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ABSTRACT

Two-Phase Interactions on Superhydrophobic Surfaces

Kimberly Ann Stevens
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Superhydrophobic surfaces have gained attention as a potential mechanism for increasing
condensation heat transfer rates. Various aspects related to condensation heat transfer are explored.
Adiabatic, air-water mixtures are used to explore the influence of hydrophobicity on two-phase
flows and the hydrodynamics which might be present in flow condensation environments. Pres-
sure drop measurements in a rectangular channel with one superhydrophobic wall (cross-section
approximately 0.37 × 10 mm) are obtained, revealing a reduction in the pressure drop for two-
phase flow compared to a control scenario. The observed reduction is approximately 10% greater
than the reduction that is observed for single-phase flow (relative to a classical channel).

Carbon nanotubes have been used to create superhydrophobic coatings due to their ability
to offer a relatively uniform nanostructure. However, as-grown carbon nanotubes often require the
addition of a thin-film hydrophobic coating to render them superhydrophobic, and fine control of
the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration
to layer amorphous carbon on multi-walled nanotubes to achieve superhydrophobic behavior with
tunable geometry. The native surface can be rendered superhydrophobic with a vacuum pyrolysis
treatment, with contact angles as high as 160° and contact angle hysteresis less than 2–3°.

Drop-size distribution is an important aspect of heat transfer modeling that is difficult to
measure for small drop sizes. The present work uses a numerical simulation of condensation to ex-
plore the influence of nucleation site distribution approach, nucleation site density, contact angle,
maximum drop size, heat transfer modeling to individual drops, and minimum jumping size on the
distribution function and overall heat transfer rate. The simulation incorporates the possibility of
coalescence-induced jumping over a range of sizes. Results of the simulation are compared with
previous theoretical models and the impact of the assumptions used in those models is explored.
Results from the simulation suggest that when the contact angle is large, as on superhydrophobic
surfaces, the heat transfer may not be as sensitive to the maximum drop-size as previously sup-
posed. Furthermore, previous drop-size distribution models may under-predict the heat transfer
rate at high contact angles.

Condensate drop behavior (jumping, non-jumping, and flooding) and size distribution are
shown to be dependent on the degree of subcooling and nanostructure size. Drop-size distribu-
tions for surfaces experiencing coalescence-induced jumping are obtained experimentally. Under-
standing the drop-size distribution in the departure region is important since drops in this size are
expected to contribute significantly to the overall heat transfer rate.

Keywords: superhydrophobic surfaces, condensation, two-phase flow, drop-size distribution
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CHAPTER 1. INTRODUCTION

1.1 Motivation and Dissertation Organization

The need for more efficient condensation is compelling, affecting in some way the life

of every person on earth through our dependence on energy, clean water, and electronics. The

majority of the electricity produced globally is generated using the Rankine cycle, the efficiency

of which is directly related to condensation heat transfer performance [1, 2]. Nearly one billion

people world-wide lack access to clean water, and boiling/re-condensing salt water is one approach

to produce pure drinking water [3]. The demand for improved heat dissipation remains constant

with increasingly high power densities in electronics, and condensation is involved in a variety of

current and proposed electronics cooling devices, including traditional and oscillating heat pipes

[4]. Recently, superhydrophobic surfaces have gained much media and scholarly attention as a

promising approach for achieving higher condensation rates, but much work remains before they

are viable for use in next generation condensing devices.

The present work provides insight regarding issues relevant to increasing condensation

heat transfer rates through the use of superhydrophobic surfaces. The motivation of the research

was to produce results that were not only novel and interesting from a scientific standpoint, but

useful in furthering the quest for more efficient condensation heat transfer. Though distinct in their

approach and contribution, each chapter focuses on a different aspect of condensation heat transfer

improvement, as enumerated below.

1. In chapter 2, the hydrodynamics in adiabatic two-phase channel flow are quantified, provid-

ing insight regarding how the driving pressure force in a superhydrophobic channel changes

relative to classical channels. Two-phase channel flows are studied to better understand

internal-flow condensation processes. The flow behavior, including hydrodynamics, often

significantly impacts the heat and mass transfer in two-phase flows, making it relevant to the

problem of condensation heat transfer [5].
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2. In chapter 3 a process for manufacturing superhydrophobic surfaces is described offering

control of the nanostructure. A nanostructure is necessary to avoid flooding during conden-

sation on a superhydrophobic surface, and evidence suggests that the characteristics of the

nanostructure directly influences the heat transfer rate. Furthermore, one challenge with su-

perhydrophobic surfaces is their durability. The work describes a method for creating more

robust superhydrophobic surfaces.

3. In chapter 4 an approach to obtain detailed drop-size distributions, an important aspect of

condensation heat transfer modeling, is presented, and the influence of various parameters

on distribution and predicted overall heat transfer rate are reported. The model accounts for

coalescence in small drop sizes and allows for coalescence-induced departure over a range

of drop-sizes, in contrast to existing models.

4. In chapter 5 the influence of subcooling and nanostructure on condensate wetting state and

drop-size distribution are explored experimentally. The wetting state directly influences con-

densation heat transfer rates, and improved understanding of the cause and influence of the

wetting state transition is necessary for superhydrophobic condenser design.

5. In chapter 6 preliminary heat transfer measurements on surfaces experiencing coalescence-

induced jumping are obtained.

This dissertation is organized as follows. The remainder of this chapter highlights par-

ticularly relevant background information regarding condensation on superhydrophobic surfaces.

Chapters 2-5 present the contributions outlined above as prepared for archival journals. Accord-

ingly, each chapter contains an abstract, introduction, brief review of relevant literature, and con-

clusion in addition to the description of new work. Chapter 6 describes preliminary work, prepara-

tory for additional work which will eventually be prepared for publication. Chapter 7 draws con-

clusions from the work as a whole and discusses future work.
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1.2 Condensation Heat Transfer

1.2.1 Dropwise and Flimwise Condensation

Heterogeneous condensation occurring on a solid surface will result in formation of a film

(filmwise condensation) or discrete drops (dropwise condensation), depending on the wettability

of the surface and degree of subcooling. In both cases, condensate can be removed by gravity,

acceleration, and/or vapor-flow-induced shear stresses. However, the presence of a liquid film cre-

ates high thermal resistance to heat transfer, generally resulting in lower heat transfer coefficients

relative to dropwise condensation. One oft-sited study measured a 5-7 times improvement in heat

transfer coefficient for dropwise condensation relative to filmwise condensation, leading to great

interest in the creation of surfaces which can maintain dropwise condensation [6]. Traditionally,

such surfaces are created by modifying the wettability of the surface. The use of superhydrophobic

surfaces is an extension of the pursuit for improved heat transfer rates through surface modifica-

tion.

1.2.2 Influence of Noncondensable Gases

The condensation heat transfer rate is extremely sensitive to the presence of small concen-

trations (even a few ppm) of noncondensable gases (NCG) during both film and dropwise con-

densation [7–12]. The presence of NCG results in formation of a water vapor/air boundary layer

through which water vapor must diffuse to reach a condensing surface. The boundary layer thick-

ness is dependent on the spatial distribution of drops, shape of the surrounding apparatus, and time

since condensation initiation. While heat transfer data obtained in the presence of NCG may illus-

trate trends in heat transfer performance, they are not useful for comparison due to the dependence

of performance on the characteristics of the boundary layer [8]. The difficulty of maintaining a

system free from non-condensable gases is often used as an explanation for the large discrepan-

cies in measured condensation heat transfer coefficients [7]. NCG are assumed to be absent in the

numerical simulation described in chapter 4 of this work, and great care is taken to minimize the

NCG concentration in the experimental work described in chapter 5.
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1.3 Superhydrophobic Surfaces

In addition to modifying the native surface chemistry to promote dropwise condensation,

the addition of surface structures has also been used to enhance condensation. The combination

of a rough surface with an intrinsically high contact angle (achieved by roughening a natively hy-

drophobic surface or rendering hydrophobic a rough hydrophilic surface) can result in a superhy-

drophobic surface with a solid-liquid contact angle greater than 150° and contact angle hysteresis

less than 10° [13, 14].

Contact angle hysteresis is the difference between the advancing and receding contact an-

gles, and low hysteresis is indicative of high droplet mobility [15]. Advancing and receding angles

are the maximum and minimum contact angles a drop experiences, such as when volume is be-

ing added to or subtracted from a static droplet. Both the advancing and receding contact angles

are necessary to fully characterize a surface since a static contact angle could be measured at any

angle between the advancing and receding contact angles [14, 16]. Gao and McCarthy reviewed

the findings of several investigators emphasizing the importance of the advancing and receding

contact angles [16]. However, measurement of the static contact angle is more convenient, and on

superhydrophobic surfaces suitable for condensation the hysteresis is so low that the static contact

angle is frequently used to characterize the surface in practice. Nevertheless, the static contact

angle is sensitive to the interactions at the three-phase contact line and not necessarily indicative

of the hydrophobicity of the surface anywhere, including directly beneath the drop, besides the

three-phase contact line.

When a stationary droplet is placed on top of a rough, superhydrophobic surface, surface

tension can prevent the liquid from penetrating into the cavities, creating a layer of air between the

solid and liquid surfaces. In this case, the droplet is said to be in a non-wetting, or Cassie state.

If the pressure in the liquid is too high, it will overcome surface tension and liquid will enter the

cavities; the surface is then said to be in a wetting, or Wenzel state. An estimate for the pressure

required for the liquid to wet a superhydrophobic surface is traditionally given by the Laplace

pressure, given by the Young-Laplace Equation,

∆P = Pwater−Pair = γ(
1

R1
+

1
R2

), (1.1)
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Figure 1.1: Schematics showing suspended (S), partially wetting (PW), and wetting (W) drop
mythologies, adapted from work by Miljkovic et al. [17].

where γ is the surface tension, R1 and R2 are the surface radii of curvature. The Cassie/Wenzel

distinction in wetting state and Young-Laplace equation applies to liquid initially external to the

surface cavities, as when liquid is placed or impinged on or flowed over a surface (see chapter

2). When water originates within the structure cavities, as occurs during condensation, different

distinctions in wetting state are appropriate (see chapter 5).

1.4 Condensation on Superhydrophobic Surfaces

For years researchers believed that superhydrophobic surfaces were not beneficial for con-

densation since condensing drops always wet the structures and were highly pinned. Initial in-

vestigations of condensation on superhydrophobic surfaces found that the nucleation sites for con-

densation were evenly spread over the entire surface. As a result, a significant percentage of the

initial condensate drops formed within the cavities, resulting in an irreversibly wetted state with

highly pinned, immobile drops deleterious to heat transfer [18–20, 20–25]. However, Chen et

al. [26] showed that drops can grow out of the structure cavities in a non-wetting state when the

surface has two-tiered (nano- and microscale) roughness, renewing interest in condensation on su-

perhydrophobic surfaces. Formation of condensate drops in a non-wetting state on surfaces with

nanoscale or two-tiered roughness was observed by other investigators [27–33], and eventually a

consensus emerged that two-tiered structuring was not necessary to avoid wetting. Highly mobile

drops of condensate in a non-wetting state have been found on surfaces both with [34–36] and

without a microstructure, [29, 30, 37–39] as long as a nanostructure is present. Enright et al. de-

veloped a model to predict drop morphology [29], and researchers have observed that condensing

drops can emerge in one of three states: wetted, partially wetted, or suspended as illustrated in Fig-

ure 1.1 [8]. Suspended drops nucleate on the tops of the structures, and will remain on top of the
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structures as they grow if it is energetically favorable to do so. Wetted and partially wetted drops

begin growing from nucleation sites within the surface structure. Depending on the surface struc-

ture, wettability, and nucleation density, drops will either grow up out of the structure (partially

wetted) or they will merge with other drops and continue to to grow within the structures (wetted).

Drops which are wetted fill the cavities between structures, similar to the traditional Wenzel state.

When drops are in the wetted state they will eventually flood the surface, leading to formation of a

film and generally poor heat transfer performance.

1.4.1 Coalescence-Induced Jumping

Superhydrophobic surfaces make possible coalescence-induced jumping, which can sig-

nificantly alter condensation dynamics. When two drops coalesce on a surface with sufficiently

low surface energy, the resulting drop can jump normal to the condensing surface. First de-

scribed by Kollera and Grigull for mercury drops [40], interest in the phenomenon was revived

when Boreyko and Chen demonstrated the phenomenon for water drops on superhydrophobic sur-

faces [41]. Coalescence-induced jumping results from the surface energy released by the drop

merger. When the liquid bridge between the coalescing drops impinges on the substrate surface,

this bridge pushes the drop away from the substrate if the adhesive force between the merged drop

and the surface is smaller than the impinging force, as shown in Figure 1.2. On vertically oriented

surfaces, the departed drop can be completely removed as it jumps away from the surface and then

falls due to gravity. Coalescence-induced drop removal has been demonstrated for drops as small

as 1 µm in diameter [42–44]. The possibility for small drop removal captured the attention of

researchers as a possible mechanism for improving heat transfer rates and potential application in

a variety of other phase-change driven systems [45–47].

1.4.2 Use of Superhydrophobic Surfaces as a Mechanism for Heat Transfer Enhancement

Existing heat transfer models suggest the majority of the heat transfer during condensation

takes place on small drops, and experimental evidence suggests that the heat transfer coefficient

increases as the maximum drop size decreases [7]. With the increased mobility of non-wetted

drops and the potential for spontaneous jumping, superhydrophobic surfaces can facilitate drop re-
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Figure 1.2: Time-lapse images of coalescence-induced jumping, adapted from work by Wang et
al. [48].

moval at sizes significantly smaller than the capillary length, which is the traditional limit for drop

removal due to gravity-induced sweeping. The idea that minimizing the maximum drop size to

increase heat transfer rates, achievable with superhydrophobic surfaces, has inspired considerable

research activity. Several works have quantified metrics which indirectly relate to the heat trans-

fer rate, such as maximum droplet diameter, coarse drop size distributions, and individual droplet

growth rates [34, 39, 49–55]. Additionally, several models for condensation on superhydrophobic

surfaces have been developed [17, 39, 55, 56]. However, only a few works have experimentally

measured the overall heat transfer rate directly, and their primary focus was on the heat transfer

enhancement that could be achieved with superhydrophobic surfaces relative to traditional sur-

faces [35, 51, 52, 57, 58]. The studies found an improvement in heat transfer performance when

drops were in a suspended or partially wetting state. Wen et al. measured the heat transfer en-

hancement that could be obtained by varying the height and microstructure spacing for a specific

type of nanostructure [51, 57, 58]. Structure geometry (height, spacing, size, two-tiered vs nano)

affects heat transfer performance, but the relationship between structure design and heat transfer

rate is not clear. Furthermore, surfaces on which drops were initially in a partially wetting or sus-

pended state can transition to wetting with increased subcooling. Wen et al. demonstrated that

with densely spaced nanostructures, the wetting transition can be delayed [51,57,58]. Though ad-

ditional understanding regarding the relationship between the surface structure, wetting transition,

subcooling and heat transfer performance is needed, superhydrophobic surfaces have exhibited

great promise in their potential to improve condensation heat transfer rates.
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CHAPTER 2. TWO-PHASE FLOW PRESSURE DROP IN SUPERHYDROPHOBIC
CHANNELS

This chapter is published in the International Journal of Heat and Mass Transfer [59]. The

format of this paper has been modified to meet the stylistic requirements of this dissertation.

2.1 Contribution Authors and Affiliations

Kimberly A. Stevens, Julie Crockett, Daniel Maynes, Brian D. Iverson

Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602

2.2 Abstract

Superhydrophobic surfaces have been shown to reduce drag in single-phase channel flow;

however, little work has been done to characterize their drag-reducing ability found in two-phase

flows. Adiabatic, air-water mixtures were used to explore the influence of hydrophobicity on

two-phase flows and the hydrodynamics which might be present in flow condensation environ-

ments. Pressure drop measurements in a rectangular channel with one superhydrophobic wall

(cross-section approximately 0.37 × 10 mm) and three transparent hydrophilic walls were ob-

tained. Data for air/water mixtures with superficial Reynolds numbers ranging from 22–215 and

55–220, respectively, were obtained for superhydrophobic surfaces with three different cavity frac-

tions. Agreement between experimentally obtained two-phase pressure drop data and correlations

in the literature for conventional smooth control surfaces was better than 20 percent, which is

within the accuracy of the correlations. The data reveal a reduction in the pressure drop for two-

phase flow in a channel with a single superhydrophobic wall compared to a control scenario. The

observed reduction is approximately 10 percent greater than the reduction that is observed for

single-phase flow (relative to a classical channel).
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2.3 Introduction

Superhydrophobic surfaces have recently gained media and scholarly attention due to their

drag-reducing, self-cleaning, and ice-preventing properties. One particularly promising applica-

tion for superhydrophobic surfaces is in condensation. It has been shown that condensation on

superhydrophobic surfaces promotes drop-wise condensation; drop-wise condensation is known

to increase heat transfer around 5–7 times relative to film-wise condensation [7, 60]. A number

of researchers have explored condensation on superhydrophobic surfaces and found potential for

improving heat transfer rates [35, 39, 41].

Increased heat transfer rates would benefit a number of applications such as desalination,

energy conversion [61], atmospheric water harvesting [62, 63], and other high heat flux applica-

tions involving condensation [64]. However, very little work has been done with condensation on

superhydrophobic surfaces in a flow environment. The objective of this work is to investigate the

effect of hydrophobicity on the hydrodynamics of an adiabatic two-phase channel flow.

2.3.1 Superhydrophobic Surfaces

A superhydrophobic surface has a solid-liquid contact angle (CA) greater than 150° [13],

as shown in Figure 2.1a, and contact angle hysteresis less than 10°.

Superhydrophobic surfaces can be created by combining micro- or nano-structured features

with a hydrophobic surface coating. When a static droplet rests on top of a superhydrophobic

surface, surface tension can prevent the liquid from penetrating into the cavities, creating a layer of

air between the solid and liquid surfaces, as shown in Figure 2.1. In this case, the droplet is said to

be in a non-wetting, or Cassie state. If the pressure in the liquid is high, it can overcome the surface

tension and liquid will enter the cavities; the droplet is then said to be in a wetting, or Wenzel state.

The Young-Laplace equation describes the surface tension-induced pressure difference between

two static fluids:

∆P = Pwater−Pair = γ(
1

R1
+

1
R2

) (2.1)

where γ is the surface tension, and R1 and R2 are the surface radii of curvature. For superhydropho-

bic microribs, where R2 goes to ∞ it can be shown that an approximate threshold for the pressure
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HydrophobicHydrophilic Superhydrophobic

<90° >90°
>150°

(a)

Cassie Wenzel

w
c

(b)

Figure 2.1: (a) The solid-liquid contact angle determines the hydrophobicity of a surface. Hy-
drophilic surfaces have a contact angle less than 90°, while hydrophobic surfaces have contact
angles greater than 90°. Superhydrophobic surfaces have a solid-liquid contact angle of greater
than 150°. (b) For a non-wetting droplet (Cassie state), the liquid interacts with a fraction of the
substrate surface. In a Wenzel state, liquid fills surface cavity structures, as shown on right.

required to wet the surface, or the Laplace pressure, is

∆P =−2γcos(θ)
wc

(2.2)

where θ is the contact angle for a droplet on a smooth surface, and wc is the width of the cavity

between the ribs.

2.3.2 Adiabatic Two-Phase Flow

Adiabatic two-phase flows composed of a liquid and gas are commonly studied to gain

insight into condensing and boiling flows. In adiabatic flows, the vapor fraction and flow regime

do not change along the length of the channel, thereby isolating the hydrodynamic phenomena. In

this manner, the time-average streamwise pressure gradient, vapor fraction, and flow regime are

constant for a given liquid/gas mixture in a channel flow.
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Early work by Lockhart and Martinelli [65] and Chisholm and Laird [66,67] laid the foun-

dation for predicting the pressure gradient for two-phase flow in channels. In their work, the

two-phase pressure gradient is expressed in terms of a two-phase multiplier, φ 2, which is the two-

phase pressure gradient normalized by the single-phase pressure gradient that would result if the

liquid (subscript L) or gas (subscript G) component of the two-phase flow was the only fluid in the

channel,

φ
2
L = (

dP
dz

F)TP/(
dP
dz

F)L (2.3)

φ
2
G = (

dP
dz

F)TP/(
dP
dz

F)G (2.4)

Here, F denotes the component of the pressure gradient necessary to overcome friction, as opposed

to that associated with a phase change or gravity. The multipliers are often correlated in terms of

the Martinelli parameter, χ , which is a ratio of the gas to liquid two-phase multiplier,

χ = [(
dP
dz

F)L/(
dP
dz

F)G]
1/2 (2.5)

In practice, χ reduces to:

χ =
ṁL

ṁG

√
ρG

ρL
=

√
µLV̇L

µGV̇G
(2.6)

Chisholm and Laird [66] found that the two-phase multipliers could be roughly correlated with the

Martinelli parameter using the following relations:

φ
2
L = 1+

C
χ
+

1
χ2 (2.7)

φ
2
G = 1+Cχ +χ

2 (2.8)

where C is a constant, dependent on the flow regime of the liquid and gas phases. Though it is

known that these correlations deviate significantly from reality for many flow conditions, they are

the basis for much of the two-phase flow work that followed. Dozens of correlations exist for

predicting two-phase flow for a variety of channel geometries and orientations, working fluids, and
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velocities. Sun and Mishima [68] and Asadi et al. [69] have provided excellent reviews specifically

for mini- and micro-channel flows. Kim and Mudawar developed a universal correlation for a wide

range of fluids, flow rates, and channel shapes, constructed from over 7000 data points compiled

from over 36 studies [70, 71]. However, with all the work that has been done for pressure drop

in two-phase flow, there has been limited discussion of the effect of surface wettability, and even

less exploration of the specific influence of the combination of structuring and hydrophobicity

associated with superhydrophobic surfaces.

Wettability and Two-Phase Flow

It is recognized that changing the contact angle has an influence on the transition between

the flow regimes that occur in two-phase flow [72,73]. Huh et al. [74] observed more flow regimes

for hydrophobic than hydrophilic microchannels for contact angles in the range CA = 35 to 111°.

Barajas and Panton [75] found different flow maps for hydrophilic relative to hydrophobic 1.6 mm

I.D tubes with contact angles in the range CA = 34 to 106°. The degree of influence of wettability

on flow regime transition is likely to vary with factors such as the size of the channel, since the

boundary condition will exert a larger influence on a smaller channel; however, each of the studies

above showed that wettability did influence the location of the flow regime transition.

While it is clear that wettability influences the flow regime, there is wide disagreement

between studies on the effect of wettability on pressure drop. Takamasa et al. [76] found the effect

of wettability for contact angles in the range of CA = 7 to 146° to be insignificant on the pressure

drop in fairly large 20 mm diameter tubes. Phan et al. [77] investigated flow boiling in a 0.5

× 5 mm rectangular channel with surface contact angles of 26, 49, 63 and 103°, mass fluxes of

100 and 120 kg/m2s, and a vapor quality range of 0.01–0.06. They found that a higher contact

angle leads to higher pressure drop. Cho and Wang [72] observed differences in pressure drop

for three surfaces of varying wettability (CA = 80, 103, and 124°). The surface with the highest

contact angle had a significantly higher pressure drop, but it was also much rougher than the other

surfaces. There was no conclusive difference in pressure drop between the other two surfaces. Choi

et al. [78] measured flow in two different 530 × 499 µm channels with walls exhibiting contact

angles of 25° and 105°, respectively. The liquid and air superficial velocities ranged from 0.25–

0.43 m/s and 4.5–40 m/s, respectively. They found that the hydrophobic channel had a smaller
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pressure drop, but also pointed out that the fluid was in a different flow regime. Wang et al. [79]

observed a decrease in pressure drop for two-phase flow in a square channel (4 mm × 4 mm)

with a superhydrophobic surface created from randomly distributed silica particles coated with

PDMS (CA = 155°) of approximately 40%. The vapor quality ranged from 0.2–0.4 with a single

superficial liquid velocity of 0.015 m/s and superficial gas velocities ranging from approximately

3 to 9 m/s.

In summary, there are inconsistent findings in the literature on the effect of wettability

on two-phase flow pressure drop. The variation can be accounted for by the fact that the range

of flow rates and channel sizes tested, as well as the degree of hydrophobicity, likely influence

the effect of wettability on two-phase pressure drop. In single-phase liquid flows in the Cassie

state, it is well established that channels with superhydrophobic walls experience a reduction in

pressure drop due to the slip that occurs at the wall (shear-free condition above a gas-filled cavity),

and this reduction in pressure drop becomes more significant with smaller channels [80–84]. It is

significant to note that in the studies cited above, only two included superhydrophobic surfaces. Of

those, only one used a channel sufficiently small that the presence of a superhydrophobic boundary

would cause a measureable decrease in pressure drop. Therefore, it is not surprising that this is

the only study that found a reduction in pressure drop. With the exception of the study by Wang

et al. [79], the influence of a superhydrophobic microchannel wall on two-phase pressure drop has

not been explored. The focus of the Wang et al. paper was to determine how superhydrophobic

surfaces affect the performance of polymer electrolyte membrane fuel cells. For their application,

an appropriately narrow range of flow rates was explored. Other potential applications of two-

phase flow on superhydrophobic surfaces, such as flow boiling or flow condensation, would span

a much larger range of flow rates. Data for a wider range of flow rates is necessary to understand

how superhydrophobic surfaces influence two-phase pressure drop.

As fundamental understanding of condensation on superhydrophobic surfaces continues to

improve, exploration of condensation behavior will move from quiescent vapor environments to

more industrially relevant, internal flow environments. Torresin et al. [85] performed experiments

with flow condensation in superhydrophobic channels and found that the shear provided by the va-

por flow can decrease droplet departure size, which has tremendous implications for heat transfer.

Birbarah and Miljkovic [86] proposed that a convective environment could entrain drops that have
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Figure 2.2: Schematic of the air/water, two-phase flow loop.

departed the surface due to coalescence induced jumping, preventing their return to the surface and

thereby improving heat transfer. The potential for superhydrophobic surfaces in a flow-condensing

environment lies not only in its drag reducing abilities, but in its ability to improve heat transfer

rates. Understanding of the fundamental fluid dynamics governing two-phase flows over super-

hydrophobic surfaces will become increasingly important as exploration of flow condensation on

superhydrophobic surfaces continues. The results of the present study are an important initial

contribution to the understanding of how flow rate impacts the pressure drop in a channel with

superhydrophobic walls

This paper specifically addresses how the pressure drop of a two-phase (air and water) flow

is affected when flowing in a channel with a single superhydrophobic wall. Comparison is made

relative to classical channels for a range of flow rates corresponding to superficial gas and liquid

Reynolds numbers from 22–215 and 55–220 (superficial velocities from 0.48–4.7 and 0.07–0.29

m/s), respectively. These ranges result in a vapor quality range from 0.002 to 0.08, which is much

lower than that explored by Wang et al. [79] and includes multiple liquid flow rates.

2.4 Methods

An adiabatic flow loop was designed and constructed to measure and observe two-phase

channel flow, as shown in Figure 2.2. Compressed air was used to pressurize a tank containing

deionized water. The air and water flow rates were controlled with needle valves and pressure

regulators and then measured with in-line flow meters (Omega FLR1004-D, 200-1000 mL/min

with accuracy ± 30 mL/min and Omega FLR1007, 13–100 mL/min with accuracy ± 1 mL/min).
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(a)

(b)

Figure 2.3: (a) Test section schematic with a hydraulic diameter of 700 ± 30 µm, height of 370 ±
10 µm, and width to height ratio of 27. A cross-sectional view of the channel is shown in (b) with
gasket seal.

The air and water flows were mixed in a 1/16 inch T-shaped junction before entering the rectangular

channel detailed in Figure 2.3a. The flow was allowed to develop for approximately 120 hydraulic

diameters before the differential pressure (Omega PX409-2.5DWU5V, accuracy ± 0.02 psi) was

measured across the test section, which had a length of approximately 150 hydraulic diameters.

The taps leading to the pressure transducer were filled with water, and positioned on the bottom

of the channel to prevent air bubbles from entering the taps. The flow exited the test section to

atmosphere approximately 70 hydraulic diameters downstream from the downstream pressure tap.

Temperature was measured with T-type thermocouples directly upstream and downstream of the

test section. Flow rate, pressure, and temperature were recorded at 200 Hz. The pressure signal

was filtered with a Butterworth filter at 45 Hz to remove electrical noise. During testing for each

flow rate, the two-phase flow was allowed to reach steady behavior (approximately 5 minutes) and

the flow rate, pressure, and temperature measurements were time-averaged over a period of greater

than 30 seconds, sufficiently long that the mean signal was not influenced by the fluctuations in the

flow.
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Three sides of the rectangular test section were made of clear acrylic to allow visual access,

and the remaining side was an interchangeable silicon surface that could be designated as super-

hydrophobic or hydrophilic, as shown in Figure 2.3b. The interchangeable surface was held in

place with a strip of double-sided tape that ran the length of the surface. The height of the channel

was measured with a depth micrometer (accuracy of ± 0.01 mm) before and after pressure mea-

surements were recorded. The acrylic channel was precision machined to be flat, and the channel

was held together with two steel plates that ran the length of the channel in order to prevent any

deflection caused by the rubber gasket seal. The two sides of the channel were held together with

eight bolts, which were each tightened with a torque wrench to 17 N·m. The height of the channel

varied from 360 to 380 µm, measured to an accuracy of± 10 µm. For each test case, the measured

height was used to calculate the Poiseuille number, Reynolds number, superficial velocities, and

other variables. The width of the channel was 9.92 ± 0.01 mm . This corresponded to a range of

hydraulic diameters of 690 to 730 µm and an aspect ratio (W/H) of approximately 27. For this

high aspect ratio, the channel approached parallel plate conditions.

After assembling the channel for testing of each surface, the single-phase liquid flow pres-

sure gradient was measured for a range of liquid-only flow rates corresponding to the two-phase

flow rates to be tested. Subsequently, the two-phase pressure gradient measurements were con-

ducted. Finally, the pressure gradient measurements for single-phase liquid flow were retaken to

ensure the two-phase testing did not significantly influence the integrity of the test surface. After

multiple sets of tests, the hydrophobic Teflon coating on the superhydrophobic surfaces began to

wear off in certain locations on the surface and portions of the surface would irreversibly wet,

impacting the single-phase pressure gradient. Thus for all superhydrophobic surfaces tested here,

each surface was only tested once at each of the twelve flow rates measured. Repeatability was en-

sured by testing multiple surfaces under the same conditions. Importantly, the two-phase multiplier

was calculated using the measured single-phase (liquid) pressure gradient in order to eliminate any

differences in channel assembly from affecting the results.

The superhydrophobic surfaces were manufactured using standard photolithography and a

deep reactive ion etch before coating with a thin layer of Teflon, as described in by Prince [87]. All

of the superhydrophobic surfaces had a structure that consisted of parallel ribs 15–20 microns in

height, as shown in Figure 2.4. Three different cavity fractions (ratio of the surface area between
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the ribs to the total surface area) were tested: FC = 0.5, 0.8, and 0.91. The cavity width was

held constant at 32 microns. By maintaining a constant cavity width, the Laplace pressure was

constant for all superhydrophobic surfaces tested. The implication of a constant Laplace pressure

is that the propensity of surface wetting was the same regardless of cavity fraction. In the present

study, the liquid flow rates were chosen such that the pressure in the channel was at or below the

Laplace pressure (2.8 kPa) during single-phase flow, ensuring that the surfaces were in a Cassie,

or non-wetting state during testing. Wetting of the structured surface was visually apparent in

reflection from the surface due to the absence of the air layer between the water and surface.

During single-phase testing, the surfaces were visually monitored to ensure wetting did not occur

over the majority of the surface. During two-phase testing, alternating slugs caused local pressure

spikes significantly larger than the Laplace pressure. However, the air present in the two-phase flow

continually re-filled the cavities with air so that neither long term nor widespread wetting occurred

on the surfaces. Breaker ridges, or ribs 8 microns wide were placed perpendicular to the ribs every

2.5 mm in order to locally contain any wetting that might occur during the two-phase tests. Static

contact angles for the 0.5, 0.8, and 0.91 cavity fraction surfaces were 146, 157, and 155° in the

longitudinal direction and 132, 149, 146° in the transverse direction, respectively. Contact angle

measurements had a± 2° accuracy. Control, or hydrophilic, surfaces were smooth silicon surfaces

with no Teflon coating and a static contact angle of 60°.

