’ r ’ ) ;

%% Read columns of d a t a a c c o r d i n g t o f o r m a t s t r i n g .
% Th i s c a l l i s based on t h e s t r u c t u r e o f t h e f i l e used t o g e n e r a t e t h i s
% code . I f an e r r o r o c c u r s f o r a d i f f e r e n t f i l e , t r y r e g e n e r a t i n g t h e code
% from t h e Im po r t Tool .
d a t a A r r a y = t e x t s c a n ( f i l e I D , fo rmatSpec , endRow ( 1 )−s t a r t R o w ( 1 ) +1 , ’ D e l i m i t e r ’ ,

d e l i m i t e r , ’ Heade rL ines ’ , s t a r t R o w ( 1 ) −1, ’ Re tu rnOnEr ro r ’ , f a l s e ) ;
f o r b l o c k =2: l e n g t h ( s t a r t R o w )

f r e w i n d ( f i l e I D ) ;
d a t a A r r a y B l o c k = t e x t s c a n ( f i l e I D , fo rmatSpec , endRow ( b l o c k )−s t a r t R o w ( b l o c k

) +1 , ’ D e l i m i t e r ’ , d e l i m i t e r , ’ Heade rL ines ’ , s t a r t R o w ( b l o c k )−1, ’
Re tu rnOnEr ro r ’ , f a l s e ) ;

f o r c o l =1: l e n g t h ( d a t a A r r a y )
d a t a A r r a y { c o l } = [ d a t a A r r a y { c o l } ; d a t a A r r a y B l o c k { c o l } ] ;

end
end

%% Close t h e t e x t f i l e .
f c l o s e ( f i l e I D ) ;
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%% P o s t p r o c e s s i n g f o r u n i m p o r t a b l e d a t a .
% No u n i m p o r t a b l e d a t a r u l e s were a p p l i e d d u r i n g t h e impor t , so no p o s t
% p r o c e s s i n g code i s i n c l u d e d . To g e n e r a t e code which works f o r
% u n i m p o r t a b l e da t a , s e l e c t u n i m p o r t a b l e c e l l s i n a f i l e and r e g e n e r a t e t h e
% s c r i p t .

%% A l l o c a t e i m p o r t e d a r r a y t o column v a r i a b l e names
x pos = d a t a A r r a y { : , 1} ;
y pos = d a t a A r r a y { : , 2} ;
Vx = d a t a A r r a y { : , 3} ;
Vy = d a t a A r r a y { : , 4} ;

tmp = y pos ( 1 )−y pos ;
v a l u e = 0 ;
c t r = 0 ;
w h i l e v a l u e == 0

[ va lue , i n d e x l o c ] = min ( tmp ) ;
tmp ( 1 ) = [ ] ;
c t r = 1 + c t r ;

end
% C r e a t e x and y v e c t o r s i n l e n g t h u n i t s
l e n g t h y = l e n g t h ( x pos ) / ( c t r −1) ;
y v a l u e s = y pos ( 1 : ( c t r −1) : end ) ;
x v a l u e s = x pos ( 1 : c t r −1) ;

% C r e a t e t h e V e l o c i t y m a t r i c e s
Vx mat r ix = z e r o s ( l e n g t h y , c t r −1) ;
Vy mat r ix = Vx mat r ix ;

f o r i i = 1 : l e n g t h y
% Vx mat r ix ( i i , : ) = Vx ( ( i i * ( c t r −1) +1) : ( i i +1) * c t r −1) ;

Vx mat r ix ( i i , : ) = Vx ( 1 : c t r −1) ;
Vy mat r ix ( i i , : ) = Vy ( 1 : c t r −1) ;
Vx ( 1 : c t r −1) = [ ] ;
Vy ( 1 : c t r −1) = [ ] ;

end

c l e a r ;
% d a t a P I V = l o a d ( ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV m at l ab f i l e s \PIV Energy \ t i m e s e r i e s \

t i m e s e r i e s P I V 1 2 6 1 8 t e s t d . mat ’ ) ;
d a t a P I V = l o a d ( ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV Paper \ t i m e s e r i e s \

t i m e s e r i e s P I V 8 1 4 1 8 t e s t c . mat ’ ) ;

x = d a t a P I V . x PIV ;
z = s o r t ( d a t a P I V . z PIV , ’ descend ’ ) ;
t i c
f o r i i = 1 : 1 : d a t a P I V . num rows

name x = s p r i n t f ( ’ Vx row %d ’ , i i ) ;
Vx = d a t a P I V . ( name x ) ;

% [ f r q , k , s i g n a l , vx amp ] = f i l t e r e d f f t P I V ( Vx , d a t a P I V . f , 1 / d a t a P I V .
dx PIV , omega , k wave ) ;

% f i l t e r e d s i g n a l x ( i i , : , : ) = s i g n a l . ’ ;

212



Vx raw ( i i , : , : ) = Vx . ’ ;
% Vx amp ( i i , : ) = vx amp ;

name z = s p r i n t f ( ’ Vz row %d ’ , i i ) ;
Vz = d a t a P I V . ( name z ) ;

% [ f r q , k , s i g n a l z , vz amp ] = f i l t e r e d f f t P I V ( Vz , d a t a P I V . f , 1 /
d a t a P I V . dz PIV , omega , k wave ) ;

Vz raw ( i i , : , : ) = Vz . ’ ;
% f i l t e r e d s i g n a l z ( i i , : , : ) = s i g n a l z . ’ ;
% Vz amp ( i i , : ) = vz amp ;

end

Energy PIV . x = d a t a P I V . x PIV ;
Energy PIV . z = d a t a P I V . z PIV ;
Energy PIV . Vz amp = Vz amp ;
Energy PIV . Vx amp = Vx amp ;
Energy PIV . KE amp = Vx amp . ˆ 2 + Vz amp . ˆ 2 ;
s ave ( ’ J :\ g r ou ps \ i n t w a v e s 2 \ E n e r g y t i m e s e r i e s i n f o P I V 1 2 6 1 8 d . mat ’ , ’− s t r u c t ’ ,

’ Energy PIV ’ ) ;

% f u n c t i o n [ f r q , amp , phase ] = simpleFFT2 ( s i g n a l , ScanRate , x r e s )
% Purpose : pe r fo rm an FFT of a r e a l−v a l u e d i n p u t s i g n a l , and g e n e r a t e t h e

s i n g l e−s i d e d
% o u t p u t , i n a m p l i t u d e and phase , s c a l e d t o t h e same u n i t s a s t h e i n p u t .
% E d i t s : AL ( 5 / 4 / 2 0 1 6 ) a l l o w i n g f o r an FFT2 l o o k i n g bo th a t f r e q u e n c y and
% wavenumber

%i n p u t s :
% s i g n a l : t h e s i g n a l t o t r a n s f o r m
% ScanRate : t h e sa m p l i n g f r e q u e n c y ( i n H e r t z )
% x r e s ( c y c l e s / l e n g t h ) wavenumber v e r s i o n o f H e r t z

% o u t p u t s :
% f r q : a v e c t o r o f f r e q u e n c y p o i n t s ( i n H e r t z )
% amp : a v e c t o r o f a m p l i t u d e s ( same u n i t s a s t h e i n p u t s i g n a l )
% phase : a v e c t o r o f p h a s e s ( i n r a d i a n s )

f u n c t i o n [ f r q , k , s i g n a l c l e a n , V e l o c i t y P e a k ] = f i l t e r e d f f t P I V ( s i g n a l ,
ScanRate , x r e s , omega , k wave )

ScanRate = ScanRate *2* p i ;
x r e s = x r e s *(2* p i ) ; % use t h i s one f o r PIV

f f t s i g n a l = f f t 2 ( s i g n a l ) ;
[ n ,m] = s i z e ( f f t s i g n a l ) ;

%g e n e r a t e t h e v e c t o r o f f r e q u e n c i e s
h a l f n = round ( n / 2 ) ;
d e l t a f = 1 / ( n / ScanRate ) ;
f r q = ( 0 : ( h a l f n −1) ) * d e l t a f ;
ha l fm = f l o o r (m/ 2 ) ;
d e l t a k = 1 / ( m / x r e s ) ;
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k = ( 0 : ( halfm −1) ) * d e l t a k ;
[ ˜ , f i n d e x ] = min ( abs ( omega−f r q ) ) ;
[ ˜ , k i n d e x ] = min ( abs ( k wave−k ) ) ;
a m p n o f i l t e r = abs ( f f t s i g n a l / ( n*m) ) ;
a m p f u l l = abs ( a m p n o f i l t e r ) ;

%% C r e a t e F i l t e r e d s i g n a l ( f o r imaging )
f i l t e r = f f t s i g n a l ;
f i l t e r ( 1 : f i n d e x −5 , : ) = 0 ;
f i l t e r ( f i n d e x +5: n−f i n d e x −5 , : ) = 0 ;
f i l t e r ( n−f i n d e x −5: end , : ) =0 ;

f i l t e r ( : , 1 : k index −2) = 0 ;
f i l t e r ( : , k i n d e x +2:m−k index −2) = 0 ;
f i l t e r ( : , m−k index −2: end ) =0;
s i g n a l i f f t = i f f t ( i f f t ( f i l t e r ) . ’ ) . ’ ;
s i g n a l c l e a n = r e a l ( s i g n a l i f f t ) ;

%% Find peak v e l o c i t y
amp ( 1 , : ) = a m p f u l l ( 1 , 1 : ha l fm ) ;
amp ( 2 : h a l f n , 2 : ha l fm ) = 2* a m p f u l l ( 2 : h a l f n , 2 : ha l fm ) ;

V e l o c i t y P e a k = sum ( sum ( amp ( f i n d e x −1: f i n d e x +1 , k index −1: k i n d e x +1) ) ) ;

