Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2017-04-01

Hybrid State-Transactional Database for Product
L1fecgde Management Features in Multi-En c%meer
Synchronous Heterogeneous Computer-Ai

De&gn

Devin James Shumway
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation

Shumway, Devin James, "Hybrid State-Transactional Database for Product Lifecycle Management Features in Multi-Engineer
Synchronous Heterogeneous Computer-Aided Design" (2017). All Theses and Dissertations. 6341.
https://scholarsarchive.byu.edu/etd/6341

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an

authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6341?utm_source=scholarsarchive.byu.edu%2Fetd%2F6341&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Hybrid State-Transactional Database for Product Lifecycle Management Features in

Multi-Engineer Synchronous Heterogeneous Computer-Aided Design

Devin James Shumway

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

John L. Salmon, Chair
Steven E. Gorrell
Alan R. Parkinson

Department of Mechanical Engineering

Brigham Young University

Copyright © 2017 Devin James Shumway

All Rights Reserved

ABSTRACT

Hybrid State-Transactional Database for Product Lifecycle Management Features in
Multi-Engineer Synchronous Heterogeneous Computer-Aided Design

Devin James Shumway
Department of Mechanical Engineering, BYU
Master of Science

There are many different programs that can perform Computer Aided Design (CAD). In
order for these programs to share data, file translations need to occur. These translations have
typically been done by IGES and STEP files. With the work done at the BYU CAD Lab to create
a multi-engineer synchronous heterogeneous CAD environment, these translation processes have
become synchronous by using a server and a database to manage the data. However, this sys-
tem stores part data in a database. The data in the database cannot be used in traditional Product
Lifecycle Management systems. In order to remedy this, a new database was developed that en-
ables every edit made in a CAD part across multiple CAD systems to be stored as well as worked
on simultaneously. This allows users to access every action performed in a part. Branching was
introduced to the database which allows users to work on multiple configurations of a part simulta-
neously and reduces file save sizes for different configurations by 98.6% compared to those created
by traditional CAD systems.

Keywords: Interoperability, Hybrid State Transactional Database, Database, Revision History,
Configuration Management, Feature Level History, CAD Translation, Heterogeneous CAD, CAD
Features, Neutral Format, Design History, Multi-User CAD, Collaboration, Neutral Parametric
Canonical Form, Design Intent

ACKNOWLEDGMENTS

I would like to express thanks to my family for their support and motivation. I would like
to thank my advisers Dr. John Salmon, Dr. Steve Gorrell and Dr. Alan Parkinson for their support
and mentorship in completing my thesis. I give thanks to the Interop team in the BYU CAD Lab:
Eric Bowman, Josh Coburn, Dan Staves, Robert Freeman, Scott Christensen and Logan Hill for
making this research possible. I express thanks as well to those that helped edit papers including,
Jon Sadler, Ariana Pedersen, Jacob Tovar, Jordan Oldroyd, Spencer Brunell, Ian Freeman, Brandon
Davis, and Alex La. As well as the rest of the BYU CAD Lab for their research and contributions
to the field of collaboration in engineering that provided a foundation from which to develop this

research.

TABLE OF CONTENTS

LIST OF TABLES e e vi
LIST OF FIGURES e e s vii
NOMENCLATURE e X
Chapter 1 Introduction. 1
1.1 Problem Statement 1

1.2 Summary of Research Objectives 3
Chapter 2 Background 6
2.1 Single-User CAD e 8
2.2 Multi-User Synchronous CAD 8
2.3 Multi-User Synchronous Heterogeneous CAD 10
2.4 Neutral Parametric Canonical Form 12
2.5 Limitations of Current Systemo 13
2.6 Revision History 14
2.7 Configuration Management e 15
2.8 Neutral Parametric Database 16
Chapter 3 Hybrid State Transactional Database 18
3.1 Methodology e 19
3.1.1 RevisionHistory 20

3.1.2 Referential Integrity 24

3.1.3 Configuration Management 27

3.1.4 State-Based Loading 32

3.2 Results. e 34
Chapter4 RevisionHistory 37
4.1 Methodology 40
4.1.1 GUIandLoading 40

42 Results. 41
Chapter 5 Configuration Management 43
5.1 Methodology 43
ST GUIL L Lo 44

5.1.2 Part Loading and Branch Management 44

5.2 Results. e e 46
5.2.1 Branching Tests e 46

522 FileSize 48

v

Chapter 6 Conclusions and Future Work 52

6.1 Conclusions 52
6.1.1 Database e e 52

6.1.2 RevisionHistory 53

6.1.3 Configuration Management 54

6.2 Further Work 55
6.2.1 Thesis Overview e, 58
REFERENCES 60
Appendix A Window Code In XAML 62
A.1 Branching Window 62
A.2 Branches Window Code CH# e 64
A.3 PartHistory Window e 69
A.3.1 Part History Window GUI 69

A.3.2 Part History Window XAMLcode 69

A.3.3 Branches Window Code C#, 71
AppendixB C#Code 76
B.1 CATIA Code for Extrudes @ o i i i i i e 76
B.2 CREO Code for Extrudes i s i i e 80
B.3 NX Code for Extrudes e 83
Appendix C LoadingCode 91
Appendix D Database .edmx File 96
Appendix E Adding anew Feature 97
E.1 Database Setup 97
E2 Code s 102

1.1

2.1
3.1

3.2
33

5.1

5.2

6.1

LIST OF TABLES

Comparison with proposed HSTDB and current methods to show the goals of the

research. L L

Translation Comparison oo e e e

Table showing the creation and edits of 3 points on multiple branches in order,
according to time with a branch being created in the middle and one point being

editedonthenewbranch. Lo Lo
Table showing the edits and creations that took place on Branch 1.
Table showing the edits and creations that took place to make up Branch 2..

Configurations of wood screws with Phillips-Head Point Size #1 used for testing

configuration management.l e e e e

Data sizes in KB for different CAD parts, Comparative Size Column removes the

size of a blank part if applicable. L L L.

Comparison with HSTDB and current methods to show the conclusions of the

research. e e

vi

50

1.1

2.1
2.2
23
24

2.5

2.6

3.1

3.2

33
3.4

3.5
3.6

3.7

3.8

3.9
3.10

4.1
4.2
4.3

4.4

LIST OF FIGURES

Proposed database structure with current NPDB in blue, new revision history tables
in green and new configuration management tables in yellow.

Timeline of the different applications on which this research is based.
Assembly of a pipsqueak engine with multiple parts and features.
Example of six users working simultaneously in NX to create a Zodiac CZ7.
Example of six users working simultaneously in NX, CATIA, and CREO to create
a model guided rocket system within MESH CAD. NX can be seen in the top left
window and the large window on the right. CREO in the two left side windows
under the NX window, and CATIA on the bottom with the blue background.
Simplified database scheme with a part table that contains the data for all of its
associated features. L.
A base chassis system and all of the different configurations that create a family of
medium tactical vehicles [1].

Updated simplified database showing addition of state tables as well as the branch
table with some but not all relationships shown. This is in contrast to Figure 2.5
which shows the previous structure of the database.
Database tables showing the relationship between DBFeature and DBInteropState
with a one to many relationship. L L Lo
Data from creation and an edit add to the database.
Simple example showing typical CAD systems revision history with saving in blue
on the left and the new revision history without saving in Green on the right.
Line2DState table showing the references to Start Point and End Point.
Figure showing two different lines that are based on the same points with one edit
and their associated database tabledata.
Example timeline of three points being created and edited on different branches at
different times.
Branching example for a bike rim. The base features being created in 3.8a and two
different configurations of the part being shownin3.8band3.8c.
Loading Operations based on CAD Package.
Final state of extrudes shown in both the CATIA (3.10a) and NX (3.10b) CAD
clients. Database table data (3.10c) for extrudes shown in 3.10a and 3.10b as well
as all edit data. Views are not from the same viewing position but the CAD parts
arethesame. L

Steps to create the final part used to show different part save files.
Feature trees from different save files.
Image showing the GUI and some revisions for a part with a button to restore the

part to different revisions and close the window.
Loading algorithm for a previous revision.

Vil

16

21

4.5

5.1
5.2
5.3

54

6.1

6.2

6.3

6.4

A.l
D.1

E.1
E.2
E.3
EA4
E.5

E.6

E.7

E.8

Revision History example showing the loaded revisions with the Part History Win-
dow shown with the loaded revision highlighted. In 4.5a the original sketch is
loaded, in 4.5b the original extrude for the part is loaded and in 4.5c¢ the entire part
is loaded up to the most recent extrude edit. The Part History Window is the same
window seenin Figure 4.3. 42

Image showing the GUI and a couple of branches for a part with a create branch
button and a open button for loadingabranch. 44
Loading algorithm forabranch. 46
Two branches are displayed under a parent branch to create two different wrench
configurations. State branch data can be seen in 5.3d which contains all of the

states for the different features that make up Figures 5.3a, 5.3b, and 5.3c.. 47
Screws created in NX and CATIA for the configuration of 15/64” head bore size
and lengthof 3/8”. 49

Final state of extrudes shown in both the CATIA (6.1a) and NX (6.1b) CAD clients.
Database table data (6.1¢) for extrudes shown in 6.1a and 6.1b as well as all edit
data. Views are not from the same viewing position but the CAD parts are the same. 53
Revision History example showing the loaded revisions with the Part History Win-
dow shown with the loaded revision highlighted. In 6.2a the original sketch is
loaded, in 6.2b the original extrude for the part is loaded and in 6.2c the entire part
is loaded up to the most recent extrude edit. The Part History Window is the same
window seenin Figure 4.3.o 54
Two branches under a parent branch to create two different wrench configurations.
State branch data can be seen in 6.3d which contains all of the states for the differ-

ent features that make up Figures 6.3a, 6.3b,and6.3c. 56
D2 showing addition of states tables as well as the branch table with some rela-

tionships shown. L L L 59
Part hisotry window defined by the xaml code presented in this chapter. 69
Full database .edmx file showing all connections and tables. 96
Feature Table for DBPoint2D which shows a GUID as the primary key. 97
Table containing the state information to define an instance of the Point2DState. . . 98
Foreign Key Relationship between Line2D and Point2D for a start point. 99

Foreign Key Relationship to define inheritance between Line2D and SketchFeature. 99
Right click menu in the .edmx file window of visual studio with “Update Model

from Database” highlighted. 100
Window showing how to add a new database table by updating the model from the
database.. e 100
Edmx file window showing the DBLine2DState and its parent table DBSketchEn-
tityState right after being added in visual studio. 101

Edmx file window showing the DBLine2DState and its parent table DBSketchEn-
tityState with the add inheritance window showing how to create a new inheritance
relationship. L 101

E.9 Initial view of the DBSketchEntity and DBLine2DState before renaming naviga-
tON ProPerties. v v v v i e e e e e e e e e e e e
E.10 Initial view of the DBSketchEntity and DBLine2DState after renaming navigation
PIOPEILIeS. o ot e e e e e e e e e e e
E.11 Code segment for finding and updating a feature in NX.
E.12 Code segment for getting instance from NX.
E.13 Code segment to create a builder for an extrude in NX.
E.14 Code segment showing how to create a new extrude state and feature then send
those features to the database. 0L
E.15 Code segment for creating a builder in an update from NX.
E.16 Code segment for only sending the updated state if an edit has been performed. . .
E.17 Code segment for executeMessage showing how new messages from the server are
handled.
E.18 Create feature if statement showing where and how to add a new feature in the
create feature list.