2.4.1 Validation

In order to validate the channel setup, liquid single-phase pressure drop measurements

were compared with predictive models in the literature. Differential pressure measurements for

single-phase flow were taken in a classical hydrophilic channel and channels with one hydrophilic

and one superhydrophobic surface. The Poiseuille number in a classical, hydrophilic, rectangular

channel was predicted with a correlation developed by Shah and London [88],

f ·Re = 24(1−1.3553η +1.9467η
2−1.7012η

3 +0.9564η
4−0.2537η

5), (2.9)

where η is the aspect ratio of the channel, H/W. The pressure drop for parallel plate flow with one

superhydrophobic surface was predicted using relations developed by Philip [80] and Enright et
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Figure 2.4: SEM image of a surface with cavity fraction FC = 0.80. The perpendicular rib pictured
is a breaker rib, which was placed every 2.5 mm in order to compartmentalize any wetting that
occurred.

al. [84]. These relations are for parallel-plate flow with asymmetric slip at the wall. It was assumed

that the percent reduction in Poiseuille number predicted for parallel plate flow with one superhy-

drophobic wall would be very similar to the percent reduction for a high aspect ratio rectangular

channel with one superhydrophobic wall. Therefore, the predicted Poisieulle number for a rectan-

gular channel with one wall superhydrophobic was calculated by applying the appropriate percent

reduction to the value obtained using Equation 2.9. A 5.4, 10.6, and 14.7% reduction in Poiseuille

number is predicted for surfaces with cavity fractions FC = 0.5, 0.8, and 0.91, respectively. The

predicted and average measured Poiseuille numbers for hydrophilic (HL) and superhydrophobic

(SH) channels with single-phase flow are shown in Figure 2.5. The average percent error between

the measured and predicted Poiseuille number was 2.2, 2.5, 4.2, and 2.6% for the hydrophilic, 0.5,

0.8, and 0.91 cavity fraction superhydrophobic surfaces respectively.

2.5 Results

Twelve different two-phase flow rates were tested, corresponding to liquid-only Reynolds

numbers (ReL) of 55–220 and gas-only Reynolds numbers (ReG) of 22–215. The liquid- and gas-

18



HL, F
C

=0

SH, F
C

=0.5

SH, F
C

=0.8

SH, F
C

=0.91

Measured Predicted

50 100 150 200
19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

 Re
Dh

  
f 

⋅
 R

e

Figure 2.5: Poiseuille number using the Fanning friction factor for single-phase channel flow in
channels for the hydrophilic and FC = 0.5, 0.8, and 0.91 surfaces. The dashed lines indicate the
average of the measured values. The solid lines/markers show the predicted Poiseuille number
based on the percent reduction used by Philip [80] and Enright et al. [84] applied to Eqn. 2.9. The
average percent error between the measured and predicted Poiseuille number was 2.2, 2.5, 4.2, and
2.6% for the hydrophilic, 0.5, 0.8, and 0.91 cavity fraction superhydrophobic surfaces respectively.

only Reynolds numbers refer to the Reynolds number that would occur if the liquid or gas portion

of the flow were the only fluid in the channel,

Re(L,G) =
ρ(L,G) j(L,G)DH

µ(L,G)
, (2.10)

where j(L,G) is the superficial liquid or gas velocity. The value of liquid- and gas-only Reynolds

numbers are listed in Table 1 for each test scenario. Representative images of three test condi-

tions are shown in Figure 2.6. The flow regime is slug for all flow rates tested, as described in

Wambsganss et al. [89].

Four types of surfaces were tested, with multiples of each type for repeatability. Four

hydrophilic surfaces were used as control surfaces; three FC = 0.5, four FC = 0.8, and three FC =

0.91 superhydrophobic surfaces were also tested. The square root of the two-phase multiplier, (φM,

see Equation 2.3) was calculated for each of the 14 surfaces. The single-phase pressure gradient

in the equation was obtained using measurements taken directly before and after the two-phase
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Figure 2.6: Top-down representative images of the flow across the cavity fraction FC = 0.8 super-
hydrophobic surface at three different flow rates. Flow is from right to left. The fluid in the middle
of the channels pictured in the top and center panels is air, with water positioned toward the edges.
The channel in the bottom panel shows a liquid slug leaving the field of view; water is on the left,
leaving the field of view, and air is entering on the right. The ambiguous transition from liquid to
air is typical of the transition from liquid to air at higher flow rates.

flow tests. Results were averaged for each surface type; error bars on experimental measurements

indicate the maximum and minimum of the values used for averaging.

The square root of the measured two-phase multiplier (φM) for all channels was compared

with that predicted (φP) using a universal correlation for classical channels developed by Kim and

Mudawar [70] as a percent difference, as shown in Figure 2.7. Agreement between the predic-

tion and that measured for the control (hydrophilic) channels is better than 20%; this is excellent

agreement given that the accuracy of the correlation is expected to be within ±30%.

The channels containing a superhydrophobic surface showed an average reduction in φ of

approximately 10% more than the hydrophilic control channels, regardless of the cavity fraction.

This reduction of approximately 10% is observed in Figure 2.7 by comparing the deviation from the

classical channel prediction (from Kim and Mudawar [70]) for a channel with a superhydrophobic

boundary to a corresponding hydrophilic channel, at a given test condition. It should be noted that
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Table 2.1: Liquid and gas only Reynolds number (ReL, ReG) and superficial velocities ( jL and jG
for each test condition.

test
condition ReL ReG jL (m/s) jG (m/s)

1 55 22 0.07 0.48
2 55 107 0.07 2.34
3 55 215 0.07 4.7
4 109 22 0.15 0.48
5 109 107 0.15 2.34
6 109 215 0.15 4.7
7 163 22 0.22 0.48
8 163 107 0.22 2.34
9 163 215 0.22 4.7
10 220 22 0.29 0.48
11 220 107 0.29 2.34
12 220 215 0.29 4.7

φM is obtained by normalizing by the single-phase liquid pressure gradient. The single-phase liquid

pressure gradient is approximately 5–15% lower for channels with a superhydrophobic surface

than a corresponding hydrophilic channel, depending on the cavity fraction. Therefore the 10%

reduction observed in Figure 2.7 for a channel with a superhydrophobic boundary is an additional

reduction in pressure drop beyond the 5–15% reduction experienced for single-phase flow. Further,

the effect of cavity fraction on the two-phase multiplier (as seen in Figure 2.7) appears to be small,

and generally within the measurement uncertainty. However, averaged values of the two-phase

multiplier seem to indicate that the two-phase multiplier may decrease slightly with increasing

cavity fraction.

In order to compare the influence of flow rate on the two-phase multiplier, the ratio of the

square root of the two-phase multipliers for a parallel-plate channel with one superhydrophobic

wall and a channel with both hydrophilic walls is plotted in Figure 2.8, and defined as.

φSH

φHL
=

√
(d p

dz )T P,SH/(
d p
dz )L,SH√

(d p
dz )T P,HL/(

d p
dz )L,HL

(2.11)

For two-phase flow in a channel with no reduction in pressure drop relative to a control channel

with hydrophilic control surfaces, this ratio would be 1. The lower the value of the ratio, the greater
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Figure 2.7: The square root of the two-phase multiplier obtained from the average measured value
(φM) for each test condition in Table 1 compared with prediction by Kim and Mudawar [70] (φP).
Test conditions correspond to ReL of 55–220 and ReG of 22–215. The three superhydrophobic
surfaces have cavity fractions of 0.5, 0.8, and 0.91.

the reduction in pressure drop. Each data marker in Figure 2.8 represents the average φSH for all

ten of the superhydrophobic surfaces divided by the average φHL for the four hydrophilic surfaces

for the same test condition. The variation in φ for the different cavity fractions was significantly

smaller than the difference between the hydrophilic and superhydrophobic surfaces; therefore the

average of all the superhydrophobic surfaces, regardless of cavity fraction, is presented in Figure

2.8.

The reduction in pressure drop (smaller values of φSH/φHL) is more significant for increas-

ing ReG over the range of flow rates tested. As ReG increases, the flow increasingly departs from

a single-phase flow behavior and the influence of the slip condition becomes more pronounced,

resulting in a larger drag reduction (lower values of φSH/φHL). With the exception of a ReG = 22,

the ratio is relatively constant with liquid-only Reynolds number, indicating that the percent drag

reduction may not change appreciably with liquid flow rate in this flow regime. For ReG = 22, the

vapor quality is very low and approaches single-phase flow behavior with increasing liquid-only

Reynolds number. As the quality approaches zero, the square root of the two-phase multiplier for
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Figure 2.8: Ratio of the square root of the two-phase multiplier for a superhydrophobic surface
and a classical surface as a function of ReL and ReG. The reduction in pressure drop appears to
be more significant for increasing ReG. Error bars representing the 95% confidence interval are
shown in Figure 2.9.

both the superhydrophobic channel (φSH) and the hydrophilic control channel (φHL) approaches

one, causing the ratio between them to also approach one.

In order to more closely examine the effect that increasing vapor quality has on drag re-

duction, the ratio φSH/φHL is also shown as a function of vapor quality (x) in Figure 2.9. The

maximum uncertainty associated with measuring the vapor quality is 0.0026. The ratio decreases

with increasing vapor quality, for x . 0.03. For qualities x & 0.03, the impact of quality on drag

reduction appears to have a minimal effect for the gas and liquid flow rates considered here.

The results presented here are consistent with the approximately 40% drag reduction Wang

et al. [79] observed for a channel with superhydrophobic walls. In contrast to the present study,

all of the walls of their study were superhydrophobic. Furthermore, the range of flow rates in their

study was at a much higher vapor fraction (0.2–0.4). While direct comparison cannot be made, the

outcome that superhydophobic walls causes drag reduction is the same. The present study indicates

that vapor fraction does impact the magnitude of the drag reduction. In addition, it is anticipated
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and a classical surface as a function of vapor fraction. The reduction in pressure drop appears to
increase with increasing vapor fraction. Error bars represent the 95% confidence interval.

that channel size would also impact drag reduction, with smaller sized channels leading to a greater

percentage of drag reduction (relative to classical channels), as is true in single-phase flows.

2.6 Conclusion

The use of superhydrophobic surfaces in applications involving two-phase flow, includ-

ing flow-boiling and -condensing, has the potential to be transformative across several industries.

However, it is important to understand how the presence of superhydrophobic walls will impact

the hydrodynamics of two-phase channel flow. The results of this study suggest that for a paral-

lel plate channel (approximately 0.37 × 10 mm) with a single superhydrophobic wall, an average

reduction of about 10% in the square root of the two-phase multiplier (φ ) relative to a classical

channel can be expected for superficial gas and liquid Reynolds numbers from 22–215 and 55–

220, respectively. This corresponds to a reduction in drag of 10% in addition to that observed for

single-phase liquid flow in a channel with a superhydrophobic boundary for the same conditions.

The ratio of the reduction in drag for a superhydrophobic surface relative to a hydrophilic surface

decreases with increasing vapor qualities, indicating that the effect of the superhydrophobicity is

greater with increasing vapor fraction. Previous studies in channels with hydrophobic walls have

found that a hydrophobic wall either slightly increases the drag or has no effect, dependent on the
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flow regime and channel size. [72, 76–78] In contrast, from the present study and that of Wang

et al. [79], it is clear that superhydrophobic walls have the potential to reduce drag in two-phase

flows, again, depending on the channel size and flow regime. When conducting and reporting ex-

periments involving two-phase flows in micro- and mini-channels, the wettability of the surfaces

should be considered and reported.
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CHAPTER 3. SUPERHYDROPHOBIC, CARBON-INFILTRATED CARBON NAN-
OTUBES ON SI AND 316L STAINLESS STEEL WITH TUNABLE GEOMETRY

This chapter is published in Applied Physics Letters [90]. The format of this paper has

been modified to meet the stylistic requirements of this dissertation.

3.1 Contribution Authors and Affiliations

Kimberly A. Stevens, Christian D. Esplin, Taylor M. Davis, D. Jacob Butterfield, Philip S. Ng,

Anton E. Bowden, Brian D. Jensen, Brian D. Iverson

Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602

3.2 Abstract

Use of carbon nanotubes to create superhydrophobic coatings has been considered due to

their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may

be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-

grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render

them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs, or

overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration

to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve

superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CI-

CNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting

in a composite structure with improved mechanical stability. Additionally, the native surface can

be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as

160° and contact angle hysteresis less than 2–3°. CICNT diameter, static contact angle, sliding

angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to de-

termine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior
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and tunable geometry was also observed with CICNTs grown directly on stainless steel without

an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic

behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-

microbial surfaces and other bio-applications where control over the nanostructure is beneficial.

3.3 Introduction

Since their discovery, the unique properties of carbon nanotubes (CNTs) have made them

a popular option for creating superhydrophobic surfaces. In particular, CNTs offer the ability to

create a relatively uniform nanostructure, facile options for altering the surface chemistry (i.e. hy-

drophobic coatings or modification to the native surface chemistry), and flexibility in configuration

(e.g. ability to grow directly onto a substrate, create patterns at the microscale, create two-tiered

surfaces, etc.). Such properties have allowed superhydrophobic CNTs to be used in a range of

applications such as enhanced droplet mobility during condensation [26, 43, 91–93], oil-water fil-

tration [94, 95], absorption [96], self-cleaning, drag reduction [97], antifouling [98], lab-on-chip,

creation of antimicrobial surfaces [99–101], and other bio-applications.

Carbon-infiltrated carbon nanotubes (CICNTs), also known as densified carbon nanotubes

or carbon nanotube/carbon composite fibers [102–109], are comprised of CNTs with additional

layers of carbon deposited on the nanotube framework. The resulting composite is stronger than

CNTs alone [102, 103, 106–109] and can display higher electrical conductivity [109], depending

on the level of infiltration.

Superhydrophobic surfaces are considered to have a solid/liquid contact angle greater than

145° and low contact angle hysteresis [13,14]. Commonly, superhydrophobic surfaces are created

through a combination of tailored surface roughness and surface chemistry. As described above,

CNTs have been used to provide nanoscale surface roughness. Since as-grown CNTs are frequently

not hydrophobic, CNT surfaces have been rendered superhydrophobic through the addition of a

non-wetting coating using silanes, fluorination, or polymers like poly(tetrafluoroethylene) (PTFE)

[26, 43, 91–93, 110–113].

However, post-growth surface treatments have also been shown to alter the wettability of

carbon surfaces. Various plasma treatments have been used to render as-grown CNTs superhy-

drophobic [104, 114]. Li et al. demonstrated that the hydrophobicity of native CNTs could be
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Figure 3.1: (a) Top-down view of vertically aligned CNT forest without infiltration. (b) Top-down
view of a CICNT forest with reduced porosity and inter-CNT spacing. Microscale (c) rib and (d)
post pattern comprised of CICNTs. (e-h) SEM images showing where a diamond scribe scratched
CICNTs grown on (e,f) Si with an Fe catalyst and on (g,h) 316L stainless steel without a catalyst
(direct growth). CICNTs remain attached to the stainless steel surfaces everywhere except where
they came in direct contact with the diamond scribe.

controlled using reactive ion etching and laser pruning [115]. Others have demonstrated that CNT

surfaces can be changed from a superhydrophobic state to a superhydrophilic state using UV and

ozone treatment [116–119]. These groups have also shown that the process can be reversed to

render non-infiltrated CNT surfaces superhydrophobic by heating CNTs in a vacuum (i.e. vacuum

pyrolysis) [116–119]. This work demonstrates that CICNTs can also be rendered superhydropho-

bic using vacuum pyrolysis, eliminating the need for deposition of a non-wetting coating. We

also quantify the surface wetting characteristics for patterned and unpatterned, two-tiered super-

hydrophobic CICNT surfaces. Further, we demonstrate that similar superhydrophobic CICNT

surfaces can be grown directly on 316L stainless steel without the need for a catalyst. Finally, we

explore the influence of the degree of carbon infiltration on CICNT diameter, static contact angle,

sliding angle, and contact angle hysteresis.
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3.4 Methods and Results

CICNT surfaces were grown in three different microscale patterns on alumina-coated sil-

icon wafers. CNTs were grown to achieve: (1) a blanket forest of CNTs uniformly coating the

surface (Figure 3.1a, b); (2) a microscale rib pattern (Figure 3.1c); and (3) an array of cylindrical

posts (Figure 3.1d). Rib width and spacing in Figure 3.1c is 8 µm and 40 µm, respectively, re-

sulting in 20% surface coverage by CICNT structures. Post diameter and pitch in Figure 3.1d is 7

µm and 16 µm, respectively, resulting in 15% surface coverage by CICNT structures in a square

arrangement. Standard photolithographic and lift-off procedures were used to pattern a 7 nm layer

of Fe as a catalyst for CNT growth. Diced, Fe-patterned samples were placed in a Lindberg/Blue

M tube furnace for CNT growth by flowing H2 gas (373.6 sccm) and C2H4 gas (204.0 sccm) at 750

°C for 15 s. After growth, the multi-walled CNTs achieved a height of approximately 20 µm. The

CNTs were then coated (infiltrated) with amorphous carbon in the furnace by flowing H2 (444.88

sccm) and C2H4 (204.0 sccm) at 900 °C for 0, 5, 10 or 15 min. Above 15 min, delamination of the

porous carbon structure was observed from the Si substrate, likely due to internal stresses in the

film. Infiltration times may vary for different furnace setups, but with similar decreasing porosity

with increasing infiltration time.

CICNTs were also grown directly on the as-received 316L stainless steel substrates with

a #8 mirror finish without an additional catalyst layer (hereafter referred to as direct growth),

as opposed to indirect growth with CICNTs grown on stacked layers of Fe and alumina on Si.

Samples were placed in a Lindberg/Blue M tube furnace and air annealed by ramping to 800 °C

while flowing Ar gas, then held for 2 min while flowing air. CNT growth was achieved by flowing

Ar (311.0 sccm) and C2H4 (338.0 sccm) at 800 °C for 20 min. The CNTs were then infiltrated with

amorphous carbon in the furnace by flowing Ar (311.0 sccm) and C2H4 (338.0 sccm) at 900 °C for

10 min. The direct growth CICNTs were grown in a blanket forest with no microscale pattern.

Once the CICNTs were grown and infiltrated, the surfaces were vacuum annealed (i.e.

vacuum pyrolysis) at approximately 17 kPa and 250 °C for 24 hours to remove the absorbed oxygen

and achieve superhydrophobic behavior [118]. Prior to vacuum pyrolysis, the forest patterned

surfaces displayed static contact angles of approximately 90°, as described by others [110, 113].

The diameter of the infiltrated nanotubes was measured from top-down imaging using scan-

ning electron microscopy, similar to those shown in Figure 3.1a and b. Variation in diameter of the
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coated nanotubes was observed and may be attributed to: (1) natural variation in size due to vari-

ations in the catalyst, (2) variation in diameter along the height of the nanotube, and (3) variable

proximity of neighboring nanotubes. For this reason, a minimum of 20 measurements for diameter

were averaged for characterization and the 95% confidence interval was reported.

Contact angle measurements were obtained using the sessile drop method [120, 121]. An

approximately 2 mm diameter water drop was deposited on test surfaces, backlit with illumination

from an LED light, and imaged with a high-resolution camera. A fifth-order polynomial fit was

obtained for the droplet profile near the triple point contact line. The tangent line at the intersection

of the polynomial fit and contact line was reported as the contact angle, with an accuracy of ± 2°.

Contact angle from left and right sides were then averaged together. Advancing and receding

contact angles were obtained by quasi-statically expanding and contracting the drop by adding

and subtracting liquid volume with a needle while recording the drop with video [122, 123]. The

advancing and receding contact angles were evaluated by post-processing video images in a similar

manner to the static contact angle. MATLAB code used for obtaining the static, advancing, and

receding contact angles can be found in Appendix A. The difference between the advancing and

receding contact angle is the contact angle hysteresis. Sliding angle, or the angle at which a

stationary, 2 mm diameter drop began to slide away from its original location, was measured using

a micrometer angle gauge, accurate to within ± 0.5°.

The mean diameter of CICNTs for varying infiltration time is shown in Figure 3.2. For each

infiltration time and pattern, measurements were taken at two locations on square samples: one

near the center of the sample (location A) and the other near the corner (location B), as shown in

the figure. As expected, more amorphous carbon was deposited during the longer infiltration times,

leading to larger average diameters. The spatial location for diameter measurement of the CICNTs

grown on Si had no significant effect on the average diameter. Samples that were infiltrated for 15

min had average nanotube diameters more than 400% larger than those with no infiltration for all

surface patterns. The ability to tune the diameter of the structures by varying the infiltration time

offers an additional element of surface feature control to CNT growth.

The microscale pattern influenced the rate of deposition of amorphous carbon and thus the

average diameter of the structures. The forest pattern consistently exhibited the smallest diameters

of the patterns tested for all infiltration times. CICNTs grown in the rib pattern generally had

30



0

50

100

150

200

250

300

350

400

A B A B A B A B A B

A
v

e
ra

g
e
 D

ia
m

e
te

r 
(n

m
)

Location, Infiltration Time (min)

Forest (Si)

Rib (Si)

Post (Si)

Forest (316L SS)

0               5              10           15

A B

10        

Figure 3.2: Average diameter of the CICNTs for different infiltration times. Each measurement
is the average of at least 20 carbon nanotubes with error bars representing the 95% confidence
interval. Measurements were taken at locations (A) near the center and (B) near the corner of
square samples.

smaller diameters than those grown in the post pattern. This trend of increased infiltration may

be due to the availability of more carbon atoms in the C2H4 gas or reduced obstruction of the gas

for lower density microscale patterning. Jeong et al. observed a similar trend, where less-dense

patterns grew taller CNT structures compared to their scaled, more-dense counterparts [124].

Diameters of CICNTs grown directly on stainless steel were significantly larger than the

indirect growths; however, the size of the CICNTs as a function of infiltration time may not be

directly compared between direct and indirect growth samples since the furnace conditions and

substrates were different. The large variation in diameter size with spatial location reflects a general

trend of large variation in diameter size for direct growth CICNTs.

Following vacuum pyrolysis treatment, all surfaces exhibited superhydrophobic behavior.

The average static contact angle for each of the surfaces is shown in Figure 3.3, with values greater

than 145°. The superhydrophobicity was stable, with insignificant changes in contact angle over

time. Each measurement is the average of measurements taken at 3-4 different locations on the

surface; the variation is represented by the error bars, which are one standard deviation above

and below the average. The contact angle did not change significantly with CICNT diameter,

microscale pattern type, or substrate. Though the average contact angle is slightly lower for the
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Figure 3.3: Static contact angle of water droplets on CICNT surfaces. Each measurement is the
average contact angle taken at 3 or 4 different locations. The error bars are ± 1 standard deviation.
Contact angle does not vary significantly with CICNT diameter, infiltration time, substrate, or
microscale pattern.

surfaces with CNTs grown in a post pattern, the larger variation (reflected in the standard deviation)

in static contact angle and larger contact angle hysteresis could be indicative of a larger number of

defects on the surface. Indeed, the surfaces with CNTs grown in a post pattern were observably

less robust than the other surfaces. Considering the extremely high aspect ratio of the carbon

nanotubes (height approximately 20 µm, diameter 25-200 nm) it is not surprising that when the

carbon nanotubes were grown in small islands they were not observed to be as strong since the

network of interconnected CNTs was smaller. Regardless of infiltration time or microscale pattern,

the average static contact angle for all surfaces resulted in superhydrophobic behavior.

In addition to having high static contact angles, each of the surfaces exhibited extremely

low contact angle hysteresis, on the order of 1°. Each measurement in Table 1 is the average of

hysteresis measurements taken at four different locations on the surface. Rib-patterned surfaces

with four measurements included two measurements in each direction. All variation in contact

angle hysteresis are within the measurement uncertainty, regardless of surface pattern or infiltration

time. Sliding angle, another indicator of droplet mobility, was measured on surfaces of each pattern

type and across a range of infiltration times. As expected from the low hysteresis, small sliding
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angle values of less than 1-3° were observed, with no significant variation with infiltration time or

pattern. All of the surfaces exhibited static contact angle and droplet mobility measurements that

qualify them as superhydrophobic, and the degree of superhydrophobicity appeared to be largely

independent of infiltration time or pattern over the range tested.

The foregoing results demonstrate that carbon infiltration can be used to tune the diameter

of the carbon nanotubes, and that following a vacuum pyrolysis treatment, the carbon infiltrated

carbon nanotubes are superhydrophobic, without the need for an additional hydrophobic coating.

Even significant changes in the microscale arrangement, structure size, and substrate type (direct

vs indirect) did not appear to influence the hydrophobicity of the resulting surface. CICNTs were

also observed to be oleophilic; a drop of machine oil placed on the surface had a static contact

angle of 35°.

The direct growth CICNTs on 316L stainless steel were observably more robust than the

indirect growth surfaces on Si. To demonstrate their robustness, a diamond scribe was used to

scratch a direct and indirect growth surface. SEM images of the scratches are shown in Figure 3.1e-

h. On the indirect growth surface, a large section of the CICNT film delaminated and detached.

However, on the direct growth surface, the scribe scratched the stainless steel surface, but CICNTs

remain attached everywhere except where they came in direct contact with the diamond scribe.

Direct growth CICNTs appeared to be less vertically aligned than the indirect growth sample on

Si; the increase in random growth direction potentially resulted in an increase in the level of CNT

interconnectedness, thus improving structural integrity.

3.5 Conclusions

The ability to tune nanoscale geometry without affecting hydrophobicity creates new possi-

ble applications for superhydrophobic CNTs. For example, superhydrophobic surfaces have shown

great potential in the area of condensation heat transfer, where the droplet growth, coalescence, and

departure is dependent on the nanostructure and feature sizes [29,43,44,91]. Mulroe et al. showed

that the greater the nanoscale roughness (i.e. more tall, slender nanostructures as opposed to short,

stout structures), the smaller the departure size of the drops, a parameter that is directly related to

the rate of thermal transport [44]. The ability to tune the nanoscale geometry of superhydrophobic
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surfaces used in condensation is a desirable trait with carbon infiltration affording the possibility

to control CNT geometry.

Carbon nanotubes can be enhanced by infiltrating with amorphous carbon to improve me-

chanical durability [109], increase resistance to shear failure [102, 103, 106–109], and control

nanoscale feature size. CICNT structures can be rendered superhydrophobic for a range of in-

filtration rates with negligible change in superhydrophobicity, as determined by the static contact

angle, contact angle hysteresis, and sliding angle. In general, longer infiltration times result in

carbon nanotubes with larger diameters, and the rate of infiltration is somewhat dependent on the

patterning of carbon nanotubes, with sparser microscale patterning leading to higher rates of in-

filtration. Superhydrophobicity is invariant to infiltration rate/CICNT diameter within the range

tested here. CICNTs grown directly on stainless steel surfaces, when subjected to vacuum pyroly-

sis, display the same superhydrophobic properties as those on Fe deposited on alumina. Surfaces

created with direct growth of CICNTs on the stainless steel are even more robust than CICNTs

grown on Fe deposited on alumina, as partially demonstrated by the scratch tests presented in this

work. The ability to grow CICNTs directly on the stainless steel without the need for Fe deposition

reduces fabrication complexity and increases potential scalability of these surfaces.
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Table 3.1: Average of 2-4 hysteresis measurements on sample
surfaces. The sliding angle was always less than 1-3 degrees

regardless of surface geometry, infiltration time and loca-
tion. Neither hysteresis nor sliding angle varies signifi-

cantly with microscale pattern, CICNT diameter, in-
filtration time, or substrate.

Pattern Infiltration
Time (min)

Hysteresis
(degrees)

Sliding
Angle

(degrees)

Forest (Si)
0 0.3

<1-3

10 0.2
15 0.9

Post (Si)
0 0.8

10 2.4

Rib Longitudinal (Si)
0 <0.1

15 0.7

Rib Transverse (Si)
0 0.5

15 1.8
Forest (316L SS) 10 1.7
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CHAPTER 4. DROP-SIZE DISTRIBUTION DURING DROPWISE CONDENSATION
FROM SIMULATION AND IMPLICATIONS FOR HEAT TRANSFER MODELING

4.1 Contributing Authors and Affiliations

Kimberly A. Stevens, Julie Crockett, Daniel Maynes, Brian D. Iverson

Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602

4.2 Abstract

Accurate models for condensation heat transfer are necessary to improve condenser design.

Drop-size distribution is an important aspect of heat transfer modeling that is difficult to measure

for small drop sizes. A number of theoretical models for the distribution function have been pro-

posed, but not validated. The present work uses a numerical simulation of condensation to explore

the influence of nucleation site distribution approach, nucleation site density, contact angle, max-

imum drop size, heat transfer modeling to individual drops, and minimum jumping size on the

distribution function and overall heat transfer rate. The simulation incorporates the possibility of

coalescence-induced jumping over a range of sizes. Results of the simulation are compared with

previous theoretical models and the impact of the assumptions used in those models is explored.

Assignment of the nucleation site spatial distribution and heat transfer model affect both the distri-

bution function and predicted overall heat transfer rate. The influence of nucleation site density on

drop-size distribution is similar to previously predicted trends. Results from the simulation suggest

that when the contact angle is large, as on superhydrophobic surfaces, the heat transfer may not be

as sensitive to the maximum drop-size as previously supposed. Furthermore, previous drop-size

distribution models may under-predict the heat transfer rate at high contact angles.
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4.3 Introduction

Condensation has application in a range of industries including water desalination and har-

vesting [63, 125, 126], energy conversion [1, 9, 127], electronics cooling [4], and environmental

control [128]. Since it was discovered that heat transfer rates for dropwise condensation could

be several times higher than film-wise condensation in the 1930s, much work has been done to

model the heat transfer rate during dropwise condensation [6,7]. The modeling approach typically

consists of expressions for the heat transfer rate to an individual drop multiplied by the drop-size

distribution. This product is then integrated over the range of drop sizes, as found on the condens-

ing surface, to obtain the total heat transfer rate [7, 17, 56, 129].

q” =
∫ rmax

rmin

N(r) ·qd(r)dr (4.1)

Developing an accurate expression for the drop-size distribution is an integral part of modeling the

overall heat transfer rate during condensation. One of the earliest and most adopted approaches

to modeling the condensation heat transfer rate came from Le Fevre and Rose in 1966 [129, 130].

This work included both a semi-empirically derived expression for the drop-size distribution as

well as a model for heat transfer to an individual drop. The drop-size distribution was of the form,

N(r) =
1

3πr2r̂

(r
r̂

)−2/3
, (4.2)

where r̂ is the average maximum radius of the drops, or the average size to which drops grow

before gravity-induced shedding. N is the drop-size distribution in drops/m2/m. Other theoretical

models agree well with the Le Fevre and Rose model [130–132]. The power-law expression in

Le Fevre and Rose’s model has been experimentally validated for distributions in the range r >

5×10−5 m, but drop-size distributions for smaller drop sizes have not been reported due to the

difficulty of imaging these drops [7, 130, 133, 134]. Further, in reports that do include drop size

measurements in the range 5×10−5 m < r < 5×10−4 m, the distribution function resolution is

coarse.

In 1975 Tanaka observed, by means of population balance theory, that drop growth during

condensation could be separated into two regimes: growth dominated by direct condensation and
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growth dominated by coalescence with neighboring drops [132]. He observed that the distribution

function for larger drops follows a power-law relationship, as predicted by Le Fevre and Rose

[129, 130], but that the distribution function for smaller drops would be significantly different. In

2011, building on the work of Tanaka and others [135–137], Kim and Kim [56] used population

balance modeling to develop a distribution function and heat transfer model for drops with contact

angles greater than 90°. They showed that the distribution function was dependent on both the

solid-liquid contact angle of the condensing drops and the nucleation site density on the surface.

Miljkovic et al. [17] extended the work of Kim and Kim [56] to model drops on superhydrophobic

surfaces. Superhydrophobic surfaces combine surface roughness with hydrophobic chemistry to

achieve high solid-liquid contact angles (>145°) and high drop mobility (sliding angles <10°)

[13, 14].

Condensing drops on superhydrophobic surfaces have been shown to adopt various wetting

states, depending on the surface subcooling and properties (particularly the relationship between

the nucleation site density and surface feature density) [29,39]. Superhydrophobic surfaces can be

designed such that surface adhesion forces are low enough that the energy released upon coales-

cence of condensing drops can propel the drops away from the surface [35, 41–43, 93]. When the

surface is oriented vertically, coalescence-induced jumping can lead to permanent departure of the

drops from the surface. The heat transfer model proposed by Miljkovic et al. [17] accounted for

additional thermal resistance due to surface roughness, various possible wetting states of condens-

ing drops, and the possibility for coalescence-induced jumping thereby providing a framework for

modeling condensation heat transfer on superhydrophobic surfaces.