% making s p e c t r u m f i g u r e
% f i g u r e ;
% c o n t o u r ( k , f r q , abs ( amp ( 1 : h a l f n , 1 : ha l fm ) ) ) ;
% xl im ( [ 0 1 0 0 ] ) ; y l im ( [ 0 3 ] ) ;
% c o l o r b a r
% x l a b e l ( ’ k (mˆ{−1}) ’ ) ; y l a b e l ( ’ F requency ( s ˆ{−1}) ’ ) ;
end

% c l e a r

S S l o c a t i o n = ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV Paper \SS KE\KE wrange\
E n e r g y t i m e s e r i e s i n f o y ’ ;

P I V l o c a t i o n = ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV Paper \PIV KE\ E n e r g y P I V r a n g e o f k \
E n e r g y t i m e s e r i e s i n f o P I V ’ ;

T o t a l e n e r g y s a v e l o c a t i o n = ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV Paper \Combined KE\
KE range k \ t o t a l e n e r g y ’ ;

a d d p a t h ( ’ J :\ g r ou ps \ i n t w a v e s 3 \PIV Paper ’ )
t i c
f o r i i = 18 :18%1:19

i f i i ==1 %9−19−18−a 9−19−18−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 3 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 8 ) ;

e l s e i f i i ==2 %9−20−18−a 9−20−18−b
num SS = 1 ;
num PIV = 1 ;
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t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 4 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 9 ) ;

e l s e i f i i ==3 %9−25−18−a 9−25−18−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 5 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 2 0 ) ;

e l s e i f i i ==4 %9−27−18−a 9−27−18−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 6 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 2 1 ) ;

e l s e i f i i ==5 %9−12−18−a 9−12−18−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 1 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 6 ) ;

e l s e i f i i ==6 %9−13−18−a 9−13−18−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 2 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 7 ) ;

e l s e i f i i ==7 %10−16−18−a 10−16−18−c
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 7 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 2 2 ) ;

e l s e i f i i == 8 % 12−12−18−a/12−12−18−b 12−12−18−c |12−12−18−d
num SS = 2 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 2 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 3 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 0 ) ;
t e s t d a t e S S {2} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 1 ) ;

e l s e i f i i == 9 %12−13−18−a 12−13−18−c
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 4 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 2 ) ;

e l s e i f i i == 10 % 12−11−18−a/12−11−18−b 12−11−18−c |12−11−18−d
num SS = 2 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 5 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 6 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 8 ) ;
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t e s t d a t e S S {2} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 9 ) ;

e l s e i f i i ==11 %8−14−18−a 8−14−18−b|8−14−18−c
num SS = 1 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 7 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 8 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 4 ) ;

e l s e i f i i ==12 %8−15−18−a 8−15−18−b|8−15−18−c
num SS = 1 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 9 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 0 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 5 ) ;

e l s e i f i i ==13 %8−8−18−a 8−8−18−b|8−8−18−c
num SS = 1 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 5 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 6 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 3 ) ;

e l s e i f i i == 14 % 3−6−19−a 3−6−19−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 6 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 4 ) ;

e l s e i f i i == 15 %3−7−19−a 3−7−19−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 7 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 5 ) ;

e l s e i f i i == 16 %3−1−19−a 3−1−19−b
num SS = 1 ;
num PIV = 1 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 1 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 1 ) ;

e l s e i f i i == 17 % 12−6−18−a/12−6−18−b 12−6−18−c |12−6−18−d
num SS = 2 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 8 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 9 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 6 ) ;
t e s t d a t e S S {2} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 7 ) ;

e l s e i f i i == 18 % 3−1−19−d 3−1−19−e |3−2−19−a
num SS = 1 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 2 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 3 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 2 ) ;
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e l s e i f i i == 19 % 3−2−19−b 3−2−19−c |3−2−19−d
num SS = 1 ;
num PIV = 2 ;
t e s t d a t e P I V {1} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 4 ) ;
t e s t d a t e P I V {2} = p a p e r 3 t e s t s P I V 4 9 1 9 ( 4 , 5 ) ;
t e s t d a t e S S {1} = p a p e r 3 t e s t s S S 4 9 1 9 ( 1 , 3 ) ;

end
m a k e e n e r g y f i l e ( num SS , num PIV , t e s t d a t e S S , t e s t d a t e P I V , S S l o c a t i o n ,

P I V l o c a t i o n , T o t a l e n e r g y s a v e l o c a t i o n )
c l e a r t e s t d a t e S S t e s t d a t e P I V
end
t o c
f u n c t i o n [ ] = m a k e e n e r g y f i l e ( num SS , num PIV , t e s t d a t e S S , t e s t d a t e P I V ,

S S l o c a t i o n , P I V l o c a t i o n , T o t a l e n e r g y s a v e l o c a t i o n )

% Load Exper imen t
S S d a t e i n f o 1 = t e s t d a t e S S {1} ;
S S i n f o 1 = l o a d ( s t r c a t ( S S l o c a t i o n , S S d a t e i n f o 1 ) ) ;

i f s t r c mp ( S S i n f o 1 . da t e , ’ 9 1 3 1 8 a ’ ) ==1
S S i n f o 1 . z t o t a l h e i g h t = 0 . 6 3 ;

end

% Find a v e r a g e s o f e x p e r i m e n t KE ove r t h e t h r e e f r e q u e n c i e s
f o r i i = 1 :1030

name = s p r i n t f ( ’ row %d ’ , i i −1) ;
S S i n f o 1 . KE ave f 1 ( i i , : ) = mean ( S S i n f o 1 . KE exp range . ( name ) ) ;
S S i n f o 1 . KE f 1 ( i i , : ) = S S i n f o 1 . KE exp range . ( name ) ( 2 , : ) ;

end

i f num SS ==2
S S d a t e i n f o 2 = t e s t d a t e S S {2} ;
S S i n f o 2 = l o a d ( s t r c a t ( S S l o c a t i o n , S S d a t e i n f o 2 ) ) ;
f o r i i = 1 :1030

name = s p r i n t f ( ’ row %d ’ , i i −1) ;
S S i n f o 2 . KE ave f 1 ( i i , : ) = mean ( S S i n f o 2 . KE exp range . ( name ) ) ;
S S i n f o 2 . KE f 1 ( i i , : ) = S S i n f o 2 . KE exp range . ( name ) ( 2 , : ) ;

end
end

check topo med = s t r c mp ( ’Medium ’ , S S i n f o 1 . t o p ) ;
c h e c k t o p o s t e e p = s t r c mp ( ’ S t e e p ’ , S S i n f o 1 . t o p ) ;
c h e c k t o p o s i n e = s t r cmp ( ’ S ine ’ , S S i n f o 1 . t o p ) ;
c h e c k t o p o c o m p l e x = s t r c mp ( ’ Complex ’ , S S i n f o 1 . t o p ) ;

i f check topo med ==1
t o p o c a s e = 1 ;

e l s e i f c h e c k t o p o s t e e p ==1
t o p o c a s e = 2 ;

e l s e i f c h e c k t o p o s i n e ==1
t o p o c a s e = 3 ;

e l s e i f c h e c k t o p o c o m p l e x ==1
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t o p o c a s e = 4 ;
% S S i n f o 1 .H = 0 . 0 7 ;
% H = 0 . 0 7 ;
end

%% Topography S p e c i f i c I n f o r m a t i o n
i f t o p o c a s e == 1 % Medium Topography

S S i n f o 1 .H = 0 . 1 ; % S e t H
H = 0 . 1 ;
L = S S i n f o 1 . L / 2 ; % D i s t a n c e t o p o g r a p h y moves i n 1 / 2 p e r i o d
wid th = 0 .18+L ; % Apparen t wid th
W H = wid th /H; % Apparen t W/H

f o r i i = 1 :1030 % Average KE ove r t h r e e f r e q u e n c i e s
name = s p r i n t f ( ’ row %d ’ , i i −1) ;
S S i n f o 1 . KE ave f 1 ( i i , : ) = mean ( S S i n f o 1 . KE exp range . ( name ) ) ;

end

b g a u s = s q r t ( 2 * (W H/ 6 * 0 . 1 ) ˆ 2 ) ; % a p p a r e n t b g a u s
k dx = 2* p i / ( S S i n f o 1 . dx *1360) * ( 0 : ( 1 3 6 0 / 2 −1 ) ) ; % Range of k based on

dx
k r a n g e = k dx * b g a u s ; % Normal ized k by b g a u s

% i n d e x overwhich Energy w i l l be a v e r a g e d f o r a l l methods ( SS , PIV ,
Theory )

