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ABSTRACT

Thermal Gradient Characterization and Control in Micro-Fabricated
Gas Chromatography Systems

Austin Richard Foster
Department of Mechanical Engineering, BYU

Master of Science

In order to make gas chromatography (GC) more widely accessible, considerable effort
has been made in developing miniaturized GC systems. Thermal gradient gas chromatograpy
(TGGC), one of the heating methods used in GC, has recieved attention over the years due to
it’s ability to enhance analyte focusing. The present work seeks to develop high performance
miniaturized GC systems by combining miniaturized GC technology with thermal gradient control
methods, creating miniaturized thermal gradient gas chromatography (µTGGC) systems. To aid
in this development a thermal control system was developed and shown to successfully control
various µTGGC systems. DAQ functionality was also included which allowed for the recording
of temperature and power data for use in modeling applications. Thermal models of the various
µTGGC systems were developed and validated against the recorded experiemental data. Thermal
models were also used to aid in decisions required for the development of new µTGGC system
designs. The results from the thermal models were then used to calibrate and validate a stochastic
GC transport model. This transport model was then used to evaluate the effect of thermal gradient
shape on GC separation performance.

Keywords: gas chromatography, micro-gas chromatography, thermal gradient gas chromatogra-
phy, thermal control systems, CFD, thermal modeling, chromatographic modeling
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γ Regression fit parameter for mass diffusivity model
µ Helium mobile phase viscosity (Pa·s)
ρ Spiral column aluminum density (kg/m3)
σi Standard deviation of the peak of analyte i (s)
σ2

12 Average collision diameter (Å)
∆σ2 Incremental change in analyte zone variance (m2)
Ω Chapman-Enskog collision integral
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CHAPTER 1. INTRODUCTION

1.1 Gas Chromatography

Whether or not we are aware of it, our lives are significantly influenced by chemicals we

come in contact with that we do not detect with our natural senses. Without the ability to detect

these chemicals it would not be possible for us to control or understand the effects they can have on

our lives. The field of analytical chemistry includes the development and use of methods and in-

struments to facilitate the detection and quantification of chemicals. One common method used by

analytical chemists to perform these tasks is chromatography. Chromatography, as both a method

and a technology, allows for the separation of mixed chemicals for purification and detection pur-

poses [1]. As the capability to detect the presence of chemicals is desirable in numerous fields,

chromatography is utilized in a variety of industries. Examples of common applications include

food testing, pharmaceutical testing, defense applications, drug testing, forensics, and pollutant

analysis in environmental sciences, to name just a few.

Numerous techniques exist that apply the principles of chromatography to separate chemi-

cal mixtures. One of these techniques, which uses gas flow to mobilize and separate chemicals, is

appropriately termed gas chromatography (GC). The function and objective of GC is the separa-

tion of volatile and semi-volatile, primarily organic, compounds for detection. Many substances of

interest in our day-to-day lives fall within this class of chemicals. One example that garners both

positive and negative attention in our modern world is the fossil fuels that we use to power our cars

and light our homes. GC is used by petroleum companies to analyze the purity of fossil fuels along

with their suitability for use by the public. Another important example of GC’s influence on our

everyday lives is its use in checking for the presence of high levels of pesticides on produce sold

in grocery stores. Clearly the capabilities made possible by GC serve to significantly improve our

lives and are of great value.
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Despite the advanced state of the field of chromatography, its inception is surprisingly

recent. The principles of chromatography were first discovered in 1906 by the Russian botanist

Mikhail Tsvett as a result of his efforts to separate the various pigments found in leaves. As

chromatography was first used to separate various plant pigments, the method was given the name

chromatography, meaning “writing color”. Tsvett’s early chromatographic devices consisted of a

tube, referred to as a column, packed with an adsorbent material that was selected for its interactive

nature with the plant pigments. A liquid was moved through this packed column to mobilize the

pigments and allow for their separation. Following the publication of Tsvett’s work in 1906, the

field of chromatography experienced gradual but steady growth. Similar to the work of Tsvett,

other early work in chromatography used packed column liquid chromatography to aid in the

separation of compounds found in plant and animal tissues [2].

The concept of GC, which is distinguished by the use of a gas instead of a liquid as the car-

rier fluid, was first considered in the early 1950’s. The first work in GC was performed by Archer

J. P. Martin et al. in 1952 and was used for separating volatile fatty acids [3]. Following its initial

development by Martin et al., other researchers began quickly adopting the new technology for

their own use [2]. Due to its quick adoption by other researchers, numerous advances were made

to GC devices to improve the technology’s capabilities. One of the more noteworthy advances in

GC was the creation of the open tubular, or capillary, column by Marcel Golay in 1956, which

came as a result of information gathered from his theoretical model of packed column behavior.

The introduction of this advance in GC column technology led to improved separations compared

to the packed columns invented by Tsvett 50 years earlier for liquid chromatography [4]. Due

to the broad range of application, GC has advanced rapidly over the past seven decades and has

developed into a large field of study within analytical chemistry.

Before continuing, a brief introduction to the components and mechanisms of operation of

a GC device are in order to aid the reader in better understanding the research that follows. The gas

carrier fluid used in GC is also referred to as the mobile phase and is most often helium, although

in some cases hydrogen or nitrogen can be used. This carrier gas is passed through a long thin tube,

referred to as the column, that is typically 10 - 60 m long with an inner diameter of 100 - 530 µm.

Columns used in GC are primarily made of fused silica and, less commonly, stainless-steel. The

inner surface of the column is coated with a thin layer of an absorbent polymer or liquid, which is
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Stationary Phase

Mobile Phase

C40H82 C8H18

Figure 1.1: Diagram demonstrating how lighter, more volatile compounds like C8 move more
quickly down the column due to less interactions with the stationary phase whereas heavier, less
volatile compounds like C40 move more slowly down the column due to more interactions with
the stationary phase.

referred to as the stationary phase. The driving mechanism behind GC separation is the successive

sorption and desorption of a given chemical (or analyte) into the stationary phase and then back

into the mobile phase. When a mixture of analytes is injected into the column, each analyte will

absorb into the stationary phase to a different degree than other analytes. The analytes that spend

more time in the mobile phase will move down the column more quickly, causing them to separate

from the other, less volatile, analytes (Figure 1.1).

After an analyte has moved through the column, it is eluted (or exits) out the end of the

column into a device that allows the analyte to be detected. A number of detector types exist in GC

that provide different capabilities. The most common detection device is a flame ionization detector

(FID) due to its reliability and simplicity. The basic principle behind an FID is that the separated

chemical sample is mixed with hydrogen and an oxidizer (usually air) after elution and is then

burned. The combusted gases then pass through a sensitive ammeter that is able to detect charge

variations that result from ionized molecules passing through. As the chemicals separated via GC

are required to be volatile or semi-volatile, and since FID detectors use combustion to measure the

presence of analytes, conventional GC methods only allow for the detection of organic compounds.

The resultant data from a GC separation is a chromatogram with time on the horizontal axis and

signal intensity on the vertical axis as shown in Figure 1.2. In the chromatogram, each analyte
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Figure 1.2: Chromatogram of kerosene separated in a stainless-steel micro-column using a
temperature programmed gas chromatography control method.

exhibits an individual peak with defining features including elution time, peak width (measured in

time units), and symmetry or shape of the peak.

The interaction rate between a given analyte and the stationary phase is a function of the

chemical passing through the column and the material used for the stationary phase; it is also influ-

enced by the temperature of the column. Just as a liquid will evaporate more quickly when placed

on a hot surface, each chemical becomes more volatile and, therefore, interacts less with the sta-

tionary phase as the column temperature increases. This increase in volatility leads to an increase

in the analyte’s rate of motion along the column length. Temperature is the primary variable used

to control GC separations as it strongly affects the analyte velocity. In order to achieve accurate

and precise control of the column temperature, large, high performance convection ovens were

developed and are now standard for performing GC separations (Figure 1.3).
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Figure 1.3: (a) The Agilent GC oven used for the work presented in this thesis. Note the computer
tower behind the oven as a size reference. (b) A fused silica capillary column mounted inside the
GC oven.

Initially, GC separations employed a constant uniform temperature along the length of the

column for the entire analysis, a method referred to as isothermal gas chromatography (ITGC).

The temperatures used in early GC runs were relatively low, often below 100 °C, due to the high

volatility of the chemicals of interest [3]. However, ITGC presented a significant problem for

chromatographers. The first analytes to elute form sharp peaks, but each subsequent peak would

elute with an increasingly broader width that is spaced increasingly further from the preceding

peak. This limitation made it difficult to separate and analyze mixtures with chemicals that span

a broad range of volatilities. In order to address this issue, a new temperature control method was

developed in which the column’s temperature was increased throughout the separation run. This

new method, termed temperature programmed gas chromatography (TPGC), offered the advantage

of maintaining sharp peaks and repeatable elution times a wide range of volatilities.

Apart from the advances described, the nature of GC devices has undergone relatively

little change. Despite the remarkable capabilities of modern GC ovens, one of their significant

drawbacks is their lack of portability. This lack of portability is a result of both the size and weight

of GC ovens as well as the power required to heat the large space inside. Since the 1970’s an

5



active field of research has been to develop methods that would allow for a reduction in size and

increased portability. It is often desirable that chromatographic measurements be made on-site

due to rapid sample degradation and the desire for immediate results. Two noteworthy approaches

have emerged to address this problem of miniaturizing GC: (1) the application of microfabrication

techniques to develop miniaturized GC columns and (2) the use of thermal gradients along the

length of the GC column to aid in focusing analytes and increasing speed of analysis.

1.2 Column Miniaturization

Research into the development of miniaturized GC columns, referred to as micro gas chro-

matography (µGC), became an active field of research following the development of microfabri-

cation techniques for integrated circuit production. The first work to create a µGC column was

published in 1979 by Terry et al. where the column was etched in a silicon wafer [5]. Since that

time, a majority of the work in µGC has focused on the use of silicon wafers as the column sub-

strate [6–9]. Throughout the years, several other materials have emerged as substrate alternatives,

including glass [10], ceramic [11], metal [12], and organic polymer [13]. One inherent limitation

in the development of µGC columns in alternate substrate materials is that progress is dependent on

available microfabrication processes. For this reason, silicon has remained the dominant substrate

in the field of µGC, as significant advances have occurred in silicon microfabrication techniques

for the field of microfluidics and the growing number of computational devices [14].

Although much progress has been made within the field of µGC, one difficulty it presents

is its inherent limitations in column length. In traditional GC, devices with capillary columns that

provide good separation performance are rarely shorter than 15 m. In µGC, it is common practice

for columns to be in a serpentine, winding pattern in order to decrease its footprint. However, one

limitation in µGC column fabrication is the tradeoff between column footprint size and column

length. In using microfabrication techniques to produce µGC columns, an increase in the length

of the column results in a corresponding increase in the column footprint. This limitation makes it

impossible to place a column of a typical length (≥15 m) on a substrate with an area less than 32

cm2. Despite this limitation, research in the field of µGC has shown that although microfabricated

columns cannot perform as well as conventional GC columns, they are able to successfully sepa-

rate a wide array of volatile and semi-volatile compounds on columns with very small footprints.
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Despite the non-ideal separation characteristics of µGC columns, repeated demonstration of µGC’s

success in miniaturizing GC columns indicates it could be a promising method for allowing for the

miniaturization of GC devices.

1.3 Thermal Gradient Gas Chromatography

In order to capitalize on the miniaturized nature of µGC columns while avoiding the draw-

back of limited column lengths, a method for improving chromatographic separation over short

distances is required. One such method is to apply a decreasing thermal gradient along the length

of the column. This temperature control method, referred to as thermal gradient gas chromatog-

raphy (TGGC), is intended to focus peaks and improve separation performance, especially when

chromatographic conditions are not ideal, such as with shortened columns, poor injections, and

stationary phase inconsistencies, to name a few.

The fundamental principles behind TGGC are the same as those for conventional GC. As

mentioned, the various chemicals in a sample have different volatilities and absorptivites, and

each compound’s volatility increases with temperature. In other words, at higher temperatures the

molecules of a chemical tend to interact less with the stationary phase causing them to spend more

time in the flowing mobile phase and move through the column more quickly. In TGGC, a negative

thermal gradient is applied along the column such that the column temperature decreases in the

direction of flow. Consider the behavior of a single analyte injected into a column with a decreasing

temperature gradient. Due to the high temperature at the inlet, the analyte tends to remain in the

mobile phase causing the chemical to initially move rapidly along the column. However, as the

analyte moves through the column, the temperature decreases due to the decreasing gradient along

the column. This decrease in temperature causes a corresponding reduction in velocity as the

molecules of the analyte begin to interact more frequently with the stationary phase. Assuming

the temperature is continuously decreasing along the column, the temperature at the back of the

analyte separation band will always be higher than the temperature near the front. The result of

this temperature difference between the front and back of the analyte band is that the analytes near

the back will move more quickly than those near the front leading to a focusing of the analyte band

as illustrated in Figure 1.4. As each chemical has a distinct volatility and level of interaction with

the stationary phase, the thermal gradient not only serves to focus the sample but also allows for
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Figure 1.4: A graphical representation of the TGGC focusing effect.

separation of the various analytes in the mixture. Since these benefits are a function of the gradient

and not the length of the column, TGGC provides the potential of improved chromatographic

performance in shorter columns.

The use of thermal gradients for focusing analyte bands was first reported by Zhukhovitskii

et al. in 1951 [15]. These initial experiments used a packed column and a mobile heater that could

be moved along the column length. After a sample was injected into the column, the heater was

moved back and forth repeatedly along the column with the heater increasing in temperature with

each pass in order to elute individual chemicals in the mixture. For nearly two decades following

these initial experiments other published TGGC work used a similar mobile heating method as

it was believed that only moving gradients were valuable in separating chemical mixtures [16].

This remained the case until Fatscher and Vergnaud published the first work demonstrating that

a stationary gradient could successfully separate analytes [17]. Throughout the 1970’s the fo-

cus in TGGC research shifted from mobile heaters on packed columns to stationary gradients on

capillary columns [18,19]. In 1997, a controversy was published by Blumberg refuting the conclu-
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sions of Jain and Phillips and claiming that his theoretical model of TGGC separation proves that

the resolution of TGGC cannot outperform that of ITGC [20–23]. Despite this prediction work

has since been published that demonstrates better performance from TGGC than both ITGC and

TPGC [24]. The reason for this apparent discrepancy is that Blumberg’s model assumes idealized

conditions, namely a perfectly focused injection, and a stationary phase with constant properties

which are impossible to achieve. Despite this published controversy, the work of many researchers

has demonstrated that TGGC provides adequate focusing to correct for non-ideal GC conditions.

Of particular note for the present work are studies that have demonstrated TGGC’s capability to

successfully separate mixtures on columns with an average length of 2.1 m [20–22, 24–28].

TGGC provides the capability of improving separation performance for short columns.

Since one of the primary drawbacks for µGC is column length limitations, TGGC presents itself

as a viable option for improving the performance of µGC columns. Over the past five years, work

at Brigham Young University (BYU) has been conducted to develop µGC devices using thermal

gradients to optimize their separation performance. In 2014, Wang et al. published work where

a 1.4 m serpentine column was run under both TPGC and TGGC conditions. A mixture of non-

polar and polar analytes was analyzed on the column (polar compounds have a tendency to elute

with poor peak shape). Results demonstrated that TGGC is able to improve peak shape for both

polar and non-polar compounds, with the more dramatic improvement being seen for the polar

compounds. This work is significant in that it provides evidence that TGGC helps to improve

separations using µGC columns [27]. In 2017, Ghosh et al. published a report on the use of TGGC

with a 5.9 m long column etched in silicon and mounted to a heater/clamp assembly. One of the

primary goals of the work was developing new methods of interfacing with µGC columns to allow

higher maximum temperatures for the elution of less volatile compounds. In this report, n-alkanes

up to tetracontane (C40) were eluted, an impressive achievement in a microfabricated thermal

gradient gas chromatograpy (µTGGC) system [29]. This work also supports the conclusion of

Wang et al. that TGGC serves to improve peak shape when compared to TPGC.

1.3.1 Theoretical Treatments of TGGC

An important supporting area within GC is the development of theoretical models to predict

the behavior of GC devices. As discussed previously, the development of a theoretical model
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for GC in packed columns led Golay to recognize the potential value of using an open tubular

column [30]. Thus, a correct theoretical model can not only serve to aid in understanding the

performance of an existing system, but also guide future developments. For both ITGC and TPGC

methods, theoretical models are well understood [31,32], however, the work that has been done to

model TGGC performance has been limited at best, as will be shown.

Essentially, the driving mechanisms for TGGC separations are a particular case of those for

ITGC, thus much of the foundation for modeling TGGC was laid by the work done in developing

ITGC theoretical models [33–35]. Of particular note, the work of Giddings explored the effects

of minor deviations from uniform ITGC conditions [36]. The first two theoretical treatments of

TGGC reported in the literature were by Rowan in 1979, and Duarte and McCoy in 1982. Results

of these works deal primarily with the influence of positive instead of negative thermal gradi-

ents [37, 38]. It was not until 1992 that the first theoretical comparison between ITGC and TGGC

using negative thermal gradients was performed [39–42]. In their work, Blumberg et al. devel-

oped a model of analyte behavior based on the mass diffusion equation and concluded that TGGC

could never exceed ITGC in performance. However, it is noteworthy that the model developed

by Blumberg et al. required that the conditions for separation be ideal; i.e. the injected sample

was required to have zero width and a finite area (a Dirac delta function), a linear gradient along

the column, and constant stationary phase parameters, which is unrealistic in all cases. In 2014,

Tolley et al. published an approach to solving for the position, separation and concentration of GC

mixtures which allows for non-idealized conditions not capable in the Blumberg model [43]. Tol-

ley et al.’s approach, referred to in this work as the transport model, is unique because it employs

stochastic methods computing simple equations for a large number of molecules instead of solving

complex and limiting differential equations. Tolley et al.’s 2014 publication provides preliminary

results of the transport model along with qualitative comparisons to experimental ITGC separation

results obtained by Wang et al. [27]. In order to validate the transport model, however, direct,

quantitative comparisons must be made between the transport model and GC separation data from

experiments. Once validated, a transport model of this kind would serve as a useful tool in studying

various TGGC systems and thermal conditions that could be used to enhance TGGC performance.
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1.4 Thesis Objectives

Considering the potential advantages of µGC and TGGC, the combination of these two

fields offers promising capabilities in creating a portable GC system. µGC research has shown

that microfabricated GC columns can serve as functional replacements for conventional capillary

columns and require a significantly smaller footprint. Work in the field of TGGC has repeat-

edly demonstrated that thermal gradients are able to significantly improve chromatographic per-

formance for short columns as well as correct for other non-ideal conditions [20–22, 24–28]. A

thorough investigation of approaches that combine both of these fields is absent in the literature.

The present work seeks to understand and explore the capabilities achievable by combining these

two technologies. This work is also intended to validate the stochastic transport model developed

by Tolley et al. using experimental results and then use this transport model to study the potential

of µTGGC devices.

In light of the problem under consideration and the insight gained from preceding work,

the objectives for the current research are as follows.

1. Physical System Development: Develop an adaptable thermal control and data acquisition

system capable of recording temperature and power consumption data for various µTGGC

systems.

2. Thermal Model Development: Develop and validate computer simulations of thermal condi-

tions for experiments performed on µTGGC systems using experimental data from the first

objective.

3. Transport Model Validation and Application: Use chromatographic and thermal model data

to calibrate and validate a GC transport model and use the validated GC transport model to

compare performance between various modes of TGGC.

This work represents the first fully validated model of a µTGGC system. It is a significant

advancement in the fields of µGC and TGGC specifically as well as in the field of GC generally.

It both sets the stage for accurately analyzing GC performance in non-ideal GC systems as well as

permits the exploration of potential advances in GC system design via computational means.
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CHAPTER 2. EXPERIMENTAL SYSTEMS

2.1 Preceding Work

Previous iterations of an experimental thermal gradient system at BYU involved the use

of a micro-machined column in silicon that was interfaced with a custom heating and clamping

mechanism (Figure 2.1). A basic control system had been developed to establish and ramp the

thermal gradient along the chip. Although the system was shown to provide successful separation

of chemical mixtures, it was difficult to control and did not permit automated data collection of

temperature and power for post-run analysis.

Figure 2.1: Photo of previous iteration of the µTGGC system both with and without insulation.

In light of the shortcomings inherent in the control system of this previous iteration, and

given the apparent needs for this work, it was determined that a new thermal and power control

system with data acquisition (DAQ) functionality would be developed. As it was understood that

the column shape and conditions used in experiments would be subject to change, it was clear that

a versatile control system that could be applied to various designs would need to be developed. To
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allow for reliable control of the thermal gradient, the controller would need to accurately control

multiple heaters simultaneously while reliably rejecting input disturbances. Accurate temperature

and power consumption data acquisition would need to be included in the control system to enable

thermal and transport modeling of the experimental conditions. Finally, to ensure that this system

would be user friendly and the data would be accessible, a PC user interface would need to be

developed to integrate these functions.

All chromatographic data was recorded by interfacing the thermal gradient column with

an Agilent 6890 GC oven (Figure 1.3). Helium was selected for the carrier gas in all GC runs

and analytes were detected using a flame ionization detector (FID). Although parameters were

occasionally changed to suit the needs of a specific run, the following parameters were generally

used for the GC separations. The carrier gas flow rate was set to 1 mL/min; the GC oven would

automatically adjust the inlet pressure to provide the desired column flow. The injection port where

the chemical mixtures are introduced into the column and detector on the oven were both set to

250 °C for most runs. The split ratio employed was usually between 5:1 and 20:1 depending on

the concentration of analytes in the sample being used, and in all cases, 1 µL of the sample mixture

was injected for each run.

As the overarching goal of the work by the TGGC group at BYU is to improve the perfor-

mance of a µTGGC system, multiple designs were considered throughout the span of the project.

In improving a µTGGC system design, there are multiple competing requirements that must be

balanced in order to optimize GC separation performance. Some of these competing requirements

include column/analyte interaction behavior, ease of manufacture, oven interfacing methods, and

thermal transport properties of column material, to name a few. The interplay of these requirements

led to the development of several µGC column designs as outlined in the following section.

2.2 µTGGC System Design and Components

2.2.1 Serpentine Column in Silicon

Prior to the start of the present work a µTGGC system etched in a silicon wafer had been

developed by students in the BYU Electrical and Computer Engineering Department. The column

is fabricated by etching a serpentine column into a 500 µm thick Si wafer following a layout similar
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to that shown in Figure 2.2. Diffusion bonding was then used to attach another 500 µm thick wafer

on top of the etched wafer, forming an approximately 5.8 m long channel with a rectangular cross

section (158 x 80 µm). The completed chip was baked in an oven to allow the surface of the silicon

to oxidize making it more chemically inert and electrically insulated.

Figure 2.2: Dimensions of serpentine channel etched into the silicon wafer.

Initial designs for heating employed a clamping mechanism with a cartridge heater that

relied on mechanical pressure and a polyimide gasket to interface the column and transfer lines.

Subsequent designs have used a polyimide resin to connect the transfer lines directly into the

column from the edge of the chip. Connection to the column from the side in this way enabled

a flat, open surface for heater attachment. Silk-screened, serpentine heaters using an electrically

conductive silver paste (ESL 599-E) that was cured using a temperature ramp method between 125

°C and 450 °C over a span of 25.5 minutes was used to achieve thin-film, resistive heating directly

on the wafer (Figure 2.3).
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Figure 2.3: Photo of a finished silicon chip column with side transfer line connections.

A static coating method was developed to prepare columns with complex geometries. The

method consists of connecting the inlet transfer line to a syringe pump that has been filled with a

stationary phase solution containing 1% vinyl, 5% phenyl, 94% methylpolysiloxane (SE-54) and

1% dicumyl peroxide (as a crosslinking agent) in n-pentane (weight for weight) that has been

degassed using sonication. The outlet end of the chip is left open to ambient air pressure while the

column is slowly filled with the mixture. Once the stationary phase solution reached the end of

the outlet transfer line, the outlet transfer line was closed with an RTV silicone sealant and capped

with a silicone septum. To prevent any gas bubbles from damaging the coating, the filled column

was pressurized using He at 689 kPa for 1 hour. The inlet of the column was then attached to a

vacuum pump to evaporate the solvent and allow the static coating to remain. The stationary phase

was cured by placing the Si column in a GC oven at 250 °C overnight. Following stationary phase

curing, the column was conditioned by baking the chip at 350 °C for several hours. This treatment

helped to lower the baseline signal from the FID and improve peak shape [29].
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Figure 2.4: (a) The back side of the column with the ceramic coating and surface heaters added,
(b) the stainless-steel column with the fitting attachments added before being coated with
ceramic, (c) an SEM image of the column cross section.

2.2.2 Serpentine Column in Stainless-Steel

A second µGC column employed in the research was a stainless-steel column with an

etched channel in a serpentine arrangement. The stainless-steel columns were produced by VACCO

Industries using a proprietary method of stacking numerous thin layers of stainless-steel and fus-

ing them together via diffusion bonding. Several of the layers included in the stack were bonded

together and a semicircular serpentine trench with a radius of 57 µm (See Figure 2.4) was etched

into them, forming a 9.6 m long channel. Inlet and outlet holes were also etched into the stainless-

steel stack; fittings were brazed coincident with these holes for attachment of transfer lines. The

addition of fittings allowed for a simple interface using a ferrule and nut so the transfer line could

be removed and replaced as needed. The exterior of the bonded stainless-steel stack was coated in

an electrically insulating ceramic coating (Cerakote C-7600 Glacier Black at Full Blown Coatings

in Sandy, UT) to allow thin-film heaters to be silk-screened to the back of the column using the

same method described above for heating serpentine columns in Si. The columns were then deac-
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tivated by Silcotek using a proprietary silicon coating called SilcoNert 2000. After deactivation,

the column was coated with a stationary phase using the same method described above for silicon

columns.