Previous models offer valuable insight regarding the distribution in the direct-condensation-

dominated growth regime [17,56,132,135–137], but the difficulty of obtaining experimental drop-

size distribution information for smaller drops has precluded validation. Since smaller drops ac-

count for the majority of the heat transfer that occurs during condensation, it is essential to ob-

tain accurate distribution functions in this range. Solution of the differential equation resulting

from population balance modeling requires the assumption of an instantaneous, rather than grad-

ual transition between direct-condensation-dominated growth and coalescence-dominated growth.

Though small droplet growth may be dominated by direct condensation, coalescence can occur

over a range of drop sizes and therefore can influence the distribution at smaller sizes than the in-
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stantaneous transition point used by previous models. Another difficulty with population balance

modeling occurs when coalescence-induced jumping is present. On realistic surfaces, jumping oc-

curs for only a portion of the coalescence events that occur. However, when Miljkovic et al. [17]

used population balance modeling to predict the distribution function on surfaces with jumping,

of necessity they assumed all coalescence events result in jumping and that all coalescence events

occur at a single size. In order to more accurately model condensation in the direct-condensation-

dominated growth regime and validate earlier theoretical models, a computational simulation is

proposed. The simulation incorporates coalescence for drops smaller than the transition between

direct-condensation-dominated growth and coalescence-dominated growth regimes with coales-

cence events that may or may not result in departure based on user-specified criteria.

Other researchers have used computational modeling to gain insight into condensation be-

havior on superhydrophobic surfaces and to validate previously proposed theoretical models. Gose

et al. [138] and Tanasawa and Tachibana [131] were among the first to attempt to use computer

models, but due to limitations in computing power only investigated low distribution densities.

Glicksman and Hunt [61] obtained distribution functions with a simulation that showed good agree-

ment with the Le Fevre and Rose [129] distribution function at larger drop sizes and diverged at

smaller sizes, based on the nucleation site density. However, their simulation was limited to drops

with a contact angle of 90° and did not incorporate gravity-induced sweeping of drops. Mei et al.

used a computer simulation to obtain the drop distribution also for a contact angle of 90°, but their

results were intended for larger drop sizes where the distribution function was already well estab-

lished [139]. Barati et al. used a numerical simulation of dropwise condensation to investigate

condensation as a function of time for drops with a contact angle of 88°, though they did not report

steady state drop distribution data [140]. Others have used numerical simulations to gain insight

into various aspects of condensation and vapor deposition behavior but have not focused on the

steady state distribution function and predicted overall heat transfer rate [64, 141–145].

The present work reports a computational approach to obtain the steady state drop-size dis-

tribution and associated time-averaged heat transfer rates for dropwise condensation over a range

of contact angles from 90-180°, a larger range than previous simulations. It allows for coalescence

at naturally occurring drop sizes in contrast to previous theoretical models, and it incorporates the

departure of drops both by jumping and gravity-induced sweeping. The present work only con-
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siders flat or nanostructured surfaces without a microscale feature size. The impact of maximum

drop size, contact angle, nucleation site selection method, and coalescence-induced jumping on

the distribution function and overall heat transfer rates is explored. The contribution of this work

is two-fold. First, an approach for obtaining more detailed drop-size distributions than those con-

sidered previously is described and validated by comparison with other works. Second, results

obtained using the approach described suggest that the simplifying assumptions used in previous

models are more significant when the contact angle is large and coalescence-induced jumping oc-

curs.

4.4 Methods

For the computer simulation, drops are distributed on a surface at nucleation sites, allowed

to grow, coalesce, and depart either by sweeping or coalescence-induced jumping. At each time

step, new drops are distributed. Expressions for time-averaged drop-size distribution and overall

heat transfer rates are obtained from the results of the simulation. Simulations based on the model-

ing approach described for dropwise condensation on a vertical surface are performed in MATLAB

as described in Figure 4.1. The following sections provide additional details about the modeling

approach for each physical process.

4.4.1 Initial Nucleation

Prior to the start of the simulation, nucleation sites are randomly distributed across the

surface with a specified nucleation site density (Ns). A drop with radius rmin is placed at each site.

Unless otherwise noted, rmin is equivalent to the smallest thermodynamically viable drop, rthermo,

but for select cases described later in the text rmin can be larger than rthermo [5].

rthermo =
2Tsatσ

h f gρ∆T
. (4.3)

4.4.2 Individual Droplet Growth

At each time step of the simulation, drops grow according to a specified model for the heat

transfer rate to a single drop, qd. The influence of using different models for the heat transfer
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Figure 4.1: An overview of the steps in simulation of dropwise condensation on a vertical surface.

rate is compared in the present work. First, a thermal resistance model (implemented by Kim

and Kim [56] and Miljkovic et al. [17]) is used for a flat or nanostructured surface where the

microscale feature height may be approximated as zero. For the case of no jumping and with a

microscale feature height of zero, the Kim and Kim [56] and Miljkovic et al. [17] expressions for

heat transfer to a single drop are identical and will be referred to as the “thermal resistance model.”

Second, Chavan et al. [55] solved for the heat transfer rate to drops growing by condensation with

a constant contact angle and found significant differences from the thermal resistance approach,

which requires the assumption that the drop surface temperature be isothermal. They reported

a piece-wise expression for the Nusselt number as a function of the Biot number and advancing

contact angle for drops between 100 nm and 2 mm. Their model was will be referred to as the

“Chavan model.” Adhikari et al. recently proposed a finite element model covering a different

range of Biot numbers than that covered by the Chavan model [146]. They provided tabulated data
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Figure 4.2: Comparison of models for the heat transfer rate to a single condensing drop, qd, which
are used in the simulation.

for the heat transfer rate to a single droplet as a function of Biot number and advancing contact

angle. To avoid the computationally expensive task of referring to the tabulated data to calculate

the heat transfer rate, a polynomial fit to the log of the heat transfer rate as a function of radius for

a given contact angle was obtained. The difference between the tabulated data and the polynomial

was always less than 2%. Their model will be referred to as the “Adhikari model.” As seen in

Figure 4.2, the Adhikari and Chavan models are similar everywhere except for small drop sizes.

The heat transfer rate for the thermal resistance model approaches zero at the nucleation drop

size and provides a lower prediction of the heat transfer rate at larger drop sizes relative to the

computational models by Chavan and Adhikari.

For each heat transfer model, the amount of energy transferred to each drop over a given

time step is approximated by multiplying the length of time step, δ t, by the heat transfer rate to

a single drop at the size corresponding to the previous time step. This transferred energy is then

used to calculate the new volume of the drop,

Vnew =Vold +
qdδ t
ρh f g

. (4.4)
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Assuming a spherical cap, the corresponding radius can then be calculated,

rnew =

(
3Vnew

π(2−3cosθ + cos3θ)

) 1
3

, (4.5)

where θ is the solid-liquid contact angle. The spherical cap assumption is a good approximation

for drops smaller than the capillary length, which is true for the largest drops considered in the

present work (and all condensing drops that are not in a highly pinned state prior to flooding).

4.4.3 Drop Coalescence

The size and location of each drop is used to determine when drops on the surface touch

in three-dimensional space. When the shortest distance (d) between a primary drop (p) and a

neighboring drop (i) is less than zero, it is concluded that drops are touching according to the

following relation,

d =
√

(xp− xi)2 +(yp− yi)2 +(rp− ri)2(cosθ)2− rp− ri, (4.6)

where x, y, and r are the x and y locations and radii of each drop.

If the drops are touching, they either are replaced by a new drop located at the center of

mass of the parent drops with the same total volume, representing coalescence, or are removed

from the surface, representing coalescence-induced jumping resulting in departure from the sur-

face. Three options for addressing a coalescence event can be selected in the simulation and are

included to investigate the effects of coalescence-induced jumping. The three options that result

from coalescence include drops that will (1) always depart, (2) never depart or (3) depart if at least

two of the drops involved in the coalescence event are larger than a minimum threshold (specified

by an input parameter to the simulation). Use of a minimum radius to determine whether coa-

lescence results in jumping has physical rationale as researchers have observed that coalescence-

induced jumping only occurs for drops larger than a minimum radius, and this radius is highly

dependent on the surface structure [42–44, 147, 148]. For specially designed surfaces, drops as

small as 500 nm have been shown to jump upon coalescence [42–44], but for more common su-

perhydrophobic surfaces, such as copper oxide, the minimum radius for jumping is typically on
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the order 10 µm. Recent research has shown that, in addition to minimum drop size, surface fea-

ture length scale, drop wetting state, relative size mismatch, and number of drops involved in a

coalescence event all may influence whether or not a coalescence event will result in coalescence-

induced jumping [42–44,147,148]. Though not considered here, these additional conditions could

be incorporated into an energetic-based model for jumping.

It is possible for more than two drops to be overlapping at a given time. When checking for

overlapping drops, the simulation iterates through each drop (primary drop) and determines which

neighboring drops overlap with each primary drop. All neighboring secondary drops are included

in the coalescence event and behave as specified by the selected approach for the resulting drop

(remain/depart). It is also possible for secondary drops to be overlapping with other drops (tertiary

drops). In this case, referred to as chain coalescence, all of the tertiary drops are also included

in the coalescence event. Though it is possible for additional drops to be touching the tertiary

drops, they are not included in the coalescence event since it is assumed that, when the time step

is sufficiently small, their inclusion would have negligible impact on the distribution function and

time-averaged heat transfer rate. It is also possible for a coalescence event to result in the creation

of a new drop that is large enough to overlap with other drops, referred to as cascading coalescence.

However, this possibility is not addressed until the next time step since waiting will not have a

significant influence if the time step is sufficiently small. It is possible for both cascading and chain

coalescence to occur within the same time step. However, as long as the time step is sufficiently

small, the effect of waiting until the next time step to address the cascading part of the coalescence

event is again assumed to be negligible. The assumption that coalescing drops will result in a

drop at the center of mass of the parent drops has been validated experimentally [91, 149], and

this approach has been used by Mei et al. [139], Barati et al. [140] and Khandekar and Muralidhar

[145]. It includes the assumption that the coalescing drops have a similar morphology and adhesive

force. For example, the center of mass assumption may not be true if one drop were highly pinned

or in a wetted (Wenzel) state and the other drop in a non-wetting (Cassie) state.

4.4.4 Drop Sweeping

When a drop grows to a sufficiently large size (rmax), the force of gravity will overcome

the adhesive force and the drops will roll down along a vertical surface, sweeping and removing
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all the drops in its path. For simplicity, the initial sweeping drop remains the same size throughout

the sweeping event. However, in reality, as a drop travels downward from its center of mass, the

sweeping behavior would increase the initial drop size as it coalesces with drops in its path. The

influence of assuming a constant drop size during sweeping is expected to be negligibly small when

the height of the domain is on the same order as the size of the sweeping drop, as is the case in the

present work. An example of a sweeping event for drops with a contact angle of 165° is illustrated

in Figure 4.3. The red and blue circles represent the projected area of all drops on the surface.

The red circles indicate drops that interact and coalesce with a sweeping drop as it moves along

the surface. The green circle outlines the base area in contact with the condensing surface of the

initial sweeping drop. The contact path of the base area during the sweeping motion is demarcated

with black dashed lines; clearly, all drops with bases overlapping the area traveled by the sweeping

drop will be swept away. Additionally, drops located outside of the path may also interact with

a sweeping drop, depending on size and location, as governed by the following equation for the

minimum distance, ds, between the sweeping drop, s, and another drop, i.

ds =
√
(xs− xi)2 +(rs− ri)2(cosθ)2− rs− ri (4.7)

When the minimum distance below the half-height of the sweeping drop is negative, neighboring

drops along the sweeping path will interact with the initial sweeping drop as it falls.

The maximum drop size, rmax, is specified for each simulation run. An expression to de-

termine rmax, derived from a force balance between gravity and the adhesive force, has been used

by other researchers to determine the maximum drop size [17, 56]. However, these expressions

include both the advancing and receding contact angles, necessitating a specification of two vari-

ables rather than one. Additionally, it has recently been shown that the adhesive force can change

depending on the degree of subcooling of the surface; this dependence has not yet been fully ex-

plored [42, 51, 58]. Therefore in this work, rmax remains as a specified input parameter so that the

resulting distribution functions are independent of subcooling and surface properties other than the

contact angle and rmax.
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(a) (b)

Figure 4.3: (a) Visualization of the drops in the simulation immediately prior to a sweeping event.
Red and blue circles represent the projected area of all drops on the surface. As the large drop
sweeps downward, it removes all the red drops with which it interacts in its path. The green circle
outlines the base of the large sweeping drop. The area covered by the base of the sweeping droplet
as it sweeps is demarcated with black dashed lines. (b) Visualization of the drops in the simulation
immediately following a sweeping event.

4.4.5 Distribution of New Drops

At each time step, new drops are distributed either randomly or based on preferential nucle-

ation sites coincident with the original nucleation locations. When drops are distributed randomly,

the number of new drops is determined so the original nucleation site density, Ns, is maintained in

the area of the surface not covered by drops, as follows:

nnew =
(

Ns−
n
A

)(
A−Ab

)
(4.8)

where A is the total area of the domain, Ab is the sum of the base area of all of the drops on the

surface, n is the number of drops on the surface, and nnew is the number of new drops added in that

time step. When new drops are distributed based on “preferential nucleation site” locations, the

original nucleation sites from the first time step become the starting point of all future drops. When

original nucleation sites are exposed, new drops begin to grow at these same locations. Preferential
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nucleation sites can exist on real surfaces due to surface irregularities, nonhomogeneity in native

surface chemistry, etc. Furthermore, evidence suggests that drops may leave behind a small amount

of liquid from which subsequent drops may grow [30, 38, 52, 53, 91]. However, it is also possible

for new nucleation sites to appear, particularly if all of the preferential sites are covered by drops.

It is expected that realistic nucleation behavior is best described by a combination of these two

approaches.

4.4.6 Steady State Condition

As the simulation progresses in time, drops continue to grow in size. Coalescence and

sweeping events occur as outlined above with new drops distributed at each time step. Each sim-

ulation is run at least until the condensation has reached a quasi-steady state. As shown in Figure

4.4, the instantaneous heat transfer rate spikes following the departure of a drop, where the last

complete sweeping cycle is highlighted in gray. Quasi-steady state is defined as the point where

the time-averaged heat transfer rate (averaged from the start of the simulation to time t), q”0→t ,

changes <5% relative to the final time-averaged heat transfer rate, q”0→tf , during the last sweeping

cycle, as described in Equation 4.9 and shown in Figure 4.4.

Percent Change = 100×
q”0→t−q”0→tf

q”0→tf
(4.9)

For the case shown, the requirement of <5% change is met after the first complete sweeping cycle,

around 1 second. Typically, simulations are run much longer than that required by <5% change

over the course of the last sweeping cycle resulting in many sweeping cycles and <1% change

in the time-averaged heat transfer rate. When θ is low and Rmax is large, the instantaneous heat

transfer rate changes more dramatically with each sweeping event. However, large Rmax requires

large domain sizes, and require long computational time; therefore, large simulations were run for

the minimum amount of time required to meet the requirement for <5% change over the course of

the last sweeping cycle.
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Figure 4.4: Instantaneous heat transfer rate for a simulation with a contact angle of 90° and rmax =
1×10−4 m. Large spikes occur immediately following a sweeping event. The area shaded in gray
indicates the last complete sweeping cycle. The simulation is considered to have reached steady
state when the time-averaged heat transfer rate (as shown on the right ordinate) changes by less
than 5% over the course of the last sweeping cycle (typically <1%).

4.4.7 Distribution Function

The purpose of the simulation is to obtain the steady state distribution for the size of the

drops on a surface during condensation, N(r), or the number of drops per unit area as a function

of radius size. The time-averaged drop-size distribution is calculated in following manner. A

histogram of drop sizes is generated from all of the drops in the simulation and averaged over many

specific instances in time so that a minimum of 1×107 drops is used to construct each histogram.

The histogram bin width is determined in a piece-wise manner. The bin width for smaller drops

is defined by the amount that a drop grows in a single time step. For larger drops where the drop

size changes by less than 1% in a single time step, the bin width is specified as 25 logarithmically

spaced bins. The count is then normalized by the domain size, and the distribution is obtained by

dividing the histogram by the bin width, so that the distribution function has units of drops/m2/m,

or drops/m3. The distribution function is always shown with error bounds associated with bin

width using light shading, and is often approximately the size of the line (e.g. Figure 4.5).
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Figure 4.5: Distribution functions obtained from simulations run with time steps of varying size.
In large drop range, the distribution functions converge, indicating that the simulation is time
grid independent for that size. Distribution functions diverge with decreasing radii, where the
distribution function is no longer time grid independent.

4.4.8 Time Grid Independence

Selection of the time step has important implications for the accuracy of the simulation,

where smaller time steps produce more accurate results at the cost of increased computation time.

Selection of the time step depends on the heat transfer rate to a single drop, which directly gov-

erns the rate of drop growth and is dependent on the degree of subcooling, contact angle, ambient

pressure, etc. Therefore, each simulation was run at multiple time steps to establish time grid

independence. The distribution function N(r) is shown in Figure 4.5 for simulations run with de-

creasing time step. The distribution functions converge at larger radii and diverge at smaller radii,

as shown for the selected time steps. The distribution is considered grid independent until diver-

gence in the distribution functions with decreasing radius. In order to establish the time-averaged

heat flux, q”, at least three simulations of decreasing time step were run for each condition tested,

and the grid-convergence index was calculated following the method described by Roache [150],

using the generalized Richardson extrapolation. Uncertainty limits are reported with error bars for

each time-averaged heat flux, though in some cases the error bars are too small to distinguish in

the figures.
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4.4.9 Domain Size Selection

The simulation consists of a square domain with side length L. The number of drops in

the simulation and the corresponding computational time increases with the square of the domain

area. Therefore it is desirable to limit the domain size as much as possible without sacrificing

accuracy. The domain size was chosen so that 2rmax/L < 0.8, ensuring that the largest drop never

covered the entire domain. Satisfying this criteria produced both distribution functions and time-

averaged heat transfer rates that were largely independent of domain size (no discernible difference

in distribution function and difference in heat transfer rates smaller than the time-grid convergence

uncertainty), though smaller domain sizes (relative to the maximum drop size) were not tested and

may also produce domain-size independent results.

4.4.10 Constant Contact Angle

Drop growth with constant contact angle is assumed in the simulation. Although it is

well known that the contact angle changes as drops grow [17, 29, 38, 39, 151–154], for a smooth

hydrophobic or nanostructured superhydrophobic surface the size range where drops are growing

with a non-constant contact angle is relatively small in comparison to the total drop-size range

[17, 29, 153]. At any given time, drops that would be growing with a non-constant contact angle

account for a small fraction of the total area covered on the surface and therefore contribute only a

small amount towards the total heat transfer. In order to ensure that using a constant contact angle

would not significantly influence the accuracy of the results, simulations were conducted where the

contact angle varied as proposed by Miljkovic et al. [17] for a partially-wetting drop on a surface

with features of length scale 100 nm, intrinsic contact angle θa = 90°, apparent contact angle when

in the Cassie-Baxter state θ CB
a = 165°, and rmax = 2×10−5 m. Selecting a small rmax results in a

contact angle change over a larger percentage of the range of drops on the surface, making this test

scenario an extreme example. The Chavan heat transfer model is used since the Adhikari model

requires a separate curve fit for each contact angle. Nucleation sites were selected randomly, drops

did not experience jumping, and the initial nucleation site density was Ns = 1×1011 drops/m2.

The radius where the contact angle becomes constant, rCCA, is 3.86×10−7 m. In this extreme

case, varying the contact angle resulted in <2.6% difference in the time-averaged heat transfer
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rate. Given that drops smaller than rCCA accounted for <1% of the surface area covered by drops,

this is not a surprising result, and strengthens the argument that using a constant contact angle does

not significantly influence the accuracy of the results. Furthermore, by maintaining a constant

contact angle, the distribution functions obtained from the simulation are applicable for all smooth

hydrophobic and nanostructured surfaces and are not tied to specific surface properties. Since rmax

is specified in the simulation, the receding and static contact angles are never specified, and a single

contact angle, θ (which may be thought of as the advancing contact angle) is used throughout the

simulation.

Contact angle varies more appreciably on microstructured surfaces where inclusion of a

non-constant contact angle may have a more significant impact on the distribution function and

heat transfer rate. The impact of varying contact angle should be explored before using the constant

contact angle assumption with microstructured surfaces [17, 29, 153].

4.4.11 Parameter Space and Operating Conditions

The present work explores the influence of heat transfer model (thermal resistance, Cha-

van, Adhikari), nucleation scheme (random or preferential), maximum drop size (rmax), contact

angle (θ ), initial nucleation site density (Ns), and jumping on the distribution function, N, and spa-

tially and time-averaged heat transfer rate, q”. These parameters (heat transfer model, nucleation

scheme, maximum drop size, contact angle, initial nucleation density, and presence of jumping)

are specified as input conditions for the simulation. In practice, maximum drop size, contact angle,

initial nucleation density, and minimum jumping size depend on the condensing substrate physio-

chemical properties, surface texturing, and surface subcooling, and could be measured for a given

surface and set of operating conditions [61, 145, 155]. All results presented are based on a satura-

tion temperature, Tsat = 22 °C and ∆T = Tsat - Ts = 1 °C. Unless otherwise indicated, the simulations

were run assuming Ns = 1×1011 drops/m2, utilization of the Adhikari heat transfer model, no drop

jumping, and a random nucleation scheme. The maximum drop size ranged from 2×10−5 m to

2×10−4 m and the contact angle varied from 90 to 165°.
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4.5 Results

4.5.1 Model Validation and Comparison

The models proposed by Kim and Kim [56] and Miljkovic et al. [17] both divide the distri-

bution function into two drop growth regimes: (1) growth mainly by direct condensation, and (2)

growth primarily by coalescence. In these models, the region where drop growth is dominated by

coalescence is modeled using the power law relation proposed by Le Fevre and Rose [129, 130]

in Equation 4.2. Both works use population balance modeling to approximate the distribution

function in the direct-condensation-dominated growth regime and solve the resulting differential

equation with two boundary conditions at the transition between the two regimes (i.e. at the equi-

librium radius, r). The first boundary condition stipulates that the distribution functions for the two

regimes have the same value at re. The second boundary condition stipulates that the derivative of

the natural log of the distribution functions also be equal,

d
d(lnr)

lnn(r) =
d

d(lnr)
lnN(r) =−8

3
, (4.10)

where n(r) and N(r) are the distribution functions in the direct-condensation- and coalescence-

dominated growth regimes. In the case where the feature height can be considered negligible

and no jumping occurs, the only difference in the distribution functions proposed by Kim and

Kim [56] and Miljkovic et al. [17] is the value of the equilibrium radius. Kim and Kim [56]

calculate re as half of the average distance between drops, assuming the drops are arranged in a

square lattice, or re = 1/(2
√

Ns). Miljkovic et al. [17] use half of the average distance between

drops if the drops are distributed following a Poisson distribution, or re = 1/(4
√

Ns). A Poisson

distribution has been shown to accurately reflect the distribution of drops during condensation on

surfaces of nominally uniform wettability [29,39,154]. The separation of the distribution function

into two separate regimes facilitates the use of population balance modeling and allows solution

of the accompanying differential equation. However, in reality the onset of coalescence is not

expected to occur at a single size; drops grow by direct condensation throughout their lifetime, and

coalescence does not suddenly occur at a single size. If one were to plot a histogram of drop sizes at

coalescence on a surface with nucleation sites following a Poisson distribution, coalescence would
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(a) (b)

Figure 4.6: Probability coalescence will occur at a certain size where nucleation sites are dis-
tributed following a Poisson distribution, the Adhikari individual drop heat transfer model is used,
θ = 165°, (a) assuming coalescence does not result in departure, and (b) coalescence always re-
sults in departure. The most common size for drop coalescence to occur is r = 1/(4

√
Ns), but

coalescence occurs over a wide range of drop sizes. When drops remain on the surface following
coalescence they continue to coalesce until rmax. However, when coalescence results in depar-
ture, drops do not grow large enough to reach rmax, and the coalescence-size distribution drops off
sharply.

most frequently occur at r = 1/(4
√

Ns), but coalescence would occur over a range of drop sizes, as

observed during condensation and illustrated in Figure 4.6.

In order to compare the results of the current simulation with the distribution functions

proposed by Kim and Kim [56] and Miljkovic et al. [17], coalescence was suppressed until r = re.

In this comparison case the thermal resistance heat transfer model was used, θ = 165°, rmax =

2×10−5 m, and Ns = 1×1011. Unsurprisingly, suppressing coalescence results in a function that

has a discontinuous first derivative at r = re, as shown in blue in Figure 4.7a. At r > re, the simula-

tion distribution matches the distribution predicted by Le Fevre and Rose [129,130] and Miljkovic

et al. [35], and satisfies the first boundary condition used to solve the population balance modeling

differential equation. However, for r < re the distribution is significantly lower than that predicted

by Miljkovic et al. [17]. The models do not have a discontinuous slope at r > re since the sec-

ond boundary condition forces the slope at r = re to match that of the Le Fevre and Rose [129]
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distribution. If coalescence is not suppressed, but allowed to occur naturally (red distribution in

Figure 4.7a), the distribution converges with the Le Fevre and Rose distribution for coalescence-

dominated growth, and both boundary conditions are satisfied, as shown in Figure 4.7. The shape

of the distribution function when coalescence is not suppressed is similar to those proposed by

Kim and Kim [56] and Miljkovic et al. [35]. However, rather than converging at r = 1/(4
√

Ns) or

r = 1/(2
√

Ns), in this particular test case the radius of convergence is observed to be somewhere

in between, at approximately r = 1×10−6 m. The distribution function converges at a larger radius

since coalescence occurs for drops with r < 1/(4
√

Ns). Coalescence of the drops causes the dis-

tribution function to decrease, thereby converging with the power-law function at a larger radius.

The similarity in shape between the distribution from simulation and the previous models provides

confidence in the current approach. The difference in the radii of convergence with the Le Fevre

and Rose distribution function arises from allowing coalescence to occur naturally, rather than at a

single radii as modeled in population balance theory. Results from the simulation suggest that the

distribution function in the direct-condensation-dominated regime converges with the power-law

function at a larger radius than 1/(4
√

Ns), even though r = 1/(4
√

Ns) is the most common size for

coalescence.

Miljkovic et al. [17] also modeled the distribution function for drops that depart via

coalescence-induced jumping and assumed that drops would coalescence and depart when r =

re = 1/(4
√

Ns), as shown in Figure 4.7b. For comparison, a distribution from simulation is shown

where coalescence is suppressed and all drops are removed from the simulation at r = 1/(4
√

Ns).

Agreement between the distribution proposed by Miljkovic et al. [17] and the simulated distribu-

tion is good (less than 8% difference in predicted heat transfer rate), providing confidence in the

results from simulation. The distribution function is also shown for the case where coalescence

is allowed to occur naturally and all drops depart upon coalescence. Drop coalescence causes a

decrease in the distribution function relative to the case where coalescence is suppressed, and the

distribution curve drops off gradually, rather than terminating immediately. The comparison of

the two different distribution functions highlights the influence of suppressing coalescence on the

distribution function.
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(a) (b)

Figure 4.7: (a) Comparison of the distribution functions obtained from simulation (red) with those
proposed by Kim and Kim [56], Miljkovic et al. [17], and Le Fevre and Rose [129, 130]. When
coalescence is not suppressed the distribution (red) converges with the Le Fevre and Rose distribu-
tion at a size larger than that proposed by Miljkovic et al. and smaller than that proposed by Kim
and Kim. When coalescence is suppressed until r = 1/(4

√
Ns) the simulated distribution (blue)

matches the distribution proposed by Miljkovic et al. at r = re, but the slope of the distribution
function is discontinuous. (b) Drop-size distribution functions for which all coalescing drops either
jump (red) or for which coalescence is suppressed and all drops depart at r = 1/(4

√
Ns) (blue). The

non-coalescing case agrees well with the distribution proposed by Miljkovic et al. for suspended
drops with rmax = 1/(4

√
Ns) (dashed blue). The difference between the simulated distributions

demonstrates the influence of assuming coalescence occurs at a single drop size. The Le Fevre and
Rose distribution for rmax = 1/(4

√
Ns) is also shown (dashed black). All other distributions shown

in (a) and (b) correspond to the case where θ = 165°, rmax = 2×10−5 m, and Ns = 1×1011.

4.5.2 Influence of Heat Transfer Model

The model selected for heat transfer to each individual drop influences the resulting dis-

tribution function. Distribution functions for three heat transfer models are compared in Figure

4.8a with that predicted by Le Fevre and Rose [129, 130]. The shape of the distribution function

is similar for all three models, though there are significant differences observed as their behavior
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departs from the power-law function. In the thermal resistance model for r = rthermo, the heat

transfer rate is zero and drops will never grow. Therefore, rmin is chosen to be larger than rthermo.

To demonstrate the influence of increasing rmin, the distribution function for two different rmin

values are shown: rmin ≈ rthermo (rmin is 1×10−13% larger than rthermo) and rmin = 1.15 · rthermo.

The first rmin was selected based on the numerical accuracy of the simulation. The second rmin was

chosen at a point where the distribution function was no longer changing significantly with rmin.

The distribution produced with the second rmin is likely more accurate since it agrees better with

distributions produced using the Chavan and Adhikari models which do not assume an isothermal

surface. The Adhikari model was developed from simulations using Biot numbers in the range

0.0001 < Bi < 1000, while the Chavan model was developed from simulations covering a larger

range, 0.1 < Bi < 1×105. In the range of Biot numbers where the simulations overlap, the agree-

ment between the simulations is good; however for smaller drop sizes, the heat transfer rate (Figure

4.2) and distribution functions (Figure 4.8a), diverge. The range of Biot numbers in the present

work is 0.0064 < Bi < 284. Therefore, it is assumed the Adhikari model is more appropriate. The

time-averaged heat transfer rate for the Chavan and Adhikari models is presented in Figure 4.8b.

The heat transfer model makes a larger difference on the overall heat transfer rate when the contact

angle is low, but the difference is considerably smaller for large contact angles.

The difference in the distribution function and heat transfer rate between the various models

highlights the fact that the accuracy of the distribution function is dependent on the accuracy of

the model for heat transfer to a single drop. Recently Xu et al. proposed a detailed model which

includes two dimensional conduction, convection in the drop, moving contact line, mass transfer

into the droplet, and interface expansion [156]. The authors did not provide an expression for the

heat transfer rate to an individual drop, which precludes its application in the present work, but did

suggest that current models which only consider conduction within the drop severely underestimate

the heat transfer rate in larger drops. If the output of their model were to be combined with a more

detailed distribution function, presumably a more accurate model for the overall heat transfer rate

during condensation could be obtained.
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(a) (b)

Figure 4.8: (a) Drop distribution functions obtained using three different models for heat transfer
to a single drop. Two different rmin are used for the thermal resistance model. In the case labeled
rmin ≈ rthermo, rmin is 1×10−13% larger than rthermo. The contact angle for the distributions shown
was 165° with rmax = 2×10−5 m. The heat transfer model has a significant influence on the
distribution functions at small radii. (b) Time-averaged rates of heat transfer for the two models
derived from numerical simulations. The influence of heat transfer model on the overall heat
transfer rate becomes less significant when the contact angle is large.

4.5.3 Influence of Nucleation Scheme

The influence of selecting randomly distributed or preferential nucleation sites to distribute

new drops on a condensing surface can be seen in Figure 4.9. It is supposed that the random

and preferential nucleation site approaches represent extremes which bracket realistic condensa-

tion behavior. For low contact angles, the distribution is consistently lower when the drops are

distributed at preferential nucleation sites, as opposed to random sites. When the contact angle is

low, drops have a large base area; drops that coalesce and remain on the surface cover the “prefer-

ential” nucleation sites, and the average drop density is much lower than Ns (average drop density

of 3×1010 drops/m2 for the case shown in Figure 4.9a). When the distribution is random, the

number of new drops is governed by the exposed area not covered by drops, and the average drop

density on the surface is much higher than in the preferential case, though still lower than Ns (aver-

age drop density of 9.5×1010 drops/m2 for the case shown in Figure 4.9a). In contrast, when the
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(a) (b)

Figure 4.9: (a) Distribution functions for random and preferential nucleation schemes using the
Adhikari heat transfer model for simulations with Ns = 1×1011 drops/m2 and rmax = 2×10−5 m.
(b) Time-averaged rates of heat transfer for the different nucleation schemes. A higher heat transfer
rate is predicted when using the random nucleation scheme despite the fact that more small drops
are predicted with the random nucleation scheme when the contact angle is large.

contact angle is high, the distribution for preferential nucleation sites is higher for smaller drops

but lower for larger drops. The base area is smaller at higher contact angles, and when small

drops coalesce, the resulting composite drop shifts just enough that the base no longer covers the

“preferential” site, as described by Rykaczewski et al. [38]. This results in an average drop den-

sity slightly higher than Ns (1.07×1011 drops/m2), in contrast to the random approach where the

average drop density can never exceed Ns. Though the distribution functions are instructive, the

time-averaged heat transfer rate is the most relevant outcome when considering the influence of

the various approaches for distributing drops. As shown in Figure 4.9b, the random nucleation

scheme consistently results in approximately 25% higher rates of heat transfer, regardless of the

contact angle or maximum radius size. Notably, even in the case of large contact angles where

the distribution function for preferential nucleation is much larger for smaller radii, the total heat

transfer rate is still lower since the heat transfer rate for smaller drops is so much smaller. It is

supposed that realistic condensation behavior would fall somewhere between these two new drop

nucleation extremes, depending on the properties of the condensing surface.
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Figure 4.10: Influence of initial nucleation site density on the distribution function. The distribu-
tions shown were produced using the Adhikari heat transfer model, the random nucleation scheme,
and rmax = 2×10−5. Drop-size distribution for small drops is highly dependent on the nucleation
site density, as predicted by Kim and Kim [56]. Though only distribution functions produced with
the random nucleation scheme are shown in the figure, the effect of nucleation site density is the
same for the preferential nucleation scheme.