% i n f o s p e c i f i c t o t h e o r y
syms x t o p t t o p
h = S S i n f o 1 .H* exp (−( x top−L/ 2 * s i n ( S S i n f o 1 . omega* t t o p ) ) ˆ 2 / b g a u s ˆ 2 ) ;
k m a x l i m i t = 5 / b g a u s ;
k m i n l i m i t = f l o o r ( k dx ( 2 ) ) ;
k = k m i n l i m i t : 1 : k m a x l i m i t ;
kmax = s q r t ( 2 ) / b g a u s ;
kmax index = f i n d ( k>kmax ) ;
k ( kmax index ( 1 ) −1) = kmax ;
a m p f u n c v a l u e = k* b g a u s . * exp (−(k* b g a u s / 2 ) . ˆ 2 ) ;
a m p f u n c l i m i t = f i n d ( a m p f u n c v a l u e <0.05) ;
k ( a m p f u n c l i m i t ) = [ ] ;
[ ˜ , mean index max ] = min ( abs ( k dx−k ( end ) ) ) ;
mean index = 2 : mean index max ;

e l s e i f t o p o c a s e ==2 % S t e e p Topography
S S i n f o 1 .H = 0 . 1 ; % S e t H
H = 0 . 1 ;
L = S S i n f o 1 . L / 2 ; % D i s t a n c e t o p o g r a p h y moves i n 1 / 2 p e r i o d
wid th = 0.0495+L ; % Apparen t wid th
W H = wid th /H; % Apparen t W/H

f o r i i = 1 :1030 % Average KE ove r t h r e e f r e q u e n c i e s
name = s p r i n t f ( ’ row %d ’ , i i −1) ;
S S i n f o 1 . KE ave f 1 ( i i , : ) = mean ( S S i n f o 1 . KE exp range . ( name ) ) ;

end

b g a u s = s q r t ( 2 * (W H/ 6 * 0 . 1 ) ˆ 2 ) ; % a p p a r e n t b g a u s
k dx = 2* p i / ( S S i n f o 1 . dx *1360) * ( 0 : ( 1 3 6 0 / 2 −1 ) ) ; % Range of k based on

dx
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k r a n g e = k dx * b g a u s ; % Normal ized k by b g a u s
% i n d e x overwhich Energy w i l l be a v e r a g e d f o r a l l methods ( SS , PIV ,

Theory )

% i n f o s p e c i f i c t o t h e o r y
syms x t o p t t o p
h = S S i n f o 1 .H* exp (−( x top−L/ 2 * s i n ( S S i n f o 1 . omega* t t o p ) ) ˆ 2 / b g a u s ˆ 2 ) ;
k m a x l i m i t = 5 / b g a u s ;
k m i n l i m i t = f l o o r ( k dx ( 2 ) ) ;
k = k m i n l i m i t : 1 : k m a x l i m i t ;
kmax = s q r t ( 2 ) / b g a u s ;
kmax index = f i n d ( k>kmax ) ;
k ( kmax index ( 1 ) −1) = kmax ;
a m p f u n c v a l u e = k* b g a u s . * exp (−(k* b g a u s / 2 ) . ˆ 2 ) ;
a m p f u n c l i m i t = f i n d ( a m p f u n c v a l u e <0.05) ;
k ( a m p f u n c l i m i t ) = [ ] ;
[ ˜ , mean index max ] = min ( abs ( k dx−k ( end ) ) ) ;
mean index = 2 : mean index max ;

e l s e i f t o p o c a s e ==3 % s i n u s o i d a l t o p o g r a p h y
S S i n f o 1 .H = 0 . 0 7 1 ; % S e t H
H = S S i n f o 1 .H;
k wave = S S i n f o 1 . k wave ;
L = S S i n f o 1 . L / 2 ; % D i s t a n c e t o p o g r a p h y moves i n 1 / 2 p e r i o d

% wid th = 0.0495+L ; % Apparen t wid th
% W H = wid th /H; % Apparen t W/H
%

f o r i i = 1 :1030 % Average KE ove r t h r e e f r e q u e n c i e s
name = s p r i n t f ( ’ row %d ’ , i i −1) ;
S S i n f o 1 . KE ave f 1 ( i i , : ) = mean ( S S i n f o 1 . KE exp range . ( name ) ) ;

end

k dx = 2* p i / ( S S i n f o 1 . dx *1360) * ( 0 : ( 1 3 6 0 / 2 −1 ) ) ; % Range of k based on
dx

k r a n g e = k dx / k wave ; % Normal ized k by b g a u s
% i n d e x overwhich Energy w i l l be a v e r a g e d f o r a l l methods ( SS , PIV ,

Theory )

% i n f o s p e c i f i c t o t h e o r y
syms x t o p t t o p
x new = x top−L* s i n ( S S i n f o 1 . omega* t t o p ) ;
h = H* s i n ( x new *2* p i / . 1 1 0 ) + . 0 3 5 5 ;

% k m a x l i m i t = 5 / b g a u s ;
k m i n l i m i t = f l o o r ( k dx ( 2 ) ) ;

% k = k m i n l i m i t : 1 : k m a x l i m i t ;
% kmax = s q r t ( 2 ) / b g a u s ;
% kmax index = f i n d ( k>kmax ) ;
% k ( kmax index ( 1 ) −1) = kmax ;
% a m p f u n c v a l u e = k* b g a u s . * exp (−(k* b g a u s / 2 ) . ˆ 2 ) ;
% a m p f u n c l i m i t = f i n d ( a m p f u n c v a l u e <0.05) ;
% k ( a m p f u n c l i m i t ) = [ ] ;
% [ ˜ , mean index max ] = min ( abs ( k dx−k ( end ) ) ) ;

[ ˜ , mean index max ] = min ( abs ( k range −3) ) ;
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mean index = 2 : mean index max ;
k = k m i n l i m i t : 1 : 2 . 2 * k wave ;

e l s e i f t o p o c a s e ==4 % complex t o p o g r a p h y
L = S S i n f o 1 . L / 2 ; % D i s t a n c e t o p o g r a p h y moves i n 1 / 2 p e r i o d
H = 0 . 2 ; % He i gh t o f t h e t o p o g r a p h y
S S i n f o 1 .H = H;
syms x t o p t t o p
x new = x top−L* s i n ( S S i n f o 1 . omega* t t o p ) ;
h=H* exp (−( x new . ˆ 2 ) / 0 . 0 0 3 2 ) . * abs ( 0 . 2 5 * s i n ( x new *520) + cos ( x new *115) ) ;
wid th = . 2 4 2 8 ;
b g a u s = s q r t (− ( ( w id th +L ) / 2 ) ˆ 2 / l o g ( 0 . 0 1 ) ) ;
k m a x l i m i t = 5 / b g a u s ;
k dx = 2* p i / ( S S i n f o 1 . dx *1360) * ( 0 : ( 1 3 6 0 / 2 −1 ) ) ; % Range of k based on

dx
k m i n l i m i t = f l o o r ( k dx ( 2 ) ) ;
k = k m i n l i m i t : 1 : k m a x l i m i t ;
kmax = s q r t ( 2 ) / b g a u s ;
kmax index = f i n d ( k>kmax ) ;
k ( kmax index ( 1 ) −1) = kmax ;
a m p f u n c v a l u e = k* b g a u s . * exp (−(k* b g a u s / 2 ) . ˆ 2 ) ;
a m p f u n c l i m i t = f i n d ( a m p f u n c v a l u e <0.05) ;
k ( a m p f u n c l i m i t ) = [ ] ;
[ ˜ , mean index max ] = min ( abs ( k dx−k ( end ) ) ) ;
mean index = 2 : mean index max ;

end

%% D e n s i t y s p e c i f i c i n f o r m a t i o n
p r o f i l e c o e f = [ S S i n f o 1 . a S S i n f o 1 . b S S i n f o 1 . c S S i n f o 1 . d ] ;

i f S S i n f o 1 . p r o f i l e t y p e ==1
p r o f i l e c o e f ( end +1) = S S i n f o 1 . z t d ;

end

%% E x p e r i m e n t s
S S i n f o 1 . KE k mean 1 = mean ( S S i n f o 1 . KE ave f 1 ( : , mean index ) , 2 ) ’ ;

i f num SS ==2
S S i n f o 1 . KE k mean 2 = mean ( S S i n f o 2 . KE ave f 1 ( : , mean index ) , 2 ) ’ ;

end

%% Theory
i f t o p o c a s e ˜= 3

x match = b g a u s ;
t m a t c h = 0 ;

amp func max = s q r t ( 2 ) . * exp (−( s q r t ( 2 ) / 2 ) . ˆ 2 ) ;
A 0 r a t i o = a m p f u n c v a l u e . / amp func max ;

% S e t up e x t r a v a r i a b l e s needed f o r l i n e a r t h e o r y
A 0 i n f o = 0 ;
A 0 a c t u a l = 0 ;

% Run l i n e a r Theory
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[ S S i n f o 1 . z t h e o r y , S S i n f o 1 . KE evan , S S i n f o 1 . KE airy , S S i n f o 1 . KE prop
, ˜ , . . .
S S i n f o 1 . p r o p s t a r t v a l u e , S S i n f o 1 . N theory , S S i n f o 1 . e v a n e n d v a l u e

, S S i n f o 1 . z td , A 0 a c t u a l ] . . .
= l i n e a r t h e o r y 4 1 8 1 9 ( S S i n f o 1 . p r o f i l e t y p e , p r o f i l e c o e f , h , . . .
S S i n f o 1 . omega , S S i n f o 1 . k wave , S S i n f o 1 . u top , S S i n f o 1 . z exp ,

x match , t ma t ch , . . .
S S i n f o 1 . z t o t a l h e i g h t , S S i n f o 1 . H, A0 info , A 0 a c t u a l ) ;

KE = z e r o s ( 1 0 3 0 , l e n g t h ( k ) ) ;

f o r i i =1 : l e n g t h ( k )−1

A 0 i n f o = A 0 r a t i o ( i i ) ;
% Run l i n e a r Theory

[ ˜ , ˜ , ˜ , ˜ , KE theory , ˜ , ˜ , ˜ , ˜ , ˜ ] . . .
= l i n e a r t h e o r y 4 1 8 1 9 ( S S i n f o 1 . p r o f i l e t y p e , p r o f i l e c o e f , h , . . .
S S i n f o 1 . omega , k ( i i ) , S S i n f o 1 . u top , S S i n f o 1 . z exp , x match , t ma t ch

, . . .
S S i n f o 1 . z t o t a l h e i g h t , S S i n f o 1 . H, A0 info , A 0 a c t u a l ) ;