2.2.3 Spiral Column in Aluminum

A third µGC column employed a spiral column design in which the column spiraled radi-

ally outward in order to capitalize on radial conduction to achieve a smooth column gradient. The

system consisted of a 0.51 mm thick aluminum disk with a diameter of 152.4 mm (6 in). A spiral

groove (0.44 mm wide and 0.38 mm deep) was machined by the BYU Precision Machining Lab-

oratory into the aluminum plate starting at a radius of 5.8 mm and ending at a radius of 40.5 mm.

The channel spiraled out 1 mm every 2π radians, resulting in a column length of approximately 4.8

m. After machining the spiral, the chip was coated on its back side with the same electrically insu-

lating ceramic coating used on the stainless-steel column described above. A circular heater was

then silk-screened onto the back of the column using the same methods as described for the ser-

pentine columns in silicon and stainless-steel. A stainless-steel, open tubular column (pre-coated

with a stationary phase) from Restek (4.8 m x 100 m) was then placed in the spiral groove and held

in place using Kapton tape (Figure 2.5).

Figure 2.5: Images of the stainless steel capillary column in the spiral groove of the Aluminum
disk and the ceramic coated backside of the disk with a printed surface heater.
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2.2.4 Transfer Lines and Insulation

For each microfabricated system discussed above, the transfer lines between the system and

the GC injector and detector on a commercial GC system should be held isothermal to ensure that

the column separation characteristics are preserved. Isothermal transfer lines were achieved using

lengths of coiled nichrome wire coated in an electrically insulative e-glass (electrical grade glass)

coating. In some cases, the transfer line was held within a thin copper tube which was subsequently

coiled in the same nichrome resistive wire (Figure 2.6). The addition of the copper tube decreased

temperature variations along the length of the transfer lines. In order for each system to operate at

elevated temperatures (up to 300 °C) for extended periods of time, an insulating polyimide foam

(Solimide HT-340) was selected.

Figure 2.6: A photo of the nichrome wire wrapped around copper tubing. Note that for many of
the experiments only nichrome wire was used to heat the transfer lines with no copper in between.

2.3 DAQ and Controller

2.3.1 Requirements

Given that several TGGC physical systems would be tested, control and data acquisition

systems needed to be highly adaptable to ensure they could operate with the different µGC systems.
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For this reason, the system needed to allow for modular attachment of the components that were

controlled (cartridge heaters, resistive wire heaters, surface heaters, and cooling fan). The design

of the control system code also had to be such that it could accommodate control of various µGC

system arrangements.

The control system also needed to control various components simultaneously, which re-

quires that the system read data from multiple feedback thermocouples and implement control

algorithms at a sufficient speed for accurate control. The user would also need the capability of

changing set points for the various components without having to interrupt the control algorithm,

and allow rapid, live communication with the hardware.

In addition to the feedback thermocouples, data on three thermocouples and heater power

dissipation was to be recorded. This required that the system be able to read and record data

from more thermocouples than just those used for the feedback control of the various heating

and cooling elements. Similarly, the system needed to be capable of gathering data on the power

consumed by each heating/cooling element in the system. All of the temperature data collected

from the hardware had to then be communicated back to the user interface software and saved in a

data file so they could be accessed for post GC run analysis.

2.3.2 DAQ and Controller System

The system was controlled by an Arduino Mega microcontroller as it allowed for analog

data collection from up to 16 inputs simultaneously. Python was used for developing the graphical

user interface (GUI) that allowed for control of the various heating and cooling elements (Figure

2.7). Serial communication was used to send user control values to the Arduino and gather data sent

by the Arduino. Data was saved as a comma separated value file under a user specified name and

location. The Arduino code consisted of functions allowing for reliable communication with the

python script, proportional integral (PI) controllers, and data acquisition and processing routines

(See Appendix A for code).

In order to gather temperature data, K-type thermocouples were connected to Adafruit

AD8495 thermocouple amplifiers. To minimize wire clutter, a board was produced with an array

of plugins for up to 16 thermocouples and connected to the Arduino via a ribbon cable as shown

in Figure 2.9 (Appendix B).
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Figure 2.7: Screenshot of the Python GUI used to operate the thermal control system.

The component control circuitry was more complex as it needed to both control the con-

nected components as well as gather data on power consumption for each of the components.

The control circuitry consisted of a DC/DC solid state relay (SSR) connected to a power source

and controlled via a pulse width modulated (PWM) signal running at 120 Hz from the Arduino.

The PI controller implemented on the Arduino was shown to match given set point temperatures

within ± 3 °C (Figure 2.8). It was determined that the best method for gathering power data for

each component was measuring the current and voltage drop for each component. These voltage

and current data could then be used in conjunction with the control PWM inputs to determine the

average power consumed by each component as a function of time. The voltage data circuitry

consisted of a voltage divider with resistors selected such that the voltage fed to the Arduino never
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exceeded 5 V (the Arduino’s analog-to-digital converter’s maximum capability). The current data

circuitry consisted of a shunt resistor with voltage dividers on each end of the resistor. The volt-

ages from these dividers are fed to a differential amplifier that was tuned to amplify the difference

between the voltages so that sufficient resolution could be achieved over the Arduino’s 5 V analog-

to-digital range (Figure 2.9). In post processing, this difference could then be calibrated to the

current flowing through the component, or could be computed directly using the resistance of the

shunt resistor (Appendix B). As the signal through each component’s circuitry was affected by

the PWM signal opening and closing the SSR (which at times experienced aliasing with the DAQ

reading frequency), an algorithm was developed and implemented on the Arduino to select the true

voltage or current value from data with high levels of noise (Appendix C).

Figure 2.8: Demonstration of controller following two input set points simultaneously. Plotted
data corresponds to the chromatogram shown in Figure D.1.
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Figure 2.9: The colteroller/DAQ system connected to an early TGGC system. The large
protoboard in the center is the thermocouple connection circuitry and the board on the bottom left
is the relay and power data acquisition circuitry.

For the spiral column system (Section 2.2.3), it was determined that the ability to cool the

edges of the plate would be helpful in establishing a steeper thermal gradient. A custom air duct

was designed and 3D printed to direct air flow from a 120 mm square 24 volt computer fan to

the edges of the aluminum disk (Figure 2.10). A circuit was also implemented between the power

control board and the fan that stepped the voltage down from the power supply input voltage

(approximately 35 V) down to 24 V which was the fan’s maximum voltage rating.

2.3.3 Data Collection

The thermal control and DAQ systems gathered data and communicated them back to the

user interface to be saved in a CSV file. In addition to time, the DAQ system reported the following

data for each of the components in the system: feedback temperature (bit), temperature set point

(°C), control PWM value (unitless, out of 255), voltage (bit), and current (bit). Functionality was
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Figure 2.10: Assembled spiral system atop the fan duct and cooling fan.

added to the Arduino and Python code to allow for the addition of more thermocouples that were

not associated with a controller. Data for these additional thermocouples was also reported in units

of bits. As seen from the units above, all but the temperature set point had to be converted to

new units to be usable in post processing. Collection of raw data in this form did not affect the

Arduino’s performance.

The data from the feedback thermocouples and additional thermocouples were reported in

bit values between 0 and 1023. These values corresponded to the maximum and minimum volt-

ages the Arduino analog-to-digital converter was able to process (5 V and 0 V, respectively). In

order to convert these data to a useable temperature scale, the data were transformed into their volt-

age values and then converted using a function provided by the Adafruit thermocouple amplifiers
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(Equation 2.1) [44]. Benchmark tests were run in an ice bath and boiling water to confirm that the

conversion was accurate.

T (°C) =
5
Ä

bits
1023

ä
−1.25

0.005
(2.1)

Data for voltage and current were recorded in Arduino bit values from the µTGGC system

and converted using a linear regression to the voltage and current consumed by each of the heaters.

Once a calibration for these values was found, the total maximum power consumed by the heater

was computed and then scaled using PWM control values. Using an oscilloscope, it was found that

the voltage response of the SSRs experienced linear decay when the control signal dropped to zero.

To find the average power as a function of the PWM input, the energy was found for one period of

the PWM signal by integrating power over one PWM signal. That energy value was then divided

by the period time of the PWM to find average power as a function of PWM value, voltage, and

current. By using the data on heater power consumption in conjunction with the computed PWM

power percentage a 95% confidence interval for the estimate of the mean power consumption of

the µTGGC system was computed and used to check the power used in the thermal simulations

(See Appendix E for notes on heater power consumption).

Along with the data provided by the DAQ, the chromatographic separation was recorded

using software for the Agilent GC oven. The software recorded time (min) and GC signal strength

(picoamps) as a CSV file for use in post processing.

2.4 Experimental Operation

For each of the µTGGC systems described above, numerous separations were run in order

to refine the thermal system and improve performance. Sample results from each of the systems

are shown below to demonstrate their capabilities.

The first µTGGC device on which the controller/DAQ was used was a replica of the µTGGC

used by Ghosh et al. but with no column (Figure 2.11) [29]. The purpose of this system was to be a

benchmark for developing the thermal modeling capabilities required for future systems. The sys-

tem was also important as it was a valuable intermediate stage in the development and refinement

of the controller/DAQ system implemented on future µTGGC systems. In this simplified experi-

24



Figure 2.11: Replica experimental system partially insulated with thermocouples attached to the
silicon surface.

mental system, a silicon wafer with no internal column was placed in the clamp housing and nine

thermocouples were bonded to the chip’s surface. As the wafer did not have an internal column, no

chromatographic separations were run on this system. However, the thermal data extracted from

the system were useful in advancing the controller/DAQ and thermal modeling.

The best separation performance for columns etched in Si was obtained using the previous

heater/clamp design with a cartridge heater to establish the gradient (Figure 2.1). The interfacing

method was via side connected transfer lines as described in section 2.2.1. The system was found

to be unable to separate compounds heavier than C30 and the peak quality deteriorated with in-

creasing analyte mass. This limitation in separating heavier analytes was likely due to the presence

of cold spots along the transfer lines which had a significant negative influence on peak shape and

separation performance. An additional chromatogram for this configuration is found in Appendix

D.

Serpentine columns created in stainless-steel were pursued to alleviate challenges in inter-

facing with transfer lines. As will be discussed in Chapter 4, experiments performed with stainless-

steel columns were used as calibration data for the GC transport model. These data were gathered
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Figure 2.12: Chromatogram of separation of a C10 - C40 mixture on the silicon column via a
TGGC separation method. Thermocouple positions corresponding to the base and tip
temperatures are indicated in Figure 3.11a

by injecting C12-C14 at numerous pressure and isothermal temperature settings as well as under

TGGC conditions. The elution times and peak widths at half max were then extracted from the sep-

aration data for calibrating the transport model. A chromatogram from this separation is provided

in Appendix I.

The serpentine stainless-steel column was also run under TGGC conditions using screen-

printed surface heaters. This system was able to separate samples of C8-C20 when both primary

and secondary heaters were used (Figure 2.13). Other separations were also performed on the ser-

pentine stainless-steel column under temperature programmed gas chromatography (TPGC) con-

ditions demonstrating the quality of the coating within the column. It was found, however, that

the low thermal conductivity of stainless-steel made it difficult to establish a gradient with a tem-

perature difference near 50 °C along the column length, which is thought to be the ideal condition

for good TGGC separations. Another shortcoming of the stainless-steel was that the nature of the

serpentine configuration gave rise to temperature oscillations along the length of the channel. As

a result, a spiral column configuration in aluminum was pursued with the goal of removing the
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Figure 2.13: Chromatogram of separation of a C8 - C20 mixture on the stainless-steel column via
a TGGC separation method. Thermocouple positions corresponding to the base and tip
temperatures are indicated in Figure 3.12a

oscillatory behavior observed in serpentine column configurations via axisymmetric conduction

in a radial system, as well as achieve temperature differences closer to the ideal condition (see

additional chromatogram, Appendix D).

Finally, numerous separations were performed using the aluminum spiral column with and

without forced convective cooling at the edges. The fan cooling system showed promise in making

steeper gradients possible at lower temperatures, but the non-linear nature of the fan under PI

control made smooth control at low speeds difficult, resulting in erratic peak elution times over

portions of the chromatographic run. The system also exhibited poor performance due to cold

spots in the transfer line. However, the addition of a copper sheath and resistively heated transfer

line significantly reduced cold spots and allowed for the separation of C10-C40 (Figure 2.14) (see

additional chromatograms, Appendix D).
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Figure 2.14: Chromatogram of separation of a C10 - C40 mixture on the spiraled column in
aluminum via a TGGC separation method. The column base temperature corresponds to the
center of the aluminum disk and the column tip temperature corresponds to where the spiraled
column breaks contact with the disk at the outer edge of the spiraled portion (see Figure 2.5)

2.5 Conclusion

In order to successfully control and gather data on various µTGGC systems a combined

controller and DAQ system was created. It was shown to successfully control complex systems

and data was recorded for future use. When µTGGC systems were attached to a conventional GC,

chromatographic separation data were recorded. These data, along with the temperature data could

then be used to benchmark and validate the thermal and GC transport models.
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CHAPTER 3. THERMAL MODELING

3.1 Motivation

Although useful, the discrete temperature measurements from experimentation were insuf-

ficient to fully characterize the temperature gradient. A higher spatial fidelity of temperature data

on the µGC column would improve decision making in future iterations of the system and enable

GC transport modeling of actual experimental conditions. To make this possible a computational

thermal model of each system was developed to provide sufficient spatial temperature resolution

for the aforementioned goals. An example of the high temperature data resolution that is made

possible through the use of computational modeling is shown in Figure 3.1.

Figure 3.1: An example of the high resolution (≤ 0.5 mm) temperature data that is acheivable
through the use of a computational thermal modeling package.
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3.2 Modeling Methods

Given the complexity of the µTGGC system and the changing system design, a versatile

thermal modeling tool using the CFD software package STAR-CCM+ was selected. This approach

offered physics-based thermal modeling and the ability to accommodate complex geometries. Ge-

ometries for thermal models of the TGGC systems were developed using Solidworks and imported

into STAR-CCM+ for mesh computation and the development of the thermal model.

After loading a CAD model of a system of interest into STAR-CCM+, time (steady v.

unsteady) and energy (segregated v. coupled) solving methods were selected and properties for

the various materials used in each simulation were specified. A license to the Material Proper-

ties Database (MPDB) was purchased, providing access to a wide array of material properties

which had been compiled from numerous peer reviewed sources. Aside from the Solimide foam

properties, this database was able to provide all of the material property information used in the

simulations.

In determining a proper mesh size, multiple factors were taken into consideration. The

first consideration was the time required for simulations. Cutting the grid size in half results in

an approximately four-fold increase in cells within the mesh, leading to an approximately four-

fold increase in required computational time and it was observed that a mesh size finer than 0.25

mm was too small. However, it was found that for the convective boundary condition, when the

grid size got too high the simulation became unstable, providing an upper bound for the mesh of

approximately 4 mm that could be used in the simulation. These two limitations indicated the

bounds for the mesh size that could feasibly be used in the simulations.

The next step in the model development process was the determination of proper boundary

conditions for the model. Convective boundary conditions combined with radiative heat loss (as-

suming diffuse grey behavior) was sufficient to correctly model heat loss from external surfaces,

without the added time and complexity of modeling the convective flows. The convective coef-

ficient (h) was computed using an average of empirical correlations for natural convection from

flat surfaces in various orientations. In order to simplify the relation for h used in STAR-CCM+

a second order polynomial fit was made on the average convection coefficient as shown in Fig-

ure 3.2 and Equation 3.1. To maintain accuracy in the simulations, the convection coefficient was

kept temperature dependent. A second order fit was used instead of a higher order fit to minimize
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the computational load introduced by the convective boundaries, thus reducing the time required

to complete simulations. Despite the apparent discrepancy between the empirical convection co-

efficient curve and the second order fit, it was found that the fitted convection coefficient values

provided accurate results. This was due to the convective boundaries occurring on the outer sur-

faces of the insulation, which was far enough from the column to smooth out any error introduced

by an imprecise convection coefficient. Radiation was not lumped into the convection coefficient,

which allowed for more accurate simulation conditions as well.

Figure 3.2: The average convective coefficient for natural convection from empirical correlations
and a second order fit.

h =−6.4464×10−5(T 2)+0.082357(T )−10.6804 (3.1)

Another aspect of the thermal transport that was found to play a significant role in the

results given by the models was contact resistance between the column substrate and the Solimide

insulation. Experiments were performed to determine the appropriate contact resistance for these

interfaces as discussed below.

As all heat inputs to the experimental system were achieved using resistive heating, the

primary method for heat input in the simulations was to specify the heat flux at heating bound-
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aries. Power data reported by the controller/DAQ provided close but not sufficiently close tem-

perature agreement with experimental results. Thus, an alternate method was developed in which

the temperatures recorded from the experimental run were read into STAR-CCM+ and a virtual PI

controller was implemented in the simulation such that the power output of the heater was depen-

dent on the desired temperature of the heater at any point in time. The power data taken from the

experimental system were then used to ensure that the power used in the simulation was within

statistically significant bounds (Appendix E). For simulation of the serpentine silicon column in

the heater-clamp assembly, a uniform temperature boundary was used. The experimental heat

source for this system was a resistive cartridge heater that was placed in the Kovar clamp such that

a uniform temperature boundary (where the clamp interfaced with the silicon) provided adequate

agreement between the model and experimental system.

In the case of the stainless-steel simulation, an additional adjustment to the contact resis-

tance between the column and insulation was required. In order to make electrical contact with

the secondary (or larger) heater (Figure 2.4) alligator clips had to be connected to a portion of

the column that was under insulation. The presence of these clips created an air gap between the

column and insulation. In order to account for this air gap in the simulation a contact resistance

for the air gap was created based on the model for thermal resistance for conduction through a

one-dimensional plane wall [45]. The air gap resistance factored in the temperature of the air in

the gap (Tair) to determine the thermal conductivity of air (kair) as well as the height of the air gap

(Lair) as a function of position along the column (x) where the air gap started halfway down the

length of the column (x1) (Equation 3.2). The height of the air gap was determined to be dependent

on x due to the sloped lower surface of the insulation sitting on the heater contact alligator clips.

Note in Equation 3.2 that F = 6.515×10−5 W/mK2 and G = 0.00663 W/mK.

R′′air =
Lair

kair
=

0.0019(x− x1)/(0.171− x1)

FTair +G
(3.2)

An alternate approach to thermal modeling of the aluminum spiral column system was also

employed. Due to the simplicity of this system’s geometry, a combination of finite difference

methods and analytical methods was used to solve the heat diffusion equation. The temperature

of the column was modeled using a transient finite difference approach and a Python solver was
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developed to compute the gradient. The energy loss from conduction into the insulation was mod-

eled using an analytical solution to the heat diffusion equation. Although not used for transport

modeling, this thermal model demonstrated that a radial system could significantly reduce temper-

ature oscillations along the length of the column and it indicated the shape of the resultant gradient

along a spiral path milled into the aluminum disk (Figure 3.9).

3.3 Validation Methods

For each of the thermal models, a process for validation against experimental data was

performed to ensure that the spatial and temporal data provided by the thermal models were rep-

resentative of the µTGGC system. Although the particulars of validation for each of the systems

were unique, the general approach was similar. After specifying geometry and an initial simula-

tion, the data reported by the simulation would be compared to the associated experimental data.

The factor of interest for validating the simulations was the difference in temperature between the

experiment and model, as measured at the locations where the thermocouples had been placed in

the experiments (Figure 3.3). Observing the difference between the thermocouple and simulated

Figure 3.3: Comparison of experimental and modeled temperatures for the silicon column. Only
data for the temperature of the primary heater ramping from near room temparature to 225 °C are
shown.
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Figure 3.4: Reported value [46] and experimental data for Solimide thermal conductivity.

temperatures over time allowed for effective identification of weaknesses in the model. After each

run conditions would be altered as needed (e.g. contact resistance, mesh size, boundary condi-

tions, heat input, etc.) and the simulation would be run again. Numerous iterations were run in this

manner for each system to minimize model/experiment mismatch until the difference between the

two was within ± 5 °C.

One of the significant factors that was found to influence accuracy of the simulation was the

thermal conductivity of Solimide and contact resistance between the Solimide insulation and the

column. In order to determine values for both of these parameters an experiment was developed

in which a heat flux sensor and segment of Solimide foam were placed on top of a heated copper

block. The heat flux sensor was attached to the copper with a sheet of thermal contact tape to

eliminate variability in the heat flux passing from the copper to the sensor. The Solimide foam was

placed on top of the heat flux sensor with a series of thermocouples placed in the foam near the

center of the heat flux sensor to approximate one dimensional heat conduction through the foam.

The Solimide was weighed down using another copper block similar to the µTGGC experiments.

The copper block on the bottom was then heated to various temperatures and data were gathered

and Fourier’s Law of conduction was used to compute thermal conductivity for the foam (Figure
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3.4) and the definition of contact resistance was used to compute the contact resistance between

the heat flux sensor and the Solimide (Appendix G).

(a)

(b)

Figure 3.5: Results from the thermal model for alligator clip cooling: (a) Temperature distribution
resulting from the presence of clip cooling; (b) heat loss into an alligator clip fit as a function of
surface temperature.
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In the case of models that involved surface heaters, it was important to know the effects an

alligator clip could have on the heat loss from the surface of interest. To this end a simulation study

of an alligator clip attached to a surface was modelled in STAR-CCM+ (Figure 3.5a). The far edge

of the chip was set to various temperatures and the heat flux into the alligator clip was measured.

It was found that the relationship between chip temperature and alligator clip heat loss was linear

(Figure 3.5b). In order to avoid including the complexity of alligator clips in full simulations the

linear fit for alligator heat loss could be included as a surface boundary heat loss, thus retaining the

effects of the alligator clip without including the complex geometry it required.

Figure 3.6: Thermocouple computational model temperature data.

Another aspect of validating the thermal model that required particular attention was the

modeling of thermocouple temperatures. The thermocouples used in the experiments were pri-

marily attached to surfaces using strips of polyimide (Kapton) tape, and after initial comparisons

between experimental data and simulated results it was clear that the transient nature of the two

did not agree. However, it would not be feasible to include a thermocouple and Kapton tape in

the thermal model as it would significantly increase simulation complexity and time. In order to

determine how a surface’s temperature relates to the temperature of a thermocouple taped to the

surface a STAR-CCM+ model of a thermocouple taped to a heated surface was developed. This

simulation illustrated that although a thermocouple doesn’t match the temperature of the surface it
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is taped to under transient conditions, when the surface reaches steady state the thermocouple set-

tles at the same temperature as the surface (Figure 3.6). Knowing this made it possible to identify

whether or not a simulation and the associated experiment matched correctly even when comparing

experimental thermocouple data to the simulated surface temperature.

3.4 Design Study Models

As discussed, although the principal goal in developing thermal models was to obtain high

resolution temperature data on the µTGGC experimental systems, another important purpose of

the thermal models was to aid in making informed design choices for the development of future

µTGGC system designs. To this end, several models were developed to answer specific design

questions. One of these design exploration simulations was a series of simulations run to deter-

mine the proper size and resistance values of the heaters that would be printed on the stainless-steel

column. The models developed helped in avoiding printing poorly designed heaters on the expen-

sive columns that were fabricated. Results from the model developed are shown in Figure 3.7.

Figure 3.7: Heater sizes (black lines) and resultant temperature profile on the stainless-steel
column.

Following the completion of preliminary experimental runs on the stainless-steel column, it

was found that the separation quality was less than ideal and it was suspected that cold spots might

be the cause. One of the suspected causes for the cold spots was the heat loss into the alligator
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Figure 3.8: Two stainless-steel column footprint changes explored as part of the design study.

clips used on the corners of the column to connect to the surface heaters might be causing the cold

spots. To this end, a series of design study simulations were developed in an effort to minimize the

effect of the alligator clips on the column gradient. Two of the shapes explored in the design study

are shown in Figure 3.8. Ultimately it was determined that no change of alligator clip location

could improve the nature of the gradient.

The third round of design study thermal modeling was to help in determining a new di-

rection for the µTGGC project after tests on the stainless-steel column didn’t provide the desired

results. In the case of these models, a blended analytical and one-dimensional numerical approach

was employed to find the resultant column gradient along a spiral path. As is shown in Figure 3.9

the radial gradient along the disk was non-linear, however when coupled with the spiral column

path along the disk, the resultant column gradient was approximately linear. The result of this de-

sign study was the development of the spiral column system that has been discussed in the previous

chapter. Details regarding the creation of the model are given in Appendix F.
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(a) (b)

Figure 3.9: Results from the spiral system model with respect to both (a) the radial direction and
(b) along the spiral column path. In the case of the results shown above a single heater with a
diameter of 6 cm was run at a constant 35 W of power input. Note that in plot (a) only the
gradient over the range of the spiral column is plotted.

3.5 µTGGC System Modeling Results

Initial attempts at validating the STAR-CCM+ thermal models involved using data from a

system that had been rigged with nine thermocouples along with a thermocouple for heater control.

Comparison between the experimental data gathered from the thermocouples and the results from

the simulation showed good match-up (< ±5 °C error) (Figure 3.10). Although this approach

was helpful in developing the methods for system validation, as well as showing the shape of the

thermal gradient along a square chip, it was not representative of a system on which GC separations

were performed and thus there were no chromatograms to go with the validated thermal model.

The next system that was thoroughly validated was the silicon chip mounted in the heater/-

clamp assembly. The heater/clamp assembly was used for experiments because of delays in being

able to produce more silicon chips due to damaged equipment in the BYU clean room. Thus a

clamp that had been used in prior experiments was milled out to allow for transfer line attachment

at the side of the chip. The simulation geometry was simplified slightly from the system used in

experiments to improve simulation time. In the process of validating this model it was found that

the match-up of the simulation to the experimental data was highly dependent on the contact resis-

tance and thermal conductivity of the Solimide. Thus it was for this system that the experiments
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Figure 3.10: Comparison between simulation and experimental temperatures for the nine
thermocouple replica system.

on Solimide properties were performed. It was found that these experimentally obtained proper-

ties greatly improved the match-up between simulated and experimental temperatures on the chip

(Figure 3.11).