1X

105
105

GUI
GUID
NPCF
NPDB
2D

3D

API
IGES
STEP
HSTDB

NOMENCLATURE

Graphical User Interface

Globally Unique Identifier

Neutral Parametric Canonical Form

Neutral Parametric Database

Two-Dimensional

Three-Dimensional

Application Programming Interface

Initial Graphics Exchange Specification

Standard for the Exchange of Product Model Data
Hybrid State Transactional Database

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

In 1999 a study performed by the National Institute for Standards and Technology made an
estimate that within the automotive supply chain, imperfect interoperability created costs between
$1.02 billion and $1.05 billion dollars per year. They estimate that 86% of these costs originate
from repairing unusable data [2]. This repairing of data is largely made up of the changes needed
to be made to CAD files transferred between the designers and manufacturing facilities. Through a
CAD Lab internal study, with different aerospace partners, we have seen that these problems also
exist in the aerospace industry. I also believe that these trends exist in many other industries not
explored in this research.

Due to the number of CAD applications that are used in a manufacturing supply chain,
companies are forced to interface with differing CAD file formats other than the CAD system that
they use in-house. In the past, drafting has been the main method of communication between de-
signers and manufacturers, and rigorous drafting standards have been put in place; however, even
with these standards in place close communication between designers and manufacturers is nec-
essary [3]. Currently, conversion between CAD file formats is done using translation practices,
namely the International Graphics Exchange Standard (IGES) or the Standard for the Exchange of
Product Model Data (STEP). These systems have their benefits but each has limitations as well.
IGES represents only geometric data contained within the model, and while geometric data trans-
lation is necessary, more data is typically desired. IGES only translates Boundary Representation
(BREP) data and CAD features such as associativity are lost. With STEP, current research is on-
going with Solid Model Construction History (SMCH) which stores BREP data and construction
history to not only keep the geometry but also to preserve design intent. This leads to large file
sizes [4], in comparison with standard part files, due to storing additional information. SMCH

also results in part loading failure rates as great as 50% [5]. These solutions, IGES and STEP,

are incomplete and are at best a short-term fix to a larger problem which will continue to grow as
products and manufacturing distribution chains get more complex.

In order to allow a better, more seamless transition between CAD systems, a CAD plugin
named “Interop” was developed at BYU [6]. This plugin works with existing CAD systems to help
translate data in real time so that users can synchronously be working on the same part in multiple
CAD systems. As this level of interoperability becomes a possibility with increasing speed of
internet connections and computer processors, a need arises for a neutral format to store the CAD
file data. In order to address this the Neutral Parametric Canonical Form (NPCF) was created. This
allows users to open a CAD package of their choice, and if they have the correct plugin to translate
data from the neutral format to their CAD package. Then they can open the part files and associated
features locally. The process used to create the NPCF follows the recommendation outlined by The
Neutral Modeling Command method [7]. The client uses the application programming interface
(API) of each CAD system to create a collaborative heterogeneous CAD solution by storing the
data of CAD features in a database named the Neutral Parametric Database (NPDB). This database
contains tables which store the feature data in its associated NPCF. Each database table for a
feature contains a unique identifier, a state of the feature (creation, modification, deletion), and the
parameters of the feature.

However, there are limitations with the current implementation of the NPCF and NPDB.
Due to the nature of Product Lifecycle Management (PLM) systems, which store and manage CAD
information as well as any other information needed in the design process, there is no way to store
the NPDB and its associated part and feature data. A user could store the data but would need
to perform a database operation to generate the scripts for the database and store those scripts in
PLM. This adds an additional step to restore multi-user functionality. On part open, a user would
have to download the database script from the PLM system and generate a database from it before
the user could start working with other users.

Another way to interact with PLM is to download the NPDB files and save off the binary
part files typical to that CAD system. Finally, they could store the binary part files in the PLM
system. This method also has a drawback as it loses the synchronous interoperability provided by

the NPDB and associated plugins.

The next step in extending the NPDB is to incorporate PLM features into the NPDB to
allow for greater control at the part level for the data needed throughout the production process.
Since the PLM system cannot be interfaced directly, some of the features it provides would be
beneficial to have directly in the CAD environment. For the purposes of this thesis, PLM will
specifically refer to the systems that attempt to manage CAD system data from a part management
perspective.

The selected features that are being integrated into the NPDB are revision history and
configuration management. These features allow for greater control of parts and part structures, a
logical place to incorporate PLM features. Revision history also allows for previous versions of
the part to be saved which will allow for greater design transparency and provides the groundwork

for many additional PLM features, one of which is configuration management.

1.2 Summary of Research Objectives

The goal of this research is to provide a Hybrid State Transactional Database (HSTDB)
that allows not only for part geometry and feature data as provided by the NPCEF, but to also allow
Revision History and Configuration management. The goal can be seen in Table 1.1 showing the

HSTDB with all data being stored and accessed by all users.

Table 1.1: Comparison with proposed HSTDB and current methods
to show the goals of the research.

Translation Comparison IGES STEP NPCF HSTDB

Part Geometry v v v v
Feature Data X X v v
Revision History X X X v
Configuration Management X X X v

The proposed structure for the HSTDB can be seen in Figure 1.1. New tables that will be
added to the current NPDB can be seen in yellow for configuration management tables and green
for revision history tables.

The research will be completed and validated when
1. The database has been expanded to store all revisions of a part

3

2. A user can interact with the new database information to view previous part states
3. A user is able to make and load different configurations of a part through branching

4. The multi-user and multi-CAD package aspects of Interop have been maintained

FEATURE
STATES

BRANCH

T/

[A

& R 4 h 4 D
REVQLVE SKETCH EXTRUDE
STATE STATE STATE

- I py € y & 4

| D A ™

| LINE 2D POINT 2D
1 STATE STATE

|

|

| g 7 p

]

e e o — — —— — — —

Figure 1.1: Proposed database structure with current NPDB in blue, new revision history tables in
green and new configuration management tables in yellow.

Objective 1 will be discussed in Chapter 3, where the changes made to the NPDB in order
to create the HSTDB will be explained. Chapter 4 will discuss Objective 2 and how a user can view
the new data stored in the database. Chapter 4 will also discuss how Objective 4 was maintained

with revision history. Chapter 5 will discuss Objective 3 as well as Objective 4 and how they were

4

implemented on the client side for configuration management. Background for all of the topics
that make up this research will be discussed in Chapter 2. Finally results from this research will be

discussed in Chapter 6.

CHAPTER 2. BACKGROUND

This research is based off of principles taken from five different subjects.
1. Single-User CAD

2. Multi-User Synchronous CAD - which involves multiple users interacting with the CAD file

in real time.

3. Multi-User Synchronous Heterogeneous CAD - Which is similar to multi-user synchronous
CAD but involves the use of multiple CAD systems interacting with the same CAD file in

real time.
4. Revision History - Which allows the user to see all changes made to the part.

5. Configuration Management - Which is the storage of different configurations of an assembly

with different parts being referenced by different assemblies.

Each of these subjects contribute to the understanding that went into the creation of the Hybrid
State Transactional Database (HSTDB). Figure 2.1 shows the timeline of when the different sub-
jects that comprise this research were introduced. This timeline includes PLM for revision history
and configuration management and solid model construction history as a stepping point for Interop.

For the purposes of this thesis a part will refer to a CAD part that is one single object that
when manufactured would represent one single object. An example of a part can be seen in Figure
2.2 where a part can be seen in the tree on the left being represented by a name such as “Main
Upright”. An assembly will refer to the entire collection of parts that make up a product, Figure
2.2 shows a full assembly of a pipsqueak engine. A sub-assembly will refer to a collection of parts
that are a stand alone design but exist within a larger assembly as well. Figure 2.2 does not contain
any sub-assemblies; however the highlighted parts could be made into a sub-assembly that would

represent the shaft of the part. A feature will refer to one CAD operation such as a sketch, extrude,

Single ,
User Modern PLM m%térﬁecrt
CAD
Mid 1970’s 2005 2012
1980 1984 2009 2014
CAD Solid Model
Translation STEP Construction Interop
IGES History

Figure 2.1: Timeline of the different applications on which this research is based.

2D point, revolve, fillet, line, etc. From Figure 2.2 the blue lines that can be seen located on the

bottom of the assembly represent a sketch feature that is made up of smaller line and point features.

From a hierarchical view an assembly contains sub-assemblies which contain parts which contain

features.

Assembly Navigator o

Descriptive Part Name & Info R,

B Sections

- Kli# baseplate (Order: Chronologi... o
I

CEEEEEEY

Figure 2.2: Assembly of a pipsqueak engine with multiple parts and features.

2.1 Single-User CAD

The current state of single-user CAD is a diverse collection of many single-user CAD
packages where each user is allowed to open and edit a part only if that part has not been opened
by another user. In order to facilitate this process, CAD packages use a PLM tool such as Siemens
Teamcenter to allow users to check-out a part and then save and check-in that part after they are
finished working on it [8]. This allows for transference of ownership from one user to the next
depending on which user has the file checked-out. The benefit of this system is that it allows
multiple users access to any given part file or assembly file. The downside of this system is that
when one user is working on a part, other users cannot edit that checked-out file because they
do not possess ownership at that current time. In order to allow users to view part files without
ownership Siemens has created a lightweight 3D viewing file format that is created on check-in
called JT files [9]. This provides a multi-user feel to the PLM system by allowing users to view the
current state of the file before it was checked-out but does not allow users to view changes being
made in real time.

There are many CAD systems that fall under the umbrella of single-user CAD including
Siemen’s NX, Dassault’s CATIA, and PTC’s CREO. These three systems comprise the focus of
this thesis and were included in the Interop platform created in the CAD Lab at BYU as discussed

in the following section.

2.2 Multi-User Synchronous CAD

In order to address the issues mentioned under the Heterogeneous CAD section, the BYU
Center for e-Design developed NXConnect [10]. This system is a thin-server, thick-client system
that utilizes the API of Siemen’s NX CAD package to create messages for each operation per-
formed on a client and then send the messages to each other user that has the part or assembly
file open. This design allows for a synchronous CAD plugin that works with Siemen’s NX so
that multiple users can be active in the same part simultaneously. NXConnect performs operations
on the clients machine allowing the server to focus on sending and receiving messages from the

individual clients and redirecting the messages to the appropriate clients [11].

Figure 2.3: Example of six users working simultaneously in NX to create a Zodiac CZ7.

Figure 2.3 shows six users working in NXConnect on a Zodiac CZ7 watercraft. As a users
create changes, those changes are added in all other users’ CAD assemblies. In Figure 2.3 the
users all have the same part open and they are able to see what the actions performed by other
users. In order to not have inconsistencies and errors on different users’ computers, no features
are applied while a user has a feature dialog window open. Feature messages are also not applied
at the assembly level, if the user only has a part which exists in the assembly open, but not the
assembly itself to prevent part corruption. Not applying messages that are at the assembly level if
the user is in the part level helps explain what is happening in the bottom left image of Figure 2.3.
The user in the Figure has a part open but not the whole assembly so changes to the Zodiac CZ7
are not displayed in that view. The image in the top right of Figure 2.3 shows a client that has been
opened to show the current state of the assembly. This client receives messages only and acts as a

viewer in displaying the functionality of the NXConnect plugin.

2.3 Multi-User Synchronous Heterogeneous CAD

After years of research into multi-user CAD, the BYU team developed the neutral paramet-
ric canonical form (NPCF). The NPCF helps to solve some of the translational problems within
current CAD systems by providing full geometric data through the current state-based format in
which the data is stored [12]. This data is feature-specific and thus maintains design intent. The
NPCEF stores the feature data in a database namely the Neutral Parametric Database (NPDB). The
NPCEF also leverages the knowledge gained in creating NXConnect to provide the data in the NPCF
to every CAD package. This is done by writing a plugin in the same multi-user synchronous for-
mat as described in section 2.2 for NXConnect. At this time plugins have been written for multiple
CAD packages which makes it heterogeneous in nature. This led to the naming of this type of
CAD as Multi-User Synchronous Heterogneous (MESH) CAD.