KE ( : , i i ) = KE theory ’ ;
end

S S i n f o 1 . KE theo ry k = KE;
S S i n f o 1 . K E t h e o r y k a v e = mean (KE, 2 ) ;

e l s e
x match = 0 ;
t m a t c h = 0 ;
A 0 i n f o = 0 ;
A 0 a c t u a l = 0 ;
amp func max = s q r t ( 2 ) . * exp (−( s q r t ( 2 ) / 2 ) . ˆ 2 ) ;

% A 0 r a t i o = a m p f u n c v a l u e . / amp func max ;

% S e t up e x t r a v a r i a b l e s needed f o r l i n e a r t h e o r y
A 0 i n f o = 0 ;
A 0 a c t u a l = 0 ;

% Run l i n e a r Theory
[ S S i n f o 1 . z t h e o r y , S S i n f o 1 . KE evan , S S i n f o 1 . KE airy , S S i n f o 1 . KE prop ,

KE theory , . . .
S S i n f o 1 . p r o p s t a r t v a l u e , S S i n f o 1 . N theory , S S i n f o 1 . e v a n e n d v a l u e

, S S i n f o 1 . z td , A 0 a c t u a l ] . . .
= l i n e a r t h e o r y 4 1 8 1 9 ( S S i n f o 1 . p r o f i l e t y p e , p r o f i l e c o e f , h , . . .
S S i n f o 1 . omega , S S i n f o 1 . k wave , S S i n f o 1 . u top , S S i n f o 1 . z exp ,

x match , t ma t ch , . . .
S S i n f o 1 . z t o t a l h e i g h t , S S i n f o 1 . H, A0 info , A 0 a c t u a l ) ;

S S i n f o 1 . KE theo ry k = KE theory ;
S S i n f o 1 . K E t h e o r y k a v e = KE theory ;

end
%% PIV
% P I V d a t e 1 = ’9 1 9 1 8 t e s t b . mat ’ ;
P I V d a t e 1 = t e s t d a t e P I V {1} ;
P I V i n f o 1 = l o a d ( s t r c a t ( P I V l o c a t i o n , P I V d a t e 1 ) ) ;
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k PIV = P I V i n f o 1 . Energy PIV . k PIV ;
[ ˜ , mean index max PIV ] = min ( abs ( k PIV−k ( end ) ) ) ;
mean index PIV = 2 : mean index max PIV ;
P I V i n f o 1 . KE amp = mean ( P I V i n f o 1 . Energy PIV . Vx amp ( : , mean index PIV ) , 2 ) . ˆ 2 +

mean ( P I V i n f o 1 . Energy PIV . Vz amp ( : , mean index PIV ) , 2 ) . ˆ 2 ;

i f num PIV ==2
P I V d a t e 2 = t e s t d a t e P I V {2} ;
P I V i n f o 2 = l o a d ( s t r c a t ( P I V l o c a t i o n , P I V d a t e 2 ) ) ;
P I V i n f o 2 . KE amp = mean ( P I V i n f o 2 . Energy PIV . Vx amp ( : , mean index PIV ) , 2 )

. ˆ 2 + mean ( P I V i n f o 2 . Energy PIV . Vz amp ( : , mean index PIV ) , 2 ) . ˆ 2 ;
end

S S i n f o 1 . x PIV 1 = P I V i n f o 1 . Energy PIV . x ;
S S i n f o 1 . z PIV 1 = P I V i n f o 1 . Energy PIV . z ;

% S S i n f o 1 . Vx PIV 1 = P I V i n f o 1 . Energy PIV . Vx amp ;
% S S i n f o 1 . Vz PIV 1 = P I V i n f o 1 . Energy PIV . Vz amp ;
S S i n f o 1 . KE PIV 1 = P I V i n f o 1 . KE amp ;
S S i n f o 1 . k PIV 1 = P I V i n f o 1 . Energy PIV . k PIV ;

i f num PIV ==2
S S i n f o 1 . x PIV 2 = P I V i n f o 2 . Energy PIV . x ;
S S i n f o 1 . z PIV 2 = P I V i n f o 2 . Energy PIV . z ;

% S S i n f o 1 . Vx PIV 2 = P I V i n f o 2 . Energy PIV . Vx amp ;
% S S i n f o 1 . Vz PIV 2 = P I V i n f o 2 . Energy PIV . Vz amp ;
% S S i n f o 1 . KE PIV 2 = P I V i n f o 2 . Energy PIV . KE amp ;

S S i n f o 1 . KE PIV 2 = P I V i n f o 2 . KE amp ;

end

%%
S S i n f o 1 . num PIV = num PIV ;
S S i n f o 1 . num SS = num SS ;
f i e l d = ’ KE exp range ’ ;
S S i n f o 1 = r m f i e l d ( S S i n f o 1 , f i e l d ) ;
s ave ( s t r c a t ( T o t a l e n e r g y s a v e l o c a t i o n , S S d a t e i n f o 1 ) , ’− s t r u c t ’ , ’ S S i n f o 1 ’ )
end

B.1.6 Linear theory calculations

%% L i n e a r Theory A n a l y s i s o f E v a n e s c e n t t o P r o p a g a t i n g Waves
% A l l i s o n Lee
% 5 / 9 / 1 7
% Thi s program w i l l use an assumed a m p l i t u d e f o r t h e e v a n e s c e n t waves
% ( based on t h e t o p o g r a p h y movement ) , a l l o w t h a t t o move t h r o u g h t h e
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% e v a n e s c e n t r e g i o n , and t h e n use an Airy P a t c h t o move from t h e e v a n s e c n t
% r e g i o n t o t h e p r o p a g a t i n g r e g i o n .
%
% I t i s assumed t h a t t h e n a t u r a l F requency (N) i s n o t c o n s t a n t . E q u a t i o n s
% of mot ion f o r t h e waves i n bo th r e g i o n s come from L i g h t h i l l ( 1 9 7 8 ) and
% from P e d l o s k y ( 2 0 0 3 ) . The t o p o g r a p h i e s used a r e G a u s s i a n i n n a t u r e , w i th
% d e f i n i n g c h a r a c t e r i s t i c s l a b e l e d wi th g a u s s .
% c l c

% Updated 8 / 1 8 / 1 7
% Updated 1 1 / 1 1 / 1 7
% Updated 1 / 2 4 / 1 8
% Updated 2 / 1 4 / 1 8
% Updated 3/13/18− Now t a k e s d i f f e r e n t N and H p r o f i l e s

f u n c t i o n [ z , KE evan , KE airy , KE prop , K E t o t a l , p r o p s t a r t v a l u e , N, e v a n e n d v a l u e
, z td , A0 evan ] = . . .
l i n e a r t h e o r y 4 1 8 1 9 ( p r o f i l e , p r o f i l e c o e f , h , omega , k wave , u top , z , x match ,

t ma t ch , w a t e r h e i g h t , H, A0 info , A 0 a c t u a l )
p e r c e n t w a v e l e n g t h = 0 . 0 1 ;
z = s o r t ( z , ’ descend ’ ) ;
zmax = max ( z ) ;
g = 9 . 8 1 ;
r h o o = 1000 ;

%% Two l a y e r L i n e r p r o f i l e
i f p r o f i l e == 1

a = p r o f i l e c o e f ( 1 ) ;
c = p r o f i l e c o e f ( 3 ) ;
N evan ave = ( c*−g / r h o o ) ˆ . 5 ;
N prop ave = ( a*−g / r h o o ) ˆ . 5 ;
z t d = p r o f i l e c o e f ( 5 ) ;
z e v a n = z ( z>=z t d ) ;
z p r o p = z ( z<=z t d ) ;
N evan = z e r o s ( 1 , l e n g t h ( z e v a n ) ) + s q r t (−g / r h o o * c ) ;
N prop = z e r o s ( 1 , l e n g t h ( z p r o p ) ) + s q r t (−g / r h o o * a ) ;
N ave = [ ] ;
N = [ N evan , N prop ] ;
q = k wave *(1−N evan . ˆ 2 / omega ˆ 2 ) . ˆ . 5 ;
m prop= s q r t ( N prop . ˆ 2 * k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
h match = subs ( h , x match ) ;
h match = d ou b l e ( subs ( h match , t m a t c h ) ) ;
%% E v a n e s c e n t Region
q match = q ( 1 ) ;

t h e t a e v a n = q .*(− zmax+ z e v a n ) ;
[ d h d t e v a l u a t e x t ] = t o p o g r a p h y m a t c h i n g ( h , x match , t ma t ch , u t o p ) ;
A0 evan = d h d t e v a l u a t e x t / r e a l ( exp (1 i * k wave * x match−omega* t m a t c h ) * exp (

q match * h match ) ) ;
A evan = A0 evan . / ( q . / q match ) . ˆ . 5 ;
KE evan = A evan . ˆ 2 . * exp (2* t h e t a e v a n ) . * ( q . ˆ 2 / k wave ˆ 2 + 1 ) ;
%% Airy P a t c h i s n o t n e c e s s a r y f o r a two l a y e r , c o n s t a n t N
% The match ing c o n d i t i o n h e r e i s r h o o * w evan = r h o o * w prop from Nappo

% A0 prop match = A evan ( end ) * exp ( q ( end ) * z e v a n ( end ) ) / exp ( m prop ( 1 ) * z p r o p
( 1 ) ) ;
A0 prop match = A evan ( end ) * exp ( q ( end ) * ( z td−zmax ) ) ;
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%% P r o p a g a t i n g Waves

% Now use an a m p l i t u d e from t h e a i r y p a t c h t o c a l c u l a t e t h e f i r s t needed
% a m p l i t u d e f o r t h e p r o p a g a t i n g waves . Then c o n t i n u e wi th t h e s t a n d a r d ,
% v a r y i n g N p r o p a g a t i n g wave e q u a t i o n s .