The last µTGGC system for which simulations were run were those done on the stainless-

steel chip. The experiments on the stainless-steel chip were run with the intent to validate the GC

transport model. It was in the process of validation for the stainless-steel chip model that it was

recognized that a sub-model for the temperature of a thermocouple would need to be developed.

Another noteworthy aspect of the simulation method was the refinement of power treatment in

the system. As all the heaters in the system were screen-printed on the chip they were much

more sensitive to errors in the power calibration. A more robust method for power calibration

was developed to make the modeling of this system more accurate. The comparison between

experimental and simulated temperatures for this µTGGC system is shown in Figure 3.12. Upon

completion of this model the temperature data was extracted and used for experiments on the GC

transport model.
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(a) (b)

Figure 3.11: Results from the thermal model for the silicon column: (a) Temperature distribution
along the silicon column and Kovar clamp with the thermocouple positions indicated; (b) plot
showing the difference between the simulation and experimental data.

(a) (b)

Figure 3.12: Results from the thermal model for the stainless-steel column: (a) Temperature
distribution along the stainless-steel column with the thermocouple positions indicated; (b) plot
showing difference between the simulation and experimental data.
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3.6 Gradient Preparation

The final step in preparing the thermal gradient data for the transport model was the ex-

traction of the temperature distribution along the length of the column. During the computation of

the thermal simulation in STAR-CCM+, data tables containing the temperature at each node were

exported at regular simulated time steps. As the layout of the mesh used in the simulations did not

align with the serpentine path followed by the column a method for interpolating the temperatures

along the column path was developed. The first step of this process was to determine the path that

the column followed along the substrate (e.g., Si or stainless-steel). Design drawings were con-

sulted to determine the dimensions of the path along the substrate and a Python script was written

that computed and recorded the positions of a stepwise progression along the column path. This

stepwise data of the column path was then used in conjunction with the tabulated temperature data

provided by the STAR-CCM+ simulations, and 3D temperature interpolation between the simula-

tion data and the column position was taken for each point along the column (Appendix H). The

Figure 3.13: Plot of the extracted gradient along the serpentine channel path in the stainless-steel
column under initial conditions with the primary heater set to 250 °C.
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output from these column gradient extraction methods showed oscillatory behavior (Figure 3.13)

not immediately apparent from looking at the gradient along the entire substrate. The effects of

these oscillations were studied using the transport model, and will be discussed in the next chapter.

3.7 Conclusion

In order to make simulation of GC transport in thermal gradient columns possible high res-

olution thermal data had to be obtained. To this end computational thermal models were developed

using STAR-CCM+. Thermal models for several systems were created and were verified against

experimental temperature data. The simulated thermal models were shown to accurately represent

the behavior of the various systems, thus indicating that the temperature data are suitable for use in

the transport model. Thermal simulations were also developed to aid in design decisions for future

TGGC work.
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CHAPTER 4. GC TRANSPORT MODEL

4.1 Motivation

Since the inception of GC, researchers have sought to develop useful models to predict

chromatographic separation. One of the primary purposes of such models is to better understand

the fundamental driving forces behind GC separation, with the intent to improve performance. As

in the development of open tubular column technology, a correct model can provide the information

necessary to make changes to GC systems leading to significant improvements in performance.

Many of the models developed for GC separation are based on the limited information that

a GC system can provide. For a given analyte, the only information a GC system can give are

the retention time and width of a peak along with the conditions that gave these results (column

temperature, inlet pressure, etc.). Using this limited information, the most widely used model for

chromatographic retention behavior, the retention factor (k), was developed [31]. As this param-

eter reliably indicates GC retention under ITGC and TPGC conditions, its use in the field of GC

has persisted to the present. However, one of its limitations has been its inability to predict GC

retention on columns with a variable temperature along their length, making modeling of TGGC

separation an elusive task.

The first full treatment of a model for TGGC was developed in the early 1990’s by Blum-

berg, approximately 40 years after the application of thermal gradients on GC columns was first

developed by Zhukoviskii [15, 39]. In order to develop his model, Blumberg applied the mass

diffusion equation to model the gas and analyte movement along the column. Starting with this

equation he was able to derive a simplified form by modeling each chromatographic zone as a

normally distributed concentration in the column. This allowed for the mass diffusion equation

to solve for peak position and standard deviation as a function of time. However the approach

included significant assumptions; in particular, the analyte injection was idealized as a normal

distribution with a standard deviation of zero along with assuming a monotonic linear thermal gra-
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dient. Although Blumberg’s model was a significant advance in modeling TGGC separations, its

limitations are motivation to revisit the approach.

In 2015, a new approach to modeling non-ideal GC separations was developed by Tolley

et al. by applying the widely used retention factor along with principles of gas mass diffusion to

a stochastic modeling approach [43]. Due to the stochastic nature of Tolley’s treatment of GC,

spatial variations in temperature along with non-ideal injections and variable coating thickness

could be incorporated without making the model extremely difficult to solve. This capability of

accommodating variable and non-ideal conditions makes Tolley’s model a significant advance in

GC modeling capabilities. This model by Tolley et al. was selected as the starting point for this

work in predicting chromatographic separation behavior based on numerically predicted column

temperatures (Chapter 3). The stochastic modeling approach by Tolley et al. will henceforth be

referred to as the transport model. This work offers a full calibration of the transport model using

TGGC separations and explores its use as a diagnostic tool in TGGC.

4.2 Separation Performance Measures

Before describing the methods used to calibrate and validate the transport model it is helpful

to describe a few of the common metrics used to quantify GC separation quality. The first of these

measures, the retention or elution time (tR), is a measure of the time required for a peak of interest

to move down the length of the column and through the detector. The second measure used is

the peak width at half its maximum (wh), which provides a measure of how broad a peak has

become as it has moved down the column. The width at half max is the preferred measure of

peak spread as it is not as sensitive to variation due to peak tailing and fronting as the peak base

width. A visual representation of retention time and peak width at half max is given in Figure 4.1.

The third measure of separation performance that will be discussed in the following sections is

resolution. Resolution is a parameter that measures how well two peaks are resolved from each

other, and roughly represents how many peaks apart two analytes are from one another. Thus, a

higher resolution means a better separation. The formula for computing resolution between two

peaks is given in Equation 4.1.
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Figure 4.1: Schematic of retention time and peak width at half max for two neighboring peaks.

Ri, j =
tR, j− tR,i

4[(σi +σ j)/2]
= 1.17741

tR, j− tR,i
wh,i +wh, j

(4.1)

4.3 Code Adaptation

The first step in allowing for calibration and validation of the transport model was to mod-

ify the transport model to accept thermal gradient data obtained from computer simulations. Early

iterations of the transport model were written in the statistical coding language R. In order to de-

crease run time and permit interfacing with large sets of thermal data from simulations the transport

model was translated into Python. To ensure that the code was translated correctly both the R code

and Python translation were run five times each under the same ITGC input conditions. The av-

erage error between the two was then computed to ensure correct function of the Python version.
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As can be seen in Figure 4.2 minor differences exist in the behavior of the peaks; however, due to

the stochastic nature of the model, minor differences are expected. Following completion of the

code translation, functionality that allowed for reading in of thermal gradient data was included

and averages of the results from five runs of both the Python and R forms of the transport model

under ITGC conditions were again compared and shown to perform equivalently, yielding results

similar to what is seen in Figure 4.2.

(a) (b)

Figure 4.2: (a) Peak position and (b) standard deviation differences between the original R code
and Python transport models.

4.4 Transport Model Calibration and Validation

The next step in preparing the transport model for use on simulated TGGC data was to cal-

ibrate the parameters used to determine the retention factor and mass diffusivity of the compounds

separated in the transport model. Following the model reported by Blumberg [32], the retention

factor could be computed as a function of the enthalpy (∆H) and entropy (∆S) of analyte evapo-

ration and the phase ration (β ) (Equation 4.2). Since the enthalpy and entropy parameters dictate

the nature of interactions between the analyte and the stationary phase they were dependent not

only on the compound under consideration but were also influenced by the nature of the stationary

phase in the column used for separation.
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k = exp
Ç

∆H
RT
− ∆S

R
− log(β )

å
(4.2)

In order to accurately model the dispersion of the analytes as they moved through the

column the analyte zone variance as a function of time had to be determined. Starting with the

one dimensional form of the mass diffusion equation and assuming each analyte to be normally

distributed within the column, the relationship between the change in an analyte’s variance as a

function of time was determined as given in Equation 4.3. In order to compute the variance of an

analyte in the mobile phase a proper model for mass diffusivity in a gas is required. The Chapman-

Enskog model for mass diffusivity was selected due to its relatively low reported error (<8%)

as well as its dependence on temperature and pressure, lending itself well to TGGC applications

(Equation 4.4, variables defined in nomenclature section) [47].

∆σ
2 = 2D∆t (4.3)

D =
AT 3/2

»
1/M1 +1/M2

Pσ2
12Ω

= γ
T 3/2

P
(4.4)

In order to facilitate calibration of the transport model, data were taken by performing

ITGC runs on the serpentine stainless-steel column at various temperatures and inlet pressures

to determine the elution time and width at half max for each peak. Details on these runs are

provided in Appendix I. These data could then be used together with linear regression techniques

on log transformed data to determine enthalpy and entropy parameters for each compound in the

column. In the case of the experiments performed here, a mixture of n-dodecane (C12), n-tridecane

(C13), and n-tetradecane (C14) dissolved in a solution of n-pentane (C5) was used. The calibration

separations were performed in an Agilent 6890 GC oven with the serpentine stainless-steel column

mounted in front of the convective fan (see Figure 1.3) so that the entire column would remain

isothermal throughout the run. In order to minimize effects of human error and ensure that the

data were statistically sound, the pressures for each run were randomized and after each change

in temperature the GC oven was allowed to sit for 15 minutes to give the oven sufficient time to

reach the temperature reported by the oven’s thermocouple. The data taken for the calibration

were shown to have minimal noise and a clearly visible trend giving confidence in performing the
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parameter calibration computations (Figure 4.3). Details regarding the method used to calibrate

the model parameters from the ITGC data are given in Appendix I.

Figure 4.3: Data gathered from ITGC runs on the stainless-steel chip for use in calibrating the
transport model. For tabulated conditions see Appendix I

Following the ITGC separations the stainless-steel column was run under TGGC conditions

as shown in Figure 4.4 with varying inlet pressures and secondary heater temperature ramp rates.

In each of these runs the primary heater was set to 250 °C and the secondary heater was turned off

to establish the gradient. Under this initial condition the column tip temperature was at about 70

°C. At the time of injection the secondary heater was turned on and its temperature was controlled

from its starting point up to 250 °C over time spans from 8 to 15 minutes. Details regarding each

of these runs are privided in Appendix I. The purpose for these data was to permit validation of the

parameters derived from the ITGC data. After determining the enthalpy and entropy parameters

for the retention factor model (Equation 4.2) using the ITGC data it was found that the parameters

obtained in this manner did not give adequately close results between the experiment and model

for the TGGC runs (23% error in elution time). Therefore, a new method of computing correct

retention and dispersion model parameters was developed that involved the use of data taken from

the TGGC runs.
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In order to determine the correct retention parameters a set of six guesses were made for

both parameters (∆H/R, and ∆S/R− log(β )) over a wide range. The transport model was run for

all six guesses of each parameter and the squared error for elution time was computed. A quadratic

function was then fit to the resultant squared error values and a gradient method was used to hone in

on the parameters that would minimize the retention time squared error. This process of guessing

and solving for the optimum was repeated until the process converged on the best possible retention

parameters. A similar method was used for the dispersion parameter, that only differed in that only

one parameter was computed decreasing the dimensionality of the function space. Details on these

calibration methods and their resultant parameters are discussed in more detail in Appendix I.

Figure 4.4: The stainless-steel column connected to the DAQ/controller for running TGGC
separation conditions.

4.5 Transport Model Conditions

Before describing the various tests that were run using the transport model a note should be

made regarding the conditions that were common to all transport model runs. In order to minimize

variation in the results between runs 1000 molecules were modeled for each analyte. The time

was discretized to a resolution of 5×10−5 s to ensure that non-linear temperatures, pressures, and

mobile phase velocities would not have a significant influence on the behavior of the molecules. In
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all cases the column inlet pressure was set to 449.6 kPa and the outlet pressure was set to the local

atmospheric pressure of 83.6 kPa. According to measurements taken from cross-sectional SEM

images of the serpentine stainless-steel column (Figure 2.4) a hydraulic diameter of 57 µm was

used to model the fluid flow through the column. The product of the coefficient of friction and the

Reynolds number (C f ReD) was set to 15.697 to model the effects of the semicircular cross-section

of the column channel. As all of the associated experiments were performed on the stainless-

steel column, the stainless-steel channel length of 9.6 m was used in all transport model runs. In

all cases, the injection width was set to 2 cm with the molecules initially uniformly distributed

throughout the injection width. Although information was not known regarding the experimental

injection widths, a non-ideal, wide injection was used to demonstrate TGGC’s ability to correct for

poor conditions. Temperature conditions varied between runs and are described on a case-by-case

basis in the sections below.

Figure 4.5: Comparison of peak shape and elution time between the transport model and
experimental results for a TGGC run on the stainless-steel column. For data on Test 7 see
Appendix I
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4.6 Transport Model TGGC Performance

Following the determination of parameters for both the retention factor and dispersion using

data from two TGGC runs, the parameters were tested against the ITGC data as well as a third

TGGC run to test the calibrated model’s ability to predict the separation performance under varying

conditions. A description of the heating conditions for the TGGC runs is given in Section 4.4, and

tabulated data are given in Appendix I. An example of the transport model TGGC separation results

compared to corresponding experimental data is shown in Figure 4.5 (see also Table 4.1).

It was found that both the retention factor and dispersion parameters required fine tuning on

a run-by-run basis in order to obtain exact agreement between simulation and experimental results.

Thus in order for the transport model to serve as a predictive tool for future runs a degree of error

Table 4.1: Table containing the retention time and width at half max values along with
their associated errors for the TGGC transport model validation runs. Six runs

are tabulated with three analytes per run. Retention error . 4%
and width at half max average of 23.2%.

Run Analyte

Model
Retention
Time (s)

Retention
Time Error
Relative to
Experiment (%)

Model
Width at
Half Max (s)

Width at
Half Max
Error
Relative to
Experiment (%)

1
C12 143.56 4.04 2.41 19.51
C13 202.82 2.91 2.73 23.14
C14 267.06 2.35 2.84 25.36

2
C12 143.57 4.03 2.51 16.29
C13 202.79 2.92 2.87 19.11
C14 267.00 2.38 2.66 30.02

3
C12 143.54 4.05 2.40 20.07
C13 202.72 2.96 2.74 22.90
C14 267.06 2.35 2.63 30.72

4
C12 143.57 4.02 2.43 18.91
C13 202.86 2.89 2.74 22.89
C14 267.06 2.36 2.78 26.83

5
C12 143.49 4.08 2.37 21.06
C13 202.81 2.92 2.78 21.62
C14 267.03 2.37 2.77 27.22

6
C12 143.54 4.05 2.36 21.43
C13 202.81 2.92 2.78 21.80
C14 266.96 2.39 2.74 27.82
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would have to be tolerated. However, considering the highly non-ideal nature of the TGGC exper-

imental setup (i.e., oscillatory gradient, uneven stationary phase thickness along column length,

mobile phase mixing at serpentine bends), the transport model was able to obtain results remark-

ably close to the experimental results with retention time errors of less than approximately 4% and

peak width errors averaging 23.2% (Table 4.1). It should be noted that the high error values for the

width at half max are partially a result of the small scales of the widths, thus these error values are

not necessarily indicative of a poor calibration for analyte dispersion.

Following calibration and validation of the model using TGGC experimental data, the

stainless-steel column was tested under TPGC conditions to allow for further validation of the

transport model. Data from these runs are included in Appendix I along with a comparison of

transport model output for a TPGC run with its corresponding experimental separation data. These

TPGC data will serve to further refine the capabilities of the transport model.

4.7 TGGC Gradient Quality Studies

4.7.1 GC Heating Mode Comparison

Of primary interest is an understanding of how the separation performance of ITGC, TPGC,

and TGGC heating methods compare. Due to the considerable transient and spatial temperature

differences between the three methods, it is difficult to find a way of standardizing the conditions

for the runs in order to draw conclusions regarding method efficacy. Due to this, it was decided

that instead of standardizing conditions, the results were standardized using the non-dimensional

GC resolution parameter between two analytes (i and j in Equation 4.1). For ITGC, the conditions

from one of the ITGC calibration runs was used in which the entire column was set to 155 °C.

For TPGC, the column was programmed to increase 30 °C every minute starting from 50 °C

following experimental conditions used on the chip. The conditions for TGGC were the same as

those discussed in Section 4.6.

Due to the disparity between elution times under the three heating methods, a comparative

chromatogram is not included here. However, the resolution for all the runs are tabulated in Table

4.2. The results from the transport model show that, apart from the resolution between C12 and

C13 under TPGC conditions, TGGC provided the best resolution performance. Another notewor-
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Table 4.2: Table containing the resolution values for three runs in the transport model under
ITGC, TPGC, and TGGC heating conditions

ITGC TPGC TGGC
Run RC12,C13 RC13,C14 RC12,C13 RC13,C14 RC12,C13 RC13,C14
1 10.802 13.178 14.360 12.757 13.564 13.593
2 10.460 13.227 14.316 12.509 12.954 13.668
3 10.267 12.878 14.466 12.823 13.570 14.107
Average 10.510 13.094 14.381 12.696 13.363 13.789

thy conclusion provided by the data in Table 4.2 is that TGGC helps to normalize the resolution

between the peaks. For both ITGC and TPGC there is a significant difference between RC12,C13

and RC13,C14, however for TGGC the two values are nearly identical.

It should also be noted that the results presented in Table 4.2 appear to be in conflict with

results reported by Blumberg. According to his model of TGGC separation, it is not possible

for TGGC to ever surpass ITGC in resolution [42]. It should be noted, however, that Blumberg

arrived at this conclusion by assuming that the injection into the column was infinitesimally nar-

row. Injections presented here were set at 2 cm in width which may explain the disagreement

with Blumberg’s results. However, more work would be needed to determine the exact cause of

the discrepancy between the results presented here and those published by Blumberg. Another

qualification that must be noted with respect to these results is the run time associated with each

separation. For the results presented here C12 eluted at 76.8 s, 214.7 s, and 143.6 s for ITGC,

TPGC, and TGGC respectively. As shorter run times are preferred, TGGC appears to exhibit

better performance over TPGC, however a wider set of test conditions would be needed to make

broader statements regarding the relative performance of the three heating modes.

4.7.2 Oscillation Effect

Another question of interest is how the presence of oscillations along the gradient in a

serpentine column affected the column’s ability to focus peaks. The transport model was used to

examine the effect of oscillations by comparing TGGC transport model predictions for separation

using various temperature profiles along the column, all other conditions remaining the same.

Simulated thermal gradient data with oscillations from the run used to validate the model were
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Figure 4.6: Zoomed in plot of the thermal gradient before and after smoothing. The magnitude of
the oscillations is approximately 2 K. Compare to Figure 3.13.

smoothed into an oscillation-free temperature profile. The simulated thermal data from the TGGC

run was post-processed with a moving window averaging filter using a window sufficiently large

so as to smooth the oscillations without deviating from the broader gradient behavior. A segment

of the results for this moving window averaging is shown in Figure 4.6.

Once smoothed, the thermal gradient data was run in the transport model multiple times

and each result was compared to each result for the oscillatory thermal gradient data. As a visual

comparison of the separation differences between the two gradient shapes, a sample chromatogram

for each gradient was plotted (Figure 4.7). Note that apart from a slight decrease in elution time,

there is no notable difference between the performance of a smooth gradient in comparison to

an oscillating gradient. This conclusion is further supported by the values reported in Tables 4.3

and 4.4. Note that in the case of the peak widths at half max, the ranges of values for oscillating

and smooth gradient runs for a given analyte overlap. This overlap for each analyte indicates

that there is not a statistically significant difference between the peaks widths for the two gradient

shapes. From these results it can be concluded that under the conditions experienced by the µTGGC

systems used in this project, oscillations of approximately 2 K should have no appreciable effect

on the focusing capabilities of the system.
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Table 4.3: Table containing the retention time and width at half max values for three runs in the
transport model using both oscillating and smooth gradients. Heating conditions for the run

match those of Test 7 as reported in Table I.1 in Appendix I

Retention Time (s) Width at Half Max (s)
Oscillating Smooth Oscillating Smooth

Run C12 C13 C14 C12 C13 C14 C12 C13 C14 C12 C13 C14
1 143.56 202.82 267.06 142.90 201.99 266.22 2.41 2.73 2.84 2.39 2.74 2.82
2 143.57 202.79 267.00 142.80 202.01 266.20 2.51 2.87 2.66 2.40 2.79 2.75
3 143.54 202.72 267.06 142.84 201.96 266.25 2.40 2.74 2.63 2.34 2.88 2.81

4.7.3 Gradient Shape Effect

As discussed in Chapter 2 the new µTGGC system that is being developed is a radial system

with a spiral column. This new method for establishing a thermal gradient along the column was

selected initially because it allowed for a monotonic gradient unlike the serpentine channels (as in

the silicon and stainless-steel rectangular columns). However, thermal modeling has suggested that

these spiral column systems provide a linear thermal gradient along the column length due to the

heat transfer behavior inherent to radial systems (See Figure 3.9). One question from preliminary

Figure 4.7: Comparison of peak shape and elution time between the the oscillating and smooth
gradients as computed by the transport model. Heating conditions for the run match those of Test
7 as reported in Appendix I
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Table 4.4: Table containing the resolution values for three runs in the transport model
using both an oscillating and a smooth gradient

Oscillating Smooth
Run RC12,C13 RC13,C14 RC12,C13 RC13,C14
1 13.575 13.579 13.562 13.602
2 12.960 13.671 13.432 13.642
3 13.556 14.107 13.335 13.303
Average 13.364 13.786 13.443 13.516

thermal studies is how the separation characteristics along a linear gradient will compare with an

exponentially decaying gradient. In order to explore this effect a fixed temperature drop of 50 °C

along the length of the column was selected to define a linear gradient along the column length.

A corresponding exponentially decaying gradient was developed by setting the start temperature

equal to the linear gradient with a starting slope 3 times as steep as the linear gradient. The

shape was then constrained by making the average values of the two gradients equal. Both of these

gradient shapes were then ramped at the same constant rate so that the inlet and outlet temperatures

of both gradients would always be the same. The transient ramping that was selected was to

Figure 4.8: Comparison of linear and exponential gradient shapes at their initial condition. Both
gradients were moved upward linearly at the same rate.
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ramp the outlet temperature from 40 °C to 250 °C in 12 minutes. The two temperature profiles

were standardized in this way so as to minimize variation between the two runs and allow direct

comparison between linear and exponential gradients (See Figure 4.8). The two gradient shapes

were each imported into the transport model and run three times. Their results were then compared

to determine the effect that the shape of the gradient has on separation characteristics.

As can be seen in Figure 4.9 there is an slight difference between the retention times and

peak widths for exponential versus linear gradients. The retention time and peak width at half max

values are given in Table 4.5, and the resolution values are reported in Table 4.6. The resultant

resolution values show a resolution increase of approximately 1 for the linear gradient compared

to the exponential gradient. It should be noted, however, that this result is specific to the gradients

used in the runs reported here and cannot be extended to all linear and exponential gradients.

However, for the case considered here, the differences can be understood by considering the two

gradients. The longer elution times for the exponential gradient are a result of the fact that over

the majority of the column the exponential gradient’s temperature is lower than the linear gradient.

Figure 4.9: Comparison of peak shape and elution time between the the linear and exponential
gradients as computed by the transport model.
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The broader peaks for the exponential gradient is a result of the shallower temperature gradient at

the column outlet compared to the linear gradient.

Table 4.5: Table containing the retention time and width at half max values for three runs in the
transport model using both linear and exponential gradients.

Retention Time (s) Width at Half Max (s)
Linear Exponential Linear Exponential

Run C12 C13 C14 C12 C13 C14 C12 C13 C14 C12 C13 C14
1 245.15 304.33 359.45 246.92 307.74 363.61 1.59 1.77 1.70 1.69 1.87 1.85
2 245.19 304.31 359.45 246.93 307.74 363.56 1.61 1.76 1.74 1.81 1.87 1.87
3 245.13 304.32 359.42 246.92 307.74 363.55 1.64 1.72 1.81 1.69 1.92 1.80

Table 4.6: Table containing the resolution values for three runs in the transport model using both
linear and exponential gradients.

Linear Exponential
Run RC12,C13 RC13,C14 RC12,C13 RC13,C14
1 20.738 18.703 20.115 17.683
2 20.655 18.549 19.456 17.573
3 20.741 18.378 19.837 17.664
Average 20.711 18.543 19.803 17.640

4.8 Conclusion

The transport model previously developed by Dr. Tolley was translated into Python and

then tested to ensure proper functionality. Data were taken in both ITGC and TGGC heating meth-

ods for use in calibrating and validating the model. Models for retention factor and mass diffu-

sion in gases were employed and shown to adequately match the results observed experimentally.