4.5.4 Influence of the Nucleation Site Density

The distribution function for two different nucleation densities is shown in Figure 4.10.

The variation with nucleation site density generally follows the trend predicted by Kim and Kim

[56], where the shape for different nucleation densities is generally similar with deviation observed

where the distribution converges with the Le Fevre and Rose correlation [129]. The influence of

varying the contact angle on the distribution function is also evident in Figure 4.10. For a contact

angle of 165° the distribution generally slightly overshoots the power-law correlation. When the

contact angle is 90°, the distribution generally undershoots the power-law correlation.

4.5.5 Influence of Maximum Drop Size and Contact Angle

The influence of rmax on the Le Fevre and Rose correlation [129, 130] is generally to shift

the drop distribution to the left or the right. When the contact angle is 90°, the simulation predicts

that increasing rmax will shift the distribution function to the left, as shown in Figure 4.11. How-

ever, when the contact angle is 165°, increasing rmax does not shift the distribution function, and
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(a) (b)

Figure 4.11: Distribution functions created using the Adhikari model with a contact angle of (a)
90° and (b) 165°. When the contact angle is large, the distribution function is similar for large and
small rmax.

the distribution with large rmax resembles that of small rmax until it diverges to the corresponding

power-law curve. The cause for this can be understood by recognizing that as the contact angle

increases, the area of the base decreases. In the extreme case where the contact angle approaches

180° and the base area approaches zero, it is clear that the maximum size of the drops would have

much less influence on the distribution of smaller drops, which would easily fit in the shadow of the

larger drops. In the case where drops have contact angles of 165°, the area of the base is still small,

covering 5 and 10% of the total area for rmax = 2×10−5 and 2×10−4 m, respectively. Though the

area of the substrate covered is twice as high for rmax = 2×10−4 m, the number of new drops only

changes by 5% since the number of new drops is governed by equation 4.8.

The influence of rmax on heat transfer rate can be seen in Figure 4.12. When the contact

angle is 90°, the heat transfer rate generally follows the trend predicted by the Kim and Kim [56]

60



Figure 4.12: Time-averaged heat transfer rate predicted by the simulation compared with previous
models as a function of the contact angle, θ . Results based on the Chavan heat transfer model
are shown in red, while the results based on the Adhikari model are shown in blue. Filled mark-
ers indicate selection of the preferential nucleation approach to distribute nucleation sites; empty
markers indicate the random nucleation approach. The simulation predicts that the heat transfer
rates remains constant with increasing maximum drop size at high contact angles.

and Miljkovic et al. [17] models, with slight offsets for the difference in heat transfer model and

nucleation scheme. However, when the contact angle is 165°, the simulation predicts that the heat

transfer rate changes negligibly with rmax, in contrast to the trend predicted by previous models. In

the simulation, the heat transfer rate changes little with rmax due to the extremely small base area

when the contact angle is high. The simulation for θ = 165° predicts a heat transfer rate on the

order of two times higher than the models when rmax = 2 ×10−4 m. At high contact angles it may

be particularly hazardous to use previously proposed distribution models.

It should be noted that rmax is dependent on both the advancing contact angle and contact

angle hysteresis. In order to simplify the parameter space and produce results independent of

surface type, they have been considered independently in the present work. However, a surface

with θ = 90° and rmax = 2×10−5 m is not physically realistic since surfaces with θ = 90° tend to

have large contact angle hysteresis and maximum drop sizes on the order of 1-2 mm.

The influence of contact angle on heat transfer rate is indicated in Figure 4.13 (see also

Figure 4.8). When the contact angle is 90°, the simulation predicts results similar to those of
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Figure 4.13: Time-averaged heat transfer rate predicted by the simulation compared with previous
models as a function of the maximum drop size on the surface, rmax. Results based on the Chavan
heat transfer model are shown in red, while the results based on the Adhikari model are shown
in blue. Filled markers indicate selection of the preferential nucleation approach to distribute
nucleation sites; empty markers indicate the random nucleation approach. The simulation predicts
that the heat transfer rates converge to a single rate at large contact angles.

Miljkovic et al. [17], but as the contact angle increases the heat transfer rate converges regardless

of the maximum drop size or heat transfer model. This has important implications for design of

superhydrophobic condensing surfaces. Conventional wisdom supposed that the rate of condensa-

tion heat transfer is inversely proportional to the diameter of the condensate drops [7,61,155,157],

which is true when the contact angle is low. However, at high contact angles the area of the base

is so small that the presence of large drops does not significantly influence the surface area avail-

able for condensation, and the heat transfer rate is similar regardless of the maximum drop size,

assuming the drops are still in a mobile, suspended or partially wetting state.

4.5.6 Coalescence Induced Jumping

The influence of droplet departure via coalescence-induced jumping on the distribution

function and heat transfer rate is now considered. Since superhydrophobic surfaces with low adhe-

sion are necessary for coalescence-induced jumping, all simulations which include jumping have a

specified contact angle of 165°. The distribution functions for several simulations involving jump-
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(a) (b)

Figure 4.14: (a) Distribution function when drops larger than rj depart via coalescence-induced
jumping (b) Heat transfer as a function of rj. When rj is sufficiently small the preferential nu-
cleation scheme the simulation predicts higher rates of heat transfer than the random nucleation
scheme since the distribution is higher for drops in this size range (see Figure 4.9 and the accom-
panying discussion). The simulation predicts that the heat transfer rate decreases with decreasing
drop departure size.

ing are shown in Figure 4.14a. At least two of the drops involved in the coalescence event must

be larger than the minimum jumping radius, rj. As rj increases, the maximum size of drops on the

surface increases since fewer coalescence events result in jumping and departure. For small drop

radii where drops experience direct-condensation-dominated growth, larger rj shifts the distribu-

tion up slightly since fewer drops are departing from the surface. At rj = 1×10−5 m the distribution

function becomes very similar to that for which no jumping occurs.

The heat transfer rate increases with increasing rj until convergence with the no jumping

case, as shown in Figure 4.14b. When rj is sufficiently small, the simulation predicts higher rates of

heat transfer when using the preferential nucleation scheme (as opposed to the random nucleation

scheme) since the distribution with preferential nucleation is higher for r < 8×10−7 m (see Figure

4.9a and accompanying discussion). Interestingly, in this example case (Ns = 1×1011 drops/m2),

prohibiting jumping at smaller sizes increases the overall heat transfer rate since drops larger than

5×10−7 m comprise a significant portion of the total heat transfer rate when they do not depart,
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Figure 4.15: The product of the distribution function and heat transfer rate to a single drop, the
integral of which is the overall heat transfer rate, q”. The contribution of larger drops is significant
and allowing them to depart at smaller sizes decreases the overall heat transfer rate. The contact
angle in the case shown is θ = 165°.

as illustrated in Figure 4.15. In this figure, the product of the N(r) and qd(r), the integral of

which is q”, is shown as a function of r. When rj = 5×10−7 m, the rate of heat transfer for

drops smaller than 2×10−6 m is much higher than for rj = 1×10−5 m, but the total heat transfer

rate (for rj = 1×10−5 m) is still higher (than for rj = 5×10−7 m) since drops larger than 2×10−6

m contribute significantly to the overall heat transfer rate. When the contact angle is high, the

presence of larger drops does not negatively influence the overall heat transfer rate due to the small

base area. Furthermore, removing drops that are too small can decrease the overall rate of heat

of heat transfer. Minimizing the maximum drop size may not always maximize the rate of heat

transfer on a condensing surface.

The Miljkovic et al. [17] model for jumping is also shown in Figure 4.14b. In their model,

all coalescence and departure occurs at r = re = 1/(4Ns) (which corresponds to re = 8 ×10−7

m when Ns = 1×1011 drops/m2), which eliminates the heat transfer that would be contributed by

drops larger than this size. The immediate termination of the distribution curve at r = 1/(4Ns)

explains the significantly lower predicted rate of heat transfer.
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4.6 Conclusion

A framework to obtain drop-size distribution functions during dropwise condensation on

vertical surfaces was developed and used to explore the influence of the assumptions made in previ-

ous drop-size distribution models. The influence of individual drop heat transfer model, nucleation

site distribution approach, nucleation site density, maximum drop size, and contact angle on the

distribution function were also explored. Results of the simulation are valid for smooth hydropho-

bic or nanostructured superhydrophobic surfaces, where the assumptions of constant contact angle

growth and negligible thermal resistance at the drop/surface interface are reasonable. The simu-

lation includes the possibility for coalescence-induced jumping, where all drops above a specified

threshold radius depart upon coalescence. Parameters dependent on surface structure and chem-

istry, including contact angle (θ ), maximum drop size (rmax), and minimum jumping radius (rj),

are specified to the simulation, so that each parameter may be independently determined for a given

surface.

Results of the simulation suggest that population balance methods account for general

trends in the drop-size distribution, but include certain assumptions that limit their accuracy. In par-

ticular, results of the current simulation suggest that setting the transition from direct-condensation-

dominated growth to coalescence-dominated growth at re = 1/(4
√

Ns) may overestimate the drop-

size distribution. With the lack of available experimental data for distributions in this size range,

the present work represents the first attempt to evaluate the accuracy of the population balance

modeling approach.

The heat transfer model used in the simulation influences both the distribution and the over-

all heat transfer rate, particularly for low contact angles. As more accurate models are developed

(such as that of Xu et al. [156]) and combined with the results of the present work, the accuracy

of the distribution function and prediction of the overall heat transfer rate may improve. The ap-

proach for distributing the nucleation sites influences both the distribution curve and the overall

heat transfer rate. For the parameters explored in the present simulation, the random nucleation

scheme resulted in heat transfer rates on the order of 25% larger than those predicted with the

preferential nucleation scheme. Realistic nucleation behavior is likely a combination of the two

nucleation approaches, and may be used to bracket realistic behavior.
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As predicted by previous investigators [17, 56, 61, 136] and shown with the present simu-

lation, nucleation site density Ns significantly influences the size at which drops begin to coalesce

and size at which the distribution function approaches the empirical Le Fevre and Rose [129, 130]

correlation. Nucleation site density can be difficult to measure and to predict, though it is in-

fluenced by the physiochemical properties of the substrate, surface subcooling, and atmospheric

pressure [61, 145, 155]. While it would be desirable to be able to predict the heat transfer rate as a

function of surface subcooling, the ability to predict Ns(∆T ) is a prerequisite.

Results of the simulation suggest that, when Ns = 1×1011 drops/m2, removing drops at

extremely small sizes via coalescence-induced jumping can lead to lower heat transfer rates due to

the fact that the heat transfer rate to larger drops is significant. The model proposed by Miljkovic

et al. [17] under-predicts the heat transfer rate for jumping drops since it does not consider heat

transferred to drops that are larger than the equilibrium radius. In the present work, whether coa-

lescence will result in drop departure or not is determined based on a specified minimum jumping

size; however, the structure of the simulation allows for the use of more sophisticated models for

drop jumping. For example, a model for jumping based on an energy balance between the adhesive

force of the drops and energy released upon coalescence could be evaluated for each coalescence

event, enabling the inclusion of factors such as surface feature length scale, drop wetting state,

relative size mismatch, and number of drops involved in a coalescence event.

When the contact angle is large, the influence of increasing the maximum drop size on the

distribution and overall heat transfer rate is minimized due to a smaller base area. Previous models

deviate most from the current results at large contact angles, suggesting that previous models may

be less accurate when the contact angle is large. Furthermore, these results suggest that removing

large drops may not necessarily be the most advantageous for increasing overall heat transfer rates.

Additionally, the recent work of Xu et al. [156] suggests that convection is a significant contributor

to the heat transfer rate for larger drops (becoming significant for drops between 5 and 200 µm,

depending on the rate of subcooling and contact angle). Since the models included in this analysis

consider only conduction, the heat transfer rate for large drops where convection becomes signif-

icant may be under predicted. When convection is included in the model for heat transfer to an

individual drop, it may be even more advantageous for large drops to remain on the surface.
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The present work offers insight into factors which are important when modeling condensa-

tion heat transfer. The large parameter space precludes formulation of a closed-form distribution

function. Furthermore, as understanding of condensation behavior improves, the current approach

may be updated for improved accuracy, including improved models for coalescence-induced depar-

ture and individual drop heat transfer. Accordingly, the MATLAB code used to run the simulation

can be found in Appendix B and will be provided upon request.
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CHAPTER 5. INFLUENCE OF SUBCOOLING AND SURFACE FEATURE SIZE ON
DROP WETTING BEHAVIOR AND DROP-SIZE DISTRIBUTION DURING CONDEN-
SATION ON SUPERHYDROPHOBIC SURFACES

5.1 Contributing Authors and Affiliations

Kimberly A. Stevens, Clint Hubbard, Joseph Seamons, Julie Crockett, Daniel Maynes, Brian D.

Iverson

Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602

5.2 Introduction

Condensation heat transfer is an essential process in applications such as water desalination

and harvesting [63, 125, 126], energy conversion [1, 9, 127], electronics cooling [4], and environ-

mental control [128]. However, condensate buildup at a surface adds thermal resistance which

limits condensation rates. Dropwise condensation has been shown to have heat transfer rates 5-7

times higher than filmwise condensation, generating considerable interest in developing surfaces

that can sustain dropwise condensation [6,7]. On surfaces undergoing dropwise condensation, ther-

mal resistance is typically minimized by removing condensate via gravity or a vapor shear, but the

minimum size of drop removal is typically on the order of the capillary length of the condensate,

approximately 2.7 mm for water.

Properly designed superhydrophobic surfaces have been shown to promote the removal of

condensate at sizes significantly below the capillary length due to low contact angle hysteresis and

coalescence-induced jumping of condensate drops. With the removal of condensate drops due to

coalescence-induced jumping, the maximum droplet diameter can be reduced by 1 to 3 orders of

magnitude [41, 43]. The potential for superhydrophobic surfaces to significantly impact conden-

sation heat transfer has promoted a great deal of exploratory research regarding the fundamental

behavior of condensing droplets on superhydrophobic surfaces.
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The wetting state of condensing drops determines whether coalescence-induced jumping

can occur and the overall heat transfer rate. When drops form on top of a superhydrophobic surface

structure with sufficiently low surface energy they will continue to grow above the structures in a

non-wetting, suspended state. When condensing drops initiate and grow within a superhydropho-

bic surface structure, they can emerge either into a partially wetted or wetted state. Drops in a

wetted state are highly pinned, leading to loss of mobility and flooding, and will not depart from

the surface due to coalescence-induced jumping. Flooded surfaces have been shown to exhibit

decreased rates of heat transfer relative to dropwise condensation on a smooth surface [35].

Condensing drop motion (coalesce-induced jumping and sweeping, gravity-driven shed-

ding and sweeping) is dictated by all of the forces acting on a drop, including gravity, adhesion

between the drop and the surface, and impingement of the liquid bridge formed during coales-

cence. The total adhesive force between the drop and the surface includes any adhesion felt by

a drop placed on a dry, adiabatic surface and the additional adhesion which may occur during

condensation. The magnitude of the adiabatic adhesive force is often approximated from the con-

tact angle hysteresis [17, 56]. The additional adhesion which may occur during condensation on

a structured surface can result from increased contact surface area due to partially wetting drop

behavior, but relatively little is known regarding this force. The present work offers additional

insight into factors which influence the additional adhesion that may occur with condensation. Re-

gardless, coalescence-induced jumping and sweeping will occur when the force of the impinging

liquid bridge is greater than the total adhesive force between the surface and the drop. Gravity-

driven shedding occurs when the drop grows sufficiently large so that the weight of the drop is

larger than the total adhesive force, and the drop falls.

Two criteria have been proposed which can conservatively approximate the wetting state

of condensing drops [29]. First, it must be energetically favorable for drops to emerge into a

suspended or partially wetting state, as determined by comparison of the surface energies associate

with the Cassie-Baxter and Wenzel states.

E∗ =
cosθ CB

a
cosθ W

a
=
−1

rscosθa
(5.1)
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where θa is the apparent contact angle on a smooth surface and rs is the surface roughness. If

E∗ > 1, the Wenzel or wetting drop morphology is favored, whereas if E∗ < 1 partially wetting or

suspended drops can form. The second criteria for the formation of partially wetting and suspended

drops is that the nucleation density must be less than the density of the structures, or < L > /l >

2-5, where l is the average spacing between structures and < L > is the average distance between

nucleation sites. If the nucleation density is too high, nucleation mediated flooding will occur

with highly pinned, immobile drops, not only preventing coalescence-induced jumping, but also

decreasing the overall rate of heat transfer. Both criteria must be satisfied to prevent the formation

of completely wetting drops. Based on these criteria, both the surface structure and nucleation

density are known to influence the wetting state of condensing drops.

Surface structure influences other condensing drop dynamics in addition to wetting. In

particular, it has been demonstrated that the microstructure influences condensing drop behav-

ior [30, 34, 36, 49, 50, 158–161]. Rykaczewski et al. explored the impact of the microstructure

topography on surfaces with pitches varying from zero (no microscale topography) to 120 µm and

found that the pitch influences the micro-wetting state and post-coalescence adhesion and depar-

ture. Accordingly, the maximum diameter also changes with pitch [34]. They showed that the

microstructure influences the fraction of coalescence events that result in departure and concluded

that a pitch of 64 µm was ideal for promoting droplet departure. Chen et al. found that mi-

croscale feature pitch affects the drop jumping height following coalescence [36]. Though much

remains to be understood regarding the influence microstructure has on condensing drop behavior,

microstructure is clearly important.

Nanoscale features also influences drop dynamics. Feng et al. varied oxidation times on

fluorinated copper surfaces to obtain a range of nanoscale feature sizes and found that the rougher

the structure, the higher the drop mobility [162]. Cha et al. varied the thickness of polymer-

coating carbon nanotubes (CNTs) to change the solid fraction and found that drops as small as 500

nm can experience coalescence-induced jumping [43]. They predicted the minimum jumping size

as a function of surface solid fraction and apparent advancing contact angle. In a related work it

was shown that changing the length scale (l = 100, 300, and 1000 nm) had no influence on the

jumping drop speed since drops were able to jump for all length scales tested [91]. Mulroe et

al. [44] and Mouterde et al. [42] also showed the the nanostructure influences the minimum drop
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departure size. In particular, Mouterde et al. showed the shape of the nanostructure is important,

since a surface with nanocones experienced jumping whereas a similar surface with nanopillars

experienced almost none. Mouterde et al. also measured the total adhesive force for drops on a

surface, differentiating between the “intrinsic” adhesive force present when no condensation oc-

curs and a “condensation-induced” adhesive force, which results from pinning when condensate

grows from within the surface structures. They showed that the condensation-induced adhesive

force is sensitive to nanostructure spacing. All of the drop dynamics described (minimum jump-

ing size, drop mobility, jumping speed and height, fraction of coalescence events that result in

departure, maximum drop size) are related to the total adhesive force, and it can be concluded

that both microstructure and nanostructure influence the adhesive force a drop experiences during

condensation.

Less work has been done exploring the influence of surface subcooling on condensing

drop adhesion. Mouterde et al. showed that what they termed “the condensation-induced adhe-

sive force” is dependent on subcooling [42]. Wen et al. showed that as the transition to flooding

can be delayed by spatially controlling nucleation using dense nanostructures [51, 57, 58]. The

nanostructures were sufficiently dense to limit the amount of vapor between the structures, encour-

aging the formation of suspended drops. The prevalence of suspended drops enables the surface

to reach higher supersaturations before flooding occurs and higher heat fluxes than reported in the

past. For dense structures, they explain that the wetting transition occurs due to loss of control

over nucleation site location. As the subcooling increases, nucleation size decreases and drops are

able to nucleate within the nanostructures, leading to flooding. They describe that the transition

from jumping to flooding includes an intermediate state they termed “sweeping” where jumping

no longer occurs, but drops maintain high mobility. They also found that drop adhesion increases

with subcooling [51].

Knowing the drop-size distribution is essential in order to predict condensation heat trans-

fer. Models for condensation heat transfer typically integrate the product of heat transfer to an

individual drop and the drop size distribution over the range of drop sizes found on a surface to ob-

tain overall heat transfer rates. The drop-size distribution of drops that grow mainly by coalescence
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with other drops is well established [7] as

N(r) =
1

3πr2r̂

(r
r̂

)−2/3
, (5.2)

where r̂ is the average maximum radius of the drops. In contrast, various models of drops which

grow mainly by direct condensation have been proposed, but no experimental drop-size distri-

bution measurements exist due to the difficulty of observing drops sufficiently small that their

growth is dominated by direct condensation. Furthermore, few works have modeled the drop-size

distribution in the size range where drops begin to depart from the surface despite experimen-

tal measurements which clearly indicate divergence from the power-law distribution [130, 133].

Drops that depart due to gravity or vapor shear are believed to contribute minimally to the overall

heat transfer rate; immediately terminating the distribution curve at the departure size may rea-

sonably approximate the distribution without changing the predicted heat transfer rate. However,

when drop departure occurs over a range of sizes, as with coalescence-induced jumping, the de-

parture region can account for a larger portion of the heat transfer rate (see chapter 4). Prior to the

work in chapter 4, only one theoretical drop-size distribution model for surfaces that experience

coalescence-induced jumping had been proposed, and in that work none of the drops coalesced

prior to the average departure size, at which point all drops departed at a single size [17]. Experi-

mentally measured drop-size distributions with coalescence-induced departure have been limited to

coarse histograms lacking sufficient resolution to create or validate a drop-size distribution model

suitable for heat transfer modeling.

The first part of the present work describes subcooling-driven drop behavior transition

which occurs on surfaces that do not spatially control nucleation site formation (in contrast to

the work of Wen et al.). Increased subcooling leads to less coalescence-induced drop jumping

and departure and the presence of larger drops on the surface. The gradual cessation of jumping

and an accompanying increase in drop size suggests that the wetting transition occurs as a result

of gradually increasing drop adhesion, which may result from increased nucleation density and

pinning. The gradual change in drop adhesion and departure propensity is shown to change the

drop-size distribution. The second part of the present work reports drop-size distributions on su-

perhydrophobic surfaces with coalescence-induced jumping during condensation on a vertically
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oriented surface with sufficient radial resolution to provide insight regarding how wetting state

influences the departure region of the drop-size distribution.

5.3 Methods

5.3.1 Surface Fabrication and Characterization

In order to explore the influence of nanostructure size during condensation, surfaces are

created which allow modification of the nanostructure while maintaining superhydrophobic be-

havior, following previous work [90]. Iron is vapor deposited on alumina-coated silicon wafers

coated with iron, and carbon-infiltrated carbon nanotubes (CICNTs) are grown uniformly as de-

scribed by Stevens et al. [90]. The surface is functionalized by vacuum baking at 250 °C for

approximately 16 hours [90, 118]. By rendering the native carbon surface hydrophobic, no ad-

ditional chemical coating is required, creating a surface that is relatively robust compared with

many of the polymer or self-assembled monolayer coatings typically used. The diameter of the

carbon-infiltrated carbon nanotubes is varied by depositing a layer of amorphous carbon on the

carbon nanotubes [90, 163–165]. The CICNT diameter is measured with top-down scanning elec-

tron microscopy, where each reported measurement is the average of at least 20 different CICNTs.

All surfaces had an advancing contact angle of approximately 157° ± 3° and hysteresis < 3°,

regardless of the CICNT diameter.

5.3.2 Condensation Chamber

In order to minimize the effects of noncondensable gases, experiments are performed inside

a stainless-steel vacuum chamber with polycarbonate windows, as shown in Figure 5.1. Additional

details regarding chamber construction can be found in Appendix E. Prior to running experiments,

water in an Erlenmeyer flask is boiled rapidly for at least 10 minutes by lowering the pressure with

a two-stage rotary vane pump (Edwards, E2M2). The valve to the vacuum pump is closed, and

the flask remains at vapor pressure for 24 hours. The boiling/sitting procedure is repeated until

all of the nucleation bubbles in the flask have been eliminated so that all phase change occurs at

the free surface of the water. The procedure is repeated every time the water inside the flask is
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Figure 5.1: (a) Schematic of the condensation setup. In order to minimize in the influence of
noncondensable gases, the valve to the water supply is closed and the rest of the loop is kept
under vacuum overnight prior to performing each experiment. (b) Top-down view of the vacuum
chamber with polycarbonate walls to enable visualization of condensing surface.

exposed to air. Prior to each condensation experiment, the valve between the flask and the vac-

uum chamber is closed, and the chamber is evacuated to a pressure less than 3 Pa (Kurt J Lesker

AA01A01TGAS3B00000, FS 1 Torr, +/− 0.25% accuracy) and held overnight, so that the rate of

pressure rise (due to outgassing from the chamber walls) is less than 0.5 Pa/min. The rate of pres-

sure rise is measured prior to each experiment to ensure that the concentration of noncondensable

gases remains below 0.6%.
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A constant temperature bath supplies coolant water to a heat exchanger used to cool the

condensing surface in the chamber, as shown in Figure 5.1. A second pressure gauge (Omega

PX409-005A10V) measures the vapor pressure to obtain the saturation temperature (Tsat) and a

thermocouple monitors the vapor temperature inside the chamber to ensure saturated conditions.

The superhydrophobic surface is attached to the copper block (thermally connecting the heat ex-

changer and the surface) with a thin layer of Dow Corning high vacuum grease to minimize contact

resistance. The surface is then bolted to the copper block, and a torque wrench is used to apply

consistent clamping force (0.225 N-m) for each test. The surface temperature is approximated

using a thermocouple embedded in the copper block (Tc), approximately 2 mm from the surface.

Though it is difficult to know the exact surface temperature due to the contact resistance between

the surface and the copper block, the contact resistance remains the same throughout the duration

of a test, and efforts are made to ensure consistent contact resistance between tests. The thermal

resistance through copper and silicon wafer (0.5 mm) is negligible. Therefore, the real subcooling

will scale with the measured subcooling, (Tsat−Tc).

The condensation tests proceed as follows. After measuring the outgassing rate, the cham-

ber is vacuumed down to a pressure less than 3.25 Pa. The valve to the vapor supply is then opened

and water vapor floods the chamber. The vacuum pump continues to run for 5 minutes to en-

sure removal of any additional noncondensable gases, and then the valve to the vacuum is closed.

Coolant water from the constant temperature bath is then circulated through the heat exchanger

and condensation begins on the surface. The degree of subcooling is controlled by setting the

temperature of chiller bath. After the chiller bath reaches the set temperature, condensation occurs

for at least 10 minutes and video is recorded. In some cases, the surface is exposed to multiple

subcooling temperatures during a single test run. For these multiple subcooling test cases, after

10 minutes, the subcooling is increased and video is recorded after reaching steady state for the

new subcooling. Temperature and pressure are recorded throughout the test run using an NI-DAQ

at 4 hz. The degree of subcooling is determined by averaging over the steady state portion where

the subcooling changes by less than 0.2 °C (at least 8 min). All thermocouples in the system are

calibrated with an uncertainty of ± 0.05 °C.

During condensation the surface is observed using an optical microscope (Keyence VH-

Z50L/W) attached to an SLR camera (Nikon D5200), and videos of the condensation were recorded
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Figure 5.2: A single video frame showing condensed drops. The red outline indicates the size and
location of the drop found in the drop tracking algorithm.

at 30 frames per second. The surface is illuminated using a fiber-optic ring light (light from Hayashi

LA-150UE lamp) attached to the microscope lens. Once condensation reaches steady state at each

level of subcooling, video of the condensing drops is recorded. The size and location of drops in

each video frame are tracked in MATLAB using an approach inspired by active contour model-

ing [166], as shown in Figure 5.2. A “seed point” is found for each drop based on the contrast in

light intensity, and the seed expands until it is constrained by boundaries formed from the absence

of drops. Drop size is tracked throughout the video. The time-averaged drop-size distribution is

obtained as follows. The number of drops whose size falls within± 10-20% of 100 logarithmically

spaced points are counted. The default size range is 10% unless there are fewer than 1000 drops

in the range, in which case the range is increased to be as high as 20%. The count is then divided

by the area of the field of view, the size range width, and the number of video frames to obtain

the time-averaged drop-size distribution, N, with units of drops/m3. The distribution function is

always shown with error bounds associated with the selected size range width using light shading.

The drop-size tracking code and analysis package are provided in Appendix C.
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Figure 5.3: (a) Surface images with (a) jumping, (b) non-jumping, and (c) flooding drops.

5.4 Results

With time and variation in surface subcooling and CICNT diameter, variation in condensing

drop behavior was observed. Drop behavior can be classified into three distinct categories or

regimes, which reflect a change in drop adhesion. Surfaces are classified to be in a “jumping”

state if any coalescence events result in jumping and departure. As drop adhesion to the surface

increases, fewer coalescence events result in departure, leading to larger drops on the surface. For

jumping to occur, drops must be in a suspended or partially wetted state. Jumping occurs when

the liquid bridge formed between coalescing drops impinges on the surface, providing a force

opposing the adhesive force and pushing the drop away from the surface. A surface is classified as

“non-jumping” when no coalescence events result in jumping, but drops maintain a spherical-cap

shape and high mobility (drops move as a result of coalescence and shed due to gravity when they

grow sufficiently large). Cessation of jumping occurs as the total adhesive force becomes larger

than the force of the impinging liquid bridge formed during coalescence. Wen et al. described a

sweeping behavior where large coalescence events result in a drop with insufficient kinetic energy

for drops to completely depart the surface via jumping, but sufficient energy to sweep across the

surface, including in directions other than that in which gravity acts [51]. Surfaces exhibiting

sweeping behavior fall into the non-jumping category. However, not all “non-jumping” surfaces

exhibit sweeping. As the drop adhesion continues to increase, drops become less mobile and

the the sweeping behavior also ceases. A “flooding” surface is classified by highly pinned drops

which are no longer spherical. Over time, the condensate merges to form a film. The drop behavior

regimes described are shown in Figure 5.3.
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Figure 5.4: Drop behavior for surfaces as a function of the length of time water had been condens-
ing and surface subcooling. The drop behavior is weakly dependent on time. CICNT diameter =
57 nm. Tests were completed on four different surfaces (indicated by arrows) where the subcooling
was held constant for 70 minutes to observe the change in drop behavior with time.

5.4.1 Time Dependence

As water condenses on a surface at a constant degree of subcooling, the size of drops in-

creased slightly with time, but classification of drop behavior was relatively independent of time,

as shown in Figure 5.4. Drop-size distributions from videos taken at various elapsed times since

condensation commenced on the surface are shown in Figure 5.5. The distribution function gener-

ally shifts to the right with increasing time, indicating an increase in the number of large drops. To

show the trend more clearly, the average radii of the 10 largest drops in each frame is calculated,

and then averaged through time over approximately 3 minute periods and shown in Figure 5.6. The

size of the largest 10 drops is increases slightly with time (approximately 20–50% over the course

of 60 minutes), indicating an increase in drop adhesion.