% N prop match = s q r t (−g / r h o o *( a *b* exp ( b* z p r o p m a t c h ) ) ) ;
A0 prop = A0 prop match ;
KE prop = A0 prop . ˆ 2 . * ( 1 + m prop . ˆ 2 / k wave ˆ 2 ) ;

%% Find K E t o t a l
K E t o t a l = c a t ( 2 , KE evan , KE prop ( 1 : end ) ) ;

z a i r y p a t c h = [ ] ;
KE a i ry = [ ] ;
p r o p s t a r t v a l u e = z t d ;

KE ave prop = t r a p z ( z p rop , KE prop ) / ( z p r o p ( end )−z p r o p ( 1 ) ) ;
%% E x p o n e n t i a l P r o f i l e
e l s e i f p r o f i l e == 2

% s e t up v a r i a b l e s
a = p r o f i l e c o e f ( 1 ) ;
b = p r o f i l e c o e f ( 2 ) ;
N prop ave = [ ] ;
N ave = [ ] ;
syms z t d
z t d = do ub l e ( v p a s o l v e (−omega+ s q r t (−g / r h o o *( a *b* exp ( b* z t d ) ) ) ) ) ;
syms z f u n c
N func = s q r t (−g / r h o o *( a *b* exp ( b* z f u n c ) ) ) ;
N evan ave = 1 / ( zmax−z td−H) * do ub le ( i n t ( N func , [ z t d zmax−H] ) ) ;

z e v a n = z ( z>z t d ) ;
z p r o p = z ( z<z t d ) ;
N = s q r t (−g / r h o o *( a *b* exp ( b* z ) ) ) ;
N evan = s q r t (−g / r h o o *( a *b* exp ( b* z e v a n ) ) ) ;
N prop = s q r t (−g / r h o o *( a *b* exp ( b* z p r o p ) ) ) ;
q = −k wave *(1−N evan . ˆ 2 / omega ˆ 2 ) . ˆ . 5 ;
m prop= s q r t ( N prop . ˆ 2 * k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
m2 =(N. ˆ 2 * k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
h match = subs ( h , x match ) ;
h match = d ou b l e ( subs ( h match , t m a t c h ) ) ;
z ma tch = w a t e r h e i g h t−h match ;

%% Evan r e g i o n v a l u e s
N match = s q r t (−g / r h o o *( a *b* exp ( b * ( z match ) ) ) ) ;
q match = −k wave *(1−N match . ˆ 2 / omega ˆ 2 ) . ˆ . 5 ;
t h e t a e v a n = −2/b * ( q−q match−k wave * a t a n h ( q / k wave ) + . . .

k wave * a t a n h ( q match / k wave ) ) ;
i f A0 i n f o ==0
[ d h d t e v a l u a t e x t ] = t o p o g r a p h y m a t c h i n g ( h , x match , t ma t ch , u t o p ) ;
A0 evan = d h d t e v a l u a t e x t / r e a l ( exp (1 i * k wave * x match−omega* t m a t c h ) * exp (

q match * h match ) ) ;
e l s e

A0 evan = A 0 i n f o * A 0 a c t u a l ;
end
A evan = A0 evan . / ( q . / q match ) . ˆ . 5 ;
KE evan = A evan . ˆ 2 . * exp (2* t h e t a e v a n ) . * ( q . ˆ 2 / k wave ˆ 2 + 1 ) ;
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%% Airy P a t c h
% Both t h e e v a n e s c e n t and p r o p a g a t i n g e n e r gy go t o i n f i n i t y a s t h e y

a p p r o a c h
% t h e t u r n i n g d e p t h . We w i l l use t h e Airy f u n c t i o n ( based on L i g h t h i l l ’ s
% work ) t o move from one r e g i o n t o t h e n e x t . Th i s i s u s u a l l y done when
% a p p r o a c h i n g a t u r n i n g d e p t h from t h e r p o p a g a t i n g r e g i o n and a l l o w s f o r
% r e f l e c t i o n o f t h e wave . We s t a r t i n t h e e v a n e s c e n t r e g i o n and move i n t o
% t h e p r o p a g a t i n g r e g i o n .

% Beta i s used as a l i n e a r a p p r o x i m a t i o n o f m ( v e r i t c a l wavenumber ) where
% mˆ2 = k ˆ 2 * (Nˆ 2 / omega ˆ2 − 1) . Be ta i s on ly a c c u r a t e n e a r t h e t u r n i n g
% depth , e s p e c i a l l y s i n c e m f o r our c a s e i s e x p o n t e t i a l l y v a r y i n g ( due t o

N)
t i c
b e t a 1 = k wave ˆ 2 . / ( z td−z ) . * (N . ˆ 2 / omega ˆ2−1) ;

% Beta s h o u l d be a c o n s t a n t va lue , n o t a c h a n i g n g v a l u e . We need on ly one
% v a l u e f o r t h e a p p r o x i m a t i o n . So we f i n d b e t a n e a r t h e t u r n i n g d e p t h and
% t h e n a v e r a g e t h o s e v a l u e s . Be ta needs t o be p o s t i v e .
tmp = abs ( z−z t d ) ;
[ ˜ , i n d e x l o c ] = min ( tmp ) ; % Find where i n t h e z m a t r i x z t d i s l o c a t e d .

% P u l l o u t be t a ’ s c l o s e t o t d
b e t a 1 s h o r t = b e t a 1 ( ( i n d e x l o c −2) : ( i n d e x l o c +2) ) ;
b e t a 1 a i r y = mean ( b e t a 1 s h o r t ) ; % Average b e t a s n e a r t d
mean q = mean ( q ) ;
% F i n d i n g t h e a v e r a g e m i n t h e p r o p a g a t i n g r e g i o n t o d e f i n e a v e r a g e

v e r t i c a l l e n g t h s c a l e
% Find l o c a t i o n ” c l o s e t o ” t u r n i n g d e p t h (TD)
z a i r y = round ( ( z t d + abs ( p e r c e n t w a v e l e n g t h *(2* p i / mean q ) ) ) *1000) / 1 0 0 0 ;

% Let t h e a m p l i t u d e s t a r t o p p o s i t e t o where t h e e v a n s c e n t wave a m p l t i u d e
% was t a k e n f o r t h e a i r y p a t c h . Symmetry i s n i c e . S e t up a l l needed
% v a r i a b l e s t o c a l c u l a t e w prop and u p r o p . ( ve ry s i m i l a r t o v a r i a b l e s
% needed f o r a i r y p a t c h a m p l i t u d e c a l c u l a t i o n )

z e v a n d i s t a n c e = max ( z e v a n )−min ( z e v a n ) ;
p r o p a v e l o c a t i o n = z p r o p ( 1 )−z e v a n d i s t a n c e ;
[ ˜ , i n d e x p r o p a v e ] = min ( abs ( p r o p a v e l o c a t i o n−z p r o p ) ) ;
mean m = mean ( m prop ( 1 : i n d e x p r o p a v e ) ) ;
% Find l o c a t i o n ” c l o s e t o ” t u r n i n g d e p t h (TD)
z p r o p m a t c h = round ( ( ( z td−p e r c e n t w a v e l e n g t h *(2* p i / mean m ) ) *1000) ) / 1 0 0 0 ;
u p b o u n d z a i r y = z a i r y ;
l o w b o u n d z a i r y = z p r o p m a t c h ;
[ ˜ , i n d e x u p b o u n d ] = min ( abs ( z−u p b o u n d z a i r y ) ) ;
[ ˜ , i n d e x l o w b o u n d ] = min ( abs ( z−l o w b o u n d z a i r y ) ) ;
z a i r y = z ( i n d e x u p b o u n d ) ;

% F i n d i n g N a t l o c a t i o n c l o s e t o TD
N a i r y = s q r t (−g / r h o o *( a *b* exp ( b* z a i r y ) ) ) ;
q a i r y =− s q r t (1−N a i r y ˆ 2 / omega ˆ 2 ) * k wave ; % F i n d i n g m n e a r TD
t h e t a a i r y = −2/b * ( q a i r y−q match−k wave * a t a n h ( q a i r y / k wave ) + . . .

k wave * a t a n h ( q match / k wave ) ) ;
A 0 a i r y = A0 evan / ( q a i r y / q match ) ˆ . 5 ;

% The a i r y p a t c h needs t o move from t h e evan t o t h e prop r e g i o n . I t ’ s n o t
% n e c e s s a r y t o c a l c u l a t e i t ove r t h e whole f i e l d . We w i l l s e t up bounds
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% based on a p e r c e n t a g e o f t h e v e r t i c a l wavenumber and use t h a t t o s e t up
% a z v e c t o r a round t h e t u r n i n g d e p t h .

z a i r y p a t c h = z ( i n d e x u p b o u n d : i n d e x l o w b o u n d ) ;
% C a l c u l a t e t h e a m p l i t u d e o f t h e Airy P a t c h

Q1 w = A 0 a i r y * exp ( t h e t a a i r y ) . / ( a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y−z t d ) ) ) ;
Q1 u = q a i r y * A 0 a i r y * exp ( t h e t a a i r y ) . / ( b e t a 1 a i r y ˆ ( 1 / 3 ) * a i r y ( 1 , b e t a 1 a i r y

ˆ ( 1 / 3 ) * ( z a i r y−z t d ) ) ) ;

KE a i ry = Q1 w ˆ 2 * ( a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y p a t c h −z t d ) ) . ˆ 2 ) +Q1 u ˆ 2 * (
b e t a 1 a i r y ˆ ( 2 / 3 ) / k wave ˆ 2 * ( a i r y ( 1 , ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y p a t c h −z t d ) ) ) )
. ˆ 2 ) ;
%% P r o p a g a t i n g Waves
% Now use an a m p l i t u d e from t h e a i r y p a t c h t o c a l c u l a t e t h e f i r s t needed
% a m p l i t u d e f o r t h e p r o p a g a t i n g waves . Then c o n t i n u e wi th t h e s t a n d a r d ,
% v a r y i n g N p r o p a g a t i n g wave e q u a t i o n s .
N prop match = s q r t (−g / r h o o *( a *b* exp ( b* z p r o p m a t c h ) ) ) ;
m prop match = s q r t ( N prop match ˆ2* k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
t h e t a p r o p m a t c h = 0 ;
t h e t a p r o p = 2 / b * ( m prop−m prop match +k wave . * ( a t a n ( m prop match / k wave )

. . .
−a t a n ( m prop / k wave ) ) ) ;
A0 prop match = Q1 w* a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z p ro p m a t c h−z t d ) ) . . .