Following validation of the transport model it was applied to understand the effects of gradient

oscillations and linearity on TGGC separation performance. The results from the transport model

indicated that the presence of oscillations had a negligible effect on separation performance. Alter-

natively it was found that for the exponential gradient considered slower separations and broader

the peaks are produced when compared to separations on a corresponding linear gradient.
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CHAPTER 5. CONCLUSION

Based on previous work in the fields of µGC and TGGC, it is apparent that the synthesis of

these two fields is a promising direction for developing new miniaturized GC devices. The present

work has focused efforts within this sphere of µTGGC in order to help advance understanding in

the field. The three primary objectives of this work were to (1) develop a TGGC experimental sys-

tem to allow for µTGGC experimentation and data acquisition, (2) develop computational thermal

models to provide better insight into the thermal characteristics of µTGGC systems, and (3) use

experimental and simulated thermal data to validate a versatile GC transport model and explore the

effects the temperature gradient has on separation.

5.1 Thermal Control and Data Acquisition System Development (Chapter 2)

The first objective of the preceding work was to develop an experimental system that would

allow for implementation of TGGC heating and control on various µGC columns while providing

temperature and power consumption feedback for use in post-processing. The experimental sys-

tem circuitry and control code were developed in-house and tested on various column layouts. The

system was shown to be successful in completing its function as well as being an adaptable system

in that it was successfully used to control TGGC heating on three µGC columns, allowing for sep-

aration up to C40 on the spiral column system. The system was also shown to be a functional data

acquisition tool in that the data recorded by the DAQ was successfully used in both the develop-

ment of the computational thermal models as well as in calibrating and validating the GC transport

model.

5.2 Computational Thermal Model Development (Chapter 3)

The second objective in the reported work was to develop a highly accurate computational

thermal model of experiments performed using the data recorded by the controller/DAQ system.
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Various periphery experiments were performed to ensure that the conditions used in the models

were valid. The methods used in modeling the various µGC systems were shown to be successful

through the validation of models against experimental data for three experimental systems. In all

cases the error in the simulation was kept below 5 °C. The thermal modeling methods also proved

effective in the development of various models used to explore potential new µGC column layouts.

5.3 GC Transport Model Validation and Analysis (Chapter 4)

The third objective of the preceding work was to use the data from ITGC and µTGGC runs

along with the data from the thermal simulations to both calibrate and validate a GC transport

model. Following calibration and validation this model was to be used to explore the effects of

various heating methods on separation performance. TGGC was found to improve resolution by

approximately 1.15 times compared to ITGC for the chosen injection conditions and although

TPGC offered slightly better resolution, TGGC equalizes resolution across various analytes. Tests

were also run to determine how alterations to the gradient quality would affect TGGC separation

performance. The transport model indicated that gradient oscillations had no effect on the GC

separation performance for the stainless-steel column used in experiments, and the exponential

gradient considered resulted in a decrease in resolution of approximately 1 when compared to

separations on linear gradients.

5.4 Future Work

In light of the successes achieved in the present work, there are several areas that have been

identified as possible areas for future work. These possibilities can be broadly separated into three

categories: advancements in the experimental system, computational thermal modeling, and GC

transport modeling.

5.4.1 Experimental System

Although the TGGC control/DAQ system was shown to successfully control a variety of

µTGGC systems and gather sufficient data for thermal model development, there are a few aspects

of the system design that could be improved upon. As was shown earlier, the voltage and current
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readings provided by the circuitry were subject to significant noise. Part of this is a result of aliasing

produced by the PWM signal in addition to noise in the data collection circuitry. In order to reduce

the noise in the data the circuit design could be improved upon and the method for filtering the

data could be adapted to better address the aliasing from the PWM signal. The ability to read

voltage and current data with less noise would be useful both in developing thermal models for

future systems as well in characterizing and minimizing the power consumption in future µTGGC

systems.

Another area that could be improved in the experimental system is the fan control capabil-

ities. In the present setup, the fan does a poor job of offering fine-tuned control of tip cooling for

low control values. This is a result of the fan’s non-linear behavior at low voltage and current val-

ues. In order to improve this, an electronic speed controller could be used or a fan with smoother

dynamics could be replaced in the system. Such an approach would allow for finer control of the

tip temperature on the spiral system, which would in turn help to improve separation performance

in this system.

5.4.2 Computational Thermal Model

As explained previously, a significant portion of the work required to make thermal models

of various systems match correctly has already been performed for the previous µTGGC systems.

Moving forward, the computational methods developed for the systems that have been modeled

here can be applied to the spiral column design to develop an associated high fidelity model for

that system. As was the case with each of the models developed for this work, the development of

a spiral column thermal model will likely present unanticipated challenges that will help to further

refine the thermal modeling method developed here. Following the completion of the spiral column

model, the same methods will be useful in developing future system models as the µTGGC project

at BYU moves on to new µGC column designs.

5.4.3 GC Transport Model

The GC transport model is largely successful in modeling complex µTGGC separations

and may be used as a powerful tool in the design and study of µTGGC systems. However, before
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applying the transport model to its various uses, the TPGC data that was collected on the stainless-

steel column will be incorporated in the transport model calibration methods to improve its results.

Once the model calibration has been refined in this way, the transport model will be used as a

design tool in developing new µTGGC systems. Previously, no useful tool has existed to accelerate

iterations through various µTGGC system designs. Moving forward, the transport model can be

used as a tool for predicting chromatographic performance making it possible to eliminate non-

optimal designs without the cost of actually producing a system. This should allow for much faster

more efficient convergence on an optimal µTGGC system design.

A second area in which the transport model may be useful is as a diagnostic tool. Presently

when running TGGC separations if poor separation quality is achieved the chromatographer is only

able to guess what the cause of the problem might be, based on past experience. In order to aid in

system troubleshooting the transport model can be run in non-ideal conditions (e.g., presence of

cold spots, uneven coating thickness, and poor gradient shape), and the effect of these conditions

can be studied and cataloged. Results can then be used to help chromatographers determine the

cause of issues they are seeing in their chromatographic system, which could significantly speed

up the troubleshooting process when running TGGC experiments.
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APPENDIX A. CONTROLLER CODES

As described in chapter 2, the thermal control and DAQ system used an Arduino Mega

microcontroller to interface with the system hardware. The code for controlling the Arduino was

written in C and C++. In order to make user interaction with the controller possible, a GUI was

written in python. One of the significant difficulties in developing the necessary control and GUI

code was determining a reliable method for live communication between the GUI and the Arduino.

In order to achieve this a serial communication routine was developed to maintain order between

the two codes as data was being sent both ways on the serial communication line between the

Arduino and computer.

The code for the Arduino was responsible for controlling the power input to the µTGGC

system. A proportional integral control method was implemented as the dynamics of the thermal

systems involved were slow enough that derivative control was not necessary (gain values reported

in lines 27-56 in Section A.1). Along with controlling the heaters, the Arduino recorded tempera-

ture data and performed a filtering routine on the voltage and current data that was collected. These

three data were then sent to the computer so it could be saved in a comma separated value (csv)

file.

The Python GUI served the purpose of allowing the user to interface with the Arduino

controller as it was running. This was important as it allowed the user to control the moment at

which each heater would be turned on or off, and alter set points of the various heaters mid run.

Another important aspect of the Python code was that on the backend it was collecting the data

sent by the Arduino and storing it in a csv file that could be accessed following completion of the

run.

The Arduino code consists of a main script along with a header file, and the Python code is

a single file. All three have been included below.
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A.1 Arduino Main Script

1 #include "ControlDAQ.h"

2

3 General g;

4 Control prmCtrl = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

5 Control scndCtrl = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

6 Control lnCtrl = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

7 Control inTLCtrl = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

8 Control outTLCtrl = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

9 Control T1 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

10 Control T2 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

11 Control T3 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

12 Control T4 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

13 Control T5 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};

14

15 void setup() {

16

17 // Serial setup

18 Serial.begin(9600);

19

20 // Debugging LED pin

21 pinMode(LEDpin,OUTPUT);

22

23 // General parameters

24 g.numChars = 10;

25

26 // Controller parameters

27 prmCtrl.Kp = 15;

28 prmCtrl.Ki = 0.25;

29 prmCtrl.ctrlPin = 2;

30 prmCtrl.voltPin = 15;

31 prmCtrl.currentPin = 14;

32 prmCtrl.feedbackPin = 1;

33

34 scndCtrl.Kp = 15;
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35 scndCtrl.Ki = 0.25;

36 scndCtrl.ctrlPin = 2;

37 scndCtrl.voltPin = 13;

38 scndCtrl.currentPin = 12;

39 scndCtrl.feedbackPin = 3;

40

41 lnCtrl.Kp = 15;

42 lnCtrl.Ki = 0.25;

43 lnCtrl.ctrlPin = 2;

44 lnCtrl.voltPin = 10;

45 lnCtrl.currentPin = 11;

46 lnCtrl.feedbackPin = 2;

47

48 inTLCtrl.Kp = 20;

49 inTLCtrl.Ki = 0.1;

50 inTLCtrl.ctrlPin = 3;

51 inTLCtrl.voltPin = 9;

52 inTLCtrl.currentPin = 8;

53 inTLCtrl.feedbackPin = 4;

54

55 outTLCtrl.Kp = 20;

56 outTLCtrl.Ki = 0.1;

57 outTLCtrl.ctrlPin = 5;

58 outTLCtrl.voltPin = 7;

59 outTLCtrl.currentPin = 6;

60 outTLCtrl.feedbackPin = 5;

61

62 T1.feedbackPin = 5;

63 T2.feedbackPin = 6;

64 T3.feedbackPin = 1;

65 T4.feedbackPin = 8;

66 T5.feedbackPin = 9;

67 }

68

69 void loop() {

70
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71 // Collect time data

72 g.timeLast = g.timeNow;

73 g.timeNow = millis()/1000.0;

74

75 // Check for data sent

76 dataChainReader(g, prmCtrl, scndCtrl, lnCtrl, inTLCtrl, outTLCtrl);

77

78 // Record and Report data

79 Serial.println(’<’);

80 Serial.println(g.timeNow,4);

81 sendData(prmCtrl);

82 sendData(scndCtrl);

83 sendData(lnCtrl);

84 sendData(inTLCtrl);

85 sendData(outTLCtrl);

86 sendTemp(T1);

87 sendTemp(T2);

88 sendTemp(T3);

89 sendTemp(T4);

90 sendTemp(T5);

91 Serial.println(’>’);

92

93 // Implement control

94 tempCtrl(g.timeNow,g.timeNow-g.timeLast, prmCtrl);

95 tempCtrl(g.timeNow,g.timeNow-g.timeLast, scndCtrl);

96 tempCtrl(g.timeNow,g.timeNow-g.timeLast, lnCtrl);

97 tempCtrl(g.timeNow,g.timeNow-g.timeLast, inTLCtrl);

98 tempCtrl(g.timeNow,g.timeNow-g.timeLast, outTLCtrl);

99 }

A.2 Arduino Header File

1 // ---- Data structure ---- //

2 // General data

3 struct General {

4 boolean newData;
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5 int dataCount;

6 int numData;

7 int controllerNum;

8 float timeNow;

9 float timeLast;

10 byte numChars;

11 char receivedChars[10];

12 };

13 // Controller data

14 struct Control {

15 bool on;

16 float setPoint;

17 float tempFinal;

18 float rampTime;

19 float m;

20 float b;

21 float error;

22 float errorSum;

23 float Kp;

24 float Ki;

25 float PWMfloat;

26 int PWM;

27 int ctrlPin;

28 bool overshoot;

29 float helpFactor;

30 int feedbackPin;

31 int voltPin;

32 int currentPin;

33 float initialTemp;

34 float initialTime;

35 bool initial;

36 };

37

38 // ---- Function Definitions ---- //

39

40 // Print data
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41 void sendData(Control& c){

42 Serial.println(analogRead(c.feedbackPin));

43 Serial.println(c.setPoint);

44 Serial.println(c.PWM);

45 Serial.println(analogRead(c.voltPin));

46 Serial.println(analogRead(c.currentPin));

47 }

48

49 // Print temperature

50 void sendTemp(Control& c){

51 Serial.println(analogRead(c.feedbackPin));

52 }

53

54 // Temperature controller

55 void tempCtrl(float t, float deltaT, Control& c){

56

57 if(c.on){

58 // Compute set point

59 if(c.initialTemp == c.tempFinal){

60 c.setPoint = c.initialTemp;

61 }

62 else if (c.initial){

63 c.setPoint = c.initialTemp;

64 c.initial = 0;

65 }

66 else if(t < c.initialTime+c.rampTime*60.0){

67 c.setPoint = c.m*t+c.b;

68 }

69 else{

70 c.setPoint = c.tempFinal;

71 }

72

73 // Implement control

74 float temp = ((5.0*analogRead(c.feedbackPin)/1023.0)-1.25)/0.005;

75 c.error = c.setPoint - temp;

76 c.errorSum = c.errorSum + c.error;
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77 c.PWMfloat = c.Kp*c.error + c.Ki*deltaT*c.errorSum;

78 // Prevent overshoot

79 if (c.PWMfloat > 255){

80 c.PWMfloat = 255;

81 c.errorSum = c.errorSum - c.error;

82 c.overshoot = 1;

83 }

84 else if (c.PWMfloat < 0){

85 c.PWMfloat = 0;

86 c.errorSum = c.errorSum;

87 }

88 else{

89 c.overshoot = 0;

90 }

91 // Implement control

92 c.PWM = int(c.PWMfloat);

93 analogWrite(c.ctrlPin,c.PWM);

94 }

95 }

96

97 // Data converter

98 float convertData(General& g){

99 float val;

100 if(g.newData){

101 val = atof(g.receivedChars);

102 g.newData = false;

103 }

104 return val;

105 }

106

107 // Data reciever

108 void recvWithStartEndMarkers(General& g) {

109 static boolean recvInProgress = false;

110 static byte ndx = 0;

111 char startMarker = ’<’;

112 char endMarker = ’>’;
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113 char rc;

114

115 if (Serial.available() > 0) {

116 while (Serial.available() > 0 && g.newData == false) {

117 rc = Serial.read();

118

119 if (recvInProgress == true) {

120 if (rc != endMarker) {

121 g.receivedChars[ndx] = rc;

122 ndx++;

123 if (ndx >= g.numChars) {

124 ndx = g.numChars - 1;

125 }

126 }

127 else {

128 g.receivedChars[ndx] = ’\0’; // terminate the string

129 recvInProgress = false;

130 ndx = 0;

131 g.newData = true;

132 }

133 }

134

135 else if (rc == startMarker) {

136 recvInProgress = true;

137 }

138 }

139 }

140 }

141

142 // Data chain reader

143 void dataChainReader(General& g, Control& a, Control& B, Control& c,

Control& d, Control& e){

144

145 // Read in data

146 recvWithStartEndMarkers(g);

147
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148 // Check for data start

149 if(g.receivedChars[0] == ’s’){

150 g.dataCount++;

151 g.newData = false;

152 }

153 else if(g.dataCount==1){

154 g.numData = convertData(g);

155 g.newData = false;

156 g.dataCount++;

157 }

158 else if(g.dataCount==2){

159 g.controllerNum = convertData(g);

160 g.newData = false;

161 g.dataCount++;

162 }

163 else if(g.dataCount==3){

164

165 if(g.controllerNum == 1){

166 a.on = 1;

167 a.initialTemp = convertData(g);

168 a.tempFinal = a.initialTemp;

169 }

170 else if(g.controllerNum == 2){

171 a.on = 1;

172 a.tempFinal = convertData(g);

173 a.initialTemp = a.setPoint;

174 a.initialTime = millis()/1000.0;

175 }

176 else if(g.controllerNum == 3){

177 B.on = 1;

178 B.tempFinal = convertData(g);

179 B.initialTemp = (5.0*analogRead(B.feedbackPin)/1023.0-1.25)/0.005;

180 B.initialTime = millis()/1000.0;

181 }

182 else if(g.controllerNum == 4){

183 c.on = 1;
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184 c.initialTemp = convertData(g);

185 c.tempFinal = c.initialTemp;

186 }

187 else if(g.controllerNum == 5){

188 d.on = 1;

189 d.initialTemp = convertData(g);

190 d.tempFinal = d.initialTemp;

191 }

192 else if(g.controllerNum == 6){

193 e.on = 1;

194 e.initialTemp = convertData(g);

195 e.tempFinal = e.initialTemp;

196 }

197 else if(g.controllerNum == 7){

198 a.on = 0;

199 analogWrite(a.ctrlPin,0);

200 a.setPoint = 0;

201 }

202 else if(g.controllerNum == 8){

203 B.on = 0;

204 analogWrite(B.ctrlPin,0);

205 B.setPoint = 0;

206 }

207 else if(g.controllerNum == 9){

208 c.on = 0;

209 analogWrite(c.ctrlPin,0);

210 c.setPoint = 0;

211 }

212 else if(g.controllerNum == 10){

213 d.on = 0;

214 analogWrite(d.ctrlPin,0);

215 d.setPoint = 0;

216 }

217 else if(g.controllerNum == 11){

218 e.on = 0;

219 analogWrite(e.ctrlPin,0);
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220 e.setPoint = 0;

221 }

222 g.newData = false;

223 g.dataCount++;

224 }

225 else if(g.dataCount==4&&g.numData!=4){

226 if(g.controllerNum == 2){

227 a.rampTime = convertData(g);

228 a.m = (a.tempFinal-a.initialTemp)/(a.rampTime*60.0);

229 a.b = a.initialTemp - a.m*a.initialTime;

230 }

231 else if(g.controllerNum == 3){

232 B.rampTime = convertData(g);

233 B.m = (B.tempFinal-B.initialTemp)/(B.rampTime*60.0);

234 B.b = B.initialTemp - B.m*B.initialTime;

235 }

236 g.newData = false;

237 g.dataCount++;

238 }

239 else if(g.dataCount>g.numData){

240 g.controllerNum = 0;

241 g.newData = false;

242 g.dataCount = 0;

243 }

244 }

A.3 Python GUI Script

1 #------------------------------------------------------

2 # Title: Complete Controller - Python Script

3 # Author: Austin Foster

4 # Date: January 17, 2018

5 # Description: This is a first attempt at the

6 # completed controller

7 #------------------------------------------------------

8
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9 # Import necessary modules

10 import numpy as np

11 import tkinter as tk

12 from tkinter import ttk

13 import serial

14 import csv

15 from time import sleep

16 import sys

17

18 # Define constants

19 global app

20 LARGE_FONT = ("Verdana", 12)

21 NORMAL_FONT = ("Verdana", 10)

22 SMALL_FONT = ("Verdana", 8)

23 global params

24 params = np.array([70, 300, 5, 10, 5, 0])

25 global time, tempPrim, liveTemp, DAQ

26 time = 0

27 temp1 = 0

28 DAQ = 0

29

30 # Connect serial port

31 global ser

32 ser = serial.Serial(’COM4’, 9600, timeout=1) # Establish the connection

on a specific port

33

34 # Define classes

35 class PerkinElmerProjectDAQ(tk.Tk):

36

37 # Define methods

38 def __init__(self, *args, **kwargs):

39 tk.Tk.__init__(self, *args, **kwargs)

40 tk.Tk.wm_title(self, string="Perkin Elmer Project DAQ - Created

by Austin Foster")

41 # Create a container. You always need a container

42 container = tk.Frame(self) # Frame is the edge of the window
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43 container.pack(side="top",fill="both",expand=True)

44

45 # Do dome configureation

46 container.grid_rowconfigure(0,weight=1)

47 container.grid_columnconfigure(0,weight=1)

48

49 # Specify a dictionary

50 self.frames = {}

51

52 frame = DAQdisplay(container, self) # StartPage is

defined later

53

54 self.frames[DAQdisplay] = frame

55

56 frame.grid(row=0, column=0, sticky="nsew") # Sticky is

basically alignment and stretch. nsew = north, south, east west

57

58 self.show_frame(DAQdisplay)

59

60 def show_frame(self, cont): # cont is the controller

61

62 frame = self.frames[cont]

63 frame.tkraise() # This command raises to the front

64

65 def toggleLED(self):

66 ser.write(b’g’)

67 return 1

68

69 def updateData(self,data,handle):

70 handle.config(text = str(data))

71

72 def theInfiniteLoop(self,bottonHandles,startHandle,liveTempHandles,

fileHandle):

73

74 # Create data file

75 fileLead = r’C:\Users\PEGC\Desktop\DAQdata’
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76 fileLead = fileLead + ’\\’

77 filename = fileHandle.get()

78 filenameFull = fileLead + filename + ’.csv’

79 outfile = open(filenameFull,’w’,newline=’’)

80 writer = csv.writer(outfile)

81 writer.writerow((’Time (s)’,’Tip Temp (ArdV)’,’Tip Set Point (C)’

,’Tip PWM (/255)’,’Tip Voltage (ArdV)’,’Tip Current (ArdV)’,’

Secondary Temp (ArdV)’,’Secondary Set Point (C)’,’Secondary PWM

(/255)’,’Secondary Voltage (ArdV)’,’Secondary Current (ArdV)’,’

Primary Temp (ArdV)’,’Primary Set Point (C)’,’Primary PWM (/255)’,’

Primary Voltage (ArdV)’,’Primary Current (ArdV)’,’TL1 Temp (ArdV)’,’

TL1 Set Point (C)’,’TL1 PWM (/255)’,’TL1 Voltage (ArdV)’,’TL1 Current

(ArdV)’,’TL2 Temp (ArdV)’,’TL2 Set Point (C)’,’TL2 PWM (/255)’,’TL2

Voltage (ArdV)’,’TL2 Current (ArdV)’,’BetweenTipAnd2ndary (ArdV)’,’

Between2ndaryAnd1maryClose22ndary (ArdV)’,’

Between2ndaryAnd1maryClose21mary (ArdV)’,’InletNut (ArdV)’,’Outletnut

(ArdV)’))

82

83 # Make buttons active

84 for i in range(len(bottonHandles)):

85 bottonHandles[i].config(state=’active’)

86 startHandle.config(state=’disabled’)

87

88 dataRun = 0

89 dataArr = []

90

91 running = 1

92

93 while running:

94

95 if filename == ’’:

96 print(’Enter a filename before starting run’)

97 for i in range(len(bottonHandles)):

98 bottonHandles[i].config(state=’disabled’)

99 startHandle.config(state=’active’)

100 running = 0
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101

102 try:

103

104 # Record data

105 data = ser.readline().decode().split(’\r\n’) # Read in

data line

106 if data[0]==’>’ and len(dataArr)>0: # Check for data

line end character and that the data array is not empty

107 for i in range(len(liveTempHandles)):

108 if float(dataArr[5*i+2])>0.5:

109 sp = str(dataArr[5*i+2])

110 else:

111 sp = ’-’

112 liveTempHandles[i].config(text = sp + ’ ; ’ +

str(round((5.*float(dataArr[5*i+1])/1023.-1.25)/0.005,1)))

113 writer.writerow(dataArr) # Write data to file

114 dataArr = [] # Clear data array

115 dataRun = 0 # Reset data acquisiton

state

116 if dataRun: # Check data

acquisition state

117 dataArr.append(data[0]) # Record data to array

118 if data[0]==’<’: # Check for data

line start character

119 dataRun = 1 # Commence data

acquisition

120

121 app.update_idletasks()

122 app.update()

123

124 except:

125 print(’DAQ Connection Compromised’)

126 for i in range(len(bottonHandles)):

127 bottonHandles[i].config(state=’disabled’)

128 startHandle.config(state=’active’)

129 running = 0
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130

131 def stopDAQ(self):

132 quit()

133 #outfile.close()

134

135 def buttonFunc(self,onBtnHndl,offBtnHndl,lblNum,entryHndl,

rwknEntryHndl):

136

137 # Turn on necessary bottons

138 for i in range(len(onBtnHndl)):

139 onBtnHndl[i].config(state=’active’)

140

141 # Turn off necessary buttons

142 for i in range(len(offBtnHndl)):

143 offBtnHndl[i].config(state=’disable’)

144

145 # Turn on entries

146 for i in range(len(rwknEntryHndl)):

147 rwknEntryHndl[i].config(state=’normal’)

148

149 # Build parameter list

150 params = [b’s’,len(entryHndl)+1,lblNum]

151 for i in range(len(entryHndl)):

152 params.append(float(entryHndl[i].get()))

153 entryHndl[i].config(state=’disable’)

154

155 # Send parameters

156 for i in range(len(params)):

157 ser.write(b’<’)

158 if i==0:

159 sendData = params[i]

160 else:

161 sendData = str.encode(str(params[i]))

162 ser.write(sendData)

163 ser.write(b’>’)

164
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165

166 class DAQdisplay(tk.Frame):

167

168 def __init__(self, parent, controller):

169 tk.Frame.__init__(self,parent)

170 label = tk.Label(self, text="DAQ and Controller", font=LARGE_FONT

)

171 label.grid(row=0,column=0,pady=10,padx=10,columnspan=3)

172

173 # Filename entry

174 fileNameLabel = tk.Label(self, text="Data filename (files saved

in DAQdata folder on desktop):",font=NORMAL_FONT)

175 fileNameLabel.grid(row=1,column=0,columnspan=3)

176 fileNameEntry = tk.Entry(self, width=25)

177 fileNameEntry.grid(row=2,column=0,padx=5,columnspan=3)

178

179 # Start and Stop DAQ buttons

180 daqStrt = tk.Button(self, text="Start DAQ",height=1,width=10,

command=lambda: controller.theInfiniteLoop(buttonHandles,daqStrt,[

prmLvTmp,scndLvTmp,lnLvTmp,inTLLvTmp,outTLLvTmp],fileNameEntry))

181 daqStrt.grid(row=3,column=0,columnspan=3)

182 daqStp = tk.Button(self, text="Stop DAQ",height=1,width=10,state=

’disabled’,command=lambda: controller.stopDAQ())

183 daqStp.grid(row=4,column=0,columnspan=3)

184

185 # Display Primary heater settings

186 prmTitle = tk.Label(self, text="Primary Heater:", font=

NORMAL_FONT)

187 prmTitle.grid(row=5,column=0,padx=5,columnspan=3)

188 prmStrtTmpLab = tk.Label(self, text="Start Temperature (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