There are several possible explanations for the temporal variation in drop behavior and size-

distribution. For instance, a transition may occur as vapor diffuses into the CICNT forest. When

vapor is first introduced into the chamber, the pressure in the space between the CICNT structures is

approximately 3 Pa and the pressure immediately above the structures is the water vapor saturation

pressure, approximately 2 kPa in these experiments. With time, the higher pressure water vapor
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diffuses into the structures, which are approximately 15 µm high. As the water vapor penetrates

the CICNT forest, it is expected that nucleation sites will occur further down into the forest. Drops

which originate from nucleation sites deeper in the forest may be have a higher total adhesion

than drops which originate from nucleation sites located closer to the top of the surface, thereby

causing a transition in drop size and behavior. Alternatively, the transition may result from an

increase in the number of locally wetted pockets in the forest. As drops nucleate and grown within

the nanostucture, they can grow up and out of the nanostructure, resulting in a partially wetting

state, where the drop resembles a balloon with a pinned neck extending into the structure. It

is well known that partially wetted drops can depart via coalescence-induced jumping, but it is

unclear whether the entire drop volume, including the pinned neck also departs or whether the

volume fragments upon coalescence and departure, leaving behind a portion of the pinned neck

and making a locally wetted spot within the nanostructure. If coalescence-induced jumping events

can result in locally wetted areas in the nanostructure, over time the density of these locally wetted

areas would increase and could explain the transition in drop-size distribution and behavior. A

third explanation for the transition may be the growing flooding front that originates from the edge

of the CICNT surface. Tested surfaces were attached to a cooled copper block by bolting a plastic

clamp which held the surface to a polycarbonate block in which the copper block was epoxied (see

Figure 5.1b). The holder interfaced with the superhydrophobic surface around edges, crushing the

nanostructures directly beneath the clamp. As a result, during condensation the area adjacent to

the holder would flood, and the flooding front progressed inward during the test. The flooding

front did not cover the majority of the surface, but it is possible that its presence caused the weak

temporal variation in drop size observed. Further work is required to determine the exact cause of

the transition in drop behavior and distribution with time.

5.4.2 Subcooling Degree and Nanostructure Size Dependence

Drop behavior classification on surfaces with varying CICNT diameters and levels of sub-

cooling is shown in Figure 5.7. Some of the data shown in this figure were taken up to 2 hours

following the initiation of condensation on the surface. Since the drop behavior classification is

weakly dependent on time, onset of non-jumping and flooding may be shifted slightly to toward

smaller degrees of subcooling relative to that expected for short times. For a given feature size of
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CICNT surfaces, as subcooling increases, drop behavior transitions from jumping to non-jumping

to flooding, and this transition is the same regardless of the elapsed time since condensation com-

mencement. The change in drop behavior results from a change in drop adhesion. Since the intrin-

sic adhesive force on the surface remains the same with increased subcooling, the change in drop

behavior is likely result from a change in the condensation-induced adhesive force. This agrees

with observations by Wen et al. and Mouterde et al., who measured increasing drop adhesion with

increasing subcooling [42, 51].

The diameter of the CICNTs also influences the drop behavior. No jumping occurs on

surfaces with average CICNT diameter larger than 60 nm. The contact angle hysteresis, which is

frequently used as a measure of adhesion for a drop on a dry surface, does not change with CICNT

diameter over the range of diameters tested in the present work [90]. Therefore, the change in drop

behavior indicates a change in total drop adhesion. The increased adhesion may result from in-

creased pinning, since the spaces between the CICNTs with larger diameter are smaller and drops

that form within the structure likely have a more difficult time transitioning to a partial wetting

state. Regardless of the cause, the change in drop adhesion with CICNT diameter and subcooling

highlights an important but overlooked principle regarding adhesion of drops on structured sur-

faces. Contact angle hysteresis only considers solid-liquid interactions at the three-phase contact

line [16]. Pinning near the drop center has no influence on the hysteresis but a large influence on

the total adhesion. The surface structure and subcooling both influence the total adhesion, which

governs drop behavior.

The drop-size distribution for various levels of subcooling are shown in Figure 5.8 for sur-

faces with CICNT diameter = 57 nm. The distributions shown correspond to conditions within 15

minutes of condensation commencement. The degree of subcooling significantly affects the drop-

size distribution. With increasing subcooling, drops are able to grow to larger sizes as fewer coa-

lescence events result in departure, which is a result of increased adhesion. Coalescence-induced

departure of drops occurs at all of the conditions shown in Figure 5.8 and begins to significantly

influence the drop-size distribution at the point where the distribution curve departs from the

power-law function predicted by Le Fevre and Rose [129, 130]. When drops depart the surface

via gravity-driven shedding, departure occurs when a drop grows to a size sufficient for gravity to

overcome the adhesion and the drop falls. Therefore, though the shedding drop size may vary with
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the local adhesion (dependent on surface defects, non-homogeneity in native surface chemistry,

etc.), the size variation is generally relatively small and departure from a power-law distribution

is relatively sudden, as shown by Wanatanabe et al. [133]. In contrast, since coalescence-induced

departure occurs over a relatively larger range of drop sizes, the departure from the Le Fevre and

Rose distribution is more gradual, as shown in Figure 5.8 and predicted in chapter 4. The larger de-

parture region for coalescence-induced departure contributes more significantly to the overall heat

transfer rate than the departure region for gravity-driven departure. The slope and radius at which

the experimentally measured distribution function diverges from the Le Fevre and Rose prediction

appears to be dependent on the degree of subcooling.

One potential explanation for the increase in adhesion with subcooling may stem from

increased nucleation density. Increased nucleation density has been suggested as the cause of

flooding at increased subcooling, as described by the criteria that the nucleation density must lower

than the structure density. As the distance between nucleating droplets decreases to less than 2–5

times the spacing of the nanostructures, multiple drops can nucleate and grow to coalescence within

the surface structure, forming a film within the structures so that all drops are wetted, leading to

flooding [8,29]. However, as demonstrated here, the transition from jumping to flooding is gradual.

Partially wetted drops locally wet the cavities between nanostructures with a characteristic “pinned

neck”. As coalescence-induced jumping occurs and drops depart the surface, the locally wetted

cavity can remain, becoming a nucleation site for the formation of subsequent drops. As the

nucleation density increases prior to the point of nucleation-mediated flooding, it is reasonable to

suppose that the density of the locally wetted areas also increases, so that a partially wetted drop

may be in contact with multiple pinned necks, thus gradually increasing the adhesion.

5.5 Conclusions

Condensate drop behavior (jumping, non-jumping, and flooding) and size distribution are

dependent on the degree of subcooling and nanostructure size, and weakly dependent on the

elapsed time condensation occurs on the surface. Increased subcooling causes a gradual increase

in drop-size distribution and transition in drop behavior from jumping to non-jumping to eventual

flooding. Increasing the surface feature size leads to transition in drop behavior for smaller de-
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grees of subcooling. The change in behavior and drop-size distribution result can be explained by

an increase in total drop adhesion.

The adhesion of a drop in the absence of condensation, represented by the contact angle

hysteresis, is constant on all surfaces tested, and does not change with time or subcoooling. A

change in total adhesion, indicated by the change in drop propensity to jump, must result from a

change in adhesion caused by condensation and adds further evidence to the idea of an adhesive

force separate from the intrinsic adhesive force, as described by Mouterde et al. [42]. The obser-

vation of additional adhesion which changes with subcooling and nanostructure independently of

the contact angle hysteresis indicates that the adhesion a condensing drop experiences cannot be

characterized by hysteresis measurements made on dry surfaces in the absence of condensation. In

order to predict total drop adhesion, the additional adhesion which occurs with condensation and

changes both with subcooling and structure, must be included. The total drop adhesion is relevant

when considering whether coalescing drops will depart via jumping as well as the influence of

vapor shear on drop departure in flow condensing environments.

Drop-size distributions for surfaces experiencing coalescence-induced jumping were ob-

tained experimentally for the first time. The gradual departure from the Le Fevre and Rose dis-

tribution function is similar in shape to that predicted in chapter 4, serving as initial experimental

validation of the results predicted from the simulation. Understanding the drop-size distribution in

the departure region is important since drops in this size are expected to contribute significantly to

the overall heat transfer rate.
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(a) (b)

(c)

Figure 5.5: Time-averaged drop-size distributions shown at various elapsed times since condensa-
tion commences for Tsat−Tc = 2.52 (a), 4.54 (b), and 5.69 (c) °C. The drop size distribution appears
to be weakly dependent on time. The distribution predicted by Le Fevre and Rose is shown for
r̂ = 4×10−4 m. CICNT diameter = 57 nm. The distribution function is always shown with error
bounds associated with the selected size range width using light shading. The drop behavior corre-
sponding to each curve is shown in Figure 5.4. Jumping occurs during condensation for all of the
distributions shown with the exception of the distribution corresponding to condensation after 61
minutes when the subcooling was 2.52 °C (in panel a).
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Figure 5.6: Average of the 10 largest drops in each frame of the video, averaged over 3 minutes
sections, at different points since condensation commencement for various degrees of subcooling.

Figure 5.7: Regime map of drop behavior for surfaces as a function of CICNT diameter and sur-
face subcooling. As the subcooling increases, the adhesive force on the drops increases and drop
behavior transitions.
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Figure 5.8: Drop-size distributions with different levels of subcooling on a surface with CICNT
diameter = 57 nm. As the subcooling increases the drops depart at larger sizes, as illustrated by the
radius where the distribution curve diverges away from the Le Fevre and Rose distribution.
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CHAPTER 6. MEASURING CONDENSATION HEAT TRANSFER

6.1 Preface

The path to discovering new knowledge, i.e, performing research, is inevitably tortuous,

involving idea iteration, abrupt changes in direction, and spectacular failures. The sentiment that

trial and error is a prerequisite to the discovery of something new is expressed in a statement often

attributed to Thomas Edison about finding 10,000 ways not to make a light bulb. However, in

the end, usually only the “successful” outcomes of research are published, despite the fact that

knowing 10,000 ways to not make a light bulb may be useful to subsequent researchers. Chapters

2-5 describe successful outcomes. This chapter describes progress made towards the eventual

goal of obtaining experimental condensation heat transfer measurements, with dual motivations of

providing helpful context to subsequent researchers and describing contributions towards future

work.

Upon entering the world of condensation heat transfer I observed a widespread excitement

regarding the potential for superhydrophobic surfaces to improve heat transfer rates, but a glaring

dearth of experimentally measured heat transfer rates. In retrospect, it seems the lack of heat

transfer data stems from the difficulty of the task. The challenge of obtaining experimental heat

transfer measurements became apparent after repeated iteration through different experimental

set-ups, trying to build a chamber that is suitably impervious to noncondensable gases (NCG) and

would permit sufficiently accurate measurement of the saturation and wall temperatures. Though

discouraging, I remained doggedly committed to the idea of contributing research that is not only

novel or interesting, but that would progress the field of condensation heat transfer. I by-passed

further study of several interesting phenomena upon which I stumbled, which would have been

significantly easier and likely yielded more conclusive results than those eventually attained. As

a result, the research presented in this chapter is far from complete, but represents considerable

effort towards an ambitious and relevant goal.
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6.2 Introduction

Properly designed superhydrophobic surfaces have been shown to promote the removal

of condensate at drop sizes significantly below the capillary length due to the low contact angle

hysteresis (indicating high drop mobility) and coalescence-induced jumping of condensate drops.

With the removal of condensate drops due to coalescence-induced jumping, the maximum droplet

diameter can be reduced by 1 to 3 orders of magnitude [41,43]. The potential for superhydrophobic

surfaces to significantly impact condensation heat transfer has prompted a great deal of exploratory

research regarding the fundamental behavior of condensing droplets on superhydrophobic surfaces.

Several works have quantified metrics which indirectly indicate the relative rate of heat transfer on

a surface, such as maximum droplet diameter, coarse drop-size distribution, and individual droplet

growth rates [34, 39, 49–55]. Additionally, several models for condensation on superhydropho-

bic surfaces have been developed [39, 55, 56]. However, only a few works have experimentally

measured the heat transfer directly in the absence of NCG [35, 51, 57, 58], and the influence of

the micro- and nanostructure geometry on condensation heat transfer is not clear. This chapter

presents preliminary efforts to measure the influence of nano- and microstucture geometry on heat

transfer performance.

6.3 Methods

The condensation flow loop and experimental procedures, including the precautions re-

garding NCGs described in chapter 5, apply for the following heat transfer experiments described

here.

6.3.1 Two-Tiered Surfaces

In order to study the influence of a microstructure on condensation heat transfer, two-

tiered CICNT surfaces are manufactured. Silicon wafers are etched to create micro ribs or pillars

using standard photolithographic procedures [87]. Layers of alumina and iron are deposited and

CICNTs are grown uniformly on the surface, both on top of the microscale features and in the

cavities between the features. The surfaces are then coated with a layer of PTFE to render them

superhydrophobic (but vacuum baking, as described in chapter 3 is expected to produce similar
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Figure 6.1: CICNTs grown on top of silicon micropillars. The CICNTs grow on top of the silicon
microposts and in the cavities between the posts so that surfaces are covered with the nanostruc-
tured CICNTs, creating a two-tiered surface. (b) The top of one of the CICNT clusters (c) The top
of the etched silicon post on which a cluster of CICNTs grew.

results). SEM images of micropillared surfaces are shown in Figure 6.1. Condensation on the

resulting two-tiered surfaces results in coalescence-induced jumping. The surfaces described in

chapter 3, where microfeatures are created by growing CICNTs in a pattern, lacked nanostructures

in the space between the features, rendering them ineffective for promoting dropwise condensation.

6.3.2 Copper Oxide Surfaces

In addition to the CICNT surfaces described in chapter 3, superhydrophobic copper oxide

surfaces are manufactured following the procedures similar to that described in the literature, but

with a different functionalization process [32,91,154]. A complete description of the procedure can

be found in Appendix D. Briefly, copper surfaces are polished following the procedure described

by Nam and Ju [167], then double-soaked in an ultrasonic acetone bath for 20 minutes, rinsed with

ethanol, isopropyl alcohol, and deionized (DI) water 5 times, dried with N2, and immersed in a

2.0 M solution of HCl for 20 minutes to remove the native oxide film on the surface. The surfaces

are then triple-rinsed with DI water and dried with N2. The nanostructure is created by immersing

the substrate in a solution of NaClO2, NaOH, Na3PO4·12H2O, and DI water (3.75:5:10:100 wt.
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Figure 6.2: SEM images of the knife-like copper oxide structures.

%) held at 96 ± 3 °C, forming a knife-like copper oxide film as shown in Figure 6.2. The surface

is rinsed 5 times in DI water and dried with N2. The surface is functionalized by adding two

layers of PTFE, applied via spin coating [87]. The resulting surfaces had an advancing contact

angle of 157° and hysteresis of 2°. Surfaces are also functionalized using an immersion coating of

Glaco [168], which also resulted in superhydrophobic surfaces. Condensation on the copper oxide

surfaces resulted in coalescence-induced jumping.

6.3.3 Heat Flux Measurements

Four independent methods are used to measure the heat flux, motivated by concern that

initial heat transfer rates measured on hydrophilic control copper surfaces are lower than that in

the literature [7].

• The volume of condensate collected at the bottom of the vacuum chamber is measured.

Following a test, the condensate is accessed through the port leading to the Erlenmeyer flask

between the needle valve and the chamber with syringe attached to a piece of flexible PVC

tubing with a copper wire in the center. The heat transfer rate is calculated from the amount
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of energy required to condense the amount of liquid collected,

q” =
ρV h f g

tAc
, (6.1)

where t is the length of time of the test, Ac is the condensing area, and V is the volume of

collected condensate.

• A heat flux sensor (FluxTeq) is placed between the heat exchanger and copper disk that

interfaced with the condensation chamber.

• The temperature gradient in the copper disk interfacing with the chamber is measured. Four

thermocouples are embedded in small (#55 drill) holes. The copper disk is the same size as

the condensing surface so that the heat transfer is predominantly one-dimensional. The heat

flux through the copper block is calculated as

qg” =−kAc
dT
dx

. (6.2)

The temperature gradient is obtained by fitting a line to the temperature measured by the

four thermocouples.

• The change in the heat exchanger coolant temperature is measured. Thermocouples measure

the water temperature immediately before entering and after exiting the heat exchanger, and

a flow meter (Omega FLR1009-D) measures the volumetic coolant flow rate. The heat flux

is calculated as

q∆T” =
ṁcp(THXout−THXin)

Ac
, (6.3)

where THXin and THXout is the temperature entering and exiting the heat exchanger.

Agreement between all four methods is generally obtained (within approximately 50%). Uncer-

tainty associated with the condensate collection and heat flux sensor measurements are large so

only the heat transfer rate measured from the copper block temperature gradient (qg”) and change

in coolant temperature (q∆T” methods are used for each test. The agreement between these two

methods is generally within ±30 % when the heat flux is larger than 10,000 W/m2, as shown in

Figure 6.3a. However, the measurements rapidly diverged for low heat fluxes. The poor agreement
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Figure 6.3: (a) Ratio between heat transfer measurements made using the change in coolant tem-
perature and the temperature gradient in the copper block. (b) Heat transfer coefficient between
the heat exchanger and copper block obtained using the change in coolant temperature and copper
block temperature gradient approaches for measuring the heat transfer rate.

is assumed to stem from the uncertainty associated with the thermocouple position and temperature

measurement.

The heat transfer coefficient between the heat exchanger and copper block, UHX is calcu-

lated using both approaches and is shown in Figure 6.3b.

UHX =
q”

THXin−Tc
, (6.4)

The heat transfer coefficient is not expected to change with subcooling. The fact that the heat

transfer coefficient changes significantly with subcooling when calculated using the copper block

temperature gradient suggests that the change in coolant approach for measuring heat transfer is

more accurate at low heat fluxes.

6.3.4 Saturation Temperature Measurement

Heterogeoneous condensation is driven by the temperature difference between the satu-

rated vapor temperature and the surface temperature; it is this temperature difference that is used
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to calculate a heat transfer coefficient, h, describing the rate of condensation. One reason conden-

sation heat transfer measurements are so challenging is the small temperature difference between

the surface and vapor, requiring high precision for accurate results. Experiments are performed

with saturation temperatures close to ambient temperature to avoid the need to heat every part of

the setup where condensation is undesirable, such as the window through which the condensing

surface is observed. However, even with nominally ambient conditions, the vapor temperature is

always slightly lower than the surrounding temperature, and a thermocouple placed in the vapor

is subject to radiation from the surrounding chamber walls, the cooled condensing surface, and

the ring light used to illuminate the surface. A UV filter (Thorlabs FGS600) placed between the

ring light and the chamber attenuated the majority of the radiative energy from the light, but error

introduced from radiation from other sources is still significant, as evidenced by the disagreement

between the saturation pressure measured by the measured vapor pressure and the correspond-

ing saturation temperature measured by the thermocouple. However, after allowing the vapor to

equilibrate with the chamber, the agreement between the saturation temperature corresponding to

the measured saturation pressure is within 0.05 °C. Accordingly, the saturation temperature is ob-

tained from the measured saturation pressure and the thermocouple in the vapor is used to ensure

saturated conditions.

6.3.5 Surface Temperature Measurement

An original objective of this research is to explore how varying the nano- and microstuc-

tures influenced heat transfer performance. Microstructures are created by etching silicon wafers,

while the nanostructures are created by growing CICNTs on Fe coated silion wafers. However, the

wafer thickness (∼0.5 mm) precludes thermocouple placement inside the wafer, making it difficult

to measure the surface temperature. For high heat fluxes which occur during condensation and

low temperature difference between the vapor and surface, even small contact resistance between

the copper block and the wafer is significant. Additionally, since most thermal greases and pastes

have vapor pressures higher than 3 Pa, they could not be used to minimize the contact resistance,

necessitating the use of vacuum grease as a substitute thermal interface material.

It is also difficult to accurately quantify the contact resistance. The condensing surface

temperature could not be measured using an IR camera during condensation since the conden-
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sate obscured the view of the surface. Surface temperature measured by a thermocouple adhered

to the condensing surface is also affected by the temperature of the condensate and introduced

another contact resistance between the surface and thermocouple. If the contact resistance were

measured by heating one side of the interface and cooling the other with forced convection, the

chamber would be required to be at atmospheric pressure; in this case, the contact resistance may

not behave the same when the junction is exposed to ambient temperature saturation pressure (ap-

proximately 2.7 kPa). As described in chapter 3, CICNTs can be grown on stainless steel surfaces,

and a thermocouple could be embedded in a stainless steel surface. This was attempted, but the

uncertainty introduced by the size of a hole (#55 drill) for the thermocouple is unviably large,

since the thermal conductivity of stainless steel is small relative to copper. Accordingly, superhy-

drophobic copper oxide surfaces are manufactured which allow surface temperature measurement

by placing a thermocouple in a hole drilled through the side. Unfortunately, a method to control

the micro- and nanostructure of copper oxide surfaces was not obtained.

6.3.6 Use of Computer Vision

Minimizing the uncertainty associated with traditional heat flux measurement methods

(heat flux sensors, thermocouple arrays, change in coolant temperature, condensate collection etc.)

to an acceptably low level can be challenging, and generally provide little to no spatial informa-

tion and may have significant time delays. In contrast, optical microscopes provide extremely

detailed spatial information with relatively little time delay. Accordingly, computer vision analysis

of optical microscope videos to obtain heat transfer measurements offers a promising alternative

and was successfully used by Ölçeroğlu et al. [52]. A MATLAB code was written, capable of

autonomously tracking thousands of individual drops. The code successfully tracks drops when

the nucleation density is extremely low and the space between drops is large, as occurs during

condensation in ambient conditions with large concentrations of NCG. The computer vision code

estimated the heat transfer rate during condensation on a two-tiered superhydrophobic surface ex-

periencing coalescence-induced jumping by tracking the size of all departing drops [169]. During

steady state condensation, the rate of condensate production can be estimated from the rate of

condensate departure, and the heat transfer rate is calculated using Equation 6.1. The code used a

combination of the contrast in intensity between drops and surroundings and the Hough transform
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to distinguish the drops. On the first frame of the video, the location and radius of each of the

drops of condensate is detected. The code then tracks the growth of each droplet in the first frame

through time until the drop coalesces with a neighboring drop or the video ends. Additional drops

that nucleate in subsequent frames are detected and similarly tracked through time. This approach

for measuring condensation heat transfer works well in the presence of NCG, but as described in

chapter 1, heat transfer measurements obtained in the presence on NCG are not useful for compar-

ison accross experimental setups since the heat transfer rate is limited by the vapor diffusion rate

to the surface.

In the absence of NCG and with a reasonable degree of subcooling, the nucleation density

is so high that a significant number of small drops are hidden in the shadow of large drops when

the contact angle is high, rendering the task of tracking every drop impossible. However, on a

surface where all drops eventually depart via coalescence-induced jumping, if it were possible to

track every departure event one could still obtain an estimate of the heat transfer rate; this could be

accomplished by measuring the condensate departure rate, equivalent to the condensate production

rate during steady state condensation. Unfortunately, the high nucleation density renders the task

of tracking every departure difficult. The code uses the contrast between the substrate and drops

to track individual drops; when drops cover every part of the condensing surface they are difficult

to distinguish. Due to these challenge of measuring drop departure with high nucleation density,

computer vision was not used to obtain heat transfer measurements. However, a different approach

to drop tracking, described in chapter 5, allows for drop tracking when the contrast between drops

and the background is low, and could potentially be modified to detect drop departure, enabling

the estimation of the heat transfer rate from video.

6.4 Preliminary Results

The heat flux measured during condensation on nanostructured CICNT surfaces using the

change in coolant temperature is shown in Figure 6.4. The heat transfer rate increases with in-

creasing subcooling, as expected. The overall heat transfer coefficient, U , is calculated from the

measured heat transfer rate and the difference between the vapor temperature and the surface tem-

perature (represented by the thermocouple closest to the surface of copper block). Therefore, the

overall heat transfer coefficient includes the condensation heat transfer coefficient and the follow-
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ing thermal resistances: (1) the CICNT nanostructure, (2) Fe and alumina coated-silicon wafer,

(3) copper between the thermocouple placement and the surface, and (4) the contact resistance.

However, of these thermal resistances, all are estimated to have a negligible impact on U except

the contact resistance. The experimentally observed overall heat transfer coefficient generally

decreases with increasing subcooling. Since the contact resistance should remain constant with

increased subcooling, the decrease in overall heat transfer coefficient indicates that the condensa-

tion heat transfer coefficient is decreasing, as observed by other investigators [51, 57, 58], but in

contrast to that predicted by classic dropwise condensation heat transfer predictions [7].

As described in chapter 5, the change in vacuum chamber pressure is measured after allow-

ing the chamber to pump down for at least 24 hours, but before introducing water vapor. However,

the longer the chamber is under vacuum, the lower the rate of pressure rise, indicating that the

increase in pressure is likely due to outgassing. The influence of the initial rate of pressure rise

on heat transfer performance is shown in Figures 6.4a and b. Despite careful efforts to minimize

the influence of NCG, it appears that performance may be slightly decreased when initial rate of

pressure rise is greater than 0.15 Pa/min. The concentration of NCG is conservatively estimated

by multiplying the outgassing rate by length of time since the introductino of water vapor, and

adding it to the initial vacuum pressure (3 Pa) and dividing by the water vapor pressure (∼2.7

kPa). The estimate is conservative because the pressure rise is non-linear and the rate of pressure

rise decreases over time. Furthermore, it is expected that the introduction of water vapor would

significantly reduce the rate of pressure rise. For an hour long test with an initial rate of pressure

rise 0.15 Pa/min, the NCG concentration would be 0.4%, less than the standard of 0.6% met by all

test presented in this chapter. Therefore, it is recommended that future tests be conducted with a

lower NCG concentration standard than 0.6%. Ideally, the NCG concentration would be less than

0.25%, as described in the Supporting Information of Miljkovic et al. [35].

The length of time since condensation commencement on the heat transfer rate (Figure

6.4c and d) appears to have little influence. The condensation rate appears slightly higher with

increased condensation time, contrary to what might be expected if the NCG concentration were

increasing with time. The apparent increase in heat transfer performance with time may be a

result of larger drops on the surface, or more water within the nanostructure, leading to a higher
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percentage of partially wetting drops, which are expected to have a higher heat transfer rate than

suspended drops [39].

The CICNT diameter ranged from 25 to 125 nm; surfaces with CICNT diameter larger

than 60 nm appeared to have diminished heat transfer performance relative to those with smaller

diameters. However, given the fact that these surfaces all flooded the decrease in performance is

expected.

6.5 Conclusions and Future Work

Heat transfer measurements on plain CICNT surfaces are obtained, with diminished heat

transfer performance for surfaces which experienced flooding. The heat transfer measurements

included the contact resistance between the surface and cooled copper block, confounding isolatio

of the condensation heat transfer coefficient. A process for manufacturing copper oxide superhy-

drophobic surfaces, which allows the measurement of the surface temperature, is described. How-

ever, heat transfer measurements have not yet been obtained on these surfaces. Since the copper

oxide surfaces do not offer control over the micro- and nanostructure, the objective of explor-

ing micro- and nanostructured surfaces cannot be realized. However, heat transfer measurements

could be compared with the drop behavior statistics obtained from video/computer vision analysis

(drop-size distribution, drop-departure-size distribution, percent of coalescence events resulting in

departure, maximum drop size, etc.). A process for manufacturing two-tiered superhydrophobic

surfaces is described offering control of the nanostructure and microstructure. Since the surface is

created using Si wafers, measurement of the surface temperature is not possible; however, com-

parative heat transfer measurements (as in this chapter), could be obtained, providing information

regarding the relative influence of two-tiered geometry (e.g. microstructure height, pitch, and

shape; nanostructure diameter and height) on heat transfer performance.
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Figure 6.4: (a,c,e) Condensation heat flux, q”, measured using the change in heat exchanger coolant
temperature on CICNT coated surfaces and (b,d,f) the total heat transfer coefficient, U as a function
of subcooling temperature. This overall heat transfer coefficient includes the condensation heat
transfer coefficient and contact resistance. The markers in (a,b) indicate tests where the rate of
pressure rise (likely due to outgassing) is less than 0.15 Pa/min (blue circles) or greater than 0.15
Pa/min (red triangles). The markers in (c,d) indicate data taken less than (blue circles) or more
than (red triangles) 30 minutes since the beginning of condensation. The markers in (e,f) indicate
surfaces with CICNT diameter less than (blue circles) or greater than (red triangles) 60 nm.
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CHAPTER 7. CONCLUSIONS

The present work explores various aspects related to the influence of a superhydrophobic

surface on two-phase heat and mass transport. Each chapter offers insights relevant to the objec-

tive of using superhyrdophobic surfaces to achieve increased condensation heat transfer. Chapter

2 reports experimentally measured drag reduction caused by the presence of a superhydrophobic

surface in adiabatic two-phase microchannel flow. Chapter 3 describes a new approach for manu-

facturing configurable superhydrophobic surfaces suitable for condensation. Chapter 4 presents a

numerical approach to obtain detailed condensate drop-size distributions and reports how various

parameters influence this distribution and overall heat transfer rate. Chapter 5 details experimental

results suggesting that increased subcooling leads to increased adhesive force during condensation

and describes how increased subcooling influences the drop-size distribution. Chapter 6 describes

preliminary efforts to measure the rate of condensation heat transfer. Key conclusions from each

chapter are summarized in the following sections and are accompanied by a description of future

work. The dissertation concludes with a discussion of conclusions based on the work as a whole.

7.1 Two-Phase Flow Pressure Drop in Superhydrophobic Channels (chapter 2)

The presence of a superhydrophobic surface can alter the mass transport in two-phase flows,

such as commonly occur in industrial boiling and condensation systems. The change in mass

transport should be considered in concert with the thermal transport. For a parallel-plate channel

with a single superhydrophobic wall, an average reduction of about 10% in the square root of

the two-phase multiplier (φ ) relative to a classical channel was measured. This corresponds to a

reduction in drag of 10% in addition to that observed for single-phase liquid flow in a channel

with a superhydrophobic boundary for the same conditions. The ratio of the reduction in drag

for a superhydrophobic surface relative to a hydrophilic surface decreases with increasing vapor

qualities, indicating that the effect of the superhydrophobicity is greater with increasing vapor
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fraction. When conducting and reporting experiments involving two-phase flows in micro- and

mini-channels, the wettability of the surfaces should be considered and reported. Recognition of

the influence of wettability on mass transport is crucial since wettability engineering is considered

as a means to increase thermal transport rates.

7.2 Superhydrophobic, Carbon-Infiltrated Carbon Nanotubes on Si and 316L Stainless
Steel with Tunable Geometry (chapter 3)

A nanostructure is necessary for the formation of condensation in a wetting state that may

lead to increased heat transfer rates; however the influence of nanostructure geometry (cavity frac-

tion, height, pitch, etc.) on drop behavior and heat transfer rates are not well understood. A method

for creating superhydrophobic surfaces offering control over the nanostructure is described. Car-

bon nanotube surfaces can be enhanced by infiltrating with amorphous carbon to improve me-

chanical durability, increase resistance to shear failure, and control nanoscale feature size. CICNT

structures can be rendered superhydrophobic for a range of infiltration amounts with negligible

change in superhydrophobicity, as determined by the static contact angle, contact angle hystere-

sis, and sliding angle. In general, longer infiltration times result in carbon nanotubes with larger

diameters. The rate of infiltration is somewhat dependent on the patterning of carbon nanotubes,

with sparser microscale patterning leading to higher rates of infiltration. Superhydrophobicity is

invariant to CICNT diameter within the range tested in the present work.

Furthermore, scalability and durability are both significant impediments to practical use

of superhydrophobic surfaces. Chapter 3 demonstrates that CICNTs grown directly on stainless

steel surfaces, when subjected to vacuum pyrolysis, display the same superhydrophobic properties

as CICNT surfaces grown from Fe deposited on alumina. Surfaces created with direct growth of

CICNTs on stainless steel are even more robust than CICNTs grown on Fe deposited on alumina,

as indicated by the scratch tests presented in this work. The ability to grow CICNTs directly on

the stainless steel without the need for Fe deposition reduces fabrication complexity and increases

potential scalability of these surfaces.
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7.3 Drop-Size Distribution During Dropwise Condensation from Simulation and Implica-
tions for Heat Transfer Modeling (chapter 4)

Knowledge of condensate drop-size distribution is required to model overall condensation

heat transfer rates. A framework to obtain drop-size distribution functions during dropwise con-

densation on vertical surfaces was developed and used to explore the influence of the assumptions

made in previous drop-size distribution models. With the lack of available experimental data for

distributions in this size range, the present work represents the first attempt to evaluate the accu-

racy of the population balance modeling approach and describes when and why population balance

modeling is not a suitable method for obtaining drop-size distributions. The simulation includes

the possibility for coalescence-induced jumping, where all drops above a specified threshold radius

depart upon coalescence. Parameters dependent on surface structure and chemistry, including con-

tact angle (θ ), maximum drop size (rmax), and minimum jumping radius (rj), are specified in the

simulation, so that each parameter may be independently varied and the appropriate combination

selected to model heat transfer on a given surface.