The current state of the NPCF stores the feature data for every feature supported by the
Interop plugin in a CAD file, part, or assembly. These features are stored in the database and
every client attached to the database can access the data. The NPCEF relies on the client’s computer
to translate the data from the NPCF to create command messages that create the features using
the API of the client receiving the message from the NPCFE. This allows any user to not only
access the data in the database but to push data to and receive from other clients. This results
in a thick-client, thin-server architecture, similar to that of NXConnect, that supports a multi-
user synchronous collaborative environment where multiple users can model in the same part and
assembly. Unlike NXConnect, this is done in NX, CATIA and CREO. The three CAD programs
can be used simultaneously using each program’s API instead of only NX’s NXOpen API. The
thin-server, thick-client architecture is in opposition to a thick server architecture where a server
contains all of the data for the part and only sends visualization data to the clients as can be seen
by the examples NetFeature [13] and CADDAC [14] which are new CAD packages that follow a
thick-server architecture. This process also differs from the STEP file storage in that the current
database format does not allow for the storage of the construction history, which results in a lack
of full design intent being saved.

An example of MESH CAD can be seen in Figure 2.4 which is similar to Figure 2.3 in that
multiple users are working on the same assembly. However, unlike Figure 2.3 multiple users can

work in multiple systems at the same time with different CAD packages namely NX, CATIA, and

10

B RE WS e T CaPRAl R RS SRERRtR SRS PIWWORL AT IR SRS e -
& -t St R0 e G- b, T ENEE-T-O >, I8 W "
WD i e s n-and Joal e ory J@egesste D5 T 3l DnaL Bl

NG !

— e

o |y e {3 N R G i T -

I 15

CECCLCECEEELErEcececees
CEEEERETESESCSCSS SR EESE

L IR X 5]

Figure 2.4: Example of six users working simultaneously in NX, CATIA, and CREO to create a
model guided rocket system within MESH CAD. NX can be seen in the top left window and the
large window on the right. CREO in the two left side windows under the NX window, and CATIA
on the bottom with the blue background.

CREO being present in Figure 2.4 and still receive updates synchronously. In Figure 2.4, there
are six users working simultaneously on a model guided rocket. Two of the users are working in
NX, two in CREOQO, and two in CATIA. They are all working on one assembly file and as one user
makes a supported feature change to any part, that change can be seen on every other screen that
has the assembly open. This is accomplished by having event handles programmed into the CAD
system so that when an action is performed, the program recognizes it, uses the API to grab the
feature data, translates it into the NPCF, and sends that data to the server. When the server receives
a message it compares the data with the format of the data associated database table, and if the data
does not fit the table it is rejected by the server. If the data is not rejected, the server immediately

sends the modeling command to the other users in the part.

11

The CATIA user in the bottom right of Figure 2.4 is working on a servo that moves one of
the control flaps. To show additional functionality, this user is working directly in a part file and
does not have the assembly part open. As this user makes changes to the servo, every user that
has the assembly file open still receives these changes to the servo, but the user does not receive
any updates to the assembly because they do not have it open. The plugins to the different CAD
systems used in this example utilize the NPCF and the NPDB and comprise the program called

“Interop.”

2.4 Neutral Parametric Canonical Form

Interop uses the NPCF to formulate its database and allow users to work in multiple CAD
systems simultaneously [6] similar to the idea postulated for neutral modeling commands by Li
[15-17]. The current database format has tables for each supported feature. A simplified version
of the database can be seen in Figure 2.5. The tables as can be seen in Figure 2.5 all can be linked
back to a Part Table. When a user selects a part to load from the database, every feature that
contains that part in its table is sent to the user. These features are then used to recreate the part on
the user’s local machine. When a feature is edited, the data for that feature is overwritten so that
there is only one record of that feature in the database at any time. Therefore, there is no traditional
interpretation of undo, redo, or history for the part. If the feature is deleted it is kept in the database
but a delete flag is inserted so that the system knows the feature has been deleted and should be
removed as soon as possible on the other clients.

This is similar to current CAD system files in that the database contains the information
for a state and this state and associated tables are equivalent to the save file for the part. It is
different in that multiple users can edit the CAD file simultaneously in multiple different CAD
systems and receive the edits of all other users in the part. One benefit of this structure is quick
loading, compared to the slower loading speed of other multi-user database stored systems such
as NXConnect. This decrease in loading times comes from the current state of the part being
stored at all times in the database so the client does not need to do the calculations for every
edit to the geometry one at a time like in NXConnect. The downsides are that with the current
state of Interop only the current state is saved, no previous data is stored, and only one revision

of each part or feature can be saved in the database without completely remaking or copying the

12

Figure 2.5: Simplified database scheme with a part table that contains the data for all of its associ-
ated features.

part. Design intent is not preserved past the current state of the part but a portion of design intent is
preserved because the feature tree is maintained across CAD systems in the current implementation

of Interop.

2.5 Limitations of Current System

While the NPCF helps to solve many issues surrounding CAD interoperability, it does
leave the user with a deflated user interface in which they lose many of the actions that they could

perform in a typical CAD system. The NPCF and its associated NPDB cannot handle the following

13

operations in their current state; copying parts, undo, redo, revision history, branching and merging
of parts and assemblies, and full configuration management. With the updates proposed for the
NPDB, the groundwork for these features will be provided in the database with revision history,
and configuration management implemented.

Many CAD features have not been implemented in Interop due to Interop being a research
application and a proof of concept. This leaves Interop with a limited feature set, which contains
sketches, extrudes and revolves. All other features found in CAD systems have not been defined in
the NPCF at this time, including boundary representation (BREP) features which allow the users
to create new geometry off of currently existing geometry such as creating a sketch on a face of
an extrude or creating a curved edge along an existing edge of an extrude. The feature set of the
NPCF will not be expanded in this study.

Most of the functions listed above are handled by PLM systems. Copying parts and re-
vising parts are tracked using PLM systems. In current CAD PLM systems, part files are stored
to represent the parts. Since the NPCF uses a database structure that stores feature data, users do
not have to duplicate data in order for it to be used in multiple locations. To be used in multiple
locations, the database needs to be told where to look for the data. Users can also duplicate a part
for revisions without adding any more data than a new branch which contains a Globally Unique

Identifier (GUID) and a name which in this case informs the database that the data will be reused.

2.6 Revision History

STEP and IGES have been created to help in the translation of data between CAD systems
to create a heterogeneous environment. As seen in Table 2.1 IGES, STEP and the NPCF are able
to translate the Boundary Representation (BREP) data from one system to another. But IGES and
STEP fail in translating and representing feature data to another system which is the reason for the
creation of the NPCF as representing feature data in real time is also what allows for MESH CAD.
However, as seen in Table 2.1, there is not a single translation package that also translates revision
history. The main goal behind saving revision history is to preserve design intent. Currently PLM
systems store revisions by saving a binary part file of the design for each revision that is desired by

the user. In order to look at previous versions of a design, one is selected and the part file is loaded

14

for that revision. While this does provide a way to look at previous revisions of a part, and works

with current PLM systems, this method does not work with the NPCF and NPDB.

Table 2.1: Comparison of translation methods and the features
provided or not provided by each.

Translation Comparison ~ IGES STEP NPCF

Part Geometry v v v
Feature Data X X v
Revision History X X X
Configuration Management X X X

Due to the fact that the NPDB and NPCF are not compatible with current PLM systems,
since they do not create binary part files, they cannot be integrated. In order to interact with a PLM
system the NPDB data for a part would have to be saved to the binary format from one of the CAD
systems accepted by the PLM system which removes the heterogeneous CAD system work-flow

benefit gained from MESH CAD systems such as Interop.

2.7 Configuration Management

Configuration management is the process of making a different assembly by selecting dif-
ferent parts to form a different configuration and saving that to the PLM system. This allows for
multiple parts to be used in different assemblies as well as using one base assembly and adding
different sub-assemblies to reuse much of the work that has already been completed. A great ex-
ample of that is show in Figure 2.6 which has one base chassis that is used to create a Family of
Medium Tactical Vehicles (FMTV) [1]. This base chassis is used to make every single configura-
tion of the FMTYV for use in many different situations from trailers to vans. One benefit of this base
chassis is that it drives costs down because effort and models can be reused such as all the parts in
the chassis. Furthermore, manufacturing of that base part is done in greater numbers allowing for
better economies of scale to be developed instead of having a different base for each need.

In the current state of configuration management the configurations are handled at the part
level. This is how configuration management is currently handled but like revision history, since

PLM deals with the binary part files from different CAD systems, this does not link into the NPDB

15

MTV CARGO (3}

MTV LWB CARGO W/MHE [z MTV DUMP TRUCK (2)

MTV Expansible Van ©

Ay

MTV WRECKER
* Special Vanants

MTV Trailer HIMARS'

Figure 2.6: A base chassis system and all of the different configurations that create a family of
medium tactical vehicles [1].

and MESH CAD environment. With the goal of revision history being feature based in the expan-
sion to the NPDB, this allows for feature level configuration management which is made possible

with this database expansion.

2.8 Neutral Parametric Database

The neutral parametric canonical form (NPCF) is a new neutral format for storing CAD in-
formation in a base mathematical definition [6]. In each CAD system a plugin is written that takes
every feature that has been created and using that CAD system’s API breaks the feature down into
its mathematical definition. This mathematical definition for a feature is the NPCF. The NPCF
has been implemented into a database format called the neutral parametric database (NPDB). Due
to the NPCF being a neutral format with information to be accessed by many different CAD sys-
tems, no CAD-based PLM system exists to store NPCF information for use in Product Lifecycle
Management (PLM). The data can be stored in PLM systems but many PLM features such as con-
figuration management would not be available. Typical interaction between the CAD system and

the PLM system requires the storage of binary part files such as NXs .prt files, or CATIAs .catprt

16

files. There is no way currently to store PLM data in a synchronous, collaborative, multi-engineer,
interoperable database environment. To save a part into a PLM database currently while using the
NPCF and NPDB, the user must convert to the system that is interacting with their PLM service
and save the file directly. Due to this conversion between systems, the benefits gained from having
a multi-engineer synchronous heterogeneous database are lost because the saving process defaults
to single user and is single CAD system reliant. Another issue is that currently saved CAD files
are typically stored in binary and lack the ability to retain referential integrity, and therefore the
part files can become corrupted. Within a database format, the product exists as a mathematical
representation of the part and is inherently stable.

The current version of the NPDB stores the data for the following features; point 2D, point
3D, line 2D, line 3D, arc 2D, extrude, revolve, spline 2D, spline 3D, coordinate system (CSYS)
and datum plane in their mathematical NPCF definitions. The database is set up in such a way
as to store the current state of the part or assembly at all times. Every feature has a part ID that
is attached to it and every feature associated with that part is loaded when opened. To ensure the
proper loading order of the features, and thus the proper loading of the part, a concept borrowed
from computer science called a multiton pattern is used which makes sure that every feature is
loaded in the proper order [18]. This speeds up loading times compared to other multi-user CAD
systems because the complexity of the loading algorithms is handled within the multiton pattern, so
no computations are required for consistency, and loading proceeds quickly. The multiton pattern
is a means of ensuring that there is only one object that exists for each name.