189 prmStrtTmpLab.grid(row=6,column=0)

190 prmStrtTmp = tk.Entry(self)

191 prmStrtTmp.grid(row=6,column=1)

192 prmStrtTmp.insert(0,params[0])
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193 prmInitBtn = tk.Button(self, text="Initialize",height=1,width=10,

state=’disabled’,command=lambda: controller.buttonFunc([prmStrtBtn,

scndStrtBtn,prmStpBtn],[prmInitBtn],1,[prmStrtTmp],[]))

194 prmInitBtn.grid(row=6,column=2)

195 prmFnlTmpLab = tk.Label(self, text="Final Temperature (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

196 prmFnlTmpLab.grid(row=7,column=0)

197 prmFnlTmp = tk.Entry(self)

198 prmFnlTmp.grid(row=7,column=1)

199 prmFnlTmp.insert(0,params[1])

200 prmRmpTmLab = tk.Label(self, text="Ramp Time (min):", font=

NORMAL_FONT)

201 prmRmpTmLab.grid(row=8,column=0)

202 prmRmpTm = tk.Entry(self)

203 prmRmpTm.grid(row=8,column=1)

204 prmRmpTm.insert(0,params[3])

205 prmLvTmpLab = tk.Label(self, text="Set Point & Temp (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

206 prmLvTmpLab.grid(row=9,column=0)

207 prmLvTmp = tk.Label(self, text="", font=NORMAL_FONT)

208 prmLvTmp.grid(row=9,column=1)

209 prmStrtBtn = tk.Button(self, text="Start",height=1,width=10,state

=’disabled’,command=lambda: controller.buttonFunc([prmStpBtn],[

prmStrtBtn],2,[prmFnlTmp,prmRmpTm],[]))

210 prmStrtBtn.grid(row=7,column=2)

211 prmStpBtn = tk.Button(self, text="Stop",height=1,width=10,state=’

disabled’,command=lambda: controller.buttonFunc([prmInitBtn,

prmStrtBtn],[prmStpBtn],7,[],[prmStrtTmp,prmFnlTmp,prmRmpTm]))

212 prmStpBtn.grid(row=8,column=2)

213

214 # Display Secondary heater settings

215 scndTitle = tk.Label(self, text="Secondary Heater:", font=

NORMAL_FONT)

216 scndTitle.grid(row=10,column=0,padx=5,columnspan=3)

217 scndFnlTmpLab = tk.Label(self, text="Final Temperature (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)
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218 scndFnlTmpLab.grid(row=11,column=0)

219 scndFnlTmp = tk.Entry(self)

220 scndFnlTmp.grid(row=11,column=1)

221 scndFnlTmp.insert(0,params[1])

222 scndRmpTmLab = tk.Label(self, text="Ramp Time (min):", font=

NORMAL_FONT)

223 scndRmpTmLab.grid(row=12,column=0)

224 scndRmpTm = tk.Entry(self)

225 scndRmpTm.grid(row=12,column=1)

226 scndRmpTm.insert(0,params[3])

227 scndLvTmpLab = tk.Label(self, text="Set Point & Temp (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

228 scndLvTmpLab.grid(row=13,column=0)

229 scndLvTmp = tk.Label(self, text="", font=NORMAL_FONT)

230 scndLvTmp.grid(row=13,column=1)

231 scndStrtBtn = tk.Button(self, text="Start",height=1,width=10,

state=’disabled’,command=lambda: controller.buttonFunc([scndStpBtn],[

scndStrtBtn],3,[scndFnlTmp,scndRmpTm],[]))

232 scndStrtBtn.grid(row=11,column=2)

233 scndStpBtn = tk.Button(self, text="Stop",height=1,width=10,state=

’disabled’,command=lambda: controller.buttonFunc([scndStrtBtn],[

scndStpBtn],8,[],[scndFnlTmp,scndRmpTm]))

234 scndStpBtn.grid(row=12,column=2)

235

236 # Lead Nuts

237 lnTitle = tk.Label(self, text="Transfer Lead Nut Heaters:", font=

NORMAL_FONT)

238 lnTitle.grid(row=14,column=0,padx=5,columnspan=3)

239 lnFnlTmpLab = tk.Label(self, text="Control Temperature (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

240 lnFnlTmpLab.grid(row=15,column=0)

241 lnFnlTmp = tk.Entry(self)

242 lnFnlTmp.grid(row=15,column=1)

243 lnFnlTmp.insert(0,params[1])

244 lnLvTmpLab = tk.Label(self, text="Set Point & Temp (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)
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245 lnLvTmpLab.grid(row=16,column=0)

246 lnLvTmp = tk.Label(self, text="", font=NORMAL_FONT)

247 lnLvTmp.grid(row=16,column=1)

248 lnStrtBtn = tk.Button(self, text="Start",height=1,width=10,state=

’disabled’,command=lambda: controller.buttonFunc([lnStpBtn],[

lnStrtBtn],4,[lnFnlTmp],[]))

249 lnStrtBtn.grid(row=15,column=2)

250 lnStpBtn = tk.Button(self, text="Stop",height=1,width=10,state=’

disabled’,command=lambda: controller.buttonFunc([lnStrtBtn],[lnStpBtn

],9,[],[lnFnlTmp]))

251 lnStpBtn.grid(row=16,column=2)

252

253 # Inlet Transfer Line

254 inTLTitle = tk.Label(self, text="Inlet Transfer Line Heater:",

font=NORMAL_FONT)

255 inTLTitle.grid(row=17,column=0,padx=5,columnspan=3)

256 inTLFnlTmpLab = tk.Label(self, text="Control Te mperature (\N{

DEGREE SIGN}C):", font=NORMAL_FONT)

257 inTLFnlTmpLab.grid(row=18,column=0)

258 inTLFnlTmp = tk.Entry(self)

259 inTLFnlTmp.grid(row=18,column=1)

260 inTLFnlTmp.insert(0,params[1])

261 inTLLvTmpLab = tk.Label(self, text="Set Point & Temp (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

262 inTLLvTmpLab.grid(row=19,column=0)

263 inTLLvTmp = tk.Label(self, text="", font=NORMAL_FONT)

264 inTLLvTmp.grid(row=19,column=1)

265 inTLStrtBtn = tk.Button(self, text="Start",height=1,width=10,

state=’disabled’,command=lambda: controller.buttonFunc([inTLStpBtn],[

inTLStrtBtn],5,[inTLFnlTmp],[]))

266 inTLStrtBtn.grid(row=18,column=2)

267 inTLStpBtn = tk.Button(self, text="Stop",height=1,width=10,state=

’disabled’,command=lambda: controller.buttonFunc([inTLStrtBtn],[

inTLStpBtn],10,[],[inTLFnlTmp]))

268 inTLStpBtn.grid(row=19,column=2)

269
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270 # Outlet Transfer Line

271 outTLTitle = tk.Label(self, text="Outlet Transfer Line Heater:",

font=NORMAL_FONT)

272 outTLTitle.grid(row=20,column=0,padx=5,columnspan=3)

273 outTLFnlTmpLab = tk.Label(self, text="Control Temperature (\N{

DEGREE SIGN}C):", font=NORMAL_FONT)

274 outTLFnlTmpLab.grid(row=21,column=0)

275 outTLFnlTmp = tk.Entry(self)

276 outTLFnlTmp.grid(row=21,column=1)

277 outTLFnlTmp.insert(0,params[1])

278 outTLLvTmpLab = tk.Label(self, text="Set Point & Temp (\N{DEGREE

SIGN}C):", font=NORMAL_FONT)

279 outTLLvTmpLab.grid(row=22,column=0)

280 outTLLvTmp = tk.Label(self, text="", font=NORMAL_FONT)

281 outTLLvTmp.grid(row=22,column=1)

282 outTLStrtBtn = tk.Button(self, text="Start",height=1,width=10,

state=’disabled’,command=lambda: controller.buttonFunc([outTLStpBtn

],[outTLStrtBtn],6,[outTLFnlTmp],[]))

283 outTLStrtBtn.grid(row=21,column=2)

284 outTLStpBtn = tk.Button(self, text="Stop",height=1,width=10,state

=’disabled’,command=lambda: controller.buttonFunc([outTLStrtBtn],[

outTLStpBtn],11,[],[outTLFnlTmp]))

285 outTLStpBtn.grid(row=22,column=2)

286

287 buttonHandles = np.array([daqStp,prmInitBtn,scndStrtBtn,lnStrtBtn

,inTLStrtBtn,outTLStrtBtn])

288

289 # Call classes and stuff in "real life"

290 app = PerkinElmerProjectDAQ()

291

292 # Open infinite loop

293 dataRun = 0

294 dataArr = []

295

296 while True:

297
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298 # Update GUI

299 app.update_idletasks()

300 app.update()
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APPENDIX B. CONTROLLER CIRCUIT DIAGRAM

As discussed in chapter 2, the control system involved the use of various custom circuit

boards. These boards were a fan voltage step down circuit, the thermocouple interfacing circuit

board, and the power and relay circuit board. The circuit for the fan voltage was a simple voltage

regulator with two capacitors, and the thermocouple board was an array of female connection

ports for 16 thermocouple amplifiers. Due the simplicity of these circuits diagrams have not been

included below. The circuit diagram for power and relay control was significantly more complex

and has thus been included below (Figure B.1).

Figure B.1: Diagram of a portion of the circuitry used for the TGGC control system.
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APPENDIX C. VOLTAGE AND CURRENT DATA SMOOTHING FUNCTION

One of the difficulties encountered in gathering accurate voltage and current data from the

experimental system was the aliasing experienced as a result of the PWM control on the relays

that regulated the power supplied to the heaters. At low PWM values the majority of the data the

Arduino read in were zero voltage and current values, which was not useful in determining the

power consumed by the heater in question. In order to address this problem a multifaceted filtering

method was developed to determine which data points were the correct values.

The data communication between the Arduino and Python codes occurred at regular inter-

vals that were about 0.155 seconds apart. In between the sending of each of these data parcels,

the Arduino would take numerous readings of voltage and current from each of the heaters. These

data readings were filtered to obtain the data values that were representative of the power being

consumed by the heater.

The filtering method consisted of a multi-stage data cleaning process. The data communi-

cation occurred at regular intervals, and in between these intervals data were collected and filtered

to obtain good values for sending to the Arduino. The first step in data filtering was to compute a

running average of all the data points that the Arduino read in. This running average value would

carry through between data sending events to the Python code. As many of the data points read

in by the Arduino were at zero (because the PWM control value was below 100%), the Arduino

would take a second running average of only the input data that was above the first overall running

average (see Figure C.1 for demonstration of running averages). Doing this served to remove the

zero values from the data that would be used. This non-zero data was then used by the Arduino to

determine the voltage or current data value for each data send-off event.

Another functionality included in the code was a method for detecting sudden shifts in volt-

age or current. A bounding threshold function was included that was a decaying inverse function

that depended on the time span for the running averages. These threshold values served to further
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bound the final average that would be computed for the final data that was sent off to the Python

code. If at any point the recorded average value for a data send-off event was outside threshold

bounds, the Arduino would take that as a sign that the voltage value had shifted and it would reset

all the running averages along with the threshold decay. For visual clarification on this filtering

method see Figure C.1.

Figure C.1: Demonstration of data smoothing functionality.
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APPENDIX D. ADDITIONAL CHROMATOGRAMS

Included below are a selection of additional chromatograms from the various experimental

systems described in chapter 2.

D.1 Silicon Column

During the series of experiments run on the silicon column, one of the experiments per-

formed involved the use of both a base heater and secondary heater. The chromatogram shown

below in Figure D.1 demonstrates the separation performance of the silicon column with the sec-

ondary heater in use. It was found that although the secondary heater was able to increase the

column’s tip temperature considerably, it actually led to a decrease in the separation performance

of the column. It is believed that this was a result of the poor shape of the gradient that resulted

Figure D.1: Separation of C10-C30 on the silicon column using the secondary heater. Column
flow set at 1 mL/min, split ratio of 20:1, transfer lines and injector and detector at 250 °C.
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from using the secondary heater. As can be seen in Figure 2.3, the secondary heater covered a

larger portion of the column, and IR imaging showed that the heat input of the heater was most

concentrated at its center. This would seem to indicate that starting the secondary heater would

lead to a hump in the gradient near the center of the heater, causing peak broadening.

D.2 Stainless-Steel Column

Before performing TGGC separations on the stainless-steel column, the column was run

under TPGC conditions to test the quality of the coating. In one of these tests an ASTM D2887

standard mixture was successfully separated (Figure D.2). This test indicated that the column

coating quality was high enough to separate heavy compounds.

Figure D.2: Separation of ASTM D2887 mixture on the stainless-steel column demonstrating
column’s ability to separate heavy compounds. TPGC conditions from 40 to 300 °C at
approximately 25 °C/min.
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Figure D.3: Separation of C10-C40 mixture on the spiral column without copper sheaths on
transfer lines, showing an increase in peak tailing for heavier compounds. Column heated from
70 to 300 °C in approximately 15 minutes.

Figure D.4: Separation of double injected C10-C17 mixture on the spiral column demonstrating
TGGC’s ability to correct for poor injections.
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D.3 Spiral Column

As discussed in chapter 2, one of the improvements discovered in working with the spiral

column system was that using a copper tube between the heating coil and transfer line helped to

improve separation performance by eliminating cold spots. Before testing this improvement, the

spiral column was tested without the copper transfer lines. For comparison, an example of the

results from this run are provided in Figure D.3. It should be noted that the addition of the copper

tubing on the transfer line served to sharpen the heavier peaks that show considerable tailing in the

figure below.

Another test that was run on the spiral column was a test to see how the thermal gradient

was able to correct for poor injections. To test this a sample was injected into the column twice

with an approximately 25 s gap between the injections. The results from this test are shown in

Figure D.4. Note that as each subsequent peak elutes the gap between the peaks decreases. By the

time C14 elutes the TGGC system has successfully merged the severely split peaks.
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APPENDIX E. POWER INPUT VERIFICATION METHODS FOR STAR-CCM+

E.1 Power Circuitry Calibration

The data read in by the Arduino from the power control circuit was converted into bits,

where the data scaled between 0 and 1023 bits which correlated to 0 and 5 V respectively. In

order to make the data useful in thermal simulation development. Similarly, after consideration

of the voltage data read in by the Arduino it was determined that it would be more reliable to use

current and resistance data to compute the power consumed by the heater. In order to make these

calibrations possible data was taken on the current passing through the heater and the associated

Arduino bit readings, along with resistance values across the heater along with temperatures of the

heater.

Figure E.1: Power regression curve with upper and lower 95% confidence bounds.
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Using the data gathered for calibrating the code, linear regressions to the data were com-

puted for both the current and the resistance of the heater. As power was to be computed via data

on current and heater resistance and, given that linear regression models were fit to both the current

and resistance data, the final relationship for power was defined by Equation E.1. Results for the

linear models and their associated 95% confidence intervals are shown in Figure E.1.

p = I2RH = (β3 +β0DataI)
2 (β1 +β2T ) (E.1)

Figure E.2: Example of the noise levels found in the data recorded by the Arduino.

E.2 Power Extraction

The computed value for power could then be used to estimate the power consumed by

each heater for any particular experimental run. However before being able to compute the power

consumed, the current data read in by the Arduino had to be cleaned up as the Arduino filtering

method was unable to remove all the noise in the data (Figure E.2). In order to ensure that only

correct values were read in, a method was implemented in a Python script that allowed the user

to select where the correct data was. This was done by clicking the approximate mean and upper
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bound at up to 50 points along the line of interest. The code would then find the 50 nearest data

points to the point selected by the user that were within the user identified bound. The mean of

these 50 values would then be computed along with a 95% confidence interval on the mean. These

data could then be used in the linear model computed earlier to estimate the power consumed by

the heater.

E.3 PWM Scaling

Once the heater power consumption was estimated the next step was to determine the per-

centage of the power that actually entered the heater. In the experimental system this percentage

was controlled by the PWM signal and as this value was recorded by the DAQ system it was the

value that could be used to properly scale the power that was estimated to be flowing through the

heater.

Studies of the behavior of the relay control circuitry using an oscilloscope demonstrated

that the although the PWM signal enters the relay as a square wave, the power leaves the relay

with a decaying trend as shown in Figure E.3.

Figure E.3: Voltage behavior to heater exhibited by relays used in circuitry. The PWM signal
controlling the relay intended for the heater to be on between trise and t f all .
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The ramp on the back side of the on segments indicated that a simple relation 0% to 100%

method for scaling the power wouldn’t correctly model the power percentage that was passing

through the heater as controlled by the PWM signal. A more accurate representation of the PWM

power percentage was computed by integrating the power with respect to time across one full

PWM cycle and then dividing the result of that integral by the time of one cycle. The result of

this integration was that for PWM values where the ramp didn’t intersect with the next step up the

power percentage was the following:

%P =
PWM
255

+0.042 (E.2)

And for PWM values where the ramp did intersect with the next step the power percentage

was the following:

%P =
1
3

(
mV tT

Vf

)2Ç
1− PWM

255

å3
+

(
mV tT

Vf

)Ç
PWM
255

−1
å2

+1 (E.3)

Where mV is the slope of the voltage ramp, Vf is the maximum voltage, and tT is the time

that elapses in one PWM cycle. For the above equation mV = -33.33 V/ms, Vf = 35 V, and tT =

8.33 ms.

These relations were used to properly scale the power that was computed via the linear

regression models discussed above.

E.4 Simulation Verification

As stated in the body of the thesis, it was determined the most accurate and reliable method

for controlling the power input for surface heater simulations was the use of a PI controller that

was controlled by the error between simulated and experimental temperatures. The PI control

method was implemented in STAR-CCM+ by reading the thermocouple data from the experi-

mental runs as tabulated data. This temperature data from the system was then used as the set

point temperature and the PI control on the heaters was implemented via a series of reports and

field functions. For an example of this control method refer to the simulation in the following

location on the CAEDM J-drive: J:\groups\fluxlab\TGGC\Austin\STAR CCM Simulations\46

Steel Chip Tolley Paper\Simulation Runs\03 TransientTest7 PIControl.sim. It was important that
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the power input results used by the STAR-CCM+ simulation be within the correct bounds so as

to ensure that the simulation be reliable. In order to check the validity of the power values used

by the PI controller, the controller power input values were recorded and then plotted against the

calibrated power values discussed above (Figure E.4). The results of these comparisons showed

that for the most part the power computed by the PI controller stayed within the 95% confidence

bounds computed by the linear regression fit and current data noise.

(a) (b)

Figure E.4: Comparison between STAR-CCM+ heating values used in simulations compared to
estimated power values for both the (a) primary heater and the (b) secondary heater.
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APPENDIX F. SPIRAL COLUMN SYSTEM SIMULATION NOTES

As mentioned in chapter 3, a combined analytical and numerical model was developed to

explore the possibility of using a spiral column on a radial substrate instead of a serpentine column

on a rectangular substrate. The results from the model showed sufficient promise to motivate

moving towards a spiral system.

F.1 Combined Model

Due to the relative simplicity of working with a radial system it was determined that an

analytical model should be pursued instead of using STAR-CCM+. Since the thickness of the alu-

minum disk was thin (0.5 mm) in comparison to the disk’s diameter (152.4 mm) it was determined

that the thermal behavior perpendicular to the disk could be lumped, thus reducing the heating of

the disk to a two-dimensional problem. The governing equation for conduction through the disk

was then derived by applying Fourier’s law to a differential control annulus with insulation and

convective heat losses from the top and bottom leading to the PDE given in Equation F.1.

∂

∂ r

Ç
kAlr

∂T
∂ r

å
+

r
z

Ä
q′′in−2q′′cond− (ht +hb)(T −T∞)

ä
= rρcp

∂T
∂ t

(F.1)

It was determined that the above equation could not be solved analytically due to the fol-

lowing reasons: (1) the thermal conductivity could not reasonably be treated as constant in the

r-direction due to the presence of the column and due to varying temperatures along the disk, (2)

the heat flux input was not constant in the r-direction because the printed heater would not nec-

essarily cover the entire disk, (3) the heat loss into the foam was not constant in the r direction

because the insulating foam would not necessarily cover the entire disk, and (4) the convective

heat loss was not constant in the r-direction because only a portion of the disk would be exposed

to air. In order to make obtaining a solution possible the governing equation was discretized using

102



a central difference approach in the r-direction and an explicit approach for time. The numerical

solution was then computed using a Python script (Section F.5).

F.2 Effective Thermal Conductivity

One of the difficulties that had to be addressed in order to obtain a meaningful model of

the system was determining how the presence of the spiraled column influenced heat conduction

through the disk. The design that was under consideration involved a stainless steel capillary col-

umn that was placed in a spiral path that had been milled into the disk. In order to accurately model

the conduction through this spiraled region of the disk a model had to be developed to accurately

represent its heating characteristics. In order to do this a 2D STAR-CCM+ model was prepared

of one cross-sectional segment of the milled column region (See Figure F.1a) and was tested un-

der various conditions to determine the temperature dependent effective thermal conductivity of

the spiraled segment. The temperature for each test was determined by averaging the temperature

across the entire segment, and the effective thermal conductivity was computed by measuring the

heat flux and temperature drop across the segment, both of which were then applied to Fourier’s

law to find ke f f . The effective thermal conductivities were then brought together and a second

order polynomial fit was made to the data as shown in Figure F.1b.

F.3 Foam Heat Loss

As conduction through a two dimensional solid where the temperature is not known on

the opposite side is a complex heat transfer phenomenon, a simple model for insulation heat loss

could not be used in solving the aluminum disk governing equation. In order to obtain accurate

estimates for the insulation heat loss it was determined that the best option would be to compute

the temperature gradient in the insulation analytically and then use that gradient to compute the

conduction into the foam. Starting with the radial heat diffusion equation, an insulation governing

equation of the following form was derived by assuming axisymmetric, steady state conditions

with no generation (Equation F.2).

2r
∂ 2T
∂ r2 +2

∂T
∂ r

+RS
∂ 2T
∂ z2 = 0 (F.2)
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(a) (b)

Figure F.1: Thermal model for the effective thermal conductivity of the spiraled column in the
radial direction: (a) Cross section of simulated spiral segment with different materials labeled as
(1) aluminum plate, (2) stainless-steel capillary column, (3) helium, and (4) air; (b) Data on
effective thermal conductivity as a function of temperature with a quadratic fit to the data.

Subject to a fixed temperature boundary at the base (z=0), and a finite boundary at the center

(r=0), and convective boundaries at the other two faces. The analytical solution was computed at

each time step in the Python script from which the conductive heat loss on the chip was calculated.

It should be noted that the above equation in a steady-state solution to the heat diffusion equation

in the insulation and thus the heat flux value given represents an approximation of the actual heat

that would be lost into the insulation under transient conditions.