The influence of nucleation site distribution approach, nucleation site density, maximum

drop size, and contact angle on the distribution function are explored. The approach for distributing

the nucleation sites influences both the distribution curve and the overall heat transfer rate. For

the parameters explored in the present simulation, the random nucleation scheme resulted in heat

transfer rates on the order of 25% larger than those predicted with the preferential nucleation

scheme. Realistic nucleation behavior is likely a combination of the two nucleation approaches,

and may be used to bracket realistic behavior. Nucleation site density Ns significantly influences

the size at which drops begin to coalesce and size at which the distribution function approaches the

empirical Le Fevre and Rose correlation [129, 130]. In addition to presentation of an approach for

modeling drop-size distributions, the present work offers insight into factors which are important

when modeling condensation heat transfer.

The results from the simulation suggest that removing large drops may not necessarily lead

to increased overall heat transfer rates since large drops do not cover a significant portion of the

surface when the contact angle is large. Birbarah and Miljkovic also showed that minimizing drop

departure size is not always beneficial for heat transfer since smaller departed drops may return

to the surface due to the vapor flux [86]. An individual drop heat transfer model from Xu et al.
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suggests that larger drops may have higher heat transfer rates than originally anticipated when

internal drop convection is considered [156]. Mendoza et al. demonstrated that non-continuum

and interface curvature become increasingly important with decreasing drop-size. They suggest

the achievable heat transfer rate reaches a peak beyond which decreasing the mean drop size will

decrease heat transfer. The results from the present simulation, Birbarah and Miljkovic, Xu et al.,

and Mendoza et al. suggest four completely different reasons that minimizing drop size does not

always lead to increased heat transfer rates. An ideal size for drop departure may exist which is

significantly larger than the minimum drop-departure size achievable, in contrast to conventional

wisdom.

7.4 Drop-Behavior Transition and Drop-Size Distribution During Dropwise Condensation
on Superhydrophobic Surfaces (chapter 5)

Increasing the degree of subcooling causes a transition in drop behavior from coalescence-

induced jumping to dropwise non-jumping to flooding. As the degree of subcooling increases, the

size of drops on the surface increases since fewer coalescence events result in departure. The re-

sulting shift in the distribution function is measured experimentally, and is important to understand

for heat transfer modeling. The gradual departure from the Le Fevre and Rose distribution function

is similar in shape to that predicted in chapter 4. Understanding the drop-size distribution in the

departure region is important since drops in this size range are expected to contribute significantly

to the overall heat transfer rate. Length of time condensation occurs on a surface and nanostructure

size are also shown to affect the transition in drop behavior and drop-size distribution. The change

in behavior and drop-size distribution result can be explained by an increase in adhesive force.

7.5 Measuring Condensation Heat Transfer (chapter 6)

An experimental setup capable of measuring and visualizing condensation heat transfer at

low concentrations of non-condensable gases was built. Two types of superhydrophobic surfaces

capable of promoting coalescence-induced jumping were fabricated: one which offered control

over both the micro and nanostructure geometry and another which allowed for the measurement

of the surface temperature with an embedded thermocouple. Challenges obtaining the surface
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temperature prevented measurement of the condensation heat transfer coefficient, but comparative

heat transfer measurements indicate that nanostucture influences the overall heat transfer rate when

the flooding occurs.

7.6 Future Work

The present work addresses several facets of improving condensation heat transfer. Future

work in areas related specifically to the present work is now discussed. The work presented in

chapter 4 elucidated the change in drag reduction caused by a single superhydrophobic surface in a

parallel-plate configuration for a specific range of operating conditions (superficial gas and liquid

Reynolds numbers ranging from 22-215 and 55-220). Future work should include investigation of

additional relevant channel geometries where all the surfaces are superhydrophobic.

Durability is one practical impediment to the widespread use of superhydrophobic surfaces.

Chapter 3 described creation of stainless steel superhydrophobic surfaces that performed promis-

ingly in initial durability testing. Additional investigation of the durability of the stainless steel

surfaces should be undertaken to determine whether they could be used in practical applications.

7.6.1 Drop-Size Distribution During Dropwise Condensation from Simulation and Impli-
cations for Heat Transfer Modeling (chapter 4)

The work presented in chapter 4 included an approach for drop-size distribution modeling,

and indicated the importance of using a model which incorporates variable drop departure size and

coalescence at sizes where direct-condensation dominates growth. The work demonstrated that

several factors influence drop-size distribution and overall heat transfer rate. Future work can be

divided into four categories: improvements to the current computational approach, further explo-

ration of the influence of significant factors, experimental validation, and additional understanding

required for the development of a comprehensive condensation heat transfer model.

Computational Approach Improvements

• Implementation of periodic boundary conditions — the simulation presently only considers

drops which are within the computational domain. However, in reality, drops located near
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the edge would coalesce with drops growing outside of the domain. In the present work, the

size of the largest drop was less than half the size of the computational domain so that the

number of drops which were unaffected by boundary condition (those located towards the

middle of the domain) was large relative to the number of drops which were affected by the

boundary condition (those located towards the edge of the domain). Variation in results with

domain size was shown to be within uncertainty limits. However, the simulation could be

adjusted by implementing periodic boundary conditions, where drops overlapping with the

boundary would be considered at the opposite boundary. Drops located near the edge of the

domain would grow by coalescence with drops located on the opposite edge of the domain.

For example, drops near the left edge could be allowed to coalesce with imaginary drops

whose location mirrored drops located near the right edge. The resulting simulation would

be more accurate and could allow the use of smaller domain sizes relative to the maximum

drop size.

• Improve computational speed — the computational cost to run the simulation increases with

domain size and nucleation density. The simulation is written in MATLAB, which is an

interpreted language; use of a compiled language such as C++ may result in significant im-

provement in computational cost. Similarly, restructuring the simulation to allow for parallel

processing would allow the use of supercomputers, which could significantly decrease the

real-time cost.

• Determine the period for drop sweeping — when rmax is large, drops must grow several or-

ders of magnitude from nucleation to departure, which is computationally expensive. How-

ever, since the distribution function is well established for large drop sizes, the simulation

could be used to determine the distribution function for drops smaller than re. Drops larger

than re influence the distribution of smaller drops when they shed and sweep, removing all

drops in their path. If the sweeping period, τ , could be determined, the simulation would

only need to consider the growth and coalescence of drops smaller than re, permitting use of

a smaller domain size and significantly reducing the required computational time. The work

done by Weisensee et al. could guide efforts to determine τ [170].
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• Incorporate improved individual drop heat transfer models — the heat transfer model used in

the simulation influences both the distribution and the overall heat transfer rate, particularly

for low contact angles. As more accurate models are developed (such as that of Xu et al.

[156]) and combined with the results of the present work, the accuracy of the distribution

function and prediction of the overall heat transfer rate may improve.

• Consider cascading and chain coalescence — the present simulation does not address cas-

cading coalescence in a single time step and only considers secondary and tertiary drops in

chain coalescence. Addressing cascading coalescence during a single time step and consid-

ering more drops during chain coalescence could improve the accuracy of the simulation

when using larger time steps.

Additional Exploration of Significant Parameters

• Nucleation density — the present work described how the individual drop heat transfer

model, contact angle, maximum drop size, and nucleation site distribution approach influ-

enced the drop-size distribution and overall heat transfer rates at a single nucleation density,

Ns = 1 ×1011 drops/m2. Different nucleation densities, which would result in a different

average coalescence size, could result in different trends.

• Coalescence-induced departure models — in the present work, whether or not coalescence

will result in drop departure is determined based on a specified minimum jumping size;

however, the structure of the simulation allows for the use of more sophisticated models

for drop jumping. For example, a model for jumping based on an energy balance between

the adhesive force of the drops and energy released upon coalescence could be evaluated

for each coalescence event, enabling the inclusion of factors such as surface feature length

scale, drop wetting state, relative size mismatch, and number of drops involved in a co-

alescence event. The model could be based on work by previous investigators, some of

whom have used an adhesive force and surface energy balance to determine when coalesc-

ing drops will jump [36, 42, 91, 91, 93, 171–173]. As demonstrated in Figures 4.14 and

5.8, when coalescence-induced jumping results in drop removal, the drop-size distribution
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departs from the Le Fevre and Rose function. The region from the point which the distribu-

tion begins to diverge to the maximum drop size may be termed the departure region. The

drop-size distribution predicted by the simulation (Figure 4.14) is much steeper (diverges

more over a smaller radius range) than the measured drop-size distribution (Figure 5.8) in

the departure region. This difference likely arises from the fact that in the simulation all

coalescence events involving drops larger than rj depart via coalescence-induced jumping.

In reality, not all coalescence events with drops larger than the minimum jumping size re-

sult in departure, which produces a more gradual divergence from the Le Fevre and Rose

drop-size distribution. Therefore, it is expected that using a more refined model to predict

coalescence-induced jumping in the simulation would result in a drop-size distribution which

diverges from the Le Fevre and Rose distribution more gradually in the departure region, as

measured experimentally. An estimate of the expected improvement in accuracy could be

obtained by perturbing the drop-size distribution in the departure region until it matched the

experimentally measured drop-size distribution.

• Vapor flux — drops which have departed by coalescence-induced jumping are not influenced

by vapor flux and do not return to the surface in the present simulation. However, modeling

by Birbarah and Miljkovic suggests the vapor flux toward the condensing surface can cause

departed drops to return to the surface even when the surface is oriented vertically [86].

Considering coalescence-induced departed droplet return to the surface would influence the

drop-size distribution, could be included in the simulation, and would be instructive when

considering the drop departure size which maximizes heat transfer.

• Non-constant contact angle growth — the present work is valid for smooth hydrophobic or

nanostructured superhydrophobic surfaces, where the assumption of constant contact angle

growth is reasonable. However, the influence of non-constant contact angle growth with

a two-tiered micro- and nanostructured surface could be explored following an approach

similar to [17].

• Surface microstructure — in addition to the use of a non-constant contact angle model, incor-

poration of a microstructure will require consideration of different wetting states (suspended

and partially wetting) and a mechanism to treat the thermal resistance in the microstructure.
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Variable contact angle, wetting state, and structure thermal resistance influence individual

drop growth rate [17].

• Transient response to coalescence — the present work treats coalescence as an instantaneous

rather than finite event. However, following coalescence, a drop that remains on the surface

experiences a decaying oscillation and takes time to recover a quasi-steady temperature pro-

file. Incorporation of the the drop’s transient response, using the modeling of Adhikari et

al. [174], may influence the steady state drop-size distribution function and heat transfer

rate.

• Saturation pressure — the condensation interfacial heat transfer coefficient, hi, is sensitive

to atmospheric pressure, and reports in the literature vary whether it is significant.

• Non-uniform substrate temperature — the present simulation assumes a uniform substrate

surface temperature, regardless of the size and spatial location of all drops. For a copper

surface, this is a reasonable assumption, since the constriction resistance due to the presence

of a drop on the surface will be nearly negligible. However, many superhydrophobic surfaces

have a polymer or silane coating that may have non-negligible constriction resistance, and

investigation of the influence of the coating could be instructive. Consideration of the coating

influence could be as simple as the addition of a thermal resistance in the individual drop

heat transfer model [17, 56], or as involved as considering a non-uniform substrate surface

temperature which varies with the presence of drops.

• Non-uniform vapor temperature — in the present simulation, drops grow independently of

their spatial location to their neighbors, i.e. the vapor temperature is considered to be uni-

form throughout the simulation, and the vapor is always saturated. However, if even a small

concentration of non-condensable gases were present, a temperature and concentration gra-

dient would develop in the vapor, influencing the rate of vapor absorption by the condensing

drops.
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Experimental Validation

Experimental drop-size distribution measurements have been limited to drop sizes where

the Le Fevere and Rose distribution is appropriate, but light microscopes (such as Keyence VH-

Z100R, VH-Z500T, VH-ZST) currently exit that could potentially allow the measurement of smaller

drop-sizes, validating the present work [52]. For superhydrophobic surfaces with large contact

angles and high nucleation densities, measuring accurate drop-size distributions may be difficult

since larger drops obscure smaller drops that grow in their shadow. However, the current computa-

tion model could still be validated by measuring drop-size distributions on surfaces that have low

contact angles and/or low nucleation densities.

Development of a Comprehensive Heat Transfer Model

The results of the simulation are dependent on the nucleation density, which is a function

of the surface subcooling. Furthermore, the results in chapter 5 suggest that the subcooling may

also influence the pinned area of a condensing drop, which also influences the maximum drop size

and which is used in some models for variable contact angle. In order to create a comprehensive

model that could predict condensation heat transfer rate as a function of surface subcooling and

obtain the heat transfer coefficient, it is essential to understand the relationship between surface

subcooling, nucleation density, maximum drop size, and total adhesive force.

7.6.2 Drop-Behavior Transition and Drop-Size Distribution During Dropwise Condensa-
tion on Superhydrophobic Surfaces (chapter 5)

Future work in this section can be divided into work that will be completed to make the

work in this chapter suitable for publication and additional work related to the content of chapter

5.

For Publication

1. The surfaces tested in this chapter were attached by bolting a plastic clamp to the polycar-

bonate block in which the copper block was epoxied (see Figure 5.1b). The holder inter-

faced with the superhydrophobic surface around edges, crushing the nanostructures directly
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beneath the clamp. As a result, during condensation the area adjacent to the holder would

flood, and the flooding front progressed inward during the test. The flooding front did not

cover the majority of the surface, but it is possible that its presence caused the weak tem-

poral variation in drop size observed in chapter 5. Experiments will be conducted using a

holder which only interfaces with the CICNT surface at certain points, rather than all around

the edge in order to determine whether the temporal influence is caused by the progres-

sion of the flooding front from the surface edge, making it a problem specific to the surface

macro-geometry, or whether the temporal variation is caused by something occurring at the

nanoscale, such as the cavities slowly becoming saturated with condensate.

2. The following additional data will be added to Figure 5.7.

(a) Additional data where flooding occurs

(b) Additional data for CICNT surfaces with diameters in between 60 and 80 nm

(c) Potentially re-take data for cases where the test lasted for more than 1 hour. If this is

done, surfaces on which condensation has occurred once should be investigated to de-

termine whether they can be re-used after vacuum baking to avoid the need to fabricate

additional surfaces.

Additional Future Work

The dependence of the drop behavior and size on subcooling and nanostructure size is likely

caused by an increase in adhesive force, as discussed in chapter 5. However, the underlying cause

of the increase in adhesive force is unknown. Understanding the cause of the increase in adhesion

force with surface subcooling is important when designing superhydrophobic surfaces to be used

in practical applications, and will be especially important when investigating drop behavior and

heat transfer rates in a flow-condensing environment.

7.6.3 Measuring Condensation Heat Transfer (chapter 6)

With the preparatory work described in chapter 6 further research could answer several

important questions. Since the copper oxide SH surfaces allow accurate measurement of the sur-
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face temperature, accurate condensation heat transfer coefficients can be obtained. A connection

between measured heat transfer rate and drop statistics obtained using the various drop tracking

algorithms could be established. Understanding the connection is important for heat transfer mod-

eling and could guide development of surfaces designed to maximize condensation heat transfer

rates. For example, the idea that minimizing the maximum drop size has motivated development

of surfaces capable of coalescence-induced jumping, and even the optimization of surfaces for

smaller minimum departure sizes [42–44]. However, recent modeling efforts suggest that mini-

mizing the maximum drop size may not be optimal, but experimental measurements could answer

the question more definitively.

The influence of two-tiered geometry on the overall heat transfer coefficient could be ex-

plored. As described in chapter 5, the microstructure geometry influences drop behavior, but it is

unclear how that translates into heat transfer performance. Exploring the relative rate of heat trans-

fer could provide insight into whether the presence of a microstructure can improve heat transfer

rates, as suggested by Rykaczewski et al. [34] or inhibit heat transfer, as suggested by Zhang et

al. [50]. Furthermore, the contact resistance between a condensing surface and the copper block

can be obtained once the surface temperature is known, and if the contact resistance is relatively

repeatable, could be used to estimate the condensation heat transfer coefficient from the overall

heat transfer coefficient which is measured in chapter 6.

One remaining challenge which has not yet been addressed with the work in chapter 6

is how to obtain a constant subcooling. During some condensation tests the subcooling changes

slowly. In some cases, the saturation temperature decreases due to the high rate of evaporation at

the Erlenmeyer flask. The temperature decrease is slowed by continuously mixing the water during

condensation; however, even with vigorous mixing the bulk temperature of the water in the flask

still decreases with time. In other cases, dependent on the rate of heat transfer, the temperature

gradually increases due to the heat generated by the stir plate. The vapor temperature could be

maintained by the use of a bellows valve as described in the supplementary information of the

work by Miljkovic et al. [35]. The copper temperature, Tc also sometimes changes with constant

chiller temperature as the heat flux changes. The coolant temperature is precisely controlled with

the constant temperature bath, but the temperature in the copper is dependent on the rate of heat

transfer (Tc = q”/R+Tcoolant), where R is the total thermal resistance between the coolant water
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and the copper block and Tcoolant is the temperature of the coolant leaving when it enters the heat

exchanger).

7.7 Impact

Though the challenge of improved condensation heat transfer is complex, the need is com-

pelling. The introduction mentioned that nearly one billion people world-wide lack access to clean

drinking water. When one considers that contaminated water transmits diseases such as diarrhea,

cholera, dysentery, typhoid, and polio, the statistic becomes sobering. Contaminated drinking

water is estimated to cause 500,000 preventable deaths each year [3]. Can superhydrophobic

surfaces be used to improve the efficiency of condensation devices to the point that boiling and

re-condensing water are viable options for obtaining clean water? Neither this dissertation nor

the available research can answer the question, but the present research does contribute towards

the understanding required to evaluate the potential of superhydrophobic surfaces in this arena.

Fundamental condensation research leads to greater understanding of the complex interactions in-

volved, potentially allowing the development of engineering solutions that will change the world.
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APPENDIX A. CONTACT ANGLE MEASUREMENT

The following code was used to calculate the static, advancing, and receding contact an-

gles reported in the dissertation. AngleMeasureMAIN.m is used for calculating the static contact

angle, AngleMeasureVidMAIN.m is used for calculating the advancing and receding contact an-

gles. ViewVid.m is used (before running AngleMeausreVidMain.m) to determine which frames to

analyze and sliderbw.m and VideoSlider.m are functions called by the main scripts.

A.1 AngleMeasureMAIN.m

% Author: Kimberly Stevens

% email: kimst12@gmail.com

% June 2015; Last revision: 27-August-2015

%% User instructions:

% 1.) Take a picture of a droplet on a surface. Make sure the droplet has a

% diameter less than 2.7 mm. Make sure the edge rather than the center of

% droplet is in focus.

% 2.) Set the user defined values. Imagepath aand imagename are pretty

% self-explanatory. The variable thresh determines the threshold that is used

% to convert the image to binary. This depends on the lighting of the image.

% If you are unsure which threshold to use, set the value to 1 and a window

% with variable thresholds will help you select the correct one. The variable

% method allows the user to select how the

% tangent line is selected, as described below:

% 'manual' allows the user to define the line by

% manually picking the endpoints. In this option the user is allow to pick

% as many tangent lines as desired.

% 'polynomial' has the user define a region on
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% the drop by manually clicking at the top of the region. The bottom of

% the region is defined by the base of the drop. The program then finds the

% left edge of the drop within that region and fits a 5th order polynomial

% to that edge, and uses the equation of the polynomial to define the tangent

% line.

% 'line' does the same thing as polynomial, but fits a line rather than a

% polynomial to the edge. Therefore the edge that is used should be

% sufficiently small that the curvature of the droplet does not effect

% the line.

% 3.) Run the program. The user is asked to crop the image and then manually

% draw a line at the base of the droplet.

%

% The code seems to be accurate to about +/- 3 degrees if used carefully.

% I personally like the polynomial method best. The CA is relatively

% independent of threshold selected, within a reasonable range. There is a

% section of code that plots CA as a function of threshold that you can

% uncomment.

close all

clear all

clc

%% Set User-Defined Values

imagepath=['J:\groups\biggy\goniometer\Jacob Butterfield\Stainless\2-20\'];

imagename='newDSC 00010005.jpg';

imageback=imagename;

method='polynomial'; %options are described below.

% 'manual': to define the tangent line yourself

% 'line': to fit a line to the left edge of the droplet

% 'polynomial': to fit a polynomial to the left edge of the droplet

thresh=1; %set the threshold to convert the image; if set to 1, a slider

% function is called to assist the user in selecting the right threshold

subback=0; %set to 1 if you want to subtract the background image;

%% Open Image and crop

A=rgb2gray(imread([imagepath imagename]));
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% frame=629;

% vidObj = VideoReader([cd '\12.8.15newSH\DSC 0009.mov'])

% vidWidth = vidObj.Width;

% vidHeight = vidObj.Height;

% numFrames = vidObj.NumberOfFrames;

% mov = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),'colormap',[]);

% for k=1:frame

% mov(k).cdata = read(vidObj,k);

% end

% I=rgb2gray(mov(frame).cdata);

% A=I;

if subback==1

B=rgb2gray(imread([imagepath imageback]));

C=(A-B)+(B-A);

A=C;

end

imshow(A)

title('Click and drag to make box; then right click to crop')

[I,rect]=imcrop;

figure(1), imshow(I);

%% Threshold Image

if thresh==1

sliderbw(I)

thresh=input('What threshold value do you want to use?');

end

Ibw=im2bw(I,thresh);

figure(3), imshow(Ibw)

close(figure(1));

%% Find line for base of the droplet

title('Draw a line at the base of the droplet. (L to R for >90, % (line break)

R to L for <90) Click and drag to move the end points. % (line break)

Double click when you are satisfied.')
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h = imline;

position = wait(h);

xb=position(:,1);

yb=position(:,2);

if (strcmp(method,'line') | | strcmp(method,'polynomial'))

title('Select the upper limit of the region where you want % (line break)

to look for an edge.')

[xi, yi]=ginput(1);

top=round(yi);

bottomL=round(yb(1));

bottomR=round(yb(2));

end

%% Look at effect of threshold--uncomment this section, and two more

% below (marked with asterisks)

% index=0;

% for t=thresh-.4:.01:thresh+.2

% index=index+1;

% tvect(index)=t;

% Ibw=im2bw(I,t);

%% ************************************************************************

%% Find the edges of the droplet-------------------------------------------

if (strcmp(method,'line') | | strcmp(method,'polynomial'))

if subback ~=1

Ibw=logical(abs(Ibw-1)); %invert the image so that the outline of

% the drop is white and everything else is black

end

%left edge

for j=top:bottomL

for i=1:size(Ibw,2)

if Ibw(j,i)==1

xL(j)=i;

break

end
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end

end

yL=top:bottomL;

xL=xL(top:bottomL);

%right edge

for k=top:bottomR

for i=1:size(Ibw,2)

if Ibw(k,size(Ibw,2)+1-i)==1

xR(k)=size(Ibw,2)+1-i;

break

end

end

if xR(k)==size(Ibw,2) %stop searching if the it reaches the right

% side of the image

break

end

end

yR=top:bottomR;

xR=xR(top:bottomR);

end

%% Fit a curve---------------------------------------------------------

if strcmp(method,'polynomial')

% Code to fit a circle-------------

% [xc yc R] = circfit(x,y); %least squares fit to a circle

% viscircles([xc yc],R,'DrawBackgroundCircle',0) %draw the circle

% xstar=xb(1);

% ystar=yb(1);

% dydx=(xstar-xc)/(Rˆ2-(xstar-xc)ˆ2)ˆ.5; %calculate the slope of the

% tangent vector

% Instead fit a polynomial. Flip the x and y because otherwise it's not a

% polynomial and doesn't fit well. Sections which are commented out are

% to calculate only one contact angle.
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% left side

xstar=xL(end);

ystar=yL(end);

p=polyfit(yL,xL,5);

xfit=polyval(p,yL);

hold on

plot(xfit,yL,'r','LineWidth',2)

k=polyder(p); %take the derivative to find the slope.

% m=polyval(k,ystar);

dxdy=polyval(k,yL); %plug in a point to the derivative to calculate the

% slope at that point

dydx=-1./dxdy; %flip since we switched the x and y coordinates.

lengx=40; %length of the vector that is drawn in the x direction

yt=zeros(length(dxdy),2);

yt(:,1)=ystar*ones(length(dxdy),1);

yt(:,2)=(ystar-abs(dydx*lengx));

% yt(1)=ystar;

% yt(2)=ystar+dydx*lengx;

xt(1)=xstar;

if dydx(end)<0

xt(2)=xstar-lengx;

else

xt(2)=xstar+lengx;

end

a=[xb(1)-xb(2),yb(1)-yb(2)];

% b=[xt(1)-xt(2),yt(1)-yt(2)];

b=[lengx*ones(length(dxdy),1),yt(:,1)-yt(:,2)];

lenga=sqrt(sum(a.ˆ2));

lengb=(sum(b.ˆ2,2)).ˆ.5;

% theta=180*acos(dot(a,b)/(lenga*lengb))/pi

for i=1:length(dxdy)

thetaL(i)=180*acos(dot(a,b(i,:))/(lenga*lengb(i)))/pi;

end

plot([xt(1) xt(2)],[yt(end,1) yt(end,2)],'g','LineWidth',2);
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%right side

xstar=xR(end);

ystar=yR(end);

p=polyfit(yR,xR,5);

xfit=polyval(p,yR);

hold on

plot(xfit,yR,'r','LineWidth',2)

k=polyder(p); %take the derivative to find the slope.

dxdy=polyval(k,yR); %plug in a point to the derivative to calculate the

% slope at that point

dydx=1./dxdy; %flip since we switched the x and y coordinates.

lengx=40; %length of the vector that is drawn in the x direction

yt=zeros(length(dxdy),2);

yt(:,1)=ystar*ones(length(dxdy),1);

yt(:,2)=(ystar-abs(dydx*lengx));

xt(1)=xstar;

if dydx(end)<0

xt(2)=xstar+lengx;

else

xt(2)=xstar-lengx;

end

a=[xb(1)-xb(2),yb(1)-yb(2)];

b=[lengx*ones(length(dxdy),1),yt(:,1)-yt(:,2)];

lenga=sqrt(sum(a.ˆ2));

lengb=(sum(b.ˆ2,2)).ˆ.5;

for i=1:length(dxdy)

thetaR(i)=180*acos(dot(a,b(i,:))/(lenga*lengb(i)))/pi;

end

plot([xt(1) xt(2)],[yt(end,1) yt(end,2)],'g','LineWidth',2);

% *****Uncomment this line and comment the next three to look at the effect

% of threshold*********************************************************

% CA(index)=theta(end);

close(figure(2));
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figure, plot(xL,thetaL,xR,thetaR),xlabel('x position, pixels')

ylabel('CA, in degrees'),legend('left','right')

thetaL(end)

thetaR(end)

%**************************************************************************

end

% ********Uncomment next two lines to look at effect of threshold**********

% end

% figure, plot(tvect,CA),xlabel('threshold'),ylabel('CA, in degrees')

% *************************************************************************

%% To fit a line-----------------------------------------------------------

if strcmp(method, 'line')

coeff=polyfit(xL,yL,1);

yfit=polyval(coeff,xL);

hold on

plot(xL,yfit,'g','LineWidth',2)

xt(1)=xL(end);

xt(2)=xL(1);

yt(1)=yfit(end);

yt(2)=yfit(1);

a=[xb(1)-xb(2),yb(1)-yb(2)];

b=[xt(1)-xt(2),yt(1)-yt(2)];

lenga=sqrt(sum(a.ˆ2));

lengb=sqrt(sum(b.ˆ2));

thetaL=180*acos(dot(a,b)/(lenga*lengb))/pi

plot([xt(1) xt(2)],[yt(1) yt(2)],'g','LineWidth',2);

end

%% Define tangent line manually--------------------------------------------

if strcmp(method,'manual')

keepgoing='y';

title('Draw lines that are tangent to the edge of % (line break)
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the drop at the triple point. Left then right. Start % (line break)

at the base line and draw up.')

g = imline;

k = imline;

while strcmp(keepgoing,'y')

position = h.getPosition();

xb=position(:,1);

yb=position(:,2);

a=[xb(1)-xb(2),yb(1)-yb(2)];

position = g.getPosition();

xt=position(:,1);

yt=position(:,2);

b=[xt(1)-xt(2),yt(1)-yt(2)];

lenga=sqrt(sum(a.ˆ2));

lengb=sqrt(sum(b.ˆ2));

thetaLeft=180*acos(dot(a,b)/(lenga*lengb))/pi

position = k.getPosition();

xt=position(:,1);

yt=position(:,2);

b=[xt(1)-xt(2),yt(1)-yt(2)];

lenga=sqrt(sum(a.ˆ2));

lengb=sqrt(sum(b.ˆ2));

thetaRight=180-180*acos(dot(a,b)/(lenga*lengb))/pi

keepgoing=input('If you want to recalculate % (line break)

the angles, move the lines and enter y. Otherwise % (line break)

hit any key to exit.','s');

end

end

A.2 ViewVid.m

close all
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clear all

clc

%% open video and save images in a struture.

vidObj = VideoReader(['J:\Taylor\SHS-CNT\8.29.16 CNTs Taylor\1-11,tran.mov'])

vidWidth = vidObj.Width;

vidHeight = vidObj.Height;

numFrames = vidObj.NumberOfFrames;

mov = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),'colormap',[]);

for k=1:numFrames/2

mov(k).cdata = read(vidObj,k);

% imshow(mov(k).cdata)

% title(num2str(k))

% drawnow

end

Videoslider(mov,numFrames/2)

A.3 AngleMeasVidMAIN.m

close all

clear all

clc

%% Requirements

% Droplet and needle must be dark (backlit) and needle must be coming out

% of the top of the image.

%% User defined values--Use ViewVid to figure out what values to use here

baseFrame=30; % You want this to be the frame where the

% droplet is close to the largest it ever gets

startFrame=30;

endFrame=325;

backFrame=endFrame;
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thresh=.3;

subback=0;

manbase=1;

%% open video and save images in a struture.

vidObj = VideoReader(['J:\groups\biggy\goniometer\KS\DSC 0052.mov']);

vidWidth = vidObj.Width;

vidHeight = vidObj.Height;

numFrames = vidObj.NumberOfFrames;

mov = struct('cdata',zeros(vidHeight,vidWidth,3,'uint8'),'colormap',[]);

for k=1:max(endFrame,backFrame)

mov(k).cdata = read(vidObj,k);

% imshow(mov(k).cdata)

% title(num2str(k))

% drawnow

end

% vidObjSAVE = VideoWriter('advancing.avi');

% open(vidObjSAVE);

%% Open user input image, crop, choose region to look for base, choose region

% to look for left and right edges

I=rgb2gray(mov(baseFrame).cdata);

if subback==1

B=rgb2gray(mov(backFrame).cdata);

C=(I-B)+(B-I);

I=C;

end

figure, imshow(I)

title('Click and drag to make box; then right click to crop')

[I,rect]=imcrop;

figure, imshow(I);

%% Threshold Image

135



if thresh==1

sliderbw(I)

thresh=input('What threshold value do you want to use?');

end

Ibw=im2bw(I,thresh);

figure, imshow(Ibw)

%% Define the baseline, or where to look for one.

if manbase==1

title('Draw a line at the base of the droplet. Click and % (line break)

drag to move the end points. Double click when you are satisfied.')

h = imline;

position = wait(h);

xbL=position(1,1);

ybL=position(1,2);

xbR=position(2,1);

ybR=position(2,2);

else

title('Click at the height of the upper region of the % (line break)

image where the base of the droplet might be found.')

[junk,ybaseupper]=ginput(1);

end

%% Define the region where the top of the curve will be.

title('Click once at the height of the top of the region where % (line break)

you want to look for the left edge, then the right.')