Referential integrity is the process of enforcing every database table to have all foreign
keys point to a valid reference [19]. Most database engines will automatically handle references;
however, this is only effective when the database has been set up in a way to handle every possible
rule. Referential integrity will help the database recognize corrupted or incomplete data which in
turn will be rejected from the database. Rejected data will remain on the client that attempted to
send it instead of propagating through each client that is currently in the multi-user session. Further
checks are implemented on the client side in each CAD system’s plug-in to check that data sent to

the database is consistent with the feature the user is trying to create.

17

CHAPTER 3. HYBRID STATE TRANSACTIONAL DATABASE

In order for data to be stored for more than just the current state, the NPDB will need to
be restructured as proposed in Figure 1.1. The restructure will need to occur in such a way as to
allow a list of the associated features, edits, and the feature itself to be stored. For the state system
to remain intact each feature stored in the database will need to have complete data and allow the
system to still load quickly without having to apply each edit sequentially. This will allow for
quick loading of the part regardless of the state user is trying to load, from the first sketch or datum
placed to the last edit of a feature.

The revised database structure will be validated when,

A created feature adds a new object to the database with a new GUID and a state with a

separate GUID.

An edited feature adds a new state to the existing object with a new GUID.

* A second user can receive both creation and edits of features without duplication in the CAD

file.

Upon part load, only the most recent state of each feature is loaded.

In order to achieve the primary goal of this research, which is the implementation of config-
uration management and revision history into a MESH CAD environment, changes must be made
to the NPDB. The current NPDB is a state-based database as described in chapter 1. In order to
facilitate revision history this database structure must be changed to not only store the current state
of the part but all previous states. Due to the nature of this database being state-based while also
storing every feature change or transaction it will be referred to as the Hybrid State Transactional
Database (HSTDB). In order to simplify naming the current state of the database before this re-
search or NPDB will be referred to as D1 while the database with the changes made in this research

or HSTDB will be referred to as D2.

18

If the current state of revision history used in PLM systems today were preserved in D2, a
different part database would be saved off at every revision of the part and that would essentially
be a new part. The saved database script is the database equivalent of saving off a binary file at
different revision points as discussed in section 2.6. Saving off a database script does not utilize the
power of a database and creates multiple copies of certain parts of the data. A database structure
provides an opportunity to expand how many revisions are saved as well as reduce the amount of
duplicated data while not significantly increasing the amount of storage space for the increased
saved data.

D1 maintains referential integrity by having a linear tree structure that does not accept new
data unless that data fits the database scheme seen in Figure 2.5. The state-based structure allows
for comparatively fast loading with current database styled multi-user plugins such as NXConnect
which have to perform each operation that was performed on the part in order, including edits and
deletes, to build the part from scratch every time it is opened. In Interop, loading times have been
decreased by only storing the current state of the part and so as the part is loaded it does not need
to perform all edits and deletes but only adds the current geometry with its associated feature tree.
These features are important and in the update to D2 they are critical to not increasing loading
times.

If referential integrity were not implemented correctly data could become corrupted through
database tables containing bad data. Likewise if state-based loading were not implemented then
with each additional feature added to a part or assembly loading times would increase. The in-
creased times would be a result of every single operation including edits being performed by the

CAD system to load a part.

3.1 Methodology

The implementation of this database can be broken down into four key operations, which
include: revision history, referential integrity, configuration management, and quick loading, and
are explained in detail in the following sections. In order to achieve the desired database, Microsoft
SQL Server Management Studio is used to add tables to the database and assign relationships. SQL
is used as the programming language for the database. Finally, Microsoft Visual Studio is used to

relate the data from the database to the local CAD system APIs using .edmx files. The .edmx files

19

are used to view the database structure and edit the relationships represented by lines and dashed
lines as well as tables for use in the local C# code files. Visual Studio will then be used to edit the
C# files that interface with the CAD API and create the geometry. The full .edmx file for the new

database can be seen in Appendix D.

3.1.1 Revision History

The main purpose in further developing the NPCF was to include full part history in the
database. In order to achieve this, a new database structure was added to D1 or the neutral para-
metric database (NPDB). D2 can be seen in Figure 3.1 in comparison with D1 seen in Figure 2.5.
The D2 image shows the addition of state-based tables in green that mirror the structure of the old
database and are used but store state information for each feature. This is a high level image that
has much of the functionality of the database removed for simplified viewing.

In order to make this change from Figure 2.5 to Figure 3.1, a State Table is added to the
database through Microsoft SQL Management Studio. This new table needs to hold all of the data
for each state of the feature shown in green in Figure 3.1. This table is added to the database as a
child of the Object Table as shown in greater detail in Figure 3.2. This table also has a navigational
property which is a relationship that links it to the Feature Table titled DBFeature in Figure 3.2.
The relationship is a one-to-many relationship with one feature entry having a list of all the states
associated with that feature. The reason behind this is that each feature has many states and each
state is needed to preserve revision history. This small change caused a cascade of other necessary
changes to the CAD plugins already included in the Interop environment. An example addition of
a new feature can be seen in detail in Appendix E.

D1 had all database tables as children of the DBFeature table as seen in Figure 2.5. In order
to store all of the feature data in the database, this data was moved under a new table called DBIn-
teropState. The DBFeature tables such as Extrude and Sketch remain as children of DBFeature;
however, they no longer contain the feature data as that data is stored in the matching DBInterop-
State table. The DBFeature table now stores a list of the states which then contain all the feature
information for the state being saved.

When a user creates or edits a feature, a new state is created for that object which is a

database table entry for a state as can be seen in the table located on the right side of Figure 3.2.

20

FEATURE

Bl CH STATES

(i)
a D w
REVOLVE SKETCH EXTRUDE
STATE STATE STATE
D € b @& ~
| w ™
I LINE 2D POINT 2D
J_ STATE STATE
I
I
I p €
)

[. | np e — S S

Figure 3.1: Updated simplified database showing addition of state tables as well as the branch
table with some but not all relationships shown. This is in contrast to Figure 2.5 which shows the
previous structure of the database.

If that state is a new state, a DBFeature is created along with the new state represented by the
table located on the left side of Figure 3.2. When an edit is made, the DBFeature is first captured
from the current state by following the navigational property for the state’s DBFeature seen in the
DBInteropState table in Figure 3.2. The edit is converted into a new state table entry and added
to the DBFeature and time-stamped accordingly. The following example helps to better show how
this process is achieved.

In Figure 3.3a, an extrude is added to the part based on the sketch already existent in the
part. The figure also shows the data that is added to the database: a new entry to the DBFeature

Table as well as a new entry in the DBExtrudeState Table. In Figure 3.3b, the extrude from 3.3a

21

| () DBinteropObject

= Properties
W GuID
' =' M=avigstion Propartiss l
I
() DBFeature & & DBinteropState &
<y DBlnteropObject =l DBInteropOhject
= Propartiss = Propartiss
K ParGUID | M FeatureGUID
& Name LI & BranchGUID
F FeatureTypelD | | = Navigation Properties
=) DBInteropSiates =

Figure 3.2: Database tables showing the relationship between DBFeature and DBInteropState with
a one to many relationship.

is edited and a new entry to the DBExtrudeState Table is added. As can be seen from the figure,
the table entry has the same DBFeature GUID as the DBFeature table in 3.3a. For a sketch, this
process gets much longer as each feature in the sketch must go through the same process described.
So if a simple box is made, ten table entries must be made: two for each point, each line, and the
parent sketch which is the same process as seen for a sketch in Figure 3.3a.

This process is captured by the system’s API when a new feature is created or edited. The
API recognizes that an operation has been performed and gathers the feature data. After gathering
the data, the API translates the data into the NPCF and sends the data to the server. The server then
communicates with the database and if the data does not fit into the database scheme it is rejected
because the database enforces referential integrity as explained in section 3.1.2. When the server
receives the data and it is not rejected by the database, the server sends that data to the other users
in the part for implementation on their local machine. If rejected, the user that sent the data is
notified that their part is now out of sync and they must reload. The process is not much different

from the process described in section 2.3 other than each operation is stored in the database rather

22

AL

Comment |

= i

3 A

— 2 ~
| -

R -

i

=

B2y E

=

SR B L2 A5 Bl B 2NONTIEA + G- Y e AN B RS

i GUID Part(-EUI-DI Mame -T_rse.Drcf.Er Eezture'l_'l,'pel_[l)
. f336ebib-182h-4f2e-abed- 1d3a3albeabd Af0d0dbbi-£]34-4058-be3d-daTi22fab 732 f336eblb-182b-4f2e-abcd-1d3a5a beabl VUL 1 .
cOdc2ead-0617-422-810e-352d36257ad Aftidfidbb-2134-4058- be28-daTF22f26752 cldc2iad-0617-42e2-8102-352d 3088 75ad NULL 10
dec7ealld-a5el-40d1-biae-ScBecd2albi Af040dbb-e134-4058-beldl-daTfl2fah752 dcFealld-a5el-40d1-biae-3cBecd21abi NULL 1
efeTTedl-Fli5e-455b-bfab-Tdbhdaclbibea AdGdbh-e134-4058-beBi-daTf2abr32 ¥Z_Plans WULE LAl

b QWSTMa#—ma&dW A dbh-¢]34-4058-beds-daTieiaETa2 07b80eh5-0006-Ac5e-aehd-ThOdRdadfT27 ML 5
GUB Direction Lirmut] L2 |sPaocleet ReferencedProfileGUD
b 3Bcebids-Gith-410d-bedt-bf0f226200d0 True fe 0 Fales 3262 db-E00d-4478- L7646 5 BFcee

(a) Extrude Creation With Data

EICAEAEE

|

A2 %@

To Sl B2 B0 Bl H2NG ElAr ok G| 3 ¥ - A - A S

GUID Direction Lirmit] Limrt2 |sPocket ReferencedProfileGUHD
| 58cebfda-040b-410d- hed3-bIGFZ26200d0 True 10 2 False 2262f1db-680d-4479- b7ed- 283656 cee
[p 2487087-601b-4620-bisS 1 -ceeddlesiaas . True 50 D Fafse 32621 dl-6800-4478- 754~ cBRIE G Ee.

(b) Extrude Edit With Data

Figure 3.3: Data from creation and an edit add to the database.

than just the most recent state of the part, also no previous data is overwritten as it was in D1 on
edits.

In Figure 3.4, an example of revisions saved in a current CAD system can be seen where
a user manually saves off revisions which are represented by the blue bars labeled Revision 1 and
Revision 2. D2 now has data that is CAD neutral and users never have to save revisions. The green
lines on the right side of Figure 3.4 show all of the revisions available to the user and no saving

is needed. Every step in the creation process is automatically captured in the database. This helps

23

S

Sketch

(Extrude) | |
C Extrude)

Revision 1

("Edit Sketch) (Edit Sketch
I
Edit Extrude Edit Extrude
Height Height
I

Revision 2

Figure 3.4: Simple example showing typical CAD systems revision history with saving in blue on
the left and the new revision history without saving in Green on the right.

capture design intent as all edits to the part can be viewed chronologically. Due to the neutral
format and only saving the necessary data to recreate the part the file size for the database is less

than that of traditional CAD systems which will be discussed in greater detail later.

3.1.2 Referential Integrity

D2 creates a database that has an entry for each feature. That database entry has a full list
of states for every edit in the parts history. Unfortunately, this method still does not fully address
referential integrity. Data can be corrupted by states being linked to features that represent a feature
that is not compatible. To address compatibility of features, all of the navigational properties for
the objects had to be changed to point to the correct feature table. This is unintuitive for database
design because all of the tables that inherit from the Feature table have no values other than a
GUID which act as the primary key for the tables. These tables are simply in the database to make
connections which can be seen as dotted lines in Figure 3.1. These sub tables were not necessary
to set up the references needed to create the states but they were necessary to maintain referential
integrity. It would have been possible to have all navigation properties point to the Feature table

and control the proper association of data from the code. However, without referential integrity

24

at the database level, data being sent to the server can be corrupted. Corrupted data can lead to
features or parts that will not load resulting in lost work.