F.4 Results

The combined numerical and analytical model for the conduction in the aluminum disk

output tabulated temperature data as a function of both radial position and time. These data could

then be used in conjunction with a column temperature extraction method to determine the resultant

temperature along the length of the column. Results from the model are shown in Figure 3.9 in

Section 3.4.
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F.5 Combined Model Code

1 # Title: Transiet Finite Difference Simulation of Radial System

2 # Author: Austin Foster

3 # Date: October 10, 2018

4

5 # Import modules

6 import numpy as np

7 import matplotlib.pyplot as plt

8 import scipy.special as sp

9 import scipy.optimize as optimize

10 from mpl_toolkits.mplot3d import axes3d

11

12 # Define thermal conducttivity function

13 def kAl(T):

14

15 C = 1

16 return (87.6050528 + 0.304146932*T - 1.942604246e-4*T**2)*C

17

18 def kEff(T):

19

20 return -8.76747e-5*T**2 + 0.1121433*T + 29.01643

21

22 # Define parameters

23 R = 0.0762

24 ##z = 0.001

25 T_inf = 300

26 T_i = 70+273.15

27 N = 30

28

29 # Build radial array

30 delta_r = R/N

31 r = np.arange(delta_r/2,R,delta_r)

32

33 # Build convection array

34 r_ins = 0.065
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35 h_tVal = 9.587

36 h_bVal = 5.171

37 h_t = np.zeros_like(r)

38 h_b = np.zeros_like(r)

39 h_t[r>=r_ins] = h_tVal

40 h_b[r>=r_ins] = h_bVal

41

42 # Define chip thickness

43 z = 0.00051

44

45 # Initalize T

46 T = np.ones(N)*T_i

47

48 # Build thermal conductivity array

49 r_inner = 0.00578

50 r_outer = 0.0405

51 k = kAl(T)

52 k[(r>=r_inner) & (r<=r_outer)] = kEff(T[(r>=r_inner) & (r<=r_outer)])

53

54 # Locate thermocouple control locations

55 ctrl1 = np.argmin(abs(r-r_inner))

56 ctrl2 = np.argmin(abs(r-r_outer))

57

58 # --- Compute insulation heat loss terms --- #

59 #Parameters

60 global r1

61 r1 = r_ins

62 h_Ins = 9.8

63 k_Ins = 0.06

64 global H

65 H = h_Ins/k_Ins

66 global L

67 L = 0.0245

68 R_cont = 0.09132

69 delta_z = 0.001225

70 gridN = 50
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71 n = 45

72 rootEps = 0.01

73 #Create position arrays

74 r_Ins = np.linspace(0,r1,gridN)

75 z_Ins = np.linspace(0,delta_z,2)

76 r_Ins, z_Ins = np.meshgrid(r_Ins,z_Ins)

77 # Eigenvalue root funciton

78 def lambFunc(lamb):

79 return -lamb*sp.jn(1,lamb*r1) + H*sp.jn(0,lamb*r1)

80 # Root finding function

81 def lambRoot(lambStrt,eps):

82 i = 0

83 running = 1

84 while running:

85 lamb = lambStrt + i*eps

86 if lambFunc(lamb)*lambFunc(lamb+eps) < 0:

87 zero = optimize.bisect(lambFunc,lamb,lamb+eps)

88 running = 0

89 else:

90 i = i + 1

91 returnSet = [zero,lamb+eps]

92 return returnSet

93 # Solve for roots

94 lambdaSet = np.zeros(n)

95 lambStrt = rootEps

96 for i in range(n):

97 [lambdaSet[i],lambStrt] = lambRoot(lambStrt,rootEps)

98 # Eigenfunctions

99 def Rn(n,lamb,r):

100 return sp.jn(0,lamb[n]*r)

101 def Zn(n,lamb,z):

102 return -lamb[n]*np.cosh(lamb[n]*(z-L))/H + np.sinh(lamb[n]*(z-L))

103 # Define function

104 f = np.interp(r_Ins[0,],r[r<=r_ins],T[r<=r_ins]) - T_inf

105 # Series constant computer

106 def c_n(n,f,r,lamb):
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107 num = np.trapz(r_Ins[0,]*Rn(n,lamb,r_Ins[0,])*f,r_Ins[0,])

108 den = (0.5*r1**2*((H/lamb[n])**2+1)*(Rn(n,lamb,r1))**2)*(Zn(n,lamb,0)

)

109 return num/den

110 # Compute insulation flux

111 def fluxSolve(r_Ins,lambdaSet,z_Ins,k_Ins,delta_z,r,Tin):

112 # Compute edge temperature

113 f = np.interp(r_Ins[0,],r[r<=r_ins],Tin[r<=r_ins]) - T_inf

114 # Solve for gradient

115 Theta = np.zeros_like(r_Ins)

116 for i in range(n):

117 Theta += c_n(i,f,r_Ins,lambdaSet)*Rn(i,lambdaSet,r_Ins)*\

118 Zn(i,lambdaSet,z_Ins)

119 # Compute flux

120 q = -k_Ins*(Theta[1,]-Theta[0,])/delta_z

121 # SmoothFlux

122 q_smooth = np.copy(q)

123 window = 15

124 for i in range(int(len(q)/2)):

125 if i < window:

126 q_smooth[i] = np.mean(q[2:i+window])

127 else:

128 q_smooth[i] = np.mean(q[i-window:i+window])

129 q_smooth_Fit = np.interp(r,r_Ins[0,],q_smooth,right=0)

130 return q_smooth_Fit

131

132 q_cond = fluxSolve(r_Ins,lambdaSet,z_Ins,k_Ins,delta_z,r,T)

133

134 # Define time step

135 delta_t = 0.02

136 t_max = 100

137

138 rMat = np.copy(r)

139 tMat = np.arange(0,t_max,delta_t)

140 tArr = np.copy(tMat)

141 timeN = len(tMat)
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142 rMat,tMat = np.meshgrid(rMat,tMat)

143 TMat = np.zeros_like(rMat)

144

145 # Build temperature control arrays

146 strtWt = 30

147 T_strt = 70 + 273.15

148 T_fnl = 350+273.15

149 Tctrl1 = np.zeros_like(tArr)

150 Tctrl1 = T_strt + tArr*(T_fnl-T_strt)/(t_max-strtWt) - strtWt*(T_fnl-

T_strt)/(t_max-strtWt)

151 Tctrl1[tArr<=strtWt] = T_strt

152

153 deltaTemp = 30

154 Tctrl2 = Tctrl1 - deltaTemp

155

156 # Set initial temperature

157 TMat[0,:] = T

158

159 # Set values for rho and cp

160 rho = np.ones(N)*2700.0

161 rho[(r>=r_inner) & (r<=r_outer)] = 2433.83

162

163 def c_pComp(Tarr):

164

165 c_pOut = -6.214e-9*Tarr**4 + 1.62e-5*Tarr**3 - 1.536e-2*Tarr**2 + \

166 6.745*Tarr - 5.606

167 Tspiral = Tarr[(r>=r_inner) & (r<=r_outer)]

168 c_pOut[(r>=r_inner) & (r<=r_outer)] = -3.775e-9*Tspiral**4 + \

169 1.002e-5*Tspiral**3 - \

170 0.0097*Tspiral**2 + \

171 4.516*Tspiral + 94.919

172 return c_pOut

173

174 c_p = c_pComp(T)

175

176 # Build empty q_in array

109



177 q_in = np.zeros_like(r)

178 r_heater = 0.05

179

180 # Run computation loop

181 # Iteration parameters

182 err = [1]

183 eps = 1e-3

184 errLast = 10000

185

186 print(’Go!’)

187

188 for i in range(1,timeN):

189

190

191 # Compute conduction into insulation

192 q_cond = fluxSolve(r_Ins,lambdaSet,z_Ins,k_Ins,delta_z,r,TMat[i-1,:])

193

194 # Compute thermal conductivity

195 k = kAl(TMat[i-1,:])

196 k[(r>=r_inner) & (r<=r_outer)] = kEff(TMat[i-1,(r>=r_inner) & (r<=

r_outer)])

197

198 # Compute specific heat

199 c_p = c_pComp(TMat[i-1,:])

200

201 # Compute heat inputs

202 A = rho[ctrl1]*c_p[ctrl1]*r[ctrl1]*delta_r*z/delta_t

203 k_l = np.mean([k[ctrl1],k[ctrl1-1]])

204 B = k_l*z*(r[ctrl1]-0.5*delta_r)/delta_r

205 C = (h_t[ctrl1]+h_b[ctrl1])*r[ctrl1]*delta_r

206 k_r = np.mean([k[ctrl1],k[ctrl1+1]])

207 D = k_r*z*(r[ctrl1]+0.5*delta_r)/delta_r

208 I = r[ctrl1]*delta_r*(q_cond[ctrl1]+q_cond[ctrl1])

209 q_inner = (A*Tctrl1[i] + (B+C+D-A)*TMat[i-1,ctrl1] - D*TMat[i-1,ctrl1

+1] - \

210 B*TMat[i-1,ctrl1-1] - C*T_inf + I)/(r[ctrl1]*delta_r)
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211

212 A = rho[ctrl2]*c_p[ctrl2]*r[ctrl2]*delta_r*z/delta_t

213 k_l = np.mean([k[ctrl2],k[ctrl2-1]])

214 B = k_l*z*(r[ctrl2]-0.5*delta_r)/delta_r

215 C = (h_t[ctrl2]+h_b[ctrl2])*r[ctrl2]*delta_r

216 k_r = np.mean([k[ctrl2],k[ctrl2+1]])

217 D = k_r*z*(r[ctrl2]+0.5*delta_r)/delta_r

218 I = r[ctrl2]*delta_r*(q_cond[ctrl2]+q_cond[ctrl2])

219 q_outer = (A*Tctrl2[i] + (B+C+D-A)*TMat[i-1,ctrl2] - D*TMat[i-1,ctrl2

+1] - \

220 B*TMat[i-1,ctrl2-1] - C*T_inf + I)/(r[ctrl2]*delta_r)

221 if q_outer<0:

222 q_outer = 0

223

224 q_in = np.ones_like(r)*q_inner

225 q_in[r>=0.5*r_heater] = q_outer

226 q_in[r>r_heater] = 0

227

228 for j in range(N):

229

230 # Check for edges

231 if (j==0):

232

233 # Compute constants

234 A = rho[j]*c_p[j]*r[j]*delta_r*z/delta_t

235 B = 0

236 C = (h_t[j]+h_b[j])*r[j]*delta_r

237 k_r = np.mean([k[j],k[j+1]])

238 D = k_r*z*(r[j]+0.5*delta_r)/delta_r

239 S = q_in[j]*r[j]*delta_r

240 I = r[j]*delta_r*(q_cond[j]+q_cond[j])

241 # Compute next point

242 TMat[i,j] = ((A-B-C-D)*TMat[i-1,j] + B*0 + \

243 D*TMat[i-1,j+1] + C*T_inf + S - I)/A

244

245 elif (j==N-1):
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246

247 # Compute constants

248 A = rho[j]*c_p[j]*r[j]*delta_r*z/delta_t

249 k_l = np.mean([k[j],k[j-1]])

250 B = k_l*z*(r[j]-0.5*delta_r)/delta_r

251 C = (h_t[j]+h_b[j])*r[j]*delta_r

252 D = 0

253 S = q_in[j]*r[j]*delta_r

254 I = r[j]*delta_r*(q_cond[j]+q_cond[j])

255 # Compute next point

256 TMat[i,j] = ((A-B-C-D)*TMat[i-1,j] + B*TMat[i-1,j-1] + \

257 D*0 + C*T_inf + S - I)/A

258

259 else:

260

261 # Compute constants

262 A = rho[j]*c_p[j]*r[j]*delta_r*z/delta_t

263 k_l = np.mean([k[j],k[j-1]])

264 B = k_l*z*(r[j]-0.5*delta_r)/delta_r

265 C = (h_t[j]+h_b[j])*r[j]*delta_r

266 k_r = np.mean([k[j],k[j+1]])

267 D = k_r*z*(r[j]+0.5*delta_r)/delta_r

268 S = q_in[j]*r[j]*delta_r

269 I = r[j]*delta_r*(q_cond[j]+q_cond[j])

270 # Compute next point

271 TMat[i,j] = ((A-B-C-D)*TMat[i-1,j] + B*TMat[i-1,j-1] + \

272 D*TMat[i-1,j+1] + C*T_inf + S - I)/A

273

274 # Save results

275 TMatScale = TMat - 273.15

276 np.savetxt(’rMat.csv’,rMat,delimiter=’,’)

277 np.savetxt(’tMat.csv’,tMat,delimiter=’,’)

278 np.savetxt(’TMatScale.csv’,TMatScale,delimiter=’,’)

279

280 # Plot results

281 fig = plt.figure()
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282 ax = fig.add_subplot(111,projection=’3d’)

283 ax.plot_wireframe(rMat,tMat/60.0,TMatScale)

284 ax.set_xlabel(’Radial Position (m)’)

285 ax.set_ylabel(’Time (min)’)

286 ax.set_zlabel(r’Temperature ($\degree$C)’)

287 ax.set_title(’Radial Gradient’)

288 plt.show()

289

290 # Compute column gradient

291 rCol = rMat[:,(r>=r_inner) & (r<=r_outer)]

292 tCol = tMat[:,(r>=r_inner) & (r<=r_outer)]

293 TCol = TMat[:,(r>=r_inner) & (r<=r_outer)] - 273.15

294 K_spiral = 0.001/(2*np.pi)

295 lCol = rCol**2/K_spiral - r_inner**2/K_spiral

296 fig = plt.figure()

297 ax = fig.add_subplot(111,projection=’3d’)

298 ax.plot_wireframe(lCol,tCol/60.0,TCol)

299 ax.set_title(’Column Gradient’)

300 ax.set_xlabel(’Column Position (m)’)

301 ax.set_ylabel(’Time (min)’)

302 ax.set_zlabel(r’Temperature ($\degree$C)’)

303 plt.show()

304

305 # Compute delta T

306 deltaT = np.zeros(timeN)

307 for i in range(timeN):

308

309 T_hi = np.interp(r_inner, r, TMat[i,:])

310 T_Lo = np.interp(r_outer, r, TMat[i,:])

311 deltaT[i] = T_hi - T_Lo

312

313 plt.plot(np.arange(0,t_max,delta_t)/60.0,deltaT)

314 plt.xlabel(’Time (min)’)

315 plt.ylabel(r’$\Delta$T ($\degree$C)’)

316 plt.title(r’Gradient $\Delta$T’)

317 plt.show()
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APPENDIX G. SOLIMIDE PROPERTY EXPERIMENT

As described briefly in Section 3.3, experiments were performed to determine the thermal

conductivity of Solimide as well as the contact resistance between Solimide foam and a flat surface.

After preliminary efforts to calibrate the simulation of heating in the silicon chip it was found that

heat loss into the Solimide foam had a significant influence on the shape of the gradient. It was

therefore determined that it would be necessary to gather experimental data to better quantify the

thermal properties.

An experiment was devised to imitate the conditions of the Solimide foam in the exper-

imental system. A 0.25 inch thick plate of copper was connected on its bottom face to a mica

surface heater, and on its top face to a 3 inch square heat flux sensor. A one inch thick section of

Solimide was then laid on top of the heat flux sensor and was weighed down by another piece of

copper in the same way as was done in the experimental setup (Figure G.1).

Six thermocouples were used to gather data on the system. The first was taped to the top

of the copper plate adjacent to the heat flux sensor and was used in controlling the temperature

of the copper block. Another thermocouple taped to the top surface of the heat flux sensor, and

three thermocouples were inserted into the foam at varying distances from the heat flux sensor.

A final thermocouple was placed on the top face of the Solimide foam (Figure G.2). Note that

thermocouples two through six were all placed near the center of the Solimide piece so as to

minimize the effects of heat loss at the edges of the insulation.

The copper was heated to varying temperatures to match the temperatures experienced by

the insulation in TGGC runs (50-100 °C) and data was gathered on the heat flux passing through

the heat flux sensor as well as the temperatures of each of the thermocouples. In order to compute

the thermal conductivity of the foam the temperatures of thermocouples 3 through 6, along with

the distances between each thermocouple and the heat flux in the heat flux sensor were applied
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Figure G.1: Experimental setup used to gather data needed to determine the thermal conductivity
and contact resistance for Solimide.

to Fourier’s law of conduction. Assuming that the conduction was one-dimensional the thermal

conductivity could be computed as follows.

kS =−
q′′S∆y
∆T

(G.1)

In order to compute the contact resistance between the heat flux sensor the slope between

thermocouples 3 and 4 was extrapolated back to the surface of the heat flux sensor. The difference

between this extrapolated temperature and the temperature from thermocouple 2 were used to-

gether with the heat flux to compute the thermal contact resistance as shown in Equation G.2 [45].

It was then assumed for the purpose of the simulations run in STAR-CCM+ that this contact resis-

tance would be approximately equal to the contact resistance for the experimental systems being

modeled. The resultant thermal conductivity and thermal contact resistance values are shown in

Figure G.3.

R′′t,c,S =
T2−Text

q′′S
(G.2)
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Figure G.2: Schematic of experimental setup used to determine the thermal conductivity and
contact resistance of Solimide.

(a) (b)

Figure G.3: Computational results for both (a) thermal conductivity and (b) contact resistance for
Solimide derived from data gathered from the experimental system.
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APPENDIX H. GRADIENT EXTRACTION CODE

Upon successful validation of a thermal model, the next step was to extract the thermal

gradient along the column in the substrate of interest. In order to do this the path of the column

along the substrate had to be converted into a form that would be useful in extracting associated

temperatures. To this end a Python script was developed that created a table of the points along

the column path by consulting the design drawings for the column of interest. The code for this

extraction on the stainless-steel column is included below.

Along with having data on the column’s path, it was necessary to have tabulated data on

the column’s temperature. To obtain this data the validated STAR-CCM+ simulation was run and

temperature data was extracted at every node in the simulated column substrate at regular time

steps (usually about 1 second). This data was then used in conjunction with the column path data

in a Python code that computes a 3D regression fit of the temperature at any point as a function

of the temperatures of the 10 nearest nodes in the simulation. The extracted temperatures were

then smoothed using a moving window averaging technique. The codes used for this simulation to

column path temperature extraction are included below.

H.1 Column Path Extraction Code

1 # Title: Python Serpentine Path Extractor 3.0

2 # Author: Austin Foster

3 # Date: February 8, 2018

4

5 # Import modules

6 import numpy as np

7 import matplotlib.pyplot as plt

8 from mpl_toolkits.mplot3d import Axes3D

9 from matplotlib import cm

10 from matplotlib.ticker import LinearLocator, FormatStrFormatter
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11

12 # ---- Define functions ---- #

13

14 # Point finder along linear segment

15 def lineData(Start, slack, angle, length, gapSmall, gapLarge, dataOrg,

ind):

16

17 # Compute segment endpoint

18 End = [Start[0]+length*np.cos(angle),Start[1]+length*np.sin(angle)]

19

20 # Check for slack overshoot (no data points)

21 if (slack > length):

22 slack_out = slack - length

23

24 # If data is to be gathered, gather it

25 else:

26

27 # Compute the first point

28 #Point = [Start[0]+slack*np.cos(angle),Start[1]+slack*np.sin(

angle)]

29 Point = [Start[0],Start[1]]

30 if len(dataOrg) == 0:

31 dataOrg = [ind,0,Point[0],Point[1]]

32 else:

33 dataOrg = np.vstack((dataOrg,[ind,gapSmall-slack,Point[0],

Point[1]]))

34 ind += 1

35

36 # Compute running length

37 #L_r = slack

38 L_r = 0

39

40 # Enter iterative loop

41 while (L_r + gapLarge < length):

42

43 # Compute data point
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44 Point = [Point[0]+gapLarge*np.cos(angle),Point[1]+gapLarge*np

.sin(angle)]

45 dataOrg = np.vstack((dataOrg,[ind,gapLarge,Point[0],Point

[1]]))

46 ind += 1

47

48 # Compute running length

49 L_r += gapLarge

50

51 # Compute remaining slack

52 if L_r < length:

53 L_r += gapLarge

54 slack_out = L_r - length

55

56 # Return results

57 return dataOrg, End, slack_out, ind

58

59 # ---------------------------------------------------

60

61 # Point finder around a corner

62 def cornerData(Start, slack, angle1, angle2, radius, gapSmall, gapLarge,

dataOrg, ind):

63

64 # Compute angle rounded by corner (sign sensitive)

65 phi = angle2 - angle1

66

67 # Compute directional value

68 direc = phi/abs(phi)

69

70 # Compute path end point

71 psi = 0.5*(np.pi-abs(phi))

72 gamma = angle1 + direc*(0.5*np.pi-psi)

73 c = 2.*radius*np.sin(0.5*abs(phi))

74 End = [Start[0]+c*np.cos(gamma),Start[1]+c*np.sin(gamma)]

75

76 # Compute arc length
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77 L = abs(phi*radius)

78

79 # Compute first point

80 phi_s = slack/radius

81 psi_s = 0.5*(np.pi-phi_s)

82 gamma_s = angle1 + direc*(0.5*np.pi - psi_s)

83 c_s = 2.*radius*np.sin(0.5*phi_s)

84 #Point = [Start[0]+c_s*np.cos(gamma_s),Start[1]+c_s*np.sin(gamma_s)]

85 Point = [Start[0],Start[1]]

86 dataOrg = np.vstack((dataOrg,[ind,gapLarge-slack,Point[0],Point[1]]))

87 ind += 1

88

89 # Comptute new position angle

90 theta = angle1 #+ direc*phi_s

91

92 # Compute running length

93 #L_r = slack

94 L_r = 0

95

96 # Enter iterative loop

97 while (L_r + gapSmall < L):

98

99 # Compute data point

100 phi_k = gapSmall/radius

101 psi_k = 0.5*(np.pi-phi_k)

102 gamma_k = theta + direc*(0.5*np.pi - psi_k)

103 c_k = 2.*radius*np.sin(0.5*phi_k)

104 Point = [Point[0]+c_k*np.cos(gamma_k),Point[1]+c_k*np.sin(gamma_k

)]

105 dataOrg = np.vstack((dataOrg,[ind,gapSmall,Point[0],Point[1]]))

106 ind += 1

107

108 # Comptute new position angle

109 theta += direc*phi_k

110

111 # Compute running length

120



112 L_r += gapSmall

113

114 # Compute remaining slack

115 if L_r < L:

116 L_r += gapSmall

117 slack_out = L_r - L

118

119 # Return results

120 return dataOrg, End, slack_out, ind

121

122 # ---------------------------------------------------

123

124 # Parameters

125 dataOrg = []

126

127 data = np.genfromtxt(’NoTipGradient.csv’,delimiter=’,’,skip_header=1)

128 eps = 0.0001

129 TData = data[:,0]

130 xData = data[:,1] - np.min(data[:,1])

131 yData = -1*data[:,3]

132

133 StartDistZ = 0.000647475

134 InHoleGap = 0.0254

135 NumChan = 86

136 L1 = 0.0015

137 ang1 = (-90)*np.pi/180 + 0.5*np.pi

138 R1 = 0.00031

139 L2 = 0.01381

140 ang2 = (-0)*np.pi/180 + 0.5*np.pi

141 R2 = 0.00031

142 Lchan = 0.05362306748

143 angChan1 = (-179.76)*np.pi/180 + 0.5*np.pi

144 angChan2 = (-0.24)*np.pi/180 + 0.5*np.pi

145 Rchan = 0.00031

146 R3 = 0.00031

147 L3 = 0.05482177947
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148 ang3 = (-179.76)*np.pi/180 + 0.5*np.pi

149 R4 = 0.00031

150 L4 = 0.053195 + 0.0924983976440889

151 ang4 = (-270)*np.pi/180 + 0.5*np.pi

152 R5 = 0.00031

153 L5 = 0.01499

154 ang5 = (-360)*np.pi/180 + 0.5*np.pi

155 R6 = 0.00031

156 L6 = 0.00148

157 ang6 = (-270)*np.pi/180 + 0.5*np.pi

158

159 #dataOrg = np.zeros((1,4))

160 slack = 0.0

161 gapSmall = 0.00005

162 gapLarge = 0.001

163 ind = 0

164

165 # Intermediate computations

166 Start = [InHoleGap/2, StartDistZ]

167

168 # Horizontal channel 1

169 dataOrg, Start, slack, ind = lineData(Start, slack, ang1, L1, gapSmall,

gapLarge, dataOrg, ind)

170

171 # Curved corner 1

172 dataOrg, Start, slack, ind = cornerData(Start, slack, ang1, ang2, R1,

gapSmall, gapLarge, dataOrg, ind)

173

174 # Angle channel 1

175 dataOrg, Start, slack, ind = lineData(Start, slack, ang2, L2, gapSmall,

gapLarge, dataOrg, ind)

176

177 # Curved corner 2

178 dataOrg, Start, slack, ind = cornerData(Start, slack, ang2, angChan1, R2,

gapSmall, gapLarge, dataOrg, ind)

179
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180 # Line segments 2

181 for i in range(NumChan):

182

183 print(100.*i/NumChan)

184

185 # Length 1

186 dataOrg, Start, slack, ind = lineData(Start, slack, angChan1, Lchan,

gapSmall, gapLarge, dataOrg, ind)

187 # Round 1

188 dataOrg, Start, slack, ind = cornerData(Start, slack, angChan1,

angChan2, Rchan, gapSmall, gapLarge, dataOrg, ind)

189 # Length 2

190 dataOrg, Start, slack, ind = lineData(Start, slack, angChan2, Lchan,

gapSmall, gapLarge, dataOrg, ind)

191 # Round 2

192 if i < NumChan-1:

193 dataOrg, Start, slack, ind = cornerData(Start, slack, angChan2,

angChan1, Rchan, gapSmall, gapLarge, dataOrg, ind)

194

195 # Curved corner 3

196 dataOrg, Start, slack, ind = cornerData(Start, slack, angChan2, ang3, R3,

gapSmall, gapLarge, dataOrg, ind)

197

198 # Angle Channel 3

199 dataOrg, Start, slack, ind = lineData(Start, slack, ang3, L3, gapSmall,

gapLarge, dataOrg, ind)

200

201 # Curved corner 4

202 dataOrg, Start, slack, ind = cornerData(Start, slack, ang3, ang4, R4,

gapSmall, gapLarge, dataOrg, ind)

203

204 # Angle Channel 4

205 dataOrg, Start, slack, ind = lineData(Start, slack, ang4, L4, gapSmall,

gapLarge, dataOrg, ind)

206

207 # Curved corner 5
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208 dataOrg, Start, slack, ind = cornerData(Start, slack, ang4, ang5, R5,

gapSmall, gapLarge, dataOrg, ind)

209

210 # Angle Channel 5

211 dataOrg, Start, slack, ind = lineData(Start, slack, ang5, L5, gapSmall,

gapLarge, dataOrg, ind)

212

213 # Curved corner 6

214 dataOrg, Start, slack, ind = cornerData(Start, slack, ang5, ang6, R6,

gapSmall, gapLarge, dataOrg, ind)

215

216 # Angle Channel 5

217 dataOrg, Start, slack, ind = lineData(Start, slack, ang6, L6, gapSmall,

gapLarge, dataOrg, ind)

218

219 # Center data along the x axis (in the y direction)

220 centerY = np.mean(dataOrg[:,3])

221 dataOrg[:,3] = dataOrg[:,3]-centerY

222

223 print(sum(dataOrg[:,1]))

224 print(dataOrg[-1,2]-dataOrg[0,2])

225

226 # Save serpentine path data

227 outFilename = ’VariableStepPath.csv’

228 np.savetxt(outFilename,dataOrg,delimiter=’,’)

229

230 # Plot results

231 plt.plot(dataOrg[:,2],dataOrg[:,3],’k.’)