[junk,yedgeupper]=ginput(2);

figure, imshow(I);

for j=startFrame:endFrame

I=rgb2gray(mov(j).cdata);

if subback==1

B=rgb2gray(mov(backFrame).cdata);

C=(I-B)+(B-I);

I=C;
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end

I=imcrop(I,rect);

Ibw=im2bw(I,thresh);

if subback==1

Ibw=bwconvhull(Ibw,'objects');

Ibw=bwconvhull(Ibw,'objects');

Ibw=logical(abs(Ibw-1));

end

imshow(I), title(num2str(j))

% Look for left edge

for k=1:size(Ibw,1)

for i=1:size(Ibw,2)

if Ibw(k,i)==0

xL(k)=i;

break

else

xL(k)=0;

end

end

if xL(k)==1 %stop searching if the left side runs into

% the left side of the image

break

end

end

yL=1:length(xL);

% % Check for errant points

% diffxL=diff(xL);

% for i=1:length(xL)-2

% if diffxL(i)>100

% if diffxL(i+1)<100

% xL(i+1)=(xL(i)+xL(i+2))/2;

% end

% end

% if diffxL(i)<100
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% if diffxL(i+1)>100

% xL(i+1)=(xL(i)+xL(i+2))/2;

% end

% end

% end

if manbase ~=1

%Find the left base

yLseekbase=yL(round(ybaseupper):end); %looks for the base

% below the user defined point.

xLseekbase=xL(find(yL==round(ybaseupper)):end);

ybL=round(find(xLseekbase==max(xLseekbase),1))+ybaseupper-1; %finds

% the furthest most left point and calls that the left point.

xbL=max(xLseekbase);

end

% Find the left edge of the droplet above the base

yLdrop=yL(round(yedgeupper(1)):round(ybL));

xLdrop=xL(find(yL==round(yedgeupper(1))):find(yL==round(ybL)));

%Find the left tangent line

xstar=xLdrop(end); %one point on the tangent line--corresponds to the

% end of the base line. It's also the point where the edge

% intersects the base.

ystar=yLdrop(end);

p=polyfit(yLdrop,xLdrop,5);

xfit=polyval(p,yLdrop);

hold on

plot(xfit,yLdrop,'r','LineWidth',2)

k=polyder(p); %take the derivative to find the slope.

m=polyval(k,ystar); %plug in a point to the derivative to calculate

% the slope at that point

dydx=-1./m; %flip since we switched the x and y coordinates.

lengx=40; %length of the vector that is drawn in the x direction

ytL(1)=ystar;
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ytL(2)=ystar+dydx*lengx;

xtL(1)=xstar;

xtL(2)=xstar-lengx;

% Look for right edge

for k=1:size(Ibw,1)

for i=1:size(Ibw,2)

if Ibw(k,size(Ibw,2)+1-i)==0

xR(k)=size(Ibw,2)+1-i;

break

else

xR(k)=0;

end

end

if xR(k)==size(Ibw,2) %stop searching if it reaches the left

% side of the image

break

end

end

yR=1:length(xR);

% % Check for errant points

% diffxR=diff(xR);

% for i=1:length(xR)-2

% if diffxR(i)>100

% if diffxR(i+1)<100

% xR(i+1)=(xR(i)+xR(i+2))/2;

% end

% end

% if diffxR(i)<100

% if diffxR(i+1)>100

% xR(i+1)=(xR(i)+xR(i+2))/2;

% end

% end

% end
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if manbase~=1

%Find the right base

yRseekbase=yR(round(ybaseupper):end);

xRseekbase=xR(find(yR==round(ybaseupper)):end);

ybR=round(find(xRseekbase==min(xRseekbase),1))+ybaseupper-1;

xbR=min(xRseekbase);

end

% Find the right edge of the droplet

yRdrop=yR(round(yedgeupper(2)):round(ybR));

xRdrop=xR(find(yR==round(yedgeupper(2))):find(yR==round(ybR)));

%Find the right tangent line

xstar=xRdrop(end);

ystar=yRdrop(end);

p=polyfit(yRdrop,xRdrop,5);

xfit=polyval(p,yRdrop);

plot(xfit,yRdrop,'r','LineWidth',2)

k=polyder(p); %take the derivative to find the slope.

m=polyval(k,ystar); %plug in a point to the derivative to calculate

% the slope at that point

dydx=1./m; %flip since we switched the x and y coordinates.

lengx=40; %length of the vector that is drawn in the x direction

ytR(1)=ystar;

ytR(2)=ystar+dydx*lengx;

xtR(1)=xstar;

xtR(2)=xstar+lengx;

% Find left and right contact angles

a=[xbL-xbR,ybL-ybR];

lenga=sqrt(sum(a.ˆ2));

bL=[xtL(1)-xtL(2),ytL(1)-ytL(2)];

lengbL=(sum(bL.ˆ2,2)).ˆ.5;

thetaL(j)=180*acos(dot(a,bL)/(lenga*lengbL))/pi;
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bR=[xtR(1)-xtR(2),ytR(1)-ytR(2)];

lengbR=(sum(bR.ˆ2,2)).ˆ.5;

thetaR(j)=180-180*acos(dot(a,bR)/(lenga*lengbR))/pi;

plot(xL,yL,'w',xR,yR,'w')

plot([xbL xbR],[ybL ybR],'b','LineWidth',2);

plot([xtL(1) xtL(2)],[ytL(1) ytL(2)],'g','LineWidth',2);

plot([xtR(1) xtR(2)],[ytR(1) ytR(2)],'g','LineWidth',2);

plot([1 size(Ibw,2)],[yedgeupper(2) yedgeupper(2)],'y','LineWidth',2);

plot([1 size(Ibw,2)],[yedgeupper(1) yedgeupper(1)],'y','LineWidth',2);

drawnow

% M(i) = getframe;

% currFrame = getframe;

% writeVideo(vidObjSAVE,currFrame);

% Calculate the area of the drop

xLarea=xL(1:min(find(yL==round(ybL)),find(yR==round(ybR))));

xRarea=xR(1:min(find(yL==round(ybL)),find(yR==round(ybR))));

width=xRarea-xLarea;

area(j)=sum(width);

% waitforbuttonpress

end

xvect=startFrame:endFrame;

figure,

[ax,p1,p2]=plotyy([xvect',xvect'],[thetaL(xvect)',% (line break)

thetaR(xvect)'],xvect,area(xvect))

xlabel('Frame number')

ylabel(ax(1),'CA in degrees')

ylabel(ax(2),'Area in pixels')

legend('CA left','CA right','area')

% close(vidObjSAVE);

points=[xvect; thetaL(xvect); thetaR(xvect); area(xvect)];
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save('results','points')

A.4 sliderbw.m

function sliderbw(im)

%SLIDER Allows to the user to see how changing the threshold changes the

%binary image.

%Kim Stevens, kimst12@gmail.com

hFig = figure('menu','none');

hAx = axes('Parent',hFig);

uicontrol('Style', 'slider', 'Value', .6, 'Position', % (line break)

[150 5 300 20], 'Callback', @sliderCallback);

T=.5;

imbw=im2bw(im,T);

imshow(imbw,'Parent',hAx), title('Choose threshold by using slider.')

function sliderCallback(hObject, evt)

T=get(hObject, 'Value');

imbw=im2bw(im,T);

subplot(222),imshow(imbw), title(['Threshold: ' num2str(T)])

subplot(221), imshow(im), title('Original Image')

maskIm=im.*uint8(imbw);

maskImB=im.*uint8(~imbw);

subplot(223), imshow(maskIm), title('Threshold superimposed on original')

subplot(224), imshow(maskImB), title('Inverse')

end

end

A.5 Videoslider.m

function Videoslider(mov,endFrame)

%VIDEOSLIDER Allows a user to scroll through a video
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%Kim Stevens, kimst12@gmail.com

hFig = figure('menu','none');

hAx = axes('Parent',hFig);

uicontrol('Style', 'slider', 'Value',endFrame, 'Callback', % (line break)

@sliderCallback, 'Position',[150 5 300 20], 'Max',endFrame % (line break)

,'Min',1,'SliderStep',[1 1]/(endFrame));

T=endFrame;

imshow(mov(T).cdata,'Parent',hAx),

title('Use slider to scroll through video')

function sliderCallback(hObject, evt)

T=round(get(hObject, 'Value'));

imshow(mov(T).cdata)

title(num2str(T))

end

end
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APPENDIX B. CONDENSATION SIMULATION CODE

The following code is used to simulate condensation on superhydrophobic surfaces, as

described in chapter 4. The main file is Numerical v8.m. It calls the following functions.

• XSteam.m can be downloaded from the Matlab file exchange at

https://www.mathworks.com/matlabcentral/fileexchange/

9817-x-steam-thermodynamic-properties-of-water-and-steam.

• fCalculator.m can be downloaded at the link provided in Adhikari et al. [146].

• Chavan.m is included below.

• Input Param.m is included below.

The distribution function can be built using the script binning.m. An example using binning.m is

given in PlotDistribution.m. When formatting the code to fit into the format of this dissertation it

was occasionally necessary to break long lines of code with a hard return. When a hard return was

used, a commented out section that indicates such, “% (line break)”, is included at the location of

the hard return.

B.1 Numerical v8.m

close all

clear all

clc

fontsize=10;

fontname='Times';

%% USER DEFINED CONDITIONS
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savename=('example');

savefrq=1e7;

% set up the time domain

dt=2e-5; % time step in seconds

tf=4;

t=0:dt:tf;

%set up the spatial domain

H=8e-5;

W=H;

heatTransferModel='A'; %A for Adhikari, C for Chavan,

%K for Kim, M for Miljkovic

nucleationtype=1; %1 randomly re-distributed, 0 for

%preferential nucleation cites that don't change.

jumpingmodel=0; %0: no jumping; 1: all coalescence result in jumping;

% 2: no coalescence, disappears at r=re;

% 3: no coalescence til r=re; 4: jumping for drops > rminj

rminj=0;

loss=0;

% operating conditions

Ns=1e11;% initial nucleation density

Tsat=22+273;

dT=1;

thetaa=165;

thetar=165;

thetae=acosd(0.5*cosd(thetar)+0.5*cosd(thetaa));

theta=thetaa;

% Properties and derivative parameters

[nug,hfg,kw,rhow,sig,g,Rg,alph,Ts,hi,rmin] = Input Param(Tsat,dT);

re=1/(4*sqrt(Ns)); % Miljkovic equation for re

rsmallest=rmin;

% RMAX=(6*(cosd(thetar)-cosd(thetaa))*sind(thetae) % (line break)
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%*sig/(pi*(2-3*cosd(thetae)+cosd(thetae)ˆ3)*rhow*g))ˆ.5;

RMAX=2e-5;

%% END USER DEFINED CONDITIONS

% distribute initial nucleation cites

N=round(Ns*H*W);

numskip=max(1,round(tf*N/(dt*1e7)));

x=W*rand(1,N);

y=H*rand(1,N);

xo=x;

yo=y;

r=rsmallest*ones(size(x));

swp ctr=0;

ctr=0;

rcctr=0;

Qtotsim=0;

maxr=zeros(size(t));

avgr=zeros(size(t));

Qvect=zeros(size(t));

percA=zeros(size(t));

numdrop=zeros(size(t));

rc=zeros(1,3e5);

% drop=struct('x',x,'y',y,'r',r);

drop(floor((length(t)-1)/numskip)).x=zeros(size(x));

drop(floor((length(t)-1)/numskip)).y=zeros(size(x));

drop(floor((length(t)-1)/numskip)).r=zeros(size(x));

if strcmp('A',heatTransferModel) %https://www.sciencedirect.com

% /science/article/pii/S0017931017306786#b0085

HTM=1;

rA=logspace(log10(rsmallest),log10(RMAX),2000);

for d=1:length(rA)

Bi=hi*rA(d)/kw;

f = fCalculator(Bi, thetaa);
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Q(d)=dT*pi*rA(d)ˆ2*sind(thetaa)ˆ2/(f*rA(d)/kw+1/(2*hi));

end

rl=log(rA);

Ql=log(Q);

pl=polyfit(rl,Ql,5);

CFErr=(Q-exp(polyval(pl,rl)))./Q;

disp(['Maximum error due to curve fitting is ' num2str(max(CFErr))])

if CFErr>.02

disp('CF Error is greater than 2 percent. Continue with simulation?')

waitforbuttonpress

end

elseif strcmp('C',heatTransferModel)

HTM=2;

elseif strcmp('K',heatTransferModel)

HTM=3;

A1=dT/(2*rhow*hfg);

A2=theta*(pi/180)*(1-cosd(theta))/(4*kw*sind(theta));

A3=1/(2*hi) + delta*(1-cosd(theta))/(kcoat*sind(theta)ˆ2);

elseif strcmp('M',heatTransferModel)

A1=dT/(hfg*rhow*(1-cosd(theta))ˆ2*(2+cosd(theta)));

A2=theta*(pi/180)/(4*kw*sind(theta));

% A3=1/(2*hi*(1-cosd(theta)))+1/(kHC*sind(theta)ˆ2) % line (break)

*[kP*phi/(deltaHC*kP+h*kHC)+kw*(1-phi)/(deltaHC*kw+h*kHC)]ˆ(-1);

A3=1/(2*hi*(1-cosd(theta)));

HTM=4;

else

disp('Not a valid HT model')

end

if jumpingmodel==3

r coal lim=re;

else

r coal lim=0; %it's important to keep this expression b/c this way the

%simulation only tries to coalesce drops that exist, i.e. that are

%greater than 0

end
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for tstep=2:length(t)

%% grow the drop

for d=1:size(x,2)

if r(d)>0

if HTM==1 % Adhikari

Q=exp(polyval(pl,log(r(d))));

elseif HTM==2 % Chavan 2016

Bi=hi*r(d)*sind(thetaa)/kw;

[Nu] = Chavan(Bi,thetaa*pi/180);

Q=Nu*kw*r(d)*sind(thetaa)*(Tsat-Ts);

elseif HTM==3 % Kim and Kim (eqn 15)

Q=pi*dT*r(d)*(r(d)-rmin)*(1-cosd(theta))/(A2*r(d)+A3);

elseif HTM==4 %Miljkovic 2013 Modeling (eqn 13)

Q=pi*dT*r(d)*(r(d)-rmin)/(A2*r(d)+A3);

end

%% all

Qtotsim=Qtotsim+Q;

dV=Q*dt/(rhow*hfg);

V=pi*r(d)ˆ3*(2-3*cosd(theta)+cosd(theta)ˆ3)/3+dV;

% for a spherical cap

r(d)=(3*V/(pi*(2-3*cosd(theta)+cosd(theta)ˆ3)))ˆ(1/3);

end

end

%% check for coalesence

for d=1:size(x,2)

if jumpingmodel==2

if r(d)>re

r(d)=0;

x(d)=W;

y(d)=H;

end

else

if r(d)>r coal lim % if this drop has already been deleted,

% skip it.
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dist=((x(d)-x).ˆ2+(y(d)-y).ˆ2+(r(d)-r).ˆ2 % (line break)

*cosd(theta)ˆ2).ˆ(.5)-r-r(d); % distance between drop d and

% every other drop, minus the radius of that drop

indc=find(dist<0);

indc(find(indc==d))=[]; %remove the 0 one.

if jumpingmodel==3

rpot=r(indc);

indc(find(rpot<re))=[]; % don't coalesce drops drops

% that are less than re

end

if ~isempty(indc)

if jumpingmodel==0 | | jumpingmodel==3

for i=1:length(indc)

rc(rcctr+1:rcctr+length(indc)+1)=[r(d) r(indc)];

rcctr=length(nonzeros(rc));

x(d)=(r(d)ˆ3*x(d)+r(indc(i))ˆ3* % line (break)

x(indc(i)))/(r(d)ˆ3+r(indc(i))ˆ3);

%new drop @ COM (Barati 2018 Cha2016)

y(d)=(r(d)ˆ3*y(d)+r(indc(i))ˆ3*y % line (break)

(indc(i)))/(r(d)ˆ3+r(indc(i))ˆ3);

r(d)=(r(d)ˆ3+r(indc(i))ˆ3)ˆ(1/3);

end

elseif jumpingmodel==1

rc(rcctr+1:rcctr+length(indc)+1)=[r(d) r(indc)];

rcctr=length(nonzeros(rc));

x(d)=W;

y(d)=H;

r(d)=0;

elseif jumpingmodel==4

for i=1:length(indc)

dist=((x(indc(i))-x).ˆ2+% (line break)

(y(indc(i))-y).ˆ2+% (line break)

(r(indc(i))-r).ˆ2*cosd(theta)ˆ2).ˆ(.5)%(line break)

-r-r(indc(i));

% check for coalescence between the secondary
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% drops and all other drops

newindc=find(dist<0);

newindc(find(newindc==indc(i)))=[]; %remove the

% 0 one.

newindc(find(newindc==d))=[]; %remove the 0 one.

if ~isempty(indc)

indc=[indc newindc];

end

end

if length(find([r(d) r(indc)]>rminj,2))==2

% to have it leave

x(d)=W;

y(d)=H;

r(d)=0;

else

% to have it stay

x(d)=(r(d)ˆ3*x(d)+sum(r(indc).ˆ3% line break)

.*x(indc)))/(r(d)ˆ3+sum(r(indc).ˆ3));

%new drop @ COM (Barati 2018, Cha2016)

y(d)=(r(d)ˆ3*y(d)+sum(r(indc).ˆ3% line break)

.*y(indc)))/(r(d)ˆ3+sum(r(indc).ˆ3));

r(d)=(r(d)ˆ3+sum(r(indc).ˆ3))ˆ(1/3);

end

else

disp('you havent done your logic right')

end

%the other ones always depart

x(indc)=W;

y(indc)=H;

r(indc)=0;

end % if indc isn't empty

end

end

end
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%% check for sweeping

for d=1:size(x,2)

if r(d)>RMAX

% %visualize before sweeping

% figure(3), cla

% viscircles([x; y]', r','LineWidth',.5,'Color','r');

% viscircles([x(d); y(d)]', r(d)*sind(theta)','LineWidth',.5,'Color','g');

% hold on

% plot([x(d)-r(d)*sind(theta) x(d)-r(d)*sind(theta)], [0 y(d)],'k--')

% plot([x(d)+r(d)*sind(theta) x(d)+r(d)*sind(theta)], [0 y(d)],'k--')

% axis square;

% xlim([0 W]);

% ylim([0 H]);

for d2=1:size(x,2)

if abs(d-d2)>0 %skip the case when d=d2

% only look at drops below the midpoint of the sweeper

if y(d2)<y(d)

% to remove drops which would coalesce during sweeping

dist=((x(d)-x(d2)).ˆ2+(r(d)-r(d2)). % (line break)

ˆ2*cosd(theta)ˆ2).ˆ(.5)-r(d)-r(d2);

if dist<0

% visualize every drop before it's swept

% figure(3), plot(x,y,'.');

% viscircles([x; y]', r');

% hold on

% plot([x(d)-r(d) x(d)+r(d)], [y(d) y(d)],'k')

% plot([x(d)-r(d) x(d)-r(d)], [0 y(d)],'k')

% plot([x(d)+r(d) x(d)+r(d)], [0 y(d)],'k')

% viscircles([x(d2) y(d2)], r(d2),'Color','g');

% axis square;

% xlim([0 W]);

% ylim([0 H]);

% hold off

% waitforbuttonpress

x(d2)=W;
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y(d2)=H;

r(d2)=0;

end

end

end

end

x(d)=W;

y(d)=H;

r(d)=0;

swp ctr=swp ctr+1;

disp(['swp ctr=' num2str(swp ctr)])

% %visualize the drops that are left

% viscircles([x; y]', r','Color','b','LineWidth',.5);

% hold on

% axis square;

% xlim([0 W]);

% ylim([0 H]);

% hold off

% set(gca,'FontSize',fontsize,'FontName',fontname);

% set(gcf,'PaperPosition',[1 1 3 3]);

% set(gcf, 'Units', 'Inches', 'InnerPosition', [2 5 3 3]);

% print('-depsc','-r300',[cd '\figures\sweepinga']);

% print('-dpng','-r300',[cd '\figures\sweepinga']);

%

% figure(4), cla

% viscircles([x; y]', r','Color','b','LineWidth',.5);

% hold on

% axis square;

% xlim([0 W]);

% ylim([0 H]);

% hold off

% set(gca,'FontSize',fontsize,'FontName',fontname);

% set(gcf,'PaperPosition',[1 1 3 3]);

% set(gcf, 'Units', 'Inches', 'InnerPosition', [7 5 3 3]);

% print('-depsc','-r300',[cd '\figures\sweepingb']);
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% print('-dpng','-r300',[cd '\figures\sweepingb']);

% waitforbuttonpress

end

end

%% check for new nucleation

if nucleationtype==1

egg=sortrows([x; y; r]'); %put all the L's to the back.

x=egg(:,1)';

y=egg(:,2)';

r=egg(:,3)';

indd=find(x==W,1); %find where the end of the drops are

% make new nucleation cites

A=sum(pi*r.ˆ2*sind(theta)ˆ2);

n old=length(nonzeros(r));

n new=round((Ns-n old/(W*H))*((W*H)-A)); %calculate the #

% of new nucleation cites

if n new>0

cntrsnew=zeros(2,n new);

while n new>0

cntrsnew(2,1:n new)=W*rand(1,n new);

cntrsnew(1,1:n new)=H*rand(1,n new);

for i=1:size(cntrsnew,2)

egg=((cntrsnew(2,i)-x).ˆ2+ % (line break)

(cntrsnew(1,i)-y).ˆ2+(rsmallest-r).ˆ2* % (line break)

cosd(theta)ˆ2).ˆ(.5)-(r+rsmallest);

% distance between new drop and every other drop,

% minus the radius of the new drop and every other drop

if min(egg)<0

cntrsnew(:,i)=[0;0];

end

end

cntrsnew=sortrows(cntrsnew')';

n new=size(cntrsnew,2)-length(nonzeros(cntrsnew))/2;

end
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x(indd:indd+size(cntrsnew,2)-1)=cntrsnew(2,:);

y(indd:indd+size(cntrsnew,2)-1)=cntrsnew(1,:);

r(indd:indd+size(cntrsnew,2)-1)=rsmallest;

end

else % preferential nucleation cites--x and y stay the same throughout

% the simulation; nucleation occurs whenever one of the original

% cites is uncovered

for d=1:size(xo,2)

dist=((xo(d)-x).ˆ2+(yo(d)-y).ˆ2+(rsmallest-r). % (line break)

ˆ2*cosd(theta)ˆ2).ˆ(.5)-r-rsmallest;

if min(nonzeros(dist))>0 %cite is uncovered

ind=find(r==0,1);

if min(r)~=0

r(end+1)=rsmallest;

x(end+1)=xo(d);

y(end+1)=yo(d);

else

r(ind)=rsmallest;

x(ind)=xo(d);

y(ind)=yo(d);

end

% %visualize

% cla

% viscircles([x; y]', r','Color','b');

% viscircles([x; y]', r'*sind(theta),'Color','g');

% hold on

% viscircles([x(ind); y(ind)]', r(ind)','Color','r');

% axis square;

% xlim([x(ind)-20*r(ind) x(ind)+20*r(ind)]);

% ylim([y(ind)-20*r(ind) y(ind)+20*r(ind)]);

% hold off

% waitforbuttonpress

end

end

end
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%% save results from this time step

if mod(tstep,numskip)==0

ctr=ctr+1;

disp(['time step: ' num2str(tstep)])

% save the data from this time step

drop(ctr).x=x;

drop(ctr).y=y;

drop(ctr).r=r;

end

avgr(tstep)=mean(nonzeros(r));

maxr(tstep)=max(r);

Qvect(tstep)=Qtotsim-sum(Qvect);

percA(tstep)=sum(pi*r.ˆ2*sind(theta)ˆ2)/(W*H);

numdrop(tstep)=length(nonzeros(r));

if mod(tstep,savefrq)==0

save(savename)

disp('-------saved-------------')

end

% % visulalize

% figure(3), cla

% viscircles([x; y]', r','LineWidth',.5);

% viscircles([x; y]', r'*sind(theta),'LineWidth',.5,'Color','b');

% % viscircles([x(find(r<re)); y(find(r<re))]', % (line break)

% r(find(r<re))','LineWidth',.5,'Color','g');

% axis square;

% xlim([0 W]);

% ylim([0 H]);

end

allr=[drop(:).r];

disp([num2str(swp ctr) ' ' num2str(max(allr))])

disp(['q" from sim is ' num2str(Qtotsim*dt/(tf*W*H))])

if HTM==1
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disp(['Maximum error due to curve fitting is' num2str(max(CFErr))])

end

save(savename)

%% if running in GUI:

if HTM==1

figure, semilogx(rA,100*CFErr)

ylabel('% Error due to the curve fit')

xlabel('drop size')

end

%% plot results over time:

q=Qvect/(W*H);

for i=1:length(q)

qmean(i)=mean(q(1:i));

end

figure,

[ax]=plotyy(t,q,t,100*(qmean-mean(q))/mean(q));

ylim(ax(2),[-5 5])

ylabel(ax(2),'% Change')

ylabel(ax(1),'q" (W/mˆ2)')

xlabel('time (s)')

%% plot other stuff

if exist('drop','var')

if ~exist('percA','var')

for d=1:size(drop,2)

percA(d)=sum(drop(d).r.ˆ2*pi*sind(theta)ˆ2)/(W*H);

end

end

end

figure, subplot(211), ax=plotyy(t,avgr, t, maxr);

ylabel(ax(1),'average drop radius, m')

ylabel(ax(2), 'max drop radius, m'),xlabel('time, s')

subplot(212), ax=plotyy(t,numdrop,t,percA);

ylabel(ax(1),'number of drops'), ylabel(ax(2),'A b/A {tot}')
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figure, plot(t,Qvect/(W*H)), ylabel('q", W/mˆ2'), xlabel('time, s')

disp(['average drop radius: ' num2str(mean(avgr))])

disp(['average N: ' num2str(mean(numdrop)/(W*H),'%10.3e')])

disp(['average percent of area covered by drops: ' num2str(mean(percA))])

plotyes=1;

binning;

%% max sizes

for i=1:length(drop)

rt=sort(nonzeros(drop(i).r),'descend');

rm1(i)=rt(1);

rm5(i)=mean(rt(1:5));

rm10(i)=mean(rt(1:10));

rm100(i)=mean(rt(1:100));

rm(i)=mean(rt);

end

t2=(1:length(drop))*dt*numskip;

figure, ax=plotyy(t2,[rm1; rm5; rm10; rm100],t2,rm);

ylabel('radius (m)')

ylabel(ax(2),'mean radius (m)')

xlabel('time (s)')

legend('max','top5','top10','top100','mean')

B.2 Input Param.m

function [nug,hfg,kw,rho,sig,g,Rg,alph,Ts,hi,rmin] = Input Param(Tsat,dT)

% Properties

nug = XSteam('vV T',Tsat-273); % m3/kg specific volume of water vapour

hfg = (XSteam('hV T',Tsat-273)-XSteam('hL T',Tsat-273))*1000; % J/kg

%latent heat of vaporization

kw = XSteam('tcL T',Tsat-273); % W/m.K conductivity of water

rho = XSteam('rhoL T',Tsat-273); % kg/m3 Demsity of water

sig = XSteam('st T',Tsat-273); % N/m surface tension of water

% constants
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g=9.81;

Rg=461.5; %J/kgK specific gas constant

alph=1;

Ts=Tsat-dT;

% in their modeling paper, they use Ts, not Tsat

hi=2*alph*hfgˆ2/((2-alph)*sqrt(2*pi*Rg*Tsat)*nug*Tsat);

% from http://heattransfer.asmedigitalcollection.asme.org/article.aspx?

%articleid=1742210

% hi = (8*alpha/(2-0.798*alpha))*((gamma-1)/(gamma+1))*

% (1/sqrt(2*pi*Rc*Ts))*(hfgˆ2)/(vg*Tsat);

% from Rose Heat transfer coefficient - On Interphase Matter Transfer,

%the Condensation Coefficient and Dropwise Condensation (1987), eqn 7

rmin=2*Tsat*sig/(hfg*rho*dT); %Van Carey eqn 9.21 uses Ts;

% Miljkovic and Kim uses Tsat

B.3 Chavan.m

function [Nu] = Chavan(Bi,thetaa)

%CHAVAN Calculate the Nu for heat transfer to an individual drop from Bi,

% thetaa [RADIANS!!], based on the fit. Based on numerical simulations

% from Chanvan et al. in Heat Transfer through a Condensate Droplet on

% Hydrophobic and Nanostructured Superhydrophobic Surfaces

% https://pubs.acs.org/doi/full/10.1021/acs.langmuir.6b01903

if Bi<=0.5

Nu=3*thetaa.ˆ.65*Biˆ.83+0.007*thetaa.ˆ5.1*Biˆ(-0.23);

elseif Bi<=2

Nu=0.29*thetaa.ˆ2.24*Biˆ(-.17)+3.33*thetaa.ˆ(-.3)*Biˆ0.72;

elseif Bi<=10e5

Nu=5.76*exp(-.28*thetaa.ˆ.68)*log(1+5*Biˆ0.82-2.79*Biˆ.83);

else

disp('Bi too high!')

Nu=0;
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end

end

B.4 PlotDistributionDEMO.m

close all

clear all

filename1='filename';

load(filename)

plotyes=1;

binning

r bina=r bin;

r binla=r binl;

r binra=r binr;

na=n;

%% fancy error bars

figure,

loglog(r bina,na,'r-')

hold on

fill([r binla';flipud(r binra')],[na';flipud(na')], % (line break)

'r','linestyle','none');

alpha(0.1)

p1=loglog(r binla,na,'r-.');

p1.Color(4) = 0.25;

p1=loglog(r binra,na,'r-.');

p1.Color(4) = 0.25;

xlabel('{\it r} (m)')

ylabel('{\it N} (drops/mˆ3)')

B.5 binning.m
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percchange=1e-2;

trans=5e-6;

ylim1=1e11;

ylim2=1e18;

xlim1=1e-8;

xlim2=1e-3;

if ~exist('ctr','var')

ctr=length(t);

end

if plotyes==1

% traditional bins

rhist10=logspace(log10(min(nonzeros(allr))),log10(max(allr)),10);

nhist10=histcounts(allr,rhist10)/((W*H)*ctr);

ncntr10=nhist10./diff(rhist10);

rcntr10=0.5*(rhist10(1:end-1)+rhist10(2:end));

rcntr10l=rhist10(1:end-1);

rcntr10r=rhist10(2:end);

end

%% bins based on dr increments

r bin e=min(nonzeros(allr));

i=1;

if ~exist('HTM')

if exist('Bi','var')

HTM=2;

disp('Heat transfer model is Chavan')

else

HTM=4;

disp('Heat transfer model is Miljkovic')

end

end

while r bin e(i)<trans

i=i+1;

160



if HTM==1 % Adhikari

Bi=hi*r bin e(i-1)/kw;

f = fCalculator(Bi, thetaa);

Q=dT*pi*r bin e(i-1)ˆ2*sind(thetaa)ˆ2/(f*r bin e(i-1)/kw+1/(2*hi));

if exist('pl','var')

Q=exp(polyval(pl,log(r bin e(i-1))));

end

elseif HTM==2 % Chavan 2016

Bi=hi*r bin e(i-1)*sind(thetaa)/kw;

[Nu] = Chavan(Bi,thetaa*pi/180);

Q=Nu*kw*r bin e(i-1)*sind(thetaa)*(Tsat-Ts);

elseif HTM==3 % Kim and Kim (eqn 15)

Q=pi*dT*r bin e(i-1)*(r bin e(i-1)-rmin)*(1-cosd(theta))/(A2*r(d)+A3);

elseif HTM==4 %Miljkovic 2013 Modeling (eqn 13)

Q=pi*dT*r bin e(i-1)*(r bin e(i-1)-rmin)/(A2*r bin e(i-1)+A3);

end

dV=Q*dt/(rhow*hfg);

V=pi*r bin e(i-1)ˆ3*(2-3*cosd(theta)+cosd(theta)ˆ3)/3+dV;

r bin e(i)=(3*V/(pi*(2-3*cosd(theta)+cosd(theta)ˆ3)))ˆ(1/3);

end

histK=histcounts(allr,r bin e);

n dr=histK./(diff(r bin e)*W*H*ctr);

r dr=0.5*(r bin e(1:end-1)+r bin e(2:end));

allr=sort(allr);

% determine the transition by the percentage of change in drop radius

%(once the diff starts decreasing)

indmax=find(diff(r bin e)==max(diff(r bin e)));

if min(diff(r bin e(indmax:end))./r bin e(indmax:end-1))<percchange

ind=find(diff(r bin e(indmax:end))./r bin e(indmax:end-1)<percchange,1);

r bin e=r bin e(1:ind+indmax+1); %and truncate r bin e @ this point

end

% mark a transition
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t1=r bin e(end);

disp(['transition @ r=' num2str(t1)])

%make logrithmically spaced points

egg=logspace(log10(r bin e(end)),log10(max(allr)),25);

r bin e=[r bin e egg(2:end-1)];

% make histogram

histK=histcounts(allr,r bin e);

n=histK./(diff(r bin e)*W*H*ctr);

r bin=0.5*(r bin e(1:end-1)+r bin e(2:end));

r binl=r bin e(1:end-1);

r binr=r bin e(2:end);

rrose=logspace(log10(min(nonzeros(allr))),log10(max(allr)),100);

rmax=max(allr);

nrose=(rrose/rmax).ˆ(-2/3)./(3*pi*rrose.ˆ2*rmax);

if plotyes==1

figure, subplot(211), loglog(r bin,histK,'x-'),

xlabel('radius, m (bin center)'),ylabel('# of drops/bin')

subplot(212), loglog(r bin,n,'x-'),

xlabel('radius, m (bin center)'), ylabel('N(r), drops/mˆ3')

ylim([ylim1 ylim2])

figure, loglog(rcntr10,ncntr10,'x-',r bin,n,rrose, nrose,'--')

hold on

errorbar(r bin,n,r bin-r binl,r binr-r bin,'horizontal')

loglog([t1 t1],[ylim1 ylim2]);

legend('10 log-spaced bins','composite','rose','bin edges','t1')

ylim([ylim1 ylim2])

xlim([xlim1 xlim2])

xlabel('radius, m (bin center)'), ylabel('N(r), drops/mˆ3')

end

%% CALCULATE THE TOTAL HEAT TRANSFER
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clear Qd

for i=1:length(r bin)

if HTM==1 % Adhikari

Bi=hi*r bin e(i)/kw;

f = fCalculator(Bi, thetaa);

Qd(i)=dT*pi*r bin e(i)ˆ2*sind(thetaa)ˆ2/(f*r bin e(i)/kw+1/(2*hi));

if exist('pl','var')

Qd(i)=exp(polyval(pl,log(r bin e(i))));

end

elseif HTM==2 % Chavan 2016

Bi=hi*r bin e(i)*sind(thetaa)/kw;

[Nu] = Chavan(Bi,thetaa*pi/180);

Qd(i)=Nu*kw*r bin e(i)*sind(thetaa)*(Tsat-Ts);

elseif HTM==3 % Kim and Kim (eqn 15)

Qd(i)=pi*dT*r bin e(i)*(r bin e(i)-rmin)*(1-cosd(theta))/(A2*r(d)+A3);

elseif HTM==4 %Miljkovic 2013 Modeling (eqn 13)

Qd(i)=pi*dT*r bin e(i)*(r bin e(i)-rmin)/(A2*r bin e(i)+A3);

end

end

r=r bin;

Qr=n.*Qd;

Ar=n*pi.*r.ˆ2*sind(theta)ˆ2;

Atot=trapz(r,Ar);

Qtot=trapz(r,Qr);

Ntot=trapz(r,n);

disp(['The rate of heat transfer is ' num2str(Qtot) ' Watts']);

disp(['The average % of the area covered by droplets is ' num2str(Atot)]);

disp(['The total drop density is ' num2str(Ntot,'%10.3e')]);

clear Acum Qcum

for i=2:length(r)

Acum(i)=trapz(r(1:i),Ar(1:i));

Qcum(i)=trapz(r(1:i),Qr(1:i));

end
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if plotyes==1

figure, ax=plotyy(r,Ar,r,Qr);

xlabel('r, m')

ylabel(ax(2),'n(r)*Q d(r), W/(mˆ2*m)')

ylabel(ax(1),'n(r)*A b(r), 1/m')

figure, loglog(r,Acum/Atot,r,Qcum/Qtot,[3.86e-7 3.86e-7],[0 1])

xlabel('R, m')

ylabel('% of the contribution to Qtot, Abtot that occurs from r=0 to R')

legend('A','q"','Location','SouthEast')

end
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APPENDIX C. DROP TRACKING CODE

The following code tracks drops in condensation videos and analyzes the results. It was

used to obtain the data presented in chapters 5 and 6. The code is spread between a few main scripts

which call several functions. The main scripts are listed first, followed by the functions which were

all located in a folder called “functions”. The following outline describes the purpose for each of

the main scripts and lists the functions they use. Besides the codes listed below, depending on the

conditions of the video, other drop-tracking approaches were also employed, and are implemented

in scripts and functions that would replace those listed in steps 2 and 3. For the sake of brevity, the

code for the alternative approaches is not included, but can be found in the BYU Thermal Fluids

Transport groups folder, or will be provided upon request. When formatting the code to fit into

the format of this dissertation it was occasionally necessary to break long lines of code with a

hard return. When this was done, a commented out section that says line break is included at the

location of the hard return.