/ exp (1 i * t h e t a p r o p m a t c h ) ;

A0 prop = A0 prop match . / ( m prop . / m prop match ) . ˆ 0 . 5 ;

KE prop = A0 prop . ˆ 2 . * ( 1 + m prop . ˆ 2 / k wave ˆ 2 ) ;
%% Find K E t o t a l

evan end = f i n d ( z e v a n == z a i r y p a t c h ( 1 ) )−1;
e v a n e n d v a l u e = z e v a n ( evan end ) ;
p r o p s t a r t = f i n d ( z p r o p == z a i r y p a t c h ( end ) ) +1;
p r o p s t a r t v a l u e = z p r o p ( p r o p s t a r t ) ;
K E t o t a l = c a t ( 2 , KE evan ( 1 : index up bound −1) , KE airy , KE prop ( p r o p s t a r t :

end ) ) ;
KE ave prop = t r a p z ( z p r o p ( p r o p s t a r t : end ) , KE prop ( p r o p s t a r t : end ) ) / (

z p r o p ( end )−z p r o p ( p r o p s t a r t ) ) ;

%% P a r a b o l i c P r o f i l e
e l s e i f p r o f i l e == 3

% S e t up v a r i a b l e s
a = p r o f i l e c o e f ( 1 ) ;
b = p r o f i l e c o e f ( 2 ) ;
c = p r o f i l e c o e f ( 3 ) ;
N = s q r t (−g / r h o o *(3* a * z . ˆ 2 + 2 * b* z+c ) ) ;
syms z f u n c
N func = s q r t (−g / r h o o *(3* a * z f u n c . ˆ 2 + 2 * b* z f u n c +c ) ) ;
dN dz = d i f f ( N func , z f u n c ) ;
syms z t d
z t d = do ub l e ( v p a s o l v e (−omega + s q r t (−g / r h o o *(3* a * z t d ˆ2+2* b* z t d +c ) ) , z t d

, [ 0 I n f ] ) ) ;
z e v a n = z ( z>z t d ) ;
z p r o p = z ( z<z t d ) ;
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N evan = s q r t (−g / r h o o *(3* a * z e v a n . ˆ 2 + 2 * b* z e v a n +c ) ) ;
N prop = s q r t (−g / r h o o *(3* a * z p r o p . ˆ 2 + 2 * b* z p r o p +c ) ) ;
q = k wave *(1−N evan . ˆ 2 / omega ˆ 2 ) . ˆ . 5 ;
m prop= s q r t ( N prop . ˆ 2 * k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
h match = subs ( h , x match ) ;
h match = d ou b l e ( subs ( h match , t m a t c h ) ) ;
z ma tch = w a t e r h e i g h t−h match ;
N evan ave = 1 / ( zmax−z td−H) * do ub le ( i n t ( N func , [ z t d zmax−H] ) ) ;
N prop ave = 1 / ( z td−min ( z ) ) * do ub l e ( i n t ( N func , [ min ( z ) z t d ] ) ) ;
N ave = 1 / ( zmax−min ( z ) ) * do ub l e ( i n t ( N func , [ min ( z ) zmax ] ) ) ;
%% Evan r e g i o n v a l u e s
N match = s q r t (−g / r h o o *(3* a * z match . ˆ 2 + 2 * b* z match +c ) ) ;
q match = k wave *(1−N match . ˆ 2 / omega ˆ 2 ) . ˆ . 5 ;
t h e t a e v a n = z e r o s ( 1 , l e n g t h ( z e v a n ) ) ;
i n t t h e t a = i n t ( k wave *(1−N func ˆ 2 / omega ˆ 2 ) ˆ . 5 ) ;
i n t l o w e r = do ub l e ( subs ( i n t t h e t a , z ma tch ) ) ;
f o r j j = 1 : l e n g t h ( z e v a n )

t h e t a e v a n ( j j ) = do ub l e ( subs ( i n t t h e t a , z e v a n ( j j ) ) )− i n t l o w e r ;
end

i f A0 i n f o ==0
[ d h d t e v a l u a t e x t ] = t o p o g r a p h y m a t c h i n g ( h , x match , t ma t ch , u t o p ) ;
A0 evan = d h d t e v a l u a t e x t / r e a l ( exp (1 i * k wave * x match−omega* t m a t c h ) * exp (

q match * h match ) ) ;
e l s e

A0 evan = A 0 i n f o * A 0 a c t u a l ;
end

A evan = A0 evan . / ( q . / q match ) . ˆ . 5 ;
KE evan = A evan . ˆ 2 . * exp (2* t h e t a e v a n ) . * ( q . ˆ 2 / k wave ˆ 2 + 1 ) ;
%% Airy P a t c h
% Both t h e e v a n e s c e n t and p r o p a g a t i n g e n e r gy go t o i n f i n i t y a s t h e y

a p p r o a c h
% t h e t u r n i n g d e p t h . We w i l l use t h e Airy f u n c t i o n ( based on L i g h t h i l l ’ s
% work ) t o move from one r e g i o n t o t h e n e x t . Th i s i s u s u a l l y done when
% a p p r o a c h i n g a t u r n i n g d e p t h from t h e r p o p a g a t i n g r e g i o n and a l l o w s f o r
% r e f l e c t i o n o f t h e wave . We s t a r t i n t h e e v a n e s c e n t r e g i o n and move i n t o
% t h e p r o p a g a t i n g r e g i o n .

% Beta i s used as a l i n e a r a p p r o x i m a t i o n o f m ( v e r i t c a l wavenumber ) where
% mˆ2 = k ˆ 2 * (Nˆ 2 / omega ˆ2 − 1) . Be ta i s on ly a c c u r a t e n e a r t h e t u r n i n g
% depth , e s p e c i a l l y s i n c e m f o r our c a s e i s e x p o n t e t i a l l y v a r y i n g ( due t o

N)
t i c
b e t a 1 = k wave ˆ 2 . / ( z td−z ) . * (N . ˆ 2 / omega ˆ2−1) ;

% Beta s h o u l d be a c o n s t a n t va lue , n o t a c h a n i g n g v a l u e . We need on ly one
% v a l u e f o r t h e a p p r o x i m a t i o n . So we f i n d b e t a n e a r t h e t u r n i n g d e p t h and
% t h e n a v e r a g e t h o s e v a l u e s . Be ta needs t o be p o s t i v e .
tmp = abs ( z−z t d ) ;
[ ˜ , i n d e x l o c ] = min ( tmp ) ; % Find where i n t h e z m a t r i x z t d i s l o c a t e d .

% P u l l o u t be t a ’ s c l o s e t o t d
b e t a 1 s h o r t = b e t a 1 ( ( i n d e x l o c −2) : ( i n d e x l o c +2) ) ;
b e t a 1 a i r y = mean ( b e t a 1 s h o r t ) ; % Average b e t a s n e a r t d
mean q = mean ( q ) ;
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% F i n d i n g t h e a v e r a g e m i n t h e p r o p a g a t i n g r e g i o n t o d e f i n e a v e r a g e
v e r t i c a l l e n g t h s c a l e

% Find l o c a t i o n ” c l o s e t o ” t u r n i n g d e p t h (TD)
z a i r y = round ( ( z t d + p e r c e n t w a v e l e n g t h *(2* p i / mean q ) ) *1000) / 1 0 0 0 ;

% Let t h e a m p l i t u d e s t a r t o p p o s i t e t o where t h e e v a n s c e n t wave a m p l t i u d e
% was t a k e n f o r t h e a i r y p a t c h . Symmetry i s n i c e . S e t up a l l needed
% v a r i a b l e s t o c a l c u l a t e w prop and u p r o p . ( ve ry s i m i l a r t o v a r i a b l e s
% needed f o r a i r y p a t c h a m p l i t u d e c a l c u l a t i o n )
mean m = mean ( m prop ) ;
% Find l o c a t i o n ” c l o s e t o ” t u r n i n g d e p t h (TD)
z p r o p m a t c h = round ( z td−p e r c e n t w a v e l e n g t h *(2* p i / mean m ) , 3 ) ;
u p b o u n d z a i r y = z a i r y ;
l o w b o u n d z a i r y = z p r o p m a t c h ;
[ ˜ , i n d e x u p b o u n d ] = min ( abs ( z−u p b o u n d z a i r y ) ) ;

% [ ˜ , i n d e x z e v a n t o a i r y ] = min ( abs ( z evan−u p b o u n d z a i r y ) ) ;
[ ˜ , i n d e x l o w b o u n d ] = min ( abs ( z−l o w b o u n d z a i r y ) ) ;
z a i r y = z ( i n d e x u p b o u n d ) ;

% z p r o p m a t c h = z ( i n d e x l o w b o u n d ) ;
% F i n d i n g N a t l o c a t i o n c l o s e t o TD
N a i r y = s q r t (−g / r h o o *(3* a * z a i r y . ˆ 2 + 2 * b* z a i r y +c ) ) ;
q a i r y = s q r t (1−N a i r y ˆ 2 / omega ˆ 2 ) * k wave ; % F i n d i n g m n e a r TD
t h e t a a i r y = do ub l e ( subs ( i n t t h e t a , z a i r y ) )− i n t l o w e r ;
A 0 a i r y = A0 evan / ( q a i r y / q match ) ˆ . 5 ;