In order to maintain tighter referential integrity, a FeatureTypelD is added to the DBFeature
object. The FeatureTypelD is simply an integer value that represents a feature. This FeatureTypelD
acts as a check for when a client adds a state to a feature. If the FeatureTypelD matches the ID of
the state object then the addition is allowed. If the FeatureTypeID does not match then the addition
is not allowed and the addition is rejected from the database as it implies that the state was not
created in the correct manner. This provides the code a way to check to make sure that the data
being sent to the database will not be rejected by the referential integrity structure changes between
Figures 3.1 and 2.5. This change to the database structure allows the programmer to check the type
of the data stored in the table code-side. No tables have data other than DBFeature on the left side

of the new database in Figure 3.1.

4y DBLine2DState &

o DBSketchEntity ...

~ Properties

M StartPointGUID
»# EndPointcUID

= Mavigation Properties

=l StzrtPoint
,'dﬂ EndPeint

Figure 3.5: Line2DState table showing the references to Start Point and End Point.

In D2, DBInteropState is the parent table of many different state tables including a number
of sketch tables such as DBPoint2DState and DBLine2DState. These tables store the state data
for the points and lines that reside within a sketch. Inside the DBLine2DState, there are two
navigation properties. These navigational properties are the links that show which points in D2 are
the associated start and end points for that line, as can be seen in Figure 3.5. With the addition
of states to D2, the endpoint and the start point can each contain a list of states. These states are

contained within a DBFeature’s DBInteropStates reference list. Thus, a line state has a reference

25

to a start point, which has a list of states for every revision of that point. The challenge is that
with the change in the database every reference goes back to a DBFeature object because that is
what contains the state list. Although the state list does not allow for different states to be stored,
from the perspective of the DBLine2DState table, there is no way to know if the reference to its
start point is actually a point2D or an extrude. Therefore, this method does not maintain referential
integrity.

In order to maintain referential integrity, a matching schema under DBFeature was devel-
oped that mimics the architecture under DBInteropState. For every state table, a matching DBFea-
ture object table such as DBLine2D that inherits from DBFeature was added. This way, when a
feature such as DBLine2DState references two external DBFeatures referential integrity can be en-
forced through the existence of DBPoint2D as a table. The DBLine2DState has two references in
it that are one-to-one; they each point to a separate DBPoint2D object and each of these points has
their own state tables. The correct state is chosen to represent that line at any given time. This table
is nearly blank, containing an inherited global unique identifier (GUID) from the parent DBFeature
that allows the table to be referenced. This forces an external reference that is contained in a state
table to point to a DBFeature that is an instantiation of the feature that is actually desired, thus
maintaining referential integrity.

This structure also allows the database to store a DBLine2D state that never needs to change
when the referenced points are edited. It does this by allowing the points to have separate DB-
Point2DState tables which can have their own states. This way, when an edit is made to a point, a
state table is added to that point feature, but it is not needed to change the DBLine2D or add a state
to it. In Figure 3.6 this process is shown. In the first figure of a line, the end points are at (0,50) and
(50,0) respectively. In the second figure, the line has been edited to have end points at (0,50) and
(100,0). The database data that is needed to represent those two different line configurations can
be seen on the right of Figure 3.6. The Line 2D Table has Line 1 which contains two points: Point
1 and Point 2. The Point 2D State Table contains the initial points Point 1a and Point 2a and then
the edited Point 2b which has the new coordinates. The Line 1 entry does not have to be changed
because it still references Point 2 and can simply gather the data for the newest state of Point 2

which in this case is Point 2b.

26

Line 2D
Guid EndPoint Start Point
Line 1 Point 1 Point 2

Point 2D State

Guid X Y

Point 1a 50 0

_ g Point 2a 0 50
g - Point2b 0 100

Figure 3.6: Figure showing two different lines that are based on the same points with one edit and
their associated database table data.

3.1.3 Configuration Management

Configuration management is the process of producing and managing different configura-
tions of a part that all contain geometry from multiple configurations. An example of this would
be a car manufacturer having two CAD assembly files for their regular and luxury models of each
of their designs. These two files share a lot of the same geometry. For example, they may have the
same seat belt designs and they may have the same audio system and all its associated parts. This
type of data is all relevant for making the various models of the car. Currently, if a change is made
in a part, a new part file is created. Continuing with the car example, if a car company desired
their sport edition model to have a hood scoop, they would keep the geometry of the rest of the
hood and add a scoop to the center. This results in a new part file and this new part file duplicates
a lot of the data that is contained in the original part file. To implement a new database structure
that would allow the user to add a hood scoop to one part file and keep the original part file for the
other model, a method from computer programming was applied called branching [20]. Branching
allows coders to work simultaneously where they each have the files necessary for editing but only
see their edits. When the edits are completed the users can merge their code together for complete
code. Merging CAD files is beyond the scope of this research and will not be implemented.

In order to keep track of branching, a branchID was added in the form of a GUID to the
DBInteropState table which can be seen in Figure 3.2. A user can create a new branch manually

which creates a new branchID. This branchID serves as a unique identifier for the current branch

27

that the state is created on. Figure 3.7 shows three points being created and edited across multiple
branches. This example goes to show how multiple users can work synchronously in the same base
part and then take advantage of the branching functionality. The new approach to configuration

management in D2 allows configurations to be handled at a feature level and not a part level.

Branch 1 (P—DO—DO——O—DO—DO—
Branch 2 |—>O—>O—>O

Branch 3 >

Branch 4 —)

O Point1 QO Poaint2 O Point3

Figure 3.7: Example timeline of three points being created and edited on different branches at
different times.

Figure 3.7 shows a part that has four different desired configurations labeled Branches 1
through 4. In Branch 1 multiple users start out in the part; each user can use the CAD system of
their choice between NX, CATIA and CREO. One of the users creates the first point in any system
while all other users receive the addition of a point in real time. At this point, a few users create a
new branch which adds a DBBranch table entry for the creation of that branch. They then proceed
to create a new point labeled Point 3, edit that point and subsequently edit Point 1. At the same
time the users that remain in Branch 1 create a new point labeled Point 2 and edit Points 1 and 2
multiple times. At this point two different users create Branches 3 and 4 and edit Point 1 on each
branch. At the end there are four different branches with three points in different configurations,
multiple users are allowed in each branch at the same time on different CAD systems and when a
user makes an edit on a branch other users do not receive that edit unless they are currently working

on the same branch on which the edit was made.

28

Another example where branching may be useful would be in the case of designing a bike
rim as can be seen in Figure 3.8. In this example two users enter the part and create the center and
outside edge of the rim as can be seen in Figure 3.8a. One user creates a second branch of the part
and adds a configuration that has a few spokes as shown in Figure 3.8b. At the same time a second
user creates a configuration on a separate branch with many spokes as can be seen in Figure 3.8c.
In this example both users were able to use the geometry from Figure 3.8a without saving a part
file, copying that part file and uploading the part file into the database. They are also able to work
in different CAD systems simultaneously with one user using NX as can be seen in Figure 3.8 and

the other user using either CATIA or CREO.

(©)

Figure 3.8: Branching example for a bike rim. The base features being created in 3.8a and two
different configurations of the part being shown in 3.8b and 3.8c.

This method configuration management is new in that it is handled at the feature level
instead of of the part level. It is also new in the fact that users can work across CAD systems
simultaneously. A benefit added to the design process through the addition of this method of
configuration management is that the analytics team could create a branch of the part at any point,
take that part and run analyses while the design team working on the part does not need to check

in the part, save, or do anything to allow the analytics team to have the most recent version of the

29

part. They can also continue working on the part while the analysis is running. No longer are parts

stuck in a silo of design or analysis but can be worked on simultaneously by both parties.

Table 3.1: Table showing the creation and edits of 3
points on multiple branches in order, according
to time with a branch being created in the
middle and one point being edited on
the new branch.

PointID XCoord YCoord BranchID
1 0 0 1
2 1 1 1
Branch 2 Created - - i
1 1 4 2
2 1 2 1
3 4 3 1

Table 3.1 shows a hypothetical, incomplete list of states for a DBPoint2D feature to serve
as an example of how this branching method works. This table is created as a user creates two
points: one at coordinates of (0,0) and one at (1,1). This part is then branched and point one on
the new branch is then changed to coordinates (1,4). The users then return to branch one and
move point two to coordinates (1,2) and create a new third point at coordinates (4,3). Although
this simple scenario demonstrates how this implementation works, the fundamental steps would
be identical in the context of a real and more complicated scenario. If two users were actively
editing this part concurrently and one was working on branch one and the other was working on
branch two, then the user working on branch one at the end of this editing scenario would have
three points at coordinates of (0,0) (1,2) and (4,3). The user working on branch two would have
two points located at coordinates of (1,4) and (1,2). Table 3.1 is a simple chronology of events
detailing what has happened in the part up to this point in time.

Table 3.2 shows the Branch history of Branch 1 while Table 3.3 shows the history of Branch
2. In order for the full history to be preserved, Branch 2 contains all of the information from
Branch 1 from before the creation of the new branch as well as all additional changes made to

Branch 2 after the new branch creation. As expected, Branch 1 contains all data for the changes

30

Table 3.2: Table showing the edits and
creations that took place
on Branch 1.

PointID XCoord YCoord BranchID
1 0 0 1

2 1 1 1
2 1 2 1
3 4 3 1

Table 3.3: Table showing the edits and
creations that took place to
make up Branch 2.

PointID XCoord YCoord BranchID

1 0 0 1
2 1 1 1
1 1 4 2

made on Branch 1. Since the point state table really only contains four point states, this schema
has successfully created two parts without duplicating data which reduces the total storage size
of the objects. A downside for this method is that the state-based loading scheme, mentioned in
the introduction, does not hold and loading becomes more complicated. However, data is still not
duplicated and one additional step in the loading process is added for every branch that is created
in sequence to mitigate this issue.

One other benefit of this process, which is beyond the scope of this research, is the ability
to keep features associative with a parent feature. In one scenario, multiple users could be editing
a base feature while working in a different configuration of the part. In this scenario every feature
created before the branch was created would be a collaborative feature that can be edited by every
user in the part. Every feature that is created after a branch is created would be editable only by the
users which have the branch on which the feature was created loaded. An example of this would be
if a car rim designer wanted to create two different rims but both models needed to have the same
mating mechanism for connecting to the axle of the car. In this scenario, if a user were to design

the mating mechanism and then create a branch where they create the second design of the rim,

31

they could have the mechanism be associative to the first design. Therefore, when a change needs
to be made to the mating mechanism, it could be made in both designs simultaneously by only
editing one of the branches. No wave linking would have to take place, no added features would
be needed, and the user could choose to make that section of the part associative. The potential of
this technique would require additional research into design practices and finding use cases where
this could be beneficial. However, it is an interesting research topic that is now enabled through

the research contributions described herein.

3.1.4 State-Based Loading

Previous attempts at multi-user CAD, such as NXConnect, implement a full history trans-
action database that handles loading by performing all operations performed by users after the last
part save in order to create the part [21]. This is a good method of making sure that all users in the
part are at the same point and have the same data after loading. The problem is that if the part has
not been saved recently, then there are many operations that need to be processed and the part takes
a long time to load [22]. Also, within a heterogeneous CAD environment, the CAD files cannot be
saved into their respective CAD systems’ part files without losing the benefits created by having
the NPCEF, including the fact that every time the part is loaded it would have to be translated back
into the NPCF for use by the other systems. A user could have changed his/her mind multiple
times about the height of an extrude, and as a result, the loading process itself would change the
extrude multiple times. The benefit of D1 is that it stores the current state of the part so only one
action is performed per feature and no edits are computed.