232 plt.axis(’equal’)

233 plt.show()

H.2 Temperature Fit Header File

1 # Title: Data Analysis TGGC

2 # Author: Austin Foster

3 # Date: February 12, 2018
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4

5 # ---- Import modules ---- #

6 import tkinter as tk

7 import numpy as np

8 from mpl_toolkits.mplot3d import Axes3D

9 import matplotlib.pyplot as plt

10

11 # ---- Define Functions ---- #

12

13 # Filepath dialog ------------------------------

14 def filePaths():

15

16 # Get first two simulation data filepaths

17 root = tk.Tk()

18 root.withdraw()

19 file_path1 = tk.filedialog.askopenfilename(title = "Select first

simulation data file")

20 file_path2 = tk.filedialog.askopenfilename(title = "Select second

simulation data file")

21

22 # return data

23 return file_path1, file_path2

24

25 # Filename time data extractor ------------------------------

26 def timeDataExtract(file_path1,file_path2):

27 path1Parsed = list(file_path1)

28 path2Parsed = list(file_path2)

29 pathEnd = 0

30 fileLeadEnd = 0

31 for i in range (len(path1Parsed)):

32 if(path1Parsed[i]==’/’):

33 pathEnd = i

34 if(path1Parsed[i]==’_’):

35 fileLeadEnd = i

36 fileLead = ’’.join(path1Parsed[0:fileLeadEnd+1])
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37 time1 = float(’’.join(path1Parsed[fileLeadEnd+1:fileLeadEnd+9]))

*10.0**float(’’.join(path1Parsed[fileLeadEnd+10:fileLeadEnd+13]))

38 time2 = float(’’.join(path2Parsed[fileLeadEnd+1:fileLeadEnd+9]))

*10.0**float(’’.join(path2Parsed[fileLeadEnd+10:fileLeadEnd+13]))

39 deltaT = time2-time1

40 return time1,time2,deltaT,fileLead

41

42 # Filename creation function ------------------------------

43 def fileNameCreator(fileLead,deltaT,i,time1):

44

45 roundDigit = 2

46 roundNum = round(float(i)*deltaT + time1,roundDigit)

47

48 digits = [d for d in str(roundNum)]

49 if(len(digits) > 8):

50 digits = digits[0:7]

51 pointPos = 0

52 digitStart = 0

53 digitEnd = 0

54 for k in range(len(digits)):

55 if(digits[k]==’.’):

56 pointPos = k

57 multiplier = [d for d in str(pointPos-1)]

58 if(pointPos == 1 and digits[0] == ’0’):

59 multSign = ’-’

60 l = pointPos

61 done2 = 0

62 while (done2 == 0):

63 l = l+1

64 if(digits[l] != ’0’):

65 digitStart = l

66 done2 = 1

67 multiplierStr = ’0’ + str(l-pointPos)

68 l = digitStart

69 done2 = 0

70 while (done2 == 0):
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71 l = l+1

72 if(l == len(digits)):

73 digitEnd = l-1

74 done2 = 1

75 elif(digits[l] == ’0’):

76 digitEnd = l

77 done2 = 1

78 else:

79 multSign = ’+’

80 multiplierStr = ’0’+’’.join(multiplier)

81 if(pointPos == 1 and multSign == ’+’):

82 number = ’’.join(digits)

83 for k in range(8-len(digits)):

84 number = number + ’0’

85 elif(pointPos == 1 and multSign == ’-’):

86 number = ’’.join(digits[digitStart]) + ’.’ + ’’.join(digits[

digitStart+1:digitEnd+1])

87 numberDigits = [d for d in number]

88 for k in range(8-len(numberDigits)):

89 number = number + ’0’

90 else:

91 number = ’’.join(digits[0]) + ’.’ + ’’.join(digits[1:pointPos]) +

’’.join(digits[pointPos+1:len(digits)])

92 for k in range(8-len(digits)):

93 number = number + ’0’

94

95 fileTime = number + ’e’ + multSign + multiplierStr

96 fileName = fileLead + fileTime + ’.csv’

97 return fileName

98

99 # Define data fit and extraction function ------------------------------

100 def dataExtract(Point, xData, yData, zData, propData):

101

102 #----Expanatory Notes------------------------------#

103 # xData, zData, and propData have to be 1D arrays

104 # Point is a 1D array with two elements

127



105 #--------------------------------------------------#

106

107 # Trim search region

108 deltaBox = 0.002

109 maskX = (xData<Point[0]+deltaBox) & (xData>Point[0]-deltaBox)

110 maskZ = (zData<Point[1]+deltaBox) & (zData>Point[1]-deltaBox)

111 maskY = (yData<Point[2]+0.0007) & (yData>Point[2]-0.0007)

112 xDatTrim = xData[maskX & maskY & maskZ]

113 yDatTrim = yData[maskX & maskY & maskZ]

114 zDatTrim = zData[maskX & maskY & maskZ]

115 propDatTrim = propData[maskX & maskY & maskZ]

116

117 # Find the closest points (3D)

118 dist = np.sqrt((Point[0]-xDatTrim)**2. + (Point[1]-zDatTrim)**2. + (

Point[2]-yDatTrim)**2.)

119 k = 50 # This defines the number of points used for the data

fit

120 indDist = np.argpartition(dist,k)[:k]

121

122 # Build interpolation solution

123 X = np.zeros((k,4))

124 X[:,0] = 1.

125 y = np.zeros((k,1))

126 for j in range(k):

127 X[j,1] = xDatTrim[indDist[j]]

128 X[j,2] = yDatTrim[indDist[j]]

129 X[j,3] = zDatTrim[indDist[j]]

130 y[j,0] = propDatTrim[indDist[j]]

131 x,resid,rnk,s = np.linalg.lstsq(X,y,rcond=None)

132 TOut = x[0] + x[1]*Point[0] + x[2]*Point[2] + x[3]*Point[1]

133

134 return TOut

135

136 # Path data read in function ------------------------------

137 def pathDataReadIn(filename):

138
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139 pathData = np.genfromtxt(filename,delimiter=’,’)

140

141 # Shift path data

142 edgeDist = 0.00635

143 pathData[:,2] = pathData[:,2] - np.min(pathData[:,2]) + edgeDist

144

145 # Compute step distance

146 step = np.sqrt((pathData[2,1]-pathData[1,1])**2.

147 + (pathData[2,2]-pathData[1,2])**2.)

148

149 return pathData, step

150

151 # Simulation data read in function ------------------------------

152 def simDataReadIn(filename):

153

154 simData = np.genfromtxt(filename,

155 delimiter=’,’,skip_header=1)

156

157 # Reshape data

158 simX = np.concatenate((simData[:,2],simData[:,2]),axis=0)

159 simX = simX - np.min(simX)

160 simY = np.concatenate((simData[:,3],simData[:,3]),axis=0)

161 simZ = np.concatenate((simData[:,4],-1*simData[:,4]),axis=0)

162 simTemp = np.concatenate((simData[:,1],simData[:,1]),axis=0)

163

164 return simX,simY,simZ,simTemp

165

166 # Define normal distribution function -----------------------------

167 def normDist(x,mu,sigma):

168 return (1/(np.sqrt(2*np.pi)*sigma))*np.exp(-(x-mu)**2/(2*sigma**2))

169

170 # Define smoothing function -----------------------------------------

171 def colGradSmooth(X,T,N):

172 # Create empty vector

173 Ts = np.zeros_like(T)

174 # Open interative loop
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175 for i in range(len(T)):

176 # Compute surrounding delta_x

177 if i==0:

178 delta_x = X[1] - X[0]

179 elif i == len(T)-1:

180 delta_x = X[i] - X[i-1]

181 else:

182 delta_x = 0.5*(X[i+1]-X[i-1])

183 # Compute standard deviation

184 sigma = 0.741301065*(N-1)*delta_x

185 # Extract points of interest

186 Xdist = X[(X>=X[i]-4*sigma)&(X<=X[i]+4*sigma)]

187 Tdist = T[(X>=X[i]-4*sigma)&(X<=X[i]+4*sigma)]

188 # Create midpoint X array

189 Xmid = 0.5*(Xdist[0:len(Xdist)-1]+Xdist[1:len(Xdist)])

190 if (Xmid[0] != X[i]-4*sigma) & (X[i]-4*sigma>=0):

191 Xmid = np.hstack((X[i]-4*sigma,Xmid))

192 else:

193 Xmid = np.hstack((X[0],Xmid))

194 if (Xmid[-1] != X[i]+4*sigma) & (X[i]-4*sigma<=max(X)):

195 Xmid = np.hstack((Xmid,X[i]+4*sigma))

196 else:

197 Xmid = np.hstack((Xmid,max(X)))

198 # Compute delta_x in between values

199 delta_xMid = Xmid[1:len(Xmid)]-Xmid[0:len(Xmid)-1]

200 # Use normal distribution averaging for bends

201 if delta_x <= 0.0006:

202 # Compute normal distribution values at Xmid values

203 Dmid = normDist(Xmid,X[i],sigma)

204 # Compute probabilities

205 rho = 0.5*delta_xMid*(Dmid[1:len(Dmid)]+Dmid[0:len(Dmid)-1])

206 # Check for bend edge

207 if ((X[i]-X[i-1])/(X[i+1]-X[i])>4) or ((X[i+1]-X[i])/(X[i]-X[

i-1])>4):

208 Ts[i] = T[i]

209 # Compute weighted average
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210 else:

211 Ts[i] = sum(rho*Tdist)/sum(rho)

212 # If not a bend use delta_x weigted moving window

213 else:

214 windowLo = i-int((N+1)/2)

215 windowHi = i+int((N+1)/2)+1

216 if windowLo < 0:

217 windowLo = 0

218 if windowHi > len(X):

219 windowHi = len(X)

220 Twindow = T[windowLo:windowHi]

221 XmidAll = np.hstack((X[0],0.5*(X[0:len(X)-1]+X[1:len(X)]),X

[-1]))

222 deltaXmidAll = XmidAll[1:len(XmidAll)]-XmidAll[0:len(XmidAll)

-1]

223 deltaXmidW = deltaXmidAll[windowLo:windowHi]

224 weights = deltaXmidW/sum(deltaXmidW)

225 if min(deltaXmidW)<0.0006:

226 Ts[i] = T[i]

227 else:

228 Ts[i] = sum(Twindow*weights)

229

230

231 #Return Ts

232 return Ts

233

234 # Column data extraction loop ------------------------------

235 def gradientExtractor(pathData,step,simX,simY,simZ,simTemp):

236

237 j = 0

238 for i in range(len(pathData[:,0])):

239

240 if(10*i/len(pathData[:,0])>j):

241 print(’|’,end=’’)

242 ## print(’|’)

243 j+=1
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244

245 if i == 0:

246 dataOut = [pathData[i,1],dataExtract([pathData[i,2],pathData[

i,3],pathData[i,4]],simX, simY, simZ, simTemp)[0]]

247 elif i == 1:

248 dataOut = np.vstack((dataOut,[dataOut[0]+pathData[i,1],

dataExtract([pathData[i,2], pathData[i,3], pathData[i,4]], simX, simY

, simZ, simTemp)]))

249 else:

250 dataOut = np.vstack((dataOut,[dataOut[i-1,0]+pathData[i,1],

dataExtract([pathData[i,2], pathData[i,3], pathData[i,4]], simX, simY

, simZ, simTemp)]))

251 # Smooth data

252 dataOut[:,1] = colGradSmooth(dataOut[:,0],dataOut[:,1],5)

253 print(’’)

254 return dataOut

255

256 # Data stacker ------------------------------

257 def dataStacker(dataIn,dataOut):

258

259 if(len(dataOut)==0):

260 dataOut = dataIn

261 else:

262 dataOut = np.vstack((dataOut,dataIn))

263

264 return dataOut

265

266 # Main funciton -----------------------------

267 if __name__ == ’__main__’:

268 pass

H.3 Temperature Fit Main File

1 # Title: Temperature Table Creator

2 # Author: Austin Foster

3 # Date: February 12, 2018
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4

5 # Import modules

6 import numpy as np

7 import matplotlib.pyplot as plt

8 from mpl_toolkits.mplot3d import axes3d

9 import dataAnalysisTGGC as dat

10

11 # Parameters

12 tMax = 600

13

14 # Select gradient files

15 file_path1, file_path2 = dat.filePaths()

16

17 # Extract file info

18 time1,time2,deltaT,fileLead = dat.timeDataExtract(file_path1,file_path2)

19 i = 0

20

21 # Read in serpentine path file

22 filenameP = r’SSChipSerpentinePath.csv’

23 pathData,step = dat.pathDataReadIn(filenameP)

24

25 # Iterative loop

26 TEMP = []

27 X = []

28 while i*deltaT+time1 < tMax:

29

30 filename = dat.fileNameCreator(fileLead,deltaT,i,time1)

31 simX,simY,simTemp = dat.simDataReadIn(filename)

32 print(str(i*deltaT+time1)+’s:’,end=’’)

33 ## print(str(i*deltaT+time1)+’s:’)

34 grad = dat.gradientExtractor(pathData,step,simX,simY,simTemp)

35 if(len(TEMP)==0):

36 X = grad[:,0]

37 T = np.array([i*deltaT+time1])

38 else:

39 T = np.append(T,i*deltaT+time1)
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40

41 TEMP = dat.dataStacker(grad[:,1],TEMP)

42 i += 1

43

44 # Export results

45 X,T = np.meshgrid(X,T)

46 np.savetxt(’xDataOut.csv’,X,delimiter=’,’)

47 np.savetxt(’tDataOut.csv’,T,delimiter=’,’)

48 np.savetxt(’temperatureDataOut.csv’,TEMP,delimiter=’,’)
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APPENDIX I. TRANSPORT MODEL CALIBRATION NOTES

I.1 Experimental Methods

As discussed in Chapter 4, in order to correctly calibrate the transport model for the

stainless-steel column, data had to be gathered on the column’s separation performance under

various conditions. To gather these data isothermal runs had to be performed on the stainless steel

column under varying temperature and inlet pressure conditions. To this end a set of 24 experi-

ments were run on the stainless-steel column.

The experiments consisted of four temperature set points (125 °C, 134 °C, 143 °C, 155

°C), and three inlet pressure set points (47.89 psi, 57.07 psi, 65.21 psi). Each pressure setting was

to be run twice at each temperature. The oven used in the experiments took a relatively long time

to heat up and cool down (approximately 15 minutes), so it was determined that randomizing the

oven temperature between runs would not be feasible. Changing the inlet pressure value, however,

was a quick change, so it was determined that the order in which the pressure was run should be

randomized. For each temperature experiments were run in sets of three pressures, and the order in

which these pressures were run was randomized in each set of 3. In order to account for effects on

fluctuations in the absolute pressure, atmospheric pressure data was also taken from the weather

station on the top of the Eyring Science Center at BYU. As shown in Chapter 4, C12, C13, and

C14 were injected in to the column, and following completion of all the runs the data recorded by

the GC software was saved as comma separated value files for post-processing.

I.2 Data Preparation

For runs with lower temperatures it was observed that the n-alkane peaks were sitting on

the tail end of the solvent peak (Figure I.1). Due to this fact, the software package was unable

to successfully identify the peaks and report their elution time and widths at half max. In order
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to remedy this, a Python script was developed that was capable of working with peaks on the

solvent peak. The code relied on user click inputs to select points along the solvent peak, to which

a polynomial fit was computed. This polynomial was then subtracted from the data effectively

removing the solvent peak from the data. The code then relied on more user input mouse clicks

to identify the bounds of each peak. It would then compute the elution time and the peak width at

half max for each of the three peaks in each experimental run.

Table I.1: Data from ITGC calibration runs

Run Temp
(°C)

Inlet P
(psi)

Outlet P
(kPa)

tR,C12
(min)

wh,C12
(min)

tR,C13
(min)

wh,C13
(min)

tR,C14
(min)

wh,C14
(min)

1 125 65.21 83.6 1.591 0.035 2.441 0.058 3.933 0.101
2 125 57.07 83.7 1.818 0.037 2.785 0.061 4.481 0.103
3 125 47.89 83.7 2.191 0.042 3.353 0.068 5.392 0.116
4 125 57.07 83.7 1.818 0.037 2.783 0.059 4.478 0.103
5 125 47.89 83.7 2.184 0.043 3.344 0.068 5.376 0.114
6 125 65.21 83.6 1.583 0.033 2.425 0.055 3.900 0.093
7 143 47.89 83.6 1.509 0.026 2.072 0.037 3.007 0.054
8 143 57.07 83.6 1.257 0.025 1.724 0.033 2.501 0.048
9 143 65.21 83.6 1.101 0.022 1.509 0.030 2.189 0.046
10 143 47.89 83.6 1.518 0.025 2.085 0.036 3.024 0.053
11 143 47.89 83.5 1.510 0.027 2.072 0.036 3.003 0.052
12 143 65.21 83.5 1.098 0.021 1.506 0.029 2.185 0.044
13 143 57.07 83.5 1.252 0.023 1.718 0.033 2.493 0.048
14 155 47.89 83.5 1.268 0.024 1.630 0.030 2.212 0.038
15 155 57.07 83.5 1.057 0.022 1.359 0.027 1.842 0.036
16 155 65.21 83.5 0.920 0.018 1.183 0.023 1.606 0.032
17 155 57.07 83.5 1.051 0.018 1.351 0.023 1.835 0.033
18 155 47.89 83.6 1.264 0.024 1.626 0.030 2.207 0.039
19 155 65.21 83.6 0.919 0.018 1.181 0.023 1.604 0.032
20 134 65.21 83.7 1.293 0.027 1.877 0.038 2.874 0.061
21 134 47.89 83.7 1.779 0.030 2.578 0.045 3.940 0.069
22 134 57.07 83.7 1.482 0.028 2.147 0.0417 3.278 0.064
23 134 65.21 83.7 1.295 0.025 1.876 0.038 2.867 0.061
24 134 47.89 83.7 1.782 0.031 2.579 0.044 3.938 0.069
25 134 57.07 83.8 1.479 0.030 2.143 0.042 3.272 0.064
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Figure I.1: Chromatogram of an ITGC separation at 155 °C demonstrating the C12, C13, and C14
peaks’ tendency to elute on the solvent peak.

I.3 ITGC Parameter Estimation

In order to estimate the enthalpy and entropy parameters for the retention factor model

as given in Section 4.4 a model for the average gas velocity was developed by combining the

definition for the friction factor with the equation that represents the shear stress that results from

Poiselle flow (Equation I.1) [48]. Assuming a linear pressure gradient along the length of the

column allowed for the computation of the average velocity (Equation I.2) which was then used in

conjuction with the column length and each anayte’s retention time to compute the retention factor

for each run (Equation I.3).

C f =
2τ

ρu2 ; τ =
area

perimeter

Ç
−dP

dx

å
(I.1)

ū =− D2
h∆P

2µL(C f ReD)
(I.2)
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k =
tR− tm

tm
=

tRL
ū
−1 (I.3)

Applying the computed retention factors to the equation reported by Blumberg (Equation

4.2) allowed for the use of a linear regression model to determine the values of the enthalpy and

entropy parameters. The linear regression fits for these parameters all reported p-values below

4.2× 10−18 indicating strong statistical significance of the parameters used in the model. Efforts

in fitting dispersion parameters was not started until focus shifted from the ITGC data to the TGGC

data, thus the results do not demonstrate a close match to peak width. The code used to compute

the linear regression fit parameters is given in Section I.8. Using the above method for calibrating

the parameters the transport model was shown to give good matchup as shown in Figure I.2. These

initial ITGC validations served to demonstrate the utility of the retention factor model indicating it

would be a good model in the TGGC runs.

Figure I.2: Plot demonstrating the ITGC transport model with calibrated parameters providing
excellent matchup to the experimental data.
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I.4 TGGC Parameter Estimation

As mentioned in Section 4.4 it was found that the parameters determined from the ITGC

runs did not adequately match the elution times from the TGGC runs. Although more work is

needed to determine the cause for this incongruency between heating modes, areas of concern in-

clude the mobile phase velocity, the channel dimensions, and the true column temperature. As

shown in Equation I.2, an average velocity was used along the column length for the ITGC cali-

brations. It is known, however, that the velocity is non-uniform along the column due to the steep

pressure drop near the column outlet, but the calibration method used for the ITGC parameters

does not work when using a variable velocity. It has also been difficult to determine the exact

dimensions of the channel cross section, which, in turn, make it difficult to determine the correct

velocity along the channel. Lastly, doubt has been raised regarding whether the temperatures re-

ported by the GC oven used for ITGC runs are correct, which, if incorrect, would make correct

calibration of parameters difficult. Due to these questions, along with the inability of the ITGC

parameters to correctly predict TGGC separation behavior, a secondary method was developed to

determine the model parameters for TGGC conditions. In order to maintain accuracy in the model,

the position dependent pressure and velocity terms were used in the model. These relationships

were developed by assuming a non-constant pressure gradient in Equation I.2 [48]. The flow rate

was then substituted for the average velocity, and the mobile phase was assumed to be an ideal gas,

which allowed for computing the position dependent pressure gradient given in Equation I.4. The

position dependent pressure could then be used to compute the position dependent velocity using

Equation I.5.

Px =

Ñ
P2

i −
Ä
P2

i −P2
o
ä∫ x

0 T µdx∫ L
0 T µdx

é1/2

(I.4)

ux =−
Ç

dPx

dx

å
D2

h
2µ(C f ReD)

(I.5)

This involved running a series of transport model runs with a varying range of parmeters

selected as inputs. The results from each of these runs were compared with the experimental results

(Table I.2) and the square of the residual was computed in each case for both the retention time
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and the peak width. Quadratic functions were then fit to the squared residual and the gradient of

the quadratic fit was used to estimate the optimal parameter values (see Figure I.3). Note that the γ

value indicated in Figure I.3 is a lumping of all the unknown parameters in the Chapman-Enskog

model for gas diffusion (Equation I.6, see nomenclature section for definitions of unknown pa-

rameters). This process was repeated tightening in the guessed parameter bounds for two different

TGGC runs until the optimal parameter values stopped changing. The results from this parameter

fitting method is given in Section 4.6, and the code for the quadratic fitting methods are given in

Sections I.9 and I.10 below.

γ =
A
»

1/M1 +1/M2

σ2
12Ω

(I.6)

(a) (b)

Figure I.3: Quadratic fits to computed error data for both (a) retention factor and (b) mass
diffusivity for TGGC separations.

I.5 Parameters Estimation Method Comparison

Included in Table I.3 below are parameter values for both calibration methods discussed

above. Squared error values between model and experiment for both ITGC and TGGC heating

conditions are given for each calibration method as well. It should be noted that the squared error

for the ITGC runs using the TGGC quadratic fit method are significantly higher than all other
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values indicating that more work is needed to refine the model to a point where results can be

quantitatively trusted over a wide range of heating conditions. Despite these discrepancies it is

believed that the transport model is of value as a qualitative comparison tool between different

heating methods.

Table I.2: Data from TGGC calibration runs

Run Inlet P
(psi)

Outlet P
(inHg)

Ramp
Time
(min)

tR,C12
(min)

wh,C12
(min)

tR,C13
(min)

wh,C13
(min)

tR,C14
(min)

wh,C14
(min)

1 65.2 25.13 12 2.246 0.048 3.197 0.058 4.270 0.063
2 65.2 25.15 8 2.313 0.040 3.054 0.044 3.813 0.045
3 65.2 25.17 15 2.622 0.057 3.762 0.069 5.025 0.074
4 47.9 25.17 15 3.721 0.059 5.037 0.066 6.375 0.068
5 47.9 25.17 12 3.004 0.049 4.058 0.054 5.164 0.056
6 47.9 25.18 8 3.067 0.039 3.846 0.039 4.602 0.038
7 65.2 25.16 12 2.490 0.050 3.483 0.058 4.560 0.063

Table I.3: Data comparing results for ITGC and TGGC parameter estimation methods. Note that
β1 = ∆H/R and β0 = ∆S/R− log(β ). Dashes indicate calibrations were

not performed for the associated parameters.

Parameters
ITGC

Squared Error
TGGC

Squared Error
Calibration
Method Compound β1 β0 γ tR wh tR wh

ITGC
Regression

C12 -33.09 13230 - 0.004 - 383.61 -
C13 -22.19 9135.9 - 0.032 - 193.35 -
C14 -19.34 8247.5 - 0.257 - 105.00 -

TGGC
Quadratic Fit

C12 -22.36 9041.2 27.96 874.27 0.551 34.036 0.239
C13 -18.69 7967.8 22.19 7191.9 2.806 38.316 0.370
C14 -17.64 7843.5 16.41 32387 5.364 43.613 1.257

I.6 TPGC Validation Check

As mentioned in Chapter 4 following completion of the calibration and validation process

using TGGC data, a series of TPGC runs were performed on the stainless-steel column. The data
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from these runs are included in Table I.4. For each of the runs the oven was initially set to 50 °C

and was ramped to 300 °C. The ambient pressure was 85 kPa for each run, and the split ratio was

set at 10:1 for each run. Note also that the inlet pressure given is the gauge pressure reported by

the GC oven.

Table I.4: Data from TPGC calibration runs

Run Ramp
Rate
(°C/min)

Inlet P
(psi)

tR,C12
(min)

wh,C12
(min)

tR,C13
(min)

wh,C13
(min)

tR,C14
(min)

wh,C14
(min)

1 30 47.89 3.872 0.023 4.407 0.023 4.906 0.023
2 30 65.21 3.527 0.028 4.056 0.029 4.55 0.029
3 20 65.21 4.393 0.037 5.159 0.038 5.878 0.04
4 20 47.89 4.828 0.031 5.6 0.03 6.326 0.03
5 20 47.89 4.827 0.032 5.599 0.031 6.325 0.031
6 20 65.21 4.391 0.037 5.155 0.038 5.874 0.04
7 30 65.21 3.524 0.027 4.055 0.028 4.549 0.028
8 30 47.89 3.867 0.023 4.402 0.023 4.9 0.022

Figure I.4: Comparison of transport model run under TPGC conditions with associated
experimental data
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Following completion of the TPGC experiments, the transport model was tested using the

parameters from the TGGC quadratic fit method discussed in Section I.4 and the conditions from

test 6 (Table) I.4. A plot showing the comparison between model results and experimental data

is given in Figure I.4. The results from this comparison demonstrate that more work is needed to

properly calibrate the transport model across different heating methods. However, the acquisition

of this data will be useful in calibrating the transport model as it can work as an intermediate

heating method between ITGC and TGGC.