1. Use savestruct.m to create a structure containing the frames that will be analyzed. It calls

the function VideosliderObj.m.

2. Use ThreshPickerSnakes.m to select the settings to use to track the drops. It calls sliderbw.m

(in Appendix A) and ThreshPickerSliderSnakes.m. ThreshPickerSliderSnakes lets the user

see the effect of changing the threshold settings, minimum seed size, and edge sensitivity on

the drop detection in a single frame. The user can use this information to select appropriate

values for each video. Two thresholds are used — one (the higher of the two) determines

the “seed” points from which drops grow. The second (the lower one) determines how large

drops can grow. The min and max thresholds selected by the user initially based on the

output of sliderbw.m are simply to pick reasonable ranges for ThreshPickerSliderSnakes. If

too low of a threshold is used in ThreshPickerSliderSnakes the code will crash. Therefore,

use sliderbw to select a minimum threshold that shows some distinction between the drops,
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and then use ThreshPickerSliderSnakes to select the exact thresholds that will be used in

FindDrops.m.

3. Use FindDrops.m to find drops in every frame of the structure. This code uses the parfor

function so the code can be run in parallel, resulting in a dramatic speed increase if run on a

supercomputer. Calls DistributionGutsHomemadeSnakes.m.

4. Use DropViewer.m to view the results of the drop tracking. If they are satisfactory, proceed

and and analyze the results. If not, try (1) rerunning FindDrops.m with different settings, (2)

try a different approach than snakes (i.e. active contour modeling), like the hough transform

or connected components (found in alternative scripts in the groups folder), or (3) try cor-

recting the results automatically using Corrector.m or manually using CorrectorManual.m

(both found in the groups folder).

5. Use MakeDistribPlots3.m to make the distribution function. Calls binningExperimental.m

6. Use MakeRhatPlots.m (calls FindRs.m) to plot Rmax10, r̂, etc. as a function of time.

Other useful files are listed below and can be found in the groups folder or provided upon request.

• superslider.m is called by several functions and can be downloaded from the matlab file

exchange at https://www.mathworks.com/matlabcentral/fileexchange/43285-superslider.

• If the original video was broken up into several segments (parts a, b, c, etc.), use Com-

bineResults.m to combine the results into one results file.

• GetScale.m — Obtains the resolution of the camera using a video of a surface with regularly

spaced ribs. The resolution should be recalculate every time the imaging setup changes (e.g.

for each zoom on the lens, if the thickness or spacing of the polycarbonate window between

the surface the lens changes, etc.) Output is a pixel to micron ratio.

• SubtractBacground.m — If the lighting of the surface varies spatially it can be difficult to

select a single threshold value appropriate for the entire image. This code can be used to

subtract out the background of a surface.
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• One way to detect drop departure is to track individual drops through time, rather than finding

their location independently in each frame of the video. A series of scripts and functions

located in the folder “ForTrackingThroughTime” does this using a combination of the Hough

and Connected Components approaches. It uses many of the functions located in the folder

labeled “functions”. The code currently works well for low nucleation site densities, where

there is good contrast between the drops and the background. The code could be modified

to use the active contour modeling approach outlined above; it is expected that using active

contour modeling would produce more accurate results.

C.1 savestruct.m

%calls VideosliderObj.m

clear all

close all

clc

addpath([cd '\functions'])

%% USER INPUT

pathname='pathname';

filename='1020 16d 250x 5min';

savename=[filename 'd']; %sometimes you may want to break up a long video into

%several shorter sections. This could be specified by appending a character

%at the end, e.g. part a, b, c, etc.

s=1;

%%

vidObj = VideoReader([pathname '\' filename '.mov']);

vidWidth = vidObj.Width;

vidHeight = vidObj.Height;

numFrames = vidObj.NumberOfFrames;

fr=vidObj.FrameRate;
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VideosliderObj(vidObj,numFrames)

startFrame=input('Which frame do you want to start on? ');

endFrame=input('Which frame do you want to end with? ');

%startFrame=5100;

%endFrame=5900;

%% to choose a new rectangle

title('Click and drag a box to crop the image')

[I,rect]=imcrop;

%rect=[493.510000000000,0.510000000000000,1070.98000000000,1079.98000000000];

mov = struct('cdata',zeros(round(rect(4)),round(rect(3))),'fr',[],'s',[]);

ctr=0;

for k=startFrame:s:endFrame

ctr=ctr+1;

mov(ctr).cdata = rgb2gray(imcrop(read(vidObj,k),rect));

% mov(ctr).cdata = imcrop(read(vidObj,k),rect);

% imwrite(imcrop(read(vidObj,k),rect),[filename num2str(k) '.tif']);

disp(['Analyzed frame number ' num2str(k)])

end

mov(1).fr=fr;

mov(1).s=s;

save([cd '\structures\' savename])

C.2 ThreshPickerSnakes.m

load('structurename') %or run this after running save struct

frameNumber=1;

A=mov(frameNumber).cdata;

sliderbw(A)

minthresh=input('What is the lowest threshold you want to use? ');

maxthresh=input('What is the highest threshold you want to use? ');

168



ThreshPickerSliderSnakes(A,minthresh, maxthresh)

C.3 FindDrops.m

% Author: Kimberly Stevens

% email: kimst12@gmail.com

close all

clear all

clc

addpath([cd '\functions'])

addpath([cd '\structures'])

addpath([cd '\results'])

%% User Input=====================================================

thresh=[.43,.46,.9,2];

dT=0;

% micronperpix=.772338*1e-6; %500x

micronperpix=2.124208*1e-6; %250x

strutname='1022 13d 250x 5mind';

tracktype='s';

filenamer=['results ' strutname ' ' tracktype];

load(strutname);

drop(1).H=size(mov(1).cdata,1);

drop(1).W=size(mov(1).cdata,2);

drop(1).tracktype=tracktype;

drop(1).fr=mov(1).fr;

drop(1).s=mov(1).s;

drop(1).micronperpix=micronperpix;

drop(1).dT=dT;
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drop(1).thresh=thresh;

startFrame=1;

endFrame=length(mov);

objpolarity='bright';

%% End User Input=====================================================

fr=mov(1).fr;

s=mov(1).s;

fr=fr/s;

t=0:1/fr:length(mov)/fr-1/fr;

parfor F=startFrame:endFrame

disp(['Frame #: ' num2str(F)])

[ r,centers ] = DistributionGutsHomemadeSnakes(mov(F) % (line break)

.cdata,thresh(1),thresh(2),thresh(3),thresh(4),F,0);

drop(F).x=centers(:,1);

drop(F).y=centers(:,2);

drop(F).r=r;

end

save(filenamer,'drop')

disp('Finished!')

C.4 DropViewer.m

num2view=2;

strutname='1020 16a 250x 5mina';

filenameR=['results ' strutname ' s2'];

load(filenameR);

load(strutname);

% binningExperimental

drop1=drop;
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if num2view==2

filenameR=['results ' strutname ' s3'];

load(filenameR);

% binningExperimental

drop2=drop;

end

for F=1:length(drop)

% to visualize

if num2view==2

subplot(121)

end

imshow(mov(F).cdata)

viscircles([drop1(F).x drop1(F).y], %(line break)

drop1(F).r,'EdgeColor','r','DrawBackgroundCircle',0,'LineWidth',.5);

title(['Frame #: ' num2str(F) '/' num2str(size(mov,2))])

if num2view==2

subplot(122)

imshow(mov(F).cdata)

viscircles([drop2(F).x drop2(F).y], %(line break)

drop2(F).r,'EdgeColor','r','DrawBackgroundCircle',0,'LineWidth',.5);

title(['Frame #: ' num2str(F) '/' num2str(size(mov,2))])

end

drawnow

end

C.5 MakeDistribPlots3.m

close all

clear all

clc

fontname='Times';

fontsize=10;

%% User input
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bintype=1; %should the bin width be variable (type 1) or a

% constant 10% (type 2?)

figname='5min';

numlines=3;

structname{1}='1015 19a 250x 5minall';

prefix{1}='results';

postfix{1}='s2';

structname{2}='1020 16a 250x 5minall';

prefix{2}='results';

postfix{2}='s3';

structname{3}='1022 13b 250x 5minall';

prefix{3}='results';

postfix{3}='s';

structname{4}='1015 19e 250x 5minall';

prefix{4}='results';

postfix{4}='s';

figwid=3;

figheight=3;

lgdpos=[0.21 0.18 0.49 0.26];

xlimit=[1e-5 1e-3];

ylimit=[1e7 2e13];

%% End User Input

pc={'r','b','g','c'};

addpath([cd '\functions'])

addpath([cd '\structures'])

addpath([cd '\structures\AnalyzedStructures'])

addpath([cd '\results'])

for k=1:numlines

load([prefix{k} ' ' structname{k} ' ' postfix{k}]);

binningExperimental

r=r10o;

if bintype==1

n=n10o;
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else

n=n10o2;

end

dT{k}=['\DeltaT = ' num2str(drop(1).dT) ' ˆoC'];

hold on

figure(9), h(k)=loglog(r,n,pc{k});

hold on

if bintype==1

fill([[(1-bwvect).*r]';flipud([(1+bwvect).*r]')], % (line break)

[n';flipud(n')],pc{k},'linestyle','none');

alpha(0.1)

p1=loglog((1-bwvect).*r,n,[pc{k} '-.']);

p1.Color(4) = 0.25;

p1=loglog((1+bwvect).*r,n,[pc{k} '-.']);

p1.Color(4) = 0.25;

else

fill([[(1-bw).*r]';flipud([(1+bw).*r]')], % (line break)

[n';flipud(n')],pc{k},'linestyle','none');

alpha(0.1)

p1=loglog((1-bw).*r,n,[pc{k} '-.']);

p1.Color(4) = 0.25;

p1=loglog((1+bw).*r,n,[pc{k} '-.']);

p1.Color(4) = 0.25;

end

end

xlabel('{\it r} (m)')

ylabel('{\it N} (drops/mˆ3)')

figure(9), hold on

rmax=4e-4;

rrose=logspace(log10(min(nonzeros(allr))),log10(rmax),100);

nrose=(rrose/rmax).ˆ(-2/3)./(3*pi*rrose.ˆ2*rmax);

h(end+1)=loglog(rrose,nrose,'k--','LineWidth',1);

lgd=legend(h,'\DeltaT = 2.52 ˆoC','\DeltaT = 4.54 ˆoC', % (line break)
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'\DeltaT = 5.69 ˆoC', 'Le Fevre and Rose');

legend('boxoff')

set(lgd,'Position',lgdpos)

xlim(xlimit)

ylim(ylimit)

ax=gca;

ax.TickLength = [0.02 0];

xticks([1e-6 1e-5 1e-4 1e-3 1e-2])

set(gca,'FontSize',fontsize,'FontName',fontname);

set(gcf,'PaperPosition',[1 1 figwid figheight]);

set(gcf, 'Units', 'Inches', 'InnerPosition', [5 5 figwid figheight]);

print('-depsc','-r600',[cd '\figures\' figname]);

print('-dpng','-r600',[cd '\figures\' figname]);

C.6 MakeRhatPlots.m

Additional parts of this code can be found in the version found on the groups folder.

close all

clear all

clc

fontname='Times';

fontsize=10;

addpath(genpath([cd '\results']))

addpath(genpath([cd '\functions']))

filenames=dir('results\constTemp\all\*.mat');

figure,

%% plot for paper

for j=1:size(filenames,1)

load(filenames(j).name)

c=strsplit(filenames(j).name,' ');
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if strcmp(c{2},'1015')

pm='bo';

elseif strcmp(c{2},'1020')

pm='rˆ';

else

pm='gs';

end

FindRs

rmax10(j)=mean(rm10);

dT(j)= str2num(drop(1).dT);

vidTime(j)=drop(1).videoTime;

figure(1),

hold on

plot(vidTime(j),rmax10(j),pm)

end

%%

xlabel('Elapsed Time (min)')

ylabel('{\itr} {max 10} (m)')

h1=plot(NaN,NaN,'bo',NaN,NaN,'rˆ',NaN,NaN,'gs');

lgd=legend(h1,'\DeltaT = 2.52 ˆoC','\DeltaT = 4.54 ˆoC', % (line break)

'\DeltaT =5.69 ˆoC','Location','northeastoutside');

legend('boxon')

% set(lgd,'Position',lgdpos)

ax=gca;

box on

ax.TickLength = [0.02 0];

set(gca,'FontSize',fontsize,'FontName',fontname);

set(gcf,'PaperPosition',[1 1 4.5 3]);

set(gcf, 'Units', 'Inches', 'InnerPosition', [5 5 4.5 3]);

print('-depsc','-r600',[cd '\figures\rmax']);

print('-dpng','-r600',[cd '\figures\rmax']);

C.7 VideosliderObj.m
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function VideosliderObj(vidObj,endFrame)

%VIDEOSLIDER Allows a user to scroll through a video

%Kim Stevens, kimst12@gmail.com

%called by savestruct

hFig = figure('menu','none');

hAx = axes('Parent',hFig);

uicontrol('Style', 'slider', 'Value',endFrame, 'Callback', %(line break)

@sliderCallback, 'Position',[150 5 300 20], 'Max', endFrame,%(line break)

'Min',1,'SliderStep', [1 1]/(endFrame));

T=1;

imshow(read(vidObj,T),'Parent',hAx)

title('Use slider to scroll through video')

function sliderCallback(hObject, evt)

T=round(get(hObject, 'Value'));

% imshow(mov(T).cdata)

imshow(read(vidObj,T))

title(num2str(T))

end

end

C.8 ThreshPickerSliderSnakes.m

function ThreshPickerSliderSnakes(A,minthresh, maxthresh)

%Kim Stevens, kimst12@gmail.com

hFig = figure('menu','none');

hAx = axes('Parent',hFig);

x=superSlider(gcf,'position',[0.75,.15,0.25,0.03],%(line break)

'numslides',2,'max',maxthresh,'min',minthresh,%(line break)

'stepsize',.01,'Callback',@sliderCallback);

y=superSlider(gcf,'position',[0.75,.1,0.25,0.03],'numslides',%(line break)
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1,'max',.95,'min',.9,'stepsize',.01,'Callback',@sliderCallback2);

z=superSlider(gcf,'position',[0.75,.05,0.25,0.03], %(line break)

'numslides',1,'max',.3,'min',.01,'stepsize',.01, %(line break)

'Callback',@sliderCallback3);

imshow(A,'Parent',hAx), title('Choose thresholds by using % (line break)

slider. Do not drag bar.')%Make sure you have the correct slider selected

% (gray) then use the bars on the end to move each slider distinct steps

global T1 T2 T3 rmin

T1=maxthresh;

T2=maxthresh;

T3=.9;

rmin=10;

function sliderCallback(hObject, ~)

infoMatrix = get(hObject, 'UserData');

T1=infoMatrix(1,1);

T2=infoMatrix(1,2);

[TargetRadii,TargetCenters]=DistributionGutsHomemadeSnakes%(line break)

(A,T1,T2,T3,rmin,1,0);

%show the circles

subplot('position',[0 .15 .75 .75]),

imshow(A)

viscircles(TargetCenters, TargetRadii,'EdgeColor','g', % (line break)

'DrawBackgroundCircle',0,'LineWidth',1);

title(['T1: ' num2str(T1) '; T2: ' num2str(T2) '; T3: % (line break)

' num2str(T3) '; rmin: ' num2str(rmin)])

subplot('position',[.75 .65 .25 .25]),imshow(im2bw(A,T1)),

title('Negative energy')

subplot('position',[.75 .25 .25 .25]),

imshow(imfill(im2bw(A,T2),'holes')),title('Seed points')

end

function sliderCallback2(hObject, ~)
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infoMatrix = get(hObject, 'UserData');

T3=infoMatrix(1,1);

[TargetRadii,TargetCenters]=DistributionGutsHomemadeSnakes%(line break)

( A,T1,T2,T3,rmin,1,0);

%show the circles

subplot('position',[0 .15 .75 .75]),

imshow(A)

viscircles(TargetCenters, TargetRadii,'EdgeColor','g', % (line break)

'DrawBackgroundCircle',0,'LineWidth',1);

title(['T1: ' num2str(T1) '; T2: ' num2str(T2) '; T3: % (line break)

' num2str(T3) '; rmin: ' num2str(rmin)])

subplot('position',[.75 .65 .25 .25]),

imshow(im2bw(A,T1)),title('Negative energy')

subplot('position',[.75 .25 .25 .25]),

imshow(imfill(im2bw(A,T2),'holes')),title('Seed points')

end

function sliderCallback3(hObject, ~)

infoMatrix = get(hObject, 'UserData');

rmin=infoMatrix(1,1)*100;

[TargetRadii,TargetCenters]=DistributionGutsHomemadeSnakes % (line break)

( A,T1,T2,T3,rmin,1,0);

%show the circles

subplot('position',[0 .15 .75 .75]),

imshow(A)

viscircles(TargetCenters, TargetRadii,'EdgeColor','g', % (line break)

'DrawBackgroundCircle',0,'LineWidth',1);

title(['T1: ' num2str(T1) '; T2: ' num2str(T2) '; T3: % (line break)

' num2str(T3) '; rmin: ' num2str(rmin)])

subplot('position',[.75 .65 .25 .25]),

imshow(im2bw(A,T1)),title('Negative energy')

subplot('position',[.75 .25 .25 .25]),

imshow(imfill(im2bw(A,T2),'holes')),
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title('Seed points')

end

end

C.9 DistributionGutsHomemadeSnakes.m

B=im2bw(A,T1);

C=imfill(im2bw(A,T2),'holes');

stats=regionprops(C,'Area','Centroid');

drop ctr=0;

Radii=zeros(length(stats),1);

Centers=zeros(length(stats),2);

for i=1:length(stats)

r=(stats(i).Area/3.14)ˆ.5;

if r>rmin

drop ctr=drop ctr+1;

center=stats(i).Centroid;

e=AvgInensity(B, center, r);

% rctr=0;

while e>T3

r=r+1;

e = AvgInensity( B, center, r);

end

Radii(drop ctr)=r;

Centers(drop ctr,:)=center;

end

end

%remove overlapping circles (removes the smaller one)

overlap=OverlappingCircles(Centers,Radii );

Radii(overlap)=[];

Centers(overlap,:)=[];
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if showresults==1

imshow(A)

viscircles(Centers, Radii,'EdgeColor','r', % (line break)

'DrawBackgroundCircle',0,'LineWidth',.5);

title(['Start Frame #: ' num2str(F)])

end

end

C.10 binningExperimental.m

%% calculate drop statistics

micronperpix=drop(1).micronperpix;

ctr=size(drop,2);

W=drop(1).W*micronperpix;

H=drop(1).H*micronperpix;

biggest=0;

for i=1:length(drop)

if length(drop(i).r)>biggest

biggest=length(drop(i).r);

end

end

allr=zeros(length(drop),biggest);

for i=1:length(drop)

rt=drop(i).r*micronperpix;

allr(i,1:length(rt))=rt;

end

allr=nonzeros(allr);

% traditional bins

r20=logspace(log10(min(nonzeros(allr))),log10(max(allr)),20);

hist20=histcounts(allr,r20); %convert into #/mˆ2 averaged over time

n20=hist20./(diff(r20)*(W*H)*ctr);

rcntr20=0.5*(r20(1:end-1)+r20(2:end));

rcntr20l=r20(1:end-1);
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rcntr20r=r20(2:end);

% overlapping bins variable bin width

r10o=logspace(log10(min(nonzeros(allr))),log10(max(allr)),100);

n=zeros(size(r10o));

bwvect=zeros(size(r10o));

for i=1:length(r10o)

bw=.1;

n(i)=sum(allr<=r10o(i)*(1+bw) & allr>r10o(i)*(1-bw));

while(n(i)<1000)

bw=bw+.01;

if bw>=.2

break

end

n(i)=sum(allr<=r10o(i)*(1+bw) & allr>r10o(i)*(1-bw));

end

bwvect(i)=bw;

end

n10o=n./(W*H*ctr*r10o.*bwvect*2);

% overlapping bins

bw=.1;

r10o=logspace(log10(min(nonzeros(allr))),log10(max(allr)),100);

r bin c=r10o;

n=zeros(size(r bin c));

for i=1:length(r bin c)

n(i)=sum(allr<=r bin c(i)*(1+bw) & allr>r bin c(i)*(1-bw));

end

n10o2=n./(W*H*ctr*r bin c*bw*2);

% % even number of drops in each bin

% r bin e = binbynumexp(allr,10000);

% hist e=histcounts(allr,r bin e);

% n e=hist e./(diff(r bin e)*(W*H)*ctr);

% r e=0.5*(r bin e(1:end-1)+r bin e(2:end));
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% figure, loglog(rcntr10,hist10,'x-',rcntr20,hist20,'x-')

% figure, loglog(r e,hist e,'x-')

figure, loglog(r10o,n10o,'x-',r10o,n10o2,'x-',rcntr20,n20,'x-')

legend('100 overlapping (+/- 10-20%)','100 overlapping % (line break)

(+/- 10%)','20 regular')

xlabel('radius, m (bin center)'), ylabel('N(r), drops/mˆ3')

C.11 FindRs.m

%% calculate drop statistics

fr=drop(1).fr;

micronperpix=drop(1).micronperpix;

t=0:1/fr:size(drop,2)/fr-1/fr;

clear rm numdrops rm1 rm5 rm10 rm

rm1=zeros(1,length(drop));

numdrops=zeros(1,length(drop));

rm5=zeros(1,length(drop));

rm10=zeros(1,length(drop));

rm=zeros(1,length(drop));

biggest=0;

for i=1:length(drop)

if length(drop(i).r)>biggest

biggest=length(drop(i).r);

end

end

allr=zeros(length(drop),biggest);

for i=1:length(drop)

rt=drop(i).r*micronperpix;

allr(i,1:length(rt))=rt;

end

allr=nonzeros(allr);
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for i=1:length(drop)

rt=sort(nonzeros(drop(i).r),'descend')*micronperpix;

rm1(i)=rt(1);

numdrops(i)=length(rt);

rm5(i)=mean(rt(1:5));

rm10(i)=mean(rt(1:10));

rm(i)=mean(rt);

end

ctr=size(drop,2);

W=drop(1).W*micronperpix;

H=drop(1).H*micronperpix;

% figure, plotyy(t,[rm1; rm5; rm10; rm],t,numdrops)

% xlabel('time, s')

% ylabel('radius, m')

% legend('max','top 5','top 10','average','number')

figure, plot(t,[rm1; rm5; rm10; rm])

xlabel('time, s')

ylabel('radius, m')

legend('max','top 5','top 10','average')

ylim([0 7e-4])

set(gca,'FontSize',fontsize,'FontName',fontname);

set(gcf,'PaperPosition',[1 1 3 3]);

set(gcf, 'Units', 'Inches', 'InnerPosition', [5 5 3 3]);

% print('-depsc','-r600',[cd '\figures\TrackR' strutname num2str(F)]);

% print('-dpng','-r600',[cd '\figures\TrackR' strutname num2str(F)]);
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APPENDIX D. COPPER OXIDE FABRICATION INSTRUCTIONS

The following instructions describe the procedures for making copper oxide

superhydrophobic surfaces, as described in chapter 6.

D.1 Pre-Steps

1. Cut off of diameter circular Copper 102 rod 1/8” or 1/4” disks.

2. Grind down faces of the disk until most of the extremely deep grooves are gone.

3. Drill a hole in the side of the sample with a #55 drill bit. Hole needs to go half-way through

the sample (7/16”).

D.2 Polish and Clean

1. Polish the Cu surface. Go to the polish room in CB 104. Use the polishing wheel as follows:

(a) Find polish cylinder and ring

(b) Place cylinder on wheel and turn speed to 150 RPM

(c) Turn on water and wet wheel

(d) Turn off water

(e) Turn off rotation

(f) Start with 200 grit sandpaper

(g) Stick paper on the cylinder

(h) Turn on wheel to 75 RPM and turn on water

(i) Once paper is completely wet, begin running copper sample along sand grains

(j) Do random polish
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(k) Sand in one direction

(l) Rotate 90° and sand other direction

(m) Repeat with 400, 600, 800, 1200, and 1200 Fine grit, with an increase in 25 RPM for

each increase in grit size after 400 RPM. i.e: 400 Grit −→ 75 RPM, 600 Grit −→ 100

RPM, 800 Grit −→ 125 RPM, 1200/1200 Fine Grit −→ 150 RPM

(n) Locate Alumina pad (pitch 1 µm)

(o) Find Alumina particles of 1 µm diameter

(p) Place Imperial pad and put alumina paste in the center of pad

(q) Turn spinner to 150 RPM

(r) Move outwards and add paste as needed

(s) Blow off with air

2. Clean in an ultrasonic bath with acetone for 20 min 2X.

3. Change out acetone after each saunicaction

4. Rinse with ethanol, IPA, and DI water 5X

5. Dry with N2 or Ar

6. Make 2.0 M HCL Solution, ratios as follows: 165-167 mL HCL / 1 L DI Water (ph of

solution should be about -0.2)

7. Place copper in solution for 20 min

8. Triple rinse with DI water (Rinse dry, rinse dry, rinse dry)

9. Dry with N2 or Ar

D.3 Chemical Oxidation

1. Make Alkaline solution to chemically oxidize and create nanostructures with the following

ratios: NaClO2, NaOH, Na3PO412H2O, and DI water (3.75:5:10:100 wt %), i.e. NaClO2:

3.75 g; NaOH: 5 g; Na3PO412H2O: 10 g; DI Water: 100 mL (100 g)
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2. Heat solution to 96 °C (96 3 °C)

3. Use thermometer to monitor temperature

4. Keep temperature on the upper end of 96 3 °C

5. Place copper sample in solution for either 5, 10, 20, or 45 min depending on size of desired

nanostructures (see [35].

6. Rinse in DI water 5 times

7. Dry with N2 or Ar

D.4 Functionalization

D.4.1 PTFE

1. When using teflon coating, put on two coats of Teflon

2. Create 2% by weight Teflon solution. (1 gram of 6% Teflon for every 2 g of FC-40)

3. Super-glue copper sample to center of silicon wafer.

4. Place wafer on headway spinner. Set spinner to 3000 RPM and spin for 30 sec

5. Place copper sample on hot-plate that has been pre-heated to 180 C

6. Use laser thermometer to observe the surface temp of the copper block. Let the sample heat

until it is at 180 °C, then set a timer for 10 min and keep the copper block on the hot plate

for that amount of time.

7. Allow sample to cool for 15 min.

D.4.2 Glaco

1. Pour out 20-25 mL of Glaco into a small beaker.

2. Pre-heat hot plate to 150 °C
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3. Dip sample into Glaco moving it up and down in the solution

4. Remove sample from Glaco and place on hot plate for 30 min

5. Remove sample from hot plate and let it cool for 3 min

6. Repeat steps 3-5 3X
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APPENDIX E. CONDENSATION CHAMBER CONSTRUCTION NOTES

The follow notes describe materials used in the construction of the vacuum chamber used

for condensation. The presence of noncondensable gases (NCG) has significant implications for

heat transfer, requiring construction of a chamber that could maintain a vacuum for extended pe-

riods of time. To maintain a vacuum, the chamber needs to minimize pressure rise due to leaks

allowing entrance of air from outside the chamber, and outgassing of components interior to the

chamber. Outgassing is liberation of gases and vapors from the walls of and components interior to

a vacuum chamber, and includes vaporization, desorption, diffusion, and permeation [175]. While

all materials outgass, some materials are much worse than others, so care is required when select-

ing materials and components for vacuum chamber construction. The National Aeronautics and

Space Administration maintains a repository containing information regarding outgassing rates

of common materials, which was used select materials used in construction [176]. The vacuum

chamber was constructed in house and machined from stainless steel. Access ports consisted of

KF flanges welded onto the outside of the machined chamber, and all exterior valves and connec-

tions were KF flange. The front and rear of the vacuum chamber are constructed of polycarbonate.

The front of the chamber is transparent to allow visual access into the chamber. The rear of the

chamber consists of a piece of polycarbonate with a 7/8” hole in the center into which a 7/8” cop-

per block was epoxied use Loctite EA 1C adhesive, which is a vacuum compatible adhesive. After

the copper block was epoxied in place, the polycarbonate-copper block assembly was faced off so

that the copper was flush with the polycarbonate, and Celvaseal High Vacuum Leak Sealant Spray

was used on the reverse side to ensure a good vacuum seal. The rubber o-rings between the cham-

ber body and front and rear were constructed of Viton. The holder used to clamp the condensing

surface in place was 3D printed from PLA plastic. Viton, polycarbonate, the epoxy, PLA, and

stainless steel were all selected to minimize the leak and outgassing rates.
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Exterior to the chamber, rigid thermocouples from Omega (TJC36-CPSS-020E-6) were

used to ensure precise placement. The heat exchanger was purchased from Custom Thermoelectric

(WBA-1.00-0.60-CU-CH)
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