Proper application of branching is vital to implementing a fast loading scheme. The current
loading scheme can always be fast because it has one state of the part, which is extracted from the
database, and then constructs the geometry through the CAD system’s API. With the additional
information stored in the database, the client needs to know which state is being loaded and on
what branch. When the part has multiple branches, the server needs to know which latest version
of each feature must be loaded by the client and send that data to the client to open the child branch
without errors.

The loading can become fairly complicated when multiple branches exist, but the funda-

mentals can be described in the terms of the example shown above in Tables 3.1, 3.2 and 3.3. In

32

order to load Branch 1, the latest state of each feature with the branchID equal to Branch 1 would
be loaded into the part and loading would be complete. Loading for a single branch is as simple as
fetching the last state saved in the database.

For loading Branch 2, the schema loads all of Branch 1 up until the creation of Branch 2.
It then loads all updates to those features that exist on Branch 2. The process, however, does not
load the updates to those features that exist on Branch 1. Essentially, it loads Branch 1 up until
Branch 2 and then switches to Branch 2 and does not execute any of the changes that are on Branch
1. Creating new states is as simple as adding a new state with the appropriate branchID for the
current branch. This does not increase load times in the Interop environment.

This approach to loading is not an improvement on traditional CAD part loading for single
user systems; in fact, since no binary files are used it is slower than traditional loading as the API
must perform all of the operations to create the part on load. The length of time this loading takes
is dependent on the number of features in the CAD system and grows as more features are added.
For a simple part such as a cube the user will not notice a difference in loading times. For larger
assemblies the load time would increase more but has not been tested as many larger assemblies
can not be created at this time with the limited feature set present in the Interop environment.
Figure 3.9 shows the loading operations needed to load a part that has a Datum Plane, a sketch
and an extrude as well as edits to the sketch and the extrude. Single user CAD saves all of the
data needed to load the part in the part file which allows it to only require one loading operations.
NXConnect has to load every single feature as well as every single edit making a total of five
loading operations. One benefit to working in a single CAD system is that part saves can be stored
in the database when a user saves. This allows NXConnect to achieve the NXConnect Hybrid
column in Figure 3.9 by using a combination of single user and standard NXConnect loading. For
NXConnect, when a user hits the save button a copy of the part is sent to the database which allows
it to act like a single user CAD system on loading up to the most recent save. After the most recent
save is loaded the remainder of the part is loaded. In Figure 3.9 a user saved the part after the
sketch edit so the extrude edit was a new operation. This hybrid system is possible with the Interop
environment but has not been implemented. For Interop D1 and D2 the sketch and extrude features
can be skipped in the loading process and the sketch edit and extrude edit can be loaded directly,

reducing the number of loading operations that need to be performed. D2 is designed to maintain

33

the state-based loading knowing which states of the part to not load, where D1 does not contain

the information to load any previous revisions of the part.

Loading Operations

Single User NXConnect NXConnect Hybrid Interop D1 Interop D2

Figure 3.9: Loading Operations based on CAD Package.

3.2 Results

As a result of this research, D1 has been expanded while still utilizing the NPCF to allow
for incorporation of revision history and configuration management. These added capabilities were
successfully demonstrated by a team of users by modeling each feature supported in the database
in NX. The database correctly stored each state of the part as can be seen in the next chapter. Upon
successful creation of each feature, users were asked to edit each feature. After successful edits
were made to each feature and propagated across all clients, the database was manually checked to
ensure that data was stored correctly as can be seen in Figure 3.10c. No specific model was used
and users had the freedom to create features in whichever manner they saw fit. Edits were done in
the same fashion allowing users to make changes as needed.

In order to test the D2 across multiple CAD systems, the extrude feature was implemented

in the plugins for CATIA, CREO and NX. Three users each working in a different CAD systems at

34

the same time on different machines modeled a simple extrude as seen in Figures 3.10a and 3.10b.
The users then edited the height of the extrude multiple times as can also be seen for comparison
in Figures 3.10a and 3.10b. Each client was able to pull the extrude made by the other clients and
apply them on their own machine as well as update the model and receive edits on their machine.
As before, in order to ensure that data was pushed for not only the creation of the extrude but also
for each subsequent edit the database was checked manually and verified its implementation as can
be seen in the next chapter. This validates the process because the data shows the different limits
used by the multiple clients on the three different Referenced Profile GUIDs. Each state contains its
identifying GUID, while each DBFeature is associated with multiple states demonstrating proper

function of the database where each state should have its own GUID which is represented in Figure

3.10c in the left column.

(b)

GUID Cirection Lirmit1 Lirnit2 IsPocket ReferencedProfileGUID
Zebaced?-4al-42ad-8b19-03c397ac7 737 True 60 1] False 219724b2-e533-41fe-bebe-c2dedaf23d 17
fE79b5f-0f6c-4d22 - Bf86-6abofoa085cs Trug 10 1] Falsz 215724h2-e333-41fe-bcbo -2 d6dafZ3d17
cfeblfol- baff-430e-0ed1- Th65edd2fEfd True 20 o Falsz febald70-31 ed-4dfo-bIcd-FfoIf2dif2440
d7h1T0ed-0730-4dd 1-4b45-a872aa73b42 True 3] 1} Falce Q04TF795-3d35-484b-030d-GeB5T0TH 674
58cH0425-1660-460c- 8485 bdbfafialThee True 40 0 Falsz fehaldT0-5 1 ed-4dfé-bIcd-Fhif2dif 440
173d13k-c055-4496- 684 -205cf53 14872 True i) 1] Fals= FeBald70-5 ed-AdfE-bled-FhAF2dF2440
<T3HeBc3-a85d-486a-bebZ-ec2809063cac True 40 1] Falze 21972452-e523-41fe-bebe-c2d64af2317
3e7380a4-00Df -0 - 90F9-fdf | ee32edsf True 100 1] False Q04TFT95-3d3a-484b-030d - Ge 83707 674

(©

Figure 3.10: Final state of extrudes shown in both the CATIA (3.10a) and NX (3.10b) CAD clients.
Database table data (3.10c) for extrudes shown in 3.10a and 3.10b as well as all edit data. Views
are not from the same viewing position but the CAD parts are the same.

To test for the correct implementation of referential integrity, users were asked to constrain
a sketch line to a point that was outside of the current sketch in three-dimensional space which

should have a table identity of Point3D. Line2D has references for start and end points that only

35

allow Point2D as seen in Figure 3.5. Since the point being referenced was a Point3D but the
database expected a Point 2D, this data was rejected from the database and the other users in the
part did not receive this edit. In a commercial CAD system, this action would be allowed, so
further research is required to allow for faces and edges of objects to be used as reference objects.

Branching separate parts is functional in the database and the database knows how to handle
the received information. However, no method has been instantiated in the CAD plug-ins at the
moment that would allow the user to access this functionality. For testing purposes, the branchIDs
were entered manually to test the functionality of the database on receiving the data. The database
worked as expected in this regard rejecting bad data and storing the data correctly for multiple
different branches.

The objective of this research was to expand D1 to allow for advanced PLM features to be
implemented locally and utilize the NPCF. Based on these validation tests, D1 has been correctly
enhanced to D2 and is working appropriately to store all the data for creating, deleting, and editing

features in a MESH CAD environment.

36

CHAPTER 4. REVISION HISTORY

The database restructure presented in Chapter 3 is beneficial to store data, but it does not
allow the user to interact with the data. If the user cannot view the data in a meaningful way, there
is no way for the increase in data to be of value to the user. By providing a graphical user interface
(GUI) for the user to view the list of previous revisions this allows the user to select and view the
model of the previous versions of their own and others, preserving design intent by showing how
features were created and in what order. Without providing access to the design history, there is no
immediate benefit to storing the data in the first place. A GUI is needed for the user to be able to
see the information in the database in a readable format and be able to interact with that data. An
example part is shown with steps to create that part in Figure 4.1. All of the different loaded file
formats can be seen in Figure 4.2. For the new database, instead of having a feature tree of data,
every edit is available to the user as illustrated in Figure 4.2.

As can be seen in Figure 4.2d, the goal of revising the database is to allow the user full
access to not just the current data contained in the part, but also the full history of creation so that
they can return to any point in the design process. By returning to a point in the design process, the
user can more fully understand why certain design decisions were made and can gain insight into
how the part was created. With the changes to the database to allow for configuration management
as discussed in Section 3.1.3, the user also would have the ability to save off the part at any given
time and then continue working in a different direction. This capability provided to the user is
discussed in greater detail in Chapter 5.

In order to allow the user to view previous revisions, a GUI will be presented to them. This
GUI will show them the states of the part by accessing the states from the database. The user then
has the ability to load any state and view what the part was like at that state. This will trigger a
boolean flag in the client that is used to check if the client is currently in a previous state or revision

of the part. If the client has checked out a previous revision of the part, then when messages are

37

;
2
] | = 3 Moce
' Bl Datum Coordinate
AR Sketch (1) "SKETCH. =]

ko

Dependencies L 4
Details, v g

Preview

<

<

(b) Step 2: Edit Sketch

i\ / Details v
: Preview v

(d) Step 4: Edit Extrude

Dependencies v
Details v
Preview v

(c) Step 3: Create Extrude

Figure 4.1: Steps to create the final part used to show different part save files.

sent from the server to the client they will be ignored and not loaded. This allows the user to view
the previous state of the part without changes being made to the part from other users. This also
prevents errors from occurring because features needed for the incoming feature messages and
edits may not be present in the loaded revision.

Revision history will be validated when:
* A user can view previous states of the part in a feature list to select which to load

* A user can select a previous state of the part and load the part at that state

38

i Part Navigator
Mame & Commeant —_—
(& History Mode 8 e NaVIDRIOE
i £ Model Views Name = Comment
& o[B8 Carmeras (5 History Mode
= (&3 Model History L8 Model Views
' s Datum Coordinate E o [Th Cametas
I, Body (1) == Model History
M, Body (2) A8 Datum Coordinate
A%, sody £ % gody (1)
% Body {4)
A Body (5)
1 sody () (b) Feature tree of part loaded from .stp file.

(a) Feature tree of part loaded from .igs file.
i@ Part Navigator

Name = | Comment

. (B History Mode

(£ Model Views

o [(Eh Cameras

|5 User Expressions

= & Modsl History

@ Part Navigator [k Datum Coordinate
Rl shketch (1) “SKETCH.

Eme = Commiers M Extrude (2)
(& History Mode i _
& L Model Views (A PartHistory - = “I
B o [Th Cameras
=l £z Model History Sketch 1
A5 Datum Coordinate . Sketch 1 Eddit

B Sketch (1) "SKETCH

B df. “
A Bxtrude (2] S

Extrude 1 Edit

(c) Feature tree of part loaded from Interop and NX
file.

[
(d) Feature tree of part loaded from new database

file also with the part history window showing all
steps in the creation process.

Figure 4.2: Feature trees from different save files.

39

4.1 Methodology

To create a user interface that allows the user to interact with the CAD file’s revision history,
Microsoft Visual Studio was used to create and edit .xaml files in both a visual manner and directly
in the code. The .xaml code references functions in the C# code files which then interact with
the API. For this section no changes need to be made to the database because all of the changes
needed to allow for the integration of revision history were taken care of by the changes addressed

in Chapter 3.