% The a i r y p a t c h needs t o move from t h e evan t o t h e prop r e g i o n . I t ’ s n o t
% n e c e s s a r y t o c a l c u l a t e i t ove r t h e whole f i e l d . We w i l l s e t up bounds
% based on a p e r c e n t a g e o f t h e v e r t i c a l wavenumber and use t h a t t o s e t up
% a z v e c t o r a round t h e t u r n i n g d e p t h .

z a i r y p a t c h = z ( i n d e x u p b o u n d : i n d e x l o w b o u n d ) ;

Q1 w = A 0 a i r y * exp ( t h e t a a i r y ) . / ( a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y−z t d ) ) ) ;
Q1 u = q a i r y * A 0 a i r y * exp ( t h e t a a i r y ) . / ( b e t a 1 a i r y ˆ ( 1 / 3 ) * a i r y ( 1 , b e t a 1 a i r y

ˆ ( 1 / 3 ) * ( z a i r y−z t d ) ) ) ;

KE a i ry = Q1 w ˆ 2 * ( a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y p a t c h −z t d ) ) . ˆ 2 ) +0 .5* Q1 u ˆ 2 * (
b e t a 1 a i r y ˆ ( 2 / 3 ) / k wave ˆ 2 * ( a i r y ( 1 , ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z a i r y p a t c h −z t d ) ) ) )
. ˆ 2 ) ;
%% P r o p a g a t i n g Waves
% Now use an a m p l i t u d e from t h e a i r y p a t c h t o c a l c u l a t e t h e f i r s t needed
% a m p l i t u d e f o r t h e p r o p a g a t i n g waves . Then c o n t i n u e wi th t h e s t a n d a r d ,
% v a r y i n g N p r o p a g a t i n g wave e q u a t i o n s .
N prop match = s q r t (−g / r h o o *(3* a * z p r o p m a t c h . ˆ 2 + 2 * b* z p r o p m a t c h +c ) ) ;
m prop match = s q r t ( N prop match ˆ2* k wave ˆ 2 / omegaˆ2−k wave ˆ 2 ) ;
t h e t a p r o p m a t c h = 0 ;

A0 prop match = Q1 w* a i r y ( b e t a 1 a i r y ˆ ( 1 / 3 ) * ( z p ro p m a t c h−z t d ) ) . . .
/ exp (1 i * t h e t a p r o p m a t c h ) ;

A0 prop = A0 prop match . / ( m prop . / m prop match ) . ˆ 0 . 5 ;

% t h e t a p r o p = 2 / b * ( m prop−m prop match +k wave . * ( a t a n ( m prop match / k wave )
. . .

% −a t a n ( m prop / k wave ) ) ) ;
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KE prop = A0 prop . ˆ 2 . * ( 1 + m prop . ˆ 2 / k wave ˆ 2 ) ;
%% Find K E t o t a l
p r o p s t a r t = f i n d ( z p r o p == z a i r y p a t c h ( end ) ) +1;
p r o p s t a r t v a l u e = z p r o p ( p r o p s t a r t ) ;
K E t o t a l = c a t ( 2 , KE evan ( 1 : index up bound −1) , KE airy , KE prop ( p r o p s t a r t :

end ) ) ;
KE ave prop = t r a p z ( z p r o p ( p r o p s t a r t : end ) , KE prop ( p r o p s t a r t : end ) ) / (

z p r o p ( end )−z p r o p ( p r o p s t a r t ) ) ;
end

end
%%
f u n c t i o n [ d h d t e v a l u a t e x t ] = t o p o g r a p h y m a t c h i n g ( h , x match , t ma t ch , v e l o c i t y )

% h = H* exp (−( x top−L/ 2 * s i n ( omega* t t o p ) ) ˆ 2 / b g a u s ˆ 2 ) ;

syms x t o p t t o p
% h = H* s i n ( ( x top−L/ 2 * s i n ( omega* t t o p ) ) *k ) ;
dh dx = d i f f ( h , x t o p ) ;
d h d t = d i f f ( h , t t o p ) ;
d h d t t o t a l = d h d t +dh dx * v e l o c i t y ;
d h d t e v a l u a t e x = subs ( d h d t t o t a l , x top , x match ) ;
d h d t e v a l u a t e x t = dou b l e ( subs ( d h d t e v a l u a t e x , t t o p , t m a t c h ) ) ;

end

B.2 Arduino

# i n c l u d e <Wire . h>
# i n c l u d e <A d a f r u i t M o t o r S h i e l d . h>
# i n c l u d e ” u t i l i t y / Adaf ru i t PWMServoDr iver . h ”

A d a f r u i t M o t o r S h i e l d AFMS = A d a f r u i t M o t o r S h i e l d ( ) ;
A d a f r u i t S t e p p e r M o t o r * motor = AFMS. g e t S t e p p e r ( 2 0 0 , 2 ) ;
c o n s t i n t b u t t o n P i n = 2 ;
i n t b u t t o n S t a t e = 0 ;
f l o a t e ;

vo id s e t u p ( ) {
f l o a t d , V, T , w, L , s ;

/ / V= . 3 ; / / E n t e r speed i n cm / s e c

T = ( 2 * 3 . 1 4 1 5 ) / . 7 7 5 −1 . 3 5 ; / / E n t e r t ime p e r i o d i n s e c . −1.7 a d j u s t s f o r e r r o r
L = 5 ; / / E x c u r s i o n l e n g t h i n cm
V = 2*L / T ;
d = . 8 1 2 5 ; / / Spool d i a m e t e r i n i n c h e s
/ / L=(T*V) / 2 ; / / E x c u r s i o n l e n g t h i n cm
s =(V*60) / ( 3 . 1 4 1 5 * 2 . 5 4 * d ) ; / / motor speed i n r e v / min
e =(L*200) / ( d * 3 . 1 4 1 5 * 2 . 5 4 ) ; / / number o f s t e p s i n each d i r e c t i o n

S e r i a l . b e g i n ( 9 6 0 0 ) ; / / s e t up S e r i a l l i b r a r y a t 9600 bps
S e r i a l . p r i n t l n ( ” I n t e r n a l Waves T e s t ” ) ;
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AFMS. b e g i n ( ) ;
motor−>s e t S p e e d ( s ) ; / / 50 rpm
pinMode ( b u t t o n P i n , INPUT ) ;
/ / motor . s t e p ( 2 0 0 , FORWARD, DOUBLE) ;
motor−>r e l e a s e ( ) ;

}

B.3 Supercomputer files

B.3.1 Setup data for SS kinetic energy processing

Supercomputer bash file to used to run MATLAB files of individual tests such as
Test 3 6 19 a.m:

#!/bin/bash
#SBATCH -C rhel7
#SBATCH –time=0:20:00 # walltime
#SBATCH –ntasks=12 # number of processor cores (i.e. tasks)
#SBATCH –nodes=1 # number of nodes
#SBATCH –mem-per-cpu=7G # memory per CPU core
#SBATCH -J “Test 3 6 19 a” # job name
#SBATCH –mail-user=allisonlee8@gmail.com # email address
#SBATCH –mail-type=END
module load matlab
matlab -nodisplay -nosplash -r Test 3 6 19 a

B.3.2 Create experimental energy

Supercomputer bash file used to calculate kinetic energy by running the MATLAB file
SC Experiment Energy AL 04 29 19.m:

#!/bin/bash
#SBATCH -C rhel7
#SBATCH –time=02:00:00 # walltime
#SBATCH –ntasks=3 # number of processor cores (i.e. tasks)
#SBATCH –nodes=1 # number of nodes
#SBATCH –mem-per-cpu=60G # memory per CPU core
#SBATCH -J “exp energy” # job name
#SBATCH –mail-user=allisonlee8@gmail.com # email address
#SBATCH –mail-type=END
module load matlab/r2017b
matlab -nodisplay -nosplash -r SC Experiment Energy AL 04 29 19
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APPENDIX C. UNCERTAINTY ANALYSIS

Each measurement of the experimental process has an uncertainty associated with it, and

that uncertainty is propagated into the calculation of dependent variables. While different methods

can be used to quantify the uncertainty of an experimental calculation, here sequential perturbation

will be used. Following the methods outlined by Manteufel [114], the various measured indepen-

dent variables (xi) of an equation are perturbed by their respective uncertainty values, and a new

solution for the dependent variable (Ri) is found. By comparing the perturbed solutions to the

original solution, total relative uncertainty can be estimated, along with importance factors for

each independent variable. Sequential perturbation will be used for three equations in this section.

First, the calculation of the density perturbation or ∂ρ ′/∂ z from Sec. 1.5.2, and then the two kinetic

energy calculations of KE1 and KE2 from Sec. 2.3.2. Each equation is listed here for convenience.

C.1 Density perturbation

To estimate the density perturbation (ρ ′) based on the variation in pixel movement and

lengths associated with the experimental setup (See Fig. 1.6), the following equation is solved

using the commercial software Digiflow [94]:

∆z =−1
2

L−B−
(

1− nair
2n0

)
W −2

(
1− nair

2nwall

)
T

L−
(

1− nair
n0

)
W −2

(
1− nair

nwall

)
T

W
(

W +2
n0

nair
B+2

n0

nwall
T
)

β

ρ0

∂ρ ′

∂ z
(C.1)

In this equations, L is the distance between the camera and the light mask, T is the thickness of

one side of the tank, B is the distance from the outside of the tank to the light mask, and W is the

interior width of the tank as shown in Fig. 1.6. Here, density has been defined as ρ = ρ0 +ρ +ρ ′,

where ρ0 is the background or reference density of the fluid, ρ is the stratification profile, and
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Table C.1: Inputs and output of Eq. C.1 with a sequential perturbation analysis. The labels on the
right half of the table indicate which variable was perturbed. ∂ρ ′/∂ z for each scenario, along

with the uncertainty (based on the perturbed solution) are listed in the bottom row. All
inputs have units of meters, with ∂ρ ′/∂ z in units of kg/m4.