I.7 Data Preparation Code

1 import pdb

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from scipy.optimize import curve_fit

5

6 # Read in data

7 data = np.genfromtxt(’TEST 25 121918.csv’,delimiter=’,’,

8 skip_header=3)

9

10 # Extract signal

11 signal = data[:,1]

12

13 # Smooth time data

14 delta_t = 0.001/3

15 add = 0

16 if(data[-1,0]==data[-2,0]):

17 add += delta_t

18 if(data[-1,0]==data[-3,0]):

19 add += delta_t

20 t_i = 0

21 t_f = data[-1,0]+add

22 time = np.linspace(t_i,t_f,len(data[:,0]))

23

24 # Identify solvent peak curve

25 fig = plt.figure()
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26 plt.title(’Select 20 points along the solvent peak’)

27 ax = fig.add_subplot(111)

28 ax.plot(time,data[:,1])

29 ax.set_ylim(70000,1600000)

30 ax.set_xlim(0,2)

31 coords = []

32

33 def onclick(event):

34 global ix, iy

35 ix, iy = event.xdata, event.ydata

36 ## print(ix,iy)

37 ax.plot(ix,iy,’k*’)

38 fig.canvas.draw()

39

40 global coords

41 coords.append((ix, iy))

42

43 if len(coords) == 20:

44 fig.canvas.mpl_disconnect(cid)

45 plt.close()

46

47 return coords

48 cid = fig.canvas.mpl_connect(’button_press_event’, onclick)

49 plt.show()

50

51 tPts = np.zeros(20)

52 sPts = np.zeros(20)

53 for i in range(20):

54 temp1 = round(coords[i][0],3)

55 temp3 = data[:,0]

56 temp4 = np.abs(temp3-temp1)

57 itemindex = np.where(temp4 == temp4.min())

58 if len(itemindex[0]) > 1:

59 temp5 = [item[0] for item in itemindex]

60 itemindex = temp5

61 tPts[i] = temp1
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62 sPts[i] = data[itemindex[0],1]

63 coords2 = coords

64

65 # Compute solvent peak fit

66 def f(t,tau,A,B,C):

67 return A/(tau*(t-B))+C

68

69 ##init = [20,5e5,0.65,6e4]

70 init = [ 1.21071996e+01, 2.05929691e+06, 7.02688282e-01, -1.53243723e

+05]

71 popt,pcov = curve_fit(f,tPts,sPts,init)

72 #print(popt)

73 tFit = np.linspace(tPts[0],tPts[-1],1000)

74 #sFit = f(tFit,*popt)

75 z = np.polyfit(tPts,sPts,10)

76 z1 = np.poly1d(z)

77 sFit = z1(tFit)

78

79 plt.plot(time,data[:,1],’r--’)

80 plt.plot(tPts,sPts,’k*’)

81 plt.plot(tFit,sFit,’g:’)

82 plt.xlim(min(tFit)-0.5,max(tFit)+0.5)

83 plt.ylim(min(sPts)-10000,max(sPts)+10000)

84 plt.show()

85 pdb.set_trace()

86

87 # Subtract solvent peak

88 tPh1 = time[time>min(tFit)]

89 sPh1 = signal[time>min(tFit)]

90 tInt = tPh1[tPh1<max(tFit)]

91 sInt = sPh1[tPh1<max(tFit)]

92 #solv = f(tInt,*popt)

93 solv = z1(tInt)

94 peaks = sInt - solv

95

96
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97 # Find new baseline

98 base1 = np.mean(peaks)

99 base = np.mean(peaks[peaks<base1])

100 error = np.mean(abs(peaks[peaks<base1]-base))

101 print error

102

103 plt.plot(tInt,peaks)

104 plt.plot([tInt[0],tInt[-1]],[base,base])

105 plt.show()

106

107 # Identify individual peaks

108 pk3 = peaks[peaks>base]

109 tpk3 = tInt[peaks>base]

110

111 fig = plt.figure()

112 plt.title(’Select left and right sides of each peak’)

113 ax = fig.add_subplot(111)

114 ax.plot(tpk3,pk3,’k.’)

115 coords = []

116

117 def onclick(event):

118 global ix, iy

119 ix, iy = event.xdata, event.ydata

120 ## print(ix,iy)

121 ax.plot(ix,iy,’g*’)

122 fig.canvas.draw()

123

124 global coords

125 coords.append((ix, iy))

126

127 if len(coords) == 6:

128 fig.canvas.mpl_disconnect(cid)

129 plt.close()

130

131 return coords

132 cid = fig.canvas.mpl_connect(’button_press_event’, onclick)
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133 plt.show()

134

135 C12bnds = [coords[0][0],coords[1][0]]

136 C13bnds = [coords[2][0],coords[3][0]]

137 C14bnds = [coords[4][0],coords[5][0]]

138

139 tC12 = tpk3[(tpk3>=C12bnds[0]) & (tpk3<=C12bnds[1])]

140 sC12 = pk3[(tpk3>=C12bnds[0]) & (tpk3<=C12bnds[1])]

141

142 tC13 = tpk3[(tpk3>=C13bnds[0]) & (tpk3<=C13bnds[1])]

143 sC13 = pk3[(tpk3>=C13bnds[0]) & (tpk3<=C13bnds[1])]

144

145 tC14 = tpk3[(tpk3>=C14bnds[0]) & (tpk3<=C14bnds[1])]

146 sC14 = pk3[(tpk3>=C14bnds[0]) & (tpk3<=C14bnds[1])]

147

148 # Find elution times

149 teC12 = tC12[sC12==max(sC12)][0]

150 teC13 = tC13[sC13==max(sC13)][0]

151 teC14 = tC14[sC14==max(sC14)][0]

152

153 # Find widths at half max

154 halfMax = max(sC12)/2

155 halfC12 = abs(sC12 - halfMax)

156 l12 = tC12[halfC12==min(halfC12[tC12<teC12])][0]

157 r12 = tC12[halfC12==min(halfC12[tC12>teC12])][0]

158 whC12 = r12-l12

159 hwhC12 = teC12-l12

160

161

162 halfMax = max(sC13)/2

163 halfC13 = abs(sC13 - halfMax)

164 l13 = tC13[halfC13==min(halfC13[tC13<teC13])][0]

165 r13 = tC13[halfC13==min(halfC13[tC13>teC13])][0]

166 whC13 = r13-l13

167 hwhC13 = teC13-l13

168
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169 halfMax = max(sC14)/2

170 halfC14 = abs(sC14 - halfMax)

171 l14 = tC14[halfC14==min(halfC14[tC14<teC14])][0]

172 r14 = tC14[halfC14==min(halfC14[tC14>teC14])][0]

173 whC14 = r14-l14

174 hwhC14 = teC14-l14

175

176 baseMax = max(sC12)*.1

177 baseC12 = abs(sC12 - baseMax)

178 bl12 = tC12[baseC12==min(baseC12[tC12<teC12])][0]

179 br12 = tC12[baseC12==min(baseC12[tC12>teC12])][0]

180 basewidth12 = br12-bl12

181

182 baseMax = max(sC13)*.1

183 baseC13 = abs(sC13 - baseMax)

184 bl13 = tC13[baseC13==min(baseC13[tC13<teC13])][0]

185 br13 = tC13[baseC13==min(baseC13[tC13>teC13])][0]

186 basewidth13 = br13-bl13

187

188 baseMax = max(sC14)*.1

189 baseC14 = abs(sC14 - baseMax)

190 bl14 = tC14[baseC14==min(baseC14[tC14<teC14])][0]

191 br14 = tC14[baseC14==min(baseC14[tC14>teC14])][0]

192 basewidth14 = br14-bl14

193

194 #Check that points were not chosen inside basewidth

195 for i in range(20):

196 temp1 = round(coords2[i][0],3)

197 if abs(teC12 - temp1)<basewidth12/2:

198 print(’Point ’, i, ’ was too close to C12’)

199 if abs(teC13 - temp1)<basewidth12/2:

200 print(’Point ’, i, ’ was too close to C13’)

201 if abs(teC13 - temp1)<basewidth12/2:

202 print(’Point ’, i, ’ was too close to C14’)

203

204 if max(sC12)> max(sC13):
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205 if max(sC12) > max(sC14):

206 peak_int = np.mean(abs(sC12-base))

207 percenterr = error/peak_int

208 if max(sC13)> max(sC12):

209 if max(sC13) > max(sC14):

210 peak_int = np.mean(abs(sC13-base))

211 percenterr = error/peak_int

212 if max(sC14)> max(sC13):

213 if max(sC14) > max(sC12):

214 peak_int = np.mean(abs(sC14-base))

215 percenterr = error/peak_int

216

217 plt.plot(tC12,sC12,’k’)

218 plt.plot(teC12,max(sC12),’g*’)

219 plt.plot(l12,max(sC12)/2,’r*’)

220 plt.plot(r12,max(sC12)/2,’b*’)

221

222 plt.plot(tC13,sC13,’k’)

223 plt.plot(teC13,max(sC13),’g*’)

224 plt.plot(l13,max(sC13)/2,’r*’)

225 plt.plot(r13,max(sC13)/2,’b*’)

226

227 plt.plot(tC14,sC14,’k’)

228 plt.plot(teC14,max(sC14),’g*’)

229 plt.plot(l14,max(sC14)/2,’r*’)

230 plt.plot(r14,max(sC14)/2,’b*’)

231

232 print(’C12:’)

233 print(’t = ’,teC12)

234 print(’wh = ’,whC12)

235 print(’hwh = ’,hwhC12)

236

237 print(’C13:’)

238 print(’t = ’,teC13)

239 print(’wh = ’,whC13)

240 print(’hwh = ’,hwhC13)
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241

242 print(’C14:’)

243 print(’t = ’,teC14)

244 print(’wh = ’,whC14)

245 print(’hwh = ’,hwhC14)

246

247 print(’Percent Error’, percenterr)

248

249 plt.show()

I.8 ITGC Parameter Linear Regression Code

1 # Import modules

2 import pandas as pd

3 import statsmodels.formula.api as smf

4 import HeliumViscocity as hv

5 import numpy as np

6 import matplotlib.pyplot as plt

7

8 # Parameters

9 Dh = 57e-6

10 L = 9.62496

11 CfRe = 15.697072267489121

12

13 # Filename

14 filename = ’SteelChipDataIsothermal-020519’

15

16 # Read in data

17 df = pd.read_csv(filename+’.csv’)

18 ##print(df)

19

20 # Add viscocity column

21 df[’Viscocity’] = hv.Helium_visco_2(df[’TEMP’]+273.15)

22

23

24 # Compute pressure drop
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25 df[’deltaP’] = df[’P_IN’]*6894.757

26

27 # Compute velocities

28 df[’Vcomp’] = Dh**2*df[’deltaP’]/(2*df[’Viscocity’]*L*CfRe)

29

30 # Compute mobile phase time

31 df[’tm’] = L/df[’Vcomp’]

32

33 # Compute retention factors

34 df[’k12’] = (60*df[’TR_C12’]-df[’tm’])/df[’tm’]

35 df[’k13’] = (60*df[’TR_C13’]-df[’tm’])/df[’tm’]

36 df[’k14’] = (60*df[’TR_C14’]-df[’tm’])/df[’tm’]

37 print(df[’k12’])

38

39 # Compute natural log of retention factor

40 df[’ln_k12’] = np.log(df[’k12’])

41 df[’ln_k13’] = np.log(df[’k13’])

42 df[’ln_k14’] = np.log(df[’k14’])

43

44 # Compute inverse kelvin

45 df[’TK_inv’] = 1/(df[’TEMP’]+273.15)

46

47 # Plot data

48 plt.plot(df[’TK_inv’],df[’ln_k12’],’r.’)

49 plt.plot(df[’TK_inv’],df[’ln_k13’],’g.’)

50 plt.plot(df[’TK_inv’],df[’ln_k14’],’b.’)

51 plt.show()

52

53 # Create model

54 mod = smf.ols(formula=’ln_k12 ˜ TK_inv’, data = df)

55

56 # Fit model

57 res = mod.fit()

58

59 # Display results

60 print(res.summary())
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61 print(res.pvalues)

62

63 # Plot

64 Tinv = np.linspace(1/400,1/550,100)

65 T = 1/Tinv

66 fit12 = res.params[0] + res.params[1]*Tinv

67 k12 = np.exp(fit12)

68 plt.plot(Tinv,fit12,’r--’)

69

70 # Create model

71 mod = smf.ols(formula=’ln_k13 ˜ TK_inv’, data = df)

72

73 # Fit model

74 res = mod.fit()

75

76 # Display results

77 print(res.summary())

78 print(res.pvalues)

79

80 # Plot

81 fit13 = res.params[0] + res.params[1]*Tinv

82 k13 = np.exp(fit13)

83 plt.plot(Tinv,fit13,’g--’)

84

85 # Create model

86 mod = smf.ols(formula=’ln_k14 ˜ TK_inv’, data = df)

87

88 # Fit model

89 res = mod.fit()

90

91 # Display results

92 print(res.summary())

93 print(res.pvalues)

94

95 # Plot

96 fit14 = res.params[0] + res.params[1]*Tinv
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97 k14 = np.exp(fit14)

98 plt.plot(Tinv,fit14,’b--’)

99

100 plt.show()

101

102 plt.plot(T,k12,’r-’)

103 plt.plot(T,k13,’g-’)

104 plt.plot(T,k14,’b-’)

105 plt.show()

I.9 TGGC Retention Parameters Fit Code

1 import numpy as np

2 import pandas as pd

3 from mpl_toolkits.mplot3d import axes3d

4 import matplotlib.pyplot as plt

5

6 # Parameters

7 C12 = 138.6

8 C13 = 183.2

9 C14 = 228.6

10

11 # Read in data

12 df = pd.read_csv(’BetaValues.csv’)

13 print(df.columns.values)

14

15 # Squared error parameters

16 errC12 = (df[’tR_C12’]-C12)**2

17 errC13 = (df[’tR_C13’]-C13)**2

18 errC14 = (df[’tR_C14’]-C14)**2

19

20 # Compute C12 values

21 BetaMat = np.transpose(np.vstack((np.ones(6),df[’Beta0_C12’],df[’

Beta1_C12’],df[’Beta0_C12’]*df[’Beta1_C12’],df[’Beta0_C12’]**2,df[’

Beta1_C12’]**2)))

22 fVec = np.transpose(errC12)
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23 alpha = np.linalg.solve(BetaMat,fVec)

24

25 AMat = np.array([[2*alpha[4],alpha[3]],[alpha[3],2*alpha[5]]])

26 bVec = np.array([[-alpha[1]],[-alpha[2]]])

27 BetaOpt12 = np.linalg.solve(AMat,bVec)

28 print(BetaOpt12)

29

30 # Plot C12 Fit

31 fig = plt.figure()

32 ax = fig.add_subplot(111, projection=’3d’)

33 n = 100

34 Beta0_grid = np.linspace(min(df[’Beta0_C12’]),max(df[’Beta0_C12’]),n)

35 Beta1_grid = np.linspace(min(df[’Beta1_C12’]),max(df[’Beta1_C12’]),n)

36 Beta0_gird,Beta1_grid = np.meshgrid(Beta0_grid,Beta1_grid)

37 sqrErr = alpha[0] + alpha[1]*Beta0_grid + alpha[2]*Beta1_grid + alpha[3]*

Beta0_grid*Beta1_grid + alpha[4]*Beta0_grid**2 + alpha[5]*Beta1_grid

**2

38 ax.plot_wireframe(Beta0_grid, Beta1_grid, sqrErr, rstride=10, cstride=10)

39 ax.plot(df[’Beta0_C12’],df[’Beta1_C12’],errC12,’k.’)

40 BetaOptErr = alpha[0] + alpha[1]*BetaOpt12[0] + alpha[2]*BetaOpt12[1] +

alpha[3]*BetaOpt12[0]*BetaOpt12[1] + alpha[4]*BetaOpt12[0]**2 + alpha

[5]*BetaOpt12[1]**2

41 ax.plot(BetaOpt12[0],BetaOpt12[1],BetaOptErr,’r*’)

42 ax.set_xlabel(r’$\beta_0$’)

43 ax.set_ylabel(r’$\beta_1$’)

44 ax.set_zlabel(r’$(t_{R,sim}-t_{R,exp})ˆ2$’)

45 ax.xaxis.labelpad=10

46 ax.yaxis.labelpad=10

47 ax.zaxis.labelpad=10

48 plt.show()

49

50 # Compute C13 values

51 BetaMat = np.transpose(np.vstack((np.ones(6),df[’Beta0_C13’],df[’

Beta1_C13’],df[’Beta0_C13’]*df[’Beta1_C13’],df[’Beta0_C13’]**2,df[’

Beta1_C13’]**2)))

52 fVec = np.transpose(errC13)
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53 alpha = np.linalg.solve(BetaMat,fVec)

54

55 AMat = np.array([[2*alpha[4],alpha[3]],[alpha[3],2*alpha[5]]])

56 bVec = np.array([[-alpha[1]],[-alpha[2]]])

57 BetaOpt13 = np.linalg.solve(AMat,bVec)

58 print(BetaOpt13)

59

60 # Plot C13 Fit

61 fig = plt.figure()

62 ax = fig.add_subplot(111, projection=’3d’)

63 n = 100

64 Beta0_grid = np.linspace(min(df[’Beta0_C13’]),max(df[’Beta0_C13’]),n)

65 Beta1_grid = np.linspace(min(df[’Beta1_C13’]),max(df[’Beta1_C13’]),n)

66 Beta0_gird,Beta1_grid = np.meshgrid(Beta0_grid,Beta1_grid)

67 sqrErr = alpha[0] + alpha[1]*Beta0_grid + alpha[2]*Beta1_grid + alpha[3]*

Beta0_grid*Beta1_grid + alpha[4]*Beta0_grid**2 + alpha[5]*Beta1_grid

**2

68 ax.plot_wireframe(Beta0_grid, Beta1_grid, sqrErr, rstride=10, cstride=10)

69 ax.plot(df[’Beta0_C13’],df[’Beta1_C13’],errC13,’k.’)

70 BetaOptErr = alpha[0] + alpha[1]*BetaOpt13[0] + alpha[2]*BetaOpt13[1] +

alpha[3]*BetaOpt13[0]*BetaOpt13[1] + alpha[4]*BetaOpt13[0]**2 + alpha

[5]*BetaOpt13[1]**2

71 ax.plot(BetaOpt13[0],BetaOpt13[1],BetaOptErr,’r*’)

72 ax.set_xlabel(r’$\beta_0$’)

73 ax.set_ylabel(r’$\beta_1$’)

74 ax.set_zlabel(r’$(t_{R,sim}-t_{R,exp})ˆ2$’)

75 ax.xaxis.labelpad=10

76 ax.yaxis.labelpad=10

77 ax.zaxis.labelpad=10

78 plt.show()

79

80 # Compute C14 values

81 BetaMat = np.transpose(np.vstack((np.ones(6),df[’Beta0_C14’],df[’

Beta1_C14’],df[’Beta0_C14’]*df[’Beta1_C14’],df[’Beta0_C14’]**2,df[’

Beta1_C14’]**2)))

82 fVec = np.transpose(errC14)
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83 alpha = np.linalg.solve(BetaMat,fVec)

84

85 AMat = np.array([[2*alpha[4],alpha[3]],[alpha[3],2*alpha[5]]])

86 bVec = np.array([[-alpha[1]],[-alpha[2]]])

87 BetaOpt14 = np.linalg.solve(AMat,bVec)

88 print(BetaOpt14)

89

90 # Plot C14 Fit

91 fig = plt.figure()

92 ax = fig.add_subplot(111, projection=’3d’)

93 n = 100

94 Beta0_grid = np.linspace(min(df[’Beta0_C14’]),max(df[’Beta0_C14’]),n)

95 Beta1_grid = np.linspace(min(df[’Beta1_C14’]),max(df[’Beta1_C14’]),n)

96 Beta0_gird,Beta1_grid = np.meshgrid(Beta0_grid,Beta1_grid)

97 sqrErr = alpha[0] + alpha[1]*Beta0_grid + alpha[2]*Beta1_grid + alpha[3]*

Beta0_grid*Beta1_grid + alpha[4]*Beta0_grid**2 + alpha[5]*Beta1_grid

**2

98 ax.plot_wireframe(Beta0_grid, Beta1_grid, sqrErr, rstride=10, cstride=10)

99 ax.plot(df[’Beta0_C14’],df[’Beta1_C14’],errC14,’k.’)

100 BetaOptErr = alpha[0] + alpha[1]*BetaOpt14[0] + alpha[2]*BetaOpt14[1] +

alpha[3]*BetaOpt14[0]*BetaOpt14[1] + alpha[4]*BetaOpt14[0]**2 + alpha

[5]*BetaOpt14[1]**2

101 ax.plot(BetaOpt14[0],BetaOpt14[1],BetaOptErr,’r*’)

102 ax.set_xlabel(r’$\beta_0$’)

103 ax.set_ylabel(r’$\beta_1$’)

104 ax.set_zlabel(r’$(t_{R,sim}-t_{R,exp})ˆ2$’)

105 ax.xaxis.labelpad=10

106 ax.yaxis.labelpad=10

107 ax.zaxis.labelpad=10

108 plt.show()

I.10 TGGC Dispersion Parameter Fit Code

1 import numpy as np

2 import pandas as pd

3 from mpl_toolkits.mplot3d import axes3d
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4 import matplotlib.pyplot as plt

5 import matplotlib

6 font = {’size’ : 13}

7 matplotlib.rc(’font’, **font)

8

9 # Parameters

10 C12 = 2.4

11 C13 = 2.65

12 C14 = 2.7

13 C12_T3 = 3.4

14 C13_T3 = 4.15

15 C14_T3 = 4.45

16

17 # Read in data

18 df = pd.read_csv(’GammaValues.csv’)

19 print(df.columns.values)

20

21 # Squared error parameters

22 errC12 = (df[’WhT2_C12’]-C12)**2

23 errC13 = (df[’WhT2_C13’]-C13)**2

24 errC14 = (df[’WhT2_C14’]-C14)**2

25

26 errC12_T3 = (df[’WhT3_C12’]-C12)**2

27 errC13_T3 = (df[’WhT3_C13’]-C13)**2

28 errC14_T3 = (df[’WhT3_C14’]-C14)**2

29

30 ##errC12 += errC12_T3

31 ##errC13 += errC13_T3

32 ##errC14 += errC14_T3

33

34 # Compute C12 values

35 mask = df[’Gamma0_C12’]<500

36 P12 = np.polyfit(df[’Gamma0_C12’][mask],errC12[mask],2)

37 gammaMin = -P12[1]/(2*P12[0])

38 Emin = P12[0]*gammaMin**2 + P12[1]*gammaMin + P12[2]

39 print(’Min: ’,-P12[1]/(2*P12[0]))
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40 P12_T3 = np.polyfit(df[’Gamma0_C12’][mask],errC12_T3[mask],2)

41

42 # Plot C12 Fit

43 GammaArr = np.linspace(min(df[’Gamma0_C12’]),max(df[’Gamma0_C12’]),100)

44 errFit = np.zeros_like(GammaArr)

45 errFit_T3 = np.zeros_like(GammaArr)

46 for i in range(len(P12)):

47 exp = 2-i

48 errFit += P12[i]*GammaArr**exp

49 errFit_T3 += P12_T3[i]*GammaArr**exp

50 plt.plot(df[’Gamma0_C12’],errC12,’ko’,label=r’Guessed $\gamma$ values’)

51 plt.plot(df[’Gamma0_C12’],errC12_T3,’b.’,label=’Data Points: T3’)

52 plt.plot(GammaArr,errFit,’k-’,label=’Quadratic Fit’)

53 plt.plot(GammaArr,errFit_T3,’m-’,label=’Data Fit: T3’)

54 plt.plot(gammaMin,Emin,’kˆ’,label=r’Optimal $\gamma$ value’)

55 plt.xlabel(r’$\gamma$’)

56 plt.ylabel(’Width at Half Max Error’)

57 plt.legend(loc=0)

58 plt.show()

59

60

61 # Compute C13 values

62 mask = df[’Gamma0_C13’]<500

63 P13 = np.polyfit(df[’Gamma0_C13’][mask],errC13[mask],2)

64 print(’Min: ’,-P13[1]/(2*P13[0]))

65 P13_T3 = np.polyfit(df[’Gamma0_C13’][mask],errC13_T3[mask],2)

66

67 # Plot C13 Fit

68 GammaArr = np.linspace(min(df[’Gamma0_C13’]),max(df[’Gamma0_C13’]),100)

69 errFit = np.zeros_like(GammaArr)

70 errFit_T3 = np.zeros_like(GammaArr)

71 for i in range(len(P13)):

72 exp = 2-i

73 errFit += P13[i]*GammaArr**exp

74 errFit_T3 += P13_T3[i]*GammaArr**exp

75 plt.plot(df[’Gamma0_C13’],errC13,’k.’,label=’Data Points: T2’)
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76 plt.plot(GammaArr,errFit,’r-’,label=’Data Fit: T2’)

77 plt.plot(df[’Gamma0_C13’],errC13_T3,’b.’,label=’Data Points: T3’)

78 plt.plot(GammaArr,errFit_T3,’m-’,label=’Data Fit: T3’)

79 plt.show()

80

81

82 # Compute C14 values

83 mask = df[’Gamma0_C14’]<500

84 P14 = np.polyfit(df[’Gamma0_C14’][mask],errC14[mask],2)

85 print(’Min: ’,-P14[1]/(2*P14[0]))

86 P14_T3 = np.polyfit(df[’Gamma0_C14’][mask],errC14_T3[mask],2)

87

88 # Plot C14 Fit

89 GammaArr = np.linspace(min(df[’Gamma0_C14’]),max(df[’Gamma0_C14’]),100)

90 errFit = np.zeros_like(GammaArr)

91 errFit_T3 = np.zeros_like(GammaArr)

92 for i in range(len(P14)):

93 exp = 2-i

94 errFit += P14[i]*GammaArr**exp

95 errFit_T3 += P14_T3[i]*GammaArr**exp

96 plt.plot(df[’Gamma0_C14’],errC14,’k.’,label=’Data Points: T2’)

97 plt.plot(GammaArr,errFit,’r-’,label=’Data Fit: T2’)

98 plt.plot(df[’Gamma0_C14’],errC14_T3,’b.’,label=’Data Points: T3’)

99 plt.plot(GammaArr,errFit_T3,’m-’,label=’Data Fit: T3’)

100 plt.show()

159