4.1.1 GUI and Loading

In order to provide the user with the revision history data a simple GUI has been developed
and can be seen in Figure 4.3. This GUI has a list of all of the actions performed in the part as
well as a restore state button and a close button. The list of actions in the figure are shown with
names from the item they are made from. Since none of the objects have a name other than a GUID
object, the name comes from the table that they are associated with. This GUI is accessed from the

CAD system’s menu bar, adding a new button to access the window.

(*

PartHistory - = x|

Sketch 1

Extrude 1

Extrude 1 Ecit J

Figure 4.3: Image showing the GUI and some revisions for a part with a button to restore the part
to different revisions and close the window.

In order to restore a previous state in the part, a state is selected from the list and then the

restore state button is pressed by the user. If no selection is made the restore state button performs

40

no action. If a state is selected then the state is passed back to the main Interop function and a
timestamp is used to filter out unwanted features.

The part will already have all of the features loaded from the initial part open, even if it
is currently in a previous state. To demonstrate the states of the features that existed in the part,
the algorithm, seen in Figure 4.4, was developed to filter out all features and feature states that did
not exist at the time of the revision that is being loaded. These features are filtered based on the

timestamp that each feature and state have compared to the selected state’s timestamp.

Data: Timestamp

Result: Previous revision loaded

for Each Feature do

for Each Feature State Contained in the Feature do

if (State Timestamp < Current Revision Wanted Timestamp) then
| Keep the feature to which the state belongs

else
| Remove the state because it has not been created yet

end
end
end

Figure 4.4: Loading algorithm for a previous revision.

The algorithm, seen in Figure 4.4, works to load just the features and states present at the
time of the create or edit to the part file. This algorithm is not branch specific so it will work with
branch loading, discussed in Chapter 5. The GUI presented to the user will also be passed a branch
and perform Algorithm 5.2 in order to show the revisions that are available on the current branch
to the user for loading. This will preserve the design history for not just the current branch, but all

subsequent branches that are created.

4.2 Results

In order to test the validity of the loading method as well as the GUI, a simple part was
made that contains a sketch, an extrude, and an edit to that extrude, as can be seen in Figure 4.5.
The Part History window is shown in 4.5a, 4.5b, and 4.5c with the selected state being loaded in

the image.

41

P PartHistary = ﬂ“’ = partrisiory - = HEM
Sketch 1
‘ Extruds 1 I

Extrude 1 Edit

o |

Extrude 1

Extrude 1 Edit

I Restore State I Close I I ‘Restore State I Close I

(a) (b)
= Partristary = 0 B |
k. _
Sksteh 1
Extruds 1
Ewtrizde 1 EdRt
Restore State Close ‘

(©)

Figure 4.5: Revision History example showing the loaded revisions with the Part History Window
shown with the loaded revision highlighted. In 4.5a the original sketch is loaded, in 4.5b the
original extrude for the part is loaded and in 4.5c the entire part is loaded up to the most recent
extrude edit. The Part History Window is the same window seen in Figure 4.3.

In order to capture the images in Figure 4.5, the entire part was made in NX and then
closed without saving. The part then was loaded from the database and the GUI was opened from
an NX ribbon plugin. The GUI contained the three states as desired and upon clicking on the state
desired to load and then hitting the restore state button, Figures 4.5a, 4.5b, and 4.5¢ were taken as
screen-shots. These images show that the loading worked in this instance and additional testing
was performed to ensure that loading would work from any point in the revision history to any
other point. It was also tested multiple times with sketches and different edits in the part to ensure

a robust solution.

42

CHAPTERS. CONFIGURATION MANAGEMENT

Another possibility that is opened up to the user with the changes to the database is the
ability to return to any point in time or stop at any point and make a different configuration of the
part. By doing so, the user makes a new branch of the part without having to create an entirely new
part. However the changes to the database, detailed in Chapter 3 do not provide a GUI or loading
methods to facilitate this change. The ability to create new configurations from within a part is not
only a helpful feature for the user but is also beneficial in a database setup. The database allows for
the new configuration to use the data from the old configuration so no data has to be duplicated.

The branching structure should allow for smaller storage size than within a PLM system.
This is due to the elimination of redundant data storage created through copying parts. This allows
the user to simply change the branch on which they are working and the design history will be
preserved for both the first and the second branch without saving.

In order to do this, the user will be presented with a GUI that will help them create a branch.
This GUI is accessed in the CAD system through the menu bar with a new button. When the user
creates a branch they will no longer receive the changes made by other users who are not working
on their branch, because essentially they are in a different part. The database will store which
branch the user is in through a GUID and will only send the changes to the part that the user is

currently in. Configuration management will be validated when:

* The user can create a new branch from within a part

* The user can load a branch without receiving any new data added to the parent branch from

the time the new branch was created

5.1 Methodology

To create a user interface that allows the user to interact with the CAD file’s configuration

management, Microsoft Visual Studio is used to create and edit .xaml files in both a visual manner

43

and directly in the code. The .xaml code references functions in the C# code files which then
interact with the API. For this section, no changes need to be made to the database. These changes
were taken care of by the changes addressed in Chapter 3. This is the same methodology described

in section 4.1 but with a different display accessing different information from the database.

511 GUI

The two main features that need to be provided to the user in order to create a branching
system are the ability to name and create a new branch as well as load a branch that has been
created. These features can be seen in Figure 5.1. In order to select a branch that will act as the
parent branch for a newly created branch, a user simply highlights the branch which they would
like to have as their parent branch and then clicks the new branch button. Just as “Main” has been
highlighted in Figure 5.1. To open any of the branches shown for the part a user simply selects the

branch and then presses the load button.

& Interap=N¥X = B N |

Newsubsranch W]

Figure 5.1: Image showing the GUI and a couple of branches for a part with a create branch button
and a open button for loading a branch.

5.1.2 Part Loading and Branch Management

In order to load a branch that is selected, the GUI has to be able to communicate with the

API of the local CAD system and the database. To do this the GUI passes a Branch object which

44

can be seen in Figure 3.1. This table contains a GUID, a Name which is a string, a time-stamp of
when the branch was created, and a reference to a parent branch, not shown in Figure 3.1. This
data allows the Interop C# program to collect the correct branch state data from the database and
use the CAD system’s API to create the features.

The default behavior of Interop is to grab all of the features from the database for loading.
The server always sends all of the features for the current part as messages on “part open”. In order
to recognize which feature states and which features to load, the algorithm, seen in Figure 5.2, was
developed to remove unwanted states and features. The first FOR loop filters out unwanted features
from the part by checking to see if any of the states for that feature exist on a parent branch or the
current branch being loaded. The second FOR loop tells the CAD system which states to load for
each feature that remains.

This loading algorithm, while only shown in pseudo-code form in Figure 5.2, can be seen
fully in Appendix C. It works recursively to check every parent branch up to the main branch of
the part. It does this because if any feature was created on a parent branch but not loaded on a
child branch there is a chance that the part would fail to load because the correct parent feature
that has the data needed for a child feature may not be there once loaded. For instance if a sketch
was created on the main branch, then a new branch was created, and an extrude was made off of
the sketch which exists in the part. On load, if that sketch did not load, when the system attempts
to apply the extrude, the part would fail to load the reference to the non-existant sketch and part
loading would fail.

Although this algorithm is more complicated than it needs to be because the server sends
more information than is needed at this time. The algorithm is in place to remedy the server
implementation and it does work well for the situation of receiving all of the feature data from the
server. In order for the algorithm to be improved it would have to be implemented directly into
the server code where the client passes the server a Branch GUID that it desires and the server
communicates with the database, gathering only the necessary branch states and parent states. The
server then packages that data and sends a message back containing only the features and states
relevant to the desired branch. This improved method was not implemented because altering the

server code was outside of the scope of this thesis.

45

Data: All features in the part from every branch

Result: The current state of features on the branch to be loaded
for Each Feature do

for Each Feature State Contained in the Feature do

if (State Timestamp < Branch Timestamp) & & (Is on a parent branch) then
| Keep the feature to which the state belongs

else
| Only keep features that contain states on the current branch

end
end
end
for Remaining Features After Feature Removal do

if Feature has no states on the current branch then
Load the most recent state before the current branch was created that exists on a parent

branch
else
| Load the most recent state

end
end

Figure 5.2: Loading algorithm for a branch.

5.2 Results

5.2.1 Branching Tests

To check the branching implementation of branching, two users worked together to make
two different wrenches. The wrenches were to have the same hex opening on one side of the
wrench and have two different configurations where the other end was open in one, and had a
different hex opening in the other. The results of this test can be seen in Figure 5.3d. One user
created a sketch which had the profile of the wrench and then extruded the wrench to the proper
height. The main branch which can be seen in Figure 5.3a has this configuration. At this point one
user created a new branch for the open faced wrench and the second user created another branch
for a closed faced wrench. They then both proceeded to create the open faced wrench which can
be seen in Figure 5.3b and the closed faced wrench which can be seen in Figure 5.3c. Neither user
received the edits from the other user unless they had same branch loaded. The users were able to

work in the same part on different configurations.

46

5 pr——
>

Open

Cloged

New Sub 8ranch

(a) Main branch with sketch and extrude providing the groundwork for the
Open and Closed Branches.

o Interop -NX = G x|

New Sub Branch

(b) Open branch with open faced wrench configu-

ration.

- [eup
f46folaa-46el-delf-26c2-066add0al24d
|f380119b-20r4-4F72-3f54-05d 7721 Thd2b
i aa5dieb5-83b8-4591-80a2-3cfbdB 1BfIcT
8207 efd-d485-2e39-bb3e-SfITcThOCTT
| cldBfaeca-ehee-42d2-2c71-b2fce 7197184
| Te3B6dTE-T1h-435f-20a8-d075db635072

ration.

;EﬂtuFEéﬂ[ﬁ
48efdf15-b33d-4fbf-003h-e3ff1 1 2b00L2T
IfBsfads-11b3-4h85-5313-hfa45908F227
D0e11955-fle?-4be7-9854- 1 ef23263dbb0d
ed5el702-2022-400c-a396-273ab 3778855
frhaeld-e535-40d2-bd15-7a15a2edDbac
aad0340-8e00-467c-b422-b1ab531 5elTde

» Interop-Nx - = |

(c) Closed Branch with closed end wrench configu-

‘BranchGUID

l3a6e215-21ad-426b-a08f53- 1 bEf4fadOfZY
Sab4567c-7f42-4a2c-3433-dichaiec363d
585c895f-3b%c-437-85a8-91b5db 15645
3ab4307 e THE dac-ad33-dochaScc363d
3338057 -ab0e-437c-853a8-91h5db 166043
biafed15-31a4-426b-a813-1 bERIFEL0{T

(d) Six feature states with their associated features and branches.

Figure 5.3: Two branches are displayed under a parent branch to create two different wrench
configurations. State branch data can be seen in 5.3d which contains all of the states for the
different features that make up Figures 5.3a, 5.3b, and 5.3c.

47

To ensure that the part data was being sent to the server correctly a SQL query was run in
Microsoft Visual Studio. The result of the query can be seen in Figure 5.3d. The query simply
looked for sketch and extrude states which contain a Branch GUID and exist in the current part.
The list in Figure 5.3d shows that there are six states that have a Branch GUID and if the GUIDs
are examined we can see that there are three different branches with two features on each. The
GUID tells us this information because each GUID is a globaly unique identifier and when the
GUID is seen more than one time it represents the same object. This makes sense as each branch
contains one sketch and one extrude.

The results from this test help to conclude that users are able to work on the same part in
a MESH CAD environment. Users are also able to create new branches and to work on different

branches simultaneously without receiving changes to other branches.