Input Value Uncertainty
Relative
Uncertainty

L B W T ∆z

L 3.2258 0.0016 0.050% 3.2274 3.2258 3.2258 3.2258 3.2258
B 0.93 0.0005 0.054% 0.93 0.9305 0.93 0.93 0.93
W 0.12 0.0005 0.417% 0.12 0.12 0.1205 0.12 0.12
T 0.018 0.0005 2.778% 0.018 0.018 0.018 0.0185 0.018
∆z (10−5) -4.46 -1.19 26.584% -4.46 -4.46 -4.46 -4.46 -5.65

Output:
∂ρ ′/∂ z 2.23 0.59 26.59% 2.23 2.23 2.22 2.23 2.82

ρ ′ is the perturbation density. The index of refraction for air and the wall of the experimental

tank are represented with ηair and ηwall, respectively, and are assumed to be constants. η0 is

the reference index of refraction for the experimental fluid and is also needed for the definition

of β , where β = (ρ0/n0)(∂n/∂ρ). Although the index of refraction of the fluid will vary with

the density, the actual derivative of ∂n/∂ρ can be considered constant for water. Thus, with

ρ0 = 1000 kg/m3 and n0 = 1.3332 [115] as the reference density and index of refraction for water,

β ≈ 0.184. This equation assumes that the experiment is two dimensional so the variation in the

y direction is negligible. A PIV cross-correlation algorithm is used to estimate ∆z. Although Eq.

(C.1) is for ∆z, the actual value of interest is ∂ρ ′/∂ z as kinetic energy density is estimated by

∆N2 =−g/ρ0(∂ρ ′/∂ z). Thus, it is important to understand the uncertainty of ∂ρ ′/∂ z.

Based on Eq. C.1, sequential perturbation is performed by perturbing the variables L, B,

W , T , and ∆z. Values for the index of refraction are all held constant in this analysis because of

the consistency of the values based on the literature. For example, nair = 1.0 and varies less than

0.01% with temperatures and pressures measured between -40− 40 ◦C and 60− 110 kPa [116].

Along with nair, other values include n0 = 1.3332 [115], and nwall = 1.491 [117]. β is also assumed

constant [58]. For the analysis, B, W , and T , were each measured with a standard measuring tape

in centimeters, with an error of±0.5 mm. L was regularly measured in inches, with a resolution of

232



±1/16”, or 1.58 mm. Dalziel et al. [58] indicate that the algorithm used to compare SS test images

and calculate ∆z has a resolution of 0.02 pixels, which translates to 0.012 mm for the scenario

presented here.

Each variable was individually perturbed and then Eq. C.1 was solved for ∂ρ ′/∂ z. Table

C.1 indicates the input values and the associated uncertainty, along with the calculated values of

∂ρ ′/∂ z given the perturbation of each individual variable. As indicated by the table, the original

independent variables provide a solution of ∂ρ ′/∂ z = 2.23 kg/m4, which varies only slightly for

each variation of the measured lengths. However, this variation increases for the calculated value of

∆z due its associated uncertainty. Comparing the differences between each output for the different

inputs, the calculated value of ∆z has a 99.97% impact on ∂ρ ′/∂ z, with each other independent

variable causing less than 0.03% variation. The total uncertainty is calculated by

Uncertainty =
√

∑
[
(∂ρ ′/∂ z)org− (∂ρ ′/∂ z)pert]2 (C.2)

where (∂ρ ′/∂ z)org is the original solution and (∂ρ ′/∂ z)pert is the solution with one variable per-

turbed. Although each of the lengths listed in Tab. C.1 are important, the overall calculation is

highly dependent upon the Digiflow calculation of ∆z. It is recommended that synthetic schlieren

process be run at the highest fidelity possible (relative to needed processing time) to decrease the

error associated with this variable. In addition, this analysis does not indicate a specific bias error

that consistently increases or decreases ∂ρ ′/∂ z.

C.2 Kinetic energy

After solving for ∂ρ ′/∂ z and calculating ∆N2 with ∆N2 =−g/ρ0(∂ρ ′/∂ z), kinetic energy

density can then be estimated using either Eq. (C.3) or (C.4) for the evanescent and propagating

regions, respectively:

KE1 =

∣∣∣∣∣ −qω∆Ñ2

k(∂zN2 +qN2)

∣∣∣∣∣
2

+

∣∣∣∣∣ iω∆Ñ2

∂zN2 +qN2

∣∣∣∣∣
2

(C.3)
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Table C.2: Uncertainty analysis of KE1 based on Eq. (C.3).

Input Value Uncertainty
Relative
Uncertainty

ω

(s−1)
N
(s−1)

k
(m−1)

∆N2

(s−2)
∂zN2

(m−1s−2)

ω 1.00 0.016 1.60% 1.01 1.00 1.00 1.00 1.00
N 0.8 0.04 5.00% 0.8 0.84 0.8 0.8 0.8
k 27.925 0.005 0.02% 27.925 27.925 27.930 27.925 27.925
∆N2 0.022 0.006 26.59% 0.022 0.022 0.022 0.028 0.022
∂zN2 -5.6 0.280 5.00% -5.60 -5.60 -5.60 -5.60 -5.32

Output:
KE1
(J/kg 10−5)

1.74 1.07 61.47% 1.81 1.74 1.74 2.79 1.95

KE2 =
ω2N2

k2(N2−ω2)+(ω∂zN2/N2)2

∣∣∣∣∣∆Ñ2

N2

∣∣∣∣∣
2

(C.4)

Each equation contains similar independent variables. ∆Ñ2 refers to the Fourier amplitude of ∆N2

and the total uncertainty for this variable is 26.59%, as indicated by Tab. C.1. ω is the excitation

frequency, which is measured by timing the period of the topography oscillation (TT) using a

stopwatch with a resolution of 0.1 seconds and then ω = 2π/TT. This translates into a 1.6% relative

uncertainty. N, the natural frequency, is calculated from the measured density in the experimental

tank. Density is measured every 3 cm using an Anton Paar DMA 4100M density meter with an

accuracy of ±0.0001 g/cm3, or ±1.000 kg/m3. Density measurement locations were set using

a standard meter stick with 1 mm increments, giving an uncertainty of ±0.0005 m. Combining

the relative uncertainty of these two measurements provides an overall uncertainty of 5% for N.

k is calculated from the width of the topography (18 cm for the 3D printed medium Gaussian

topography) and the excursion length which is measured before an experiment is performed with

a resolution of ±0.001 m. Thus the relative uncertainty of k = 2π/(W +L) is 0.02%. Note that W

and L here refer to the topography width and excursion length, not the SS lengths in Eq. (C.1). In

Eq. (C.3), the variable q is listed, but q =
√

1−N2/ω2, and thus is not an independent variable

used in this uncertainty analysis. The final variable in both equations is the z-derivative of N2,

which is assumed to have the same uncertainty as N.
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Table C.3: Uncertainty analysis of KE2 based on Eq. (C.4).

Input Value Uncertainty
Relative
Uncertainty

ω

(s−1)
N
(s−1)

k
(m−1)

∆N2

(s−2)
∂zN2

(m−1s−2)

ω 1.00 0.016 1.60% 1.01 1.00 1.00 1.00 1.00
N 1.1 0.055 5.00% 1.1 1.155 1.1 1.1 1.1
k 27.925 0.005 0.02% 27.925 27.925 27.930 27.925 27.925
∆N2 0.022 0.006 26.59% 0.022 0.022 0.022 0.028 0.022
∂zN2 -0.35 -0.018 5.00% -0.35 -0.35 -0.35 -0.35 -0.37

Output:
KE2
(J/kg 10−8)

1.39 1.36 97.45% 1.99 0.51 1.39 2.24 1.40

Tables C.2 and C.3 contain the uncertainty analysis for KE1 and KE2 and each is set in

the same format as Tab. C.1. Between the two tables, ω , k, and ∆N2 are the same, but N and

∂zN2 are varied based on the respective values of the evanescent and propagating regions. Units

for each variable are listed in the top row. For the evanescent region, the total relative uncertainty,

calculated using Eq. (C.2) with KE1 in place of ∂ρ ′/∂ z, is 61.47%, and ∆N2 has the largest percent

impact on the solution, followed by ∂zN2 and ω . Variations in N and k have a negligible effect on

the solution. By decreasing the uncertainty of ∆N2, the overall uncertainty estimate of KE1 could

be greatly improved.

For KE2 in the propagating region, the overall uncertainty is larger than KE1 at 97.45%.

Unlike KE1, only the impact of k and ∂zN2 are negligible, while ω , N, and ∆N2 each have an

important percent impact on KE2. In addition, the variable with the highest impact is N, followed

closely by ∆N2.

Although the uncertainty of four of the five variables is 5% or less for Tab. C.2 and Tab.

C.3, the combined uncertainty for both kinetic energy calculations is very high. To improve on

the total relative uncertainty, it is recommended that the highest resolution possible be used for

calculating ∆N2 when using the software Digiflow. Also the resolution of the measurements for

the heights needed to calculate N and ∂zN2 could be increased by using a better ruler. Improving
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the measurement of ω by using a better stopwatch or by using image processing software to track

the period of the topography would also improve the total uncertainty.
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