5.2.2 File Size

It was theorized that the database structure of configuration management as well as the
ability to perform configuration management on a feature level would reduce storage size. In order
to test this theory a test example was designed involving an array of screws. In large assemblies
screws are not always present because of the increased loading times presented by all of the fas-
teners and are typically called out in drawings only [23]. This example helps illustrate that the data
stored can be reduced across an array of parts that change only slightly from one part to the next,
as well as the storage size needed to create translational STEP and or IGES files.

In order to make more than one screw in a typical CAD system the user would have to create
each screw in a separate part and then save those parts. Due to a limit in the NPDB feature set, the
screw threads have not been made in the CAD models. Table 5.1 shows all of the configurations
of screws that will be made in each CAD system as well as the dimensions that will be changed
in each. The only dimensions that will be changed are the head bore size and the length of the
screw. The screw diameter was not specified, so in Figure 5.4 there is a slight difference in the
screw diameter during the test in single user CAD between 5.4a and 5.4b. This small change may
account for some disparity in file size but the difference is negligible. The CAD model for each of

the six screw configurations in Table 5.1 were made in NX, CATIA and CREO and a basic example

48

can be seen in Figure 5.4. These CAD files have all been saved and their respective CAD file sizes

have been recorded for each system and can be seen in Table 5.2.

Table 5.1: Configurations of wood screws with Phillips-Head Point
Size #1 used for testing configuration management.

Head Bore Size
Lengths 11/64” 13/64” 15/64”
1/4” Configuration 1 Configuration 3
3/8” Configuration 5
1727 Configuration 2
5/8” Configuration 4
3/4” Configuration 6

(a) (b)

Figure 5.4: Screws created in NX and CATIA for the configuration of 15/64” head bore size and
length of 3/8”.

These same screws were made in Interop with the new feature-based configuration man-
agement. The process for this was slightly different than making the screw for each CAD system.

The part was designed using features that are the same in each part first. With the selected parts,

49

they each have a Phillips-Head Point Size of #1 for typical wood screws [24]. The cross in the
head where the screw driver is inserted is the same for each screw so that feature can be designed
without having to be changed from one screw to the next. There is also a circle that is extruded
upwards for each screw by the same amount for each and can be designed in the base part. The
same can be said for the point of the screw and the circle that is extruded for the length of the screw.
None of these features need to change from one screw to the next. The only features that need to
change are the length of screw and the diameter of the head. The dimensions for the lengths and
head diameters can be seen in Table 5.1.

To collect the equivalent file size for the screws that were saved in the database, the entire
database had been cleared before the creation of these parts. The database then was saved using
a script generation process that produces all of the data to reproduce the database in its entirety
while the database tables had no data in them. Test users created the parts. After the creation of the
parts the entire database was saved again with the database tables full of the data needed to create
the CAD files. This was done to compare the file sizes of the parts created in the NPDB with those
of the CAD systems individually. To ensure a fair comparison of the part files and the database,
blank part files were saved for each CAD system as well as the empty database. These file sizes
were then subtracted from the saved part files and the saved blank database was subtracted from
the full database resulting in the data needed to just save the part data. This data has been put into
a visual format in Table 5.2 with the comparative size being the save size of the completed part file

minus the save size of an empty part file.

Table 5.2: Data sizes in KB for different CAD parts, Comparative Size Column
removes the size of a blank part if applicable.

System Blank Part IGES STEP Comparison

NX 82 213 79 25 131
CATIA 42 123 70 35 81
CREO 51 153 - - 102

Sum - - - - 314
Interop 80 88 - - 8

From Table 5.2 if the Interop comparison size of 8 KB is subtracted from the comparison

of each CAD system, the database reduced the total file size by 123 KB from NX, by 73 KB from

50

CATIA, as well as 94 KB from CREO. These file size reductions are much larger than what was
anticipated, but another benefit that was not considered before this study is shown in Table 5.2.
Not only did the database structure reduce the file size from the standard CAD part files, it also
reduced the translational part size of both IGES and STEP files while maintaining more data in
translation through the feature tree. In addition to reducing file sizes for each CAD system, the
neutral parametric form is not only the part file for one CAD system, but contains the data for each
CAD system. So if the part files for CATIA, NX, and CREO were added together to create a file
group that added to 314 KB, the database file would still be 8 KB. This results in a 39.25 times
decrease in size.

Table 5.2 shows the comparison of just one part in each CAD system to that in the database.
The screw example uses the new feature-level configuration management to create all of the dif-
ferent configurations of screws referenced in Table 5.1 without duplicating data. This leads to a
database size of 94 KB, where for each of the other CAD systems the part files would have to be
duplicated, leading to multiplying the storage size for the different configurations to be the part
file size multiplied by six. The database only has to add one or two states for each new configu-
ration, and as such only increases by 6 KB to 94 KB, which is only a 6.8% increase in size. The
decrease in storage presented by feature level configuration management is 98.6% less than what

is currently required by copying parts.

51

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

6.1.1 Database

The following conditions validated the new database structure:

A created feature adds a new object to the database with a new GUID and a state with a

separate GUID

An edited feature adds a new state to the existing object with a new GUID

* A second user can receive both creation and edits of features without duplication in the CAD

file

Upon part load, only the most recent state of each feature is loaded

The results in section 3.2 show that the database correctly added a new object to the
database when a feature is created as well as a state on create or edit. These results are seen
in Figure 6.1c. This figure also shows the data needed to validate that an edited feature creates a
new state with a new GUID and GUID reference to its parent feature. This demonstrates that data
is being saved correctly in the database and it proves that the loading methods provided in Interop
are able to view and manipulate the models.

Two users can work in the same part at the same time. The multi-user aspect of Interop
was maintained. This was demonstrated in NX for all Interop features and in CATIA and CREO
for Extrudes. The results of testing these features can be seen in Figures 6.1a and 6.1b. This
proves that users can still access the data from the database and using the algorithms for loading

and receiving data from other users in Interop, work within a MESH CAD environment.

52

(a) (b)

GUID Cirection Limitl Lirnit2 IsPocket ReferencedProfileGUID
Zebaced?-al-42ad-8b19-03c307ac 7737 True 60 1] False 219724b2-333-4 |fe-bebe-c2dbdaf23d 17
fE79b5f-0f6c-4d22 - Bf86-6abofoa085cs Trug 10 1] Falsz 215724h2-e333-41fe-bcbo -2 d6dafZ3d17
cfebifol-baff-4302-5e31-T365edd2fEfd True 20] Falze febald70-31 ed-4dfo-bIcd-FoIf2difZ440
d7h1T0ed-0730-4dd 1-4b45-a8T2aa73b42 True 73] 1} Falce Q047F795-3d3a-484b-030d-GeB5T0TH 674
58:60435-F669-460c-R4A5- bihfabal T06c True 40 [1] False FebaldT0-51 ed-Aeifb-bIcd-FhH2dF 2440
173d13k-c055-4496- 684 -205cf53 14872 True i) 1] Falsz FeBald70-5 ed-AdfE-bled-FhAF2dF2440
<T3HeBc3-a85d-486a-bebZ-ec2809063cac True 40 1] Falze 21972452-e523-41fe-bebe-c2d64af2317
3e7380a4-00Df -0 - 90F9-fdf | ee32edsf True 100 1] False Q04TFT95-3d3a-484b-030d - Ge 83707 674

(©

Figure 6.1: Final state of extrudes shown in both the CATIA (6.1a) and NX (6.1b) CAD clients.
Database table data (6.1c) for extrudes shown in 6.1a and 6.1b as well as all edit data. Views are
not from the same viewing position but the CAD parts are the same.

D2 stores each state of the part as well as loads the most recent state, and preserves the
entire design history. Users are able to work together in multiple CAD environments and editing
is done synchronously. The experiment conditions for D2 have been met and have been validated
through the example provided in Figure 6.1. These changes also create the foundation that allowed

for revision history and configuration management.

6.1.2 Revision History

The following two conditions validated revision history:
* A user can view previous states of the part in a feature list to select which to load.
* A user can select a previous state of the part and load the part at that state.

To prove that a user can view previous states of a part, a part was created that contained
a sketch, an extrude, and an extrude edit. A user selected the Part History Window and views

the list of all data in the part since creation, as can be seen in Figure 6.2. Figures 6.2a, 6.2b,

53

and 6.2c show a user selecting and loading each state of the part since part creation. Both of the
conditions set for revision history validation are met in the series of images presented in Figure
6.2. The algorithm used to perform the loading can be seen in Algorithm 1. These conditions
allowed a user to view all previous edits and creates made to a part, which preserves design intent

and provides the groundwork for configuration management.

= Partistory ~ = B | [= partistory - 0 MEM
|s&egch1 ‘ Sketch 1
| Bxide 1 |

Extrude 1 Edit

Extrude1

Extruds 1 Edit

I Restore State I Close I I ‘Restore State I Close I

(a) (b)

= Parttistary = O [x §

Sketch 1

Extrude 1

Extrizde 1 Edit

(©)

Figure 6.2: Revision History example showing the loaded revisions with the Part History Window
shown with the loaded revision highlighted. In 6.2a the original sketch is loaded, in 6.2b the
original extrude for the part is loaded and in 6.2c the entire part is loaded up to the most recent
extrude edit. The Part History Window is the same window seen in Figure 4.3.

6.1.3 Configuration Management

These conditions confirmed configuration management:

* The user can create a new branch from within a part.

54

* The user can load a branch without receiving any new data added to the parent branch from

the time the new branch was created.

Configuration Management was validated by the experiment where two users created two
different versions of a wrench. This experiment can be seen in Figure 6.3, where the main branch
in Figure 6.3a contains the base configuration used to create the child branches seen in Figures
6.3b and 6.3c. This test confirmed that users can create a branch from within a part and that edits
made in one branch are not applied in another part. It also confirmed that users are able to work
in the MESH CAD environment on the same part at the same time if they have the same branch
loaded.

Another benefit seen from a different test with screws helped to show how feature level
database based configuration management reduces data storage size. The data from this study can
be seen in Table 5.2 and shows that for a simple configuration example of screws, the database
approach was able to reduce part save sizes by 98.6%.

All of the changes made to the Interop environment have been CAD system independent.
The majority of the changes took place in the reorganization of the database to support the storage
of additional information. The remainder of the changes took place in creating a GUI and then
implementing the major changes in the NX plugin for Interop. The NX plugin changes are the
only part of this research that can not work with other CAD systems, but the format of how to
implement features remains the same. For a full treatment of how to create new features in the

system see Appendix E.

6.2 Further Work

While MESH CAD and the NPCF have been developed to help increase design trans-
parency across a heterogeneous CAD environment, these solutions are still in the early stages of
development and lack full connection into PLM systems which are necessary to the design work-
flow. In order to better test and develop these systems to help address issues, such as the cost of
translation of CAD file data, there is a need to allow interaction with features that users are accus-
tomed to having in a PLM system. In a multi-user environment, it becomes increasingly important

to know what other designers were intending to do while creating a part and allowing a user to

55

I
I

(b) (c)
GUD FeatureGUID BranchGUID
T46f60aa-40e8-4e2f-25c3-065ad 022240 AReFAF15-D33d-AFbf-0030-3fF1 {2002 b3abed15-31ad-426b-205- 1h5rFadstzy

13801185-20c4-4F72-5134-0ad 7721 hd2b
2a5d5eb5-83b-4591-53a2-Scfbid8 1853
208016fd-485-4e50- b6 3e- SHITCTLOCTT
ddfacca-ebee-42d2-8¢71-b2feeT197]8d
TIB67E-FT1b-435(-00a8-d975db63a072

Ifeefadi-11bi-4b8s-a313-bfa4390827
00¢119a3-f0e7-2he7-9854- 1ef9253dbb0d

- ed5e0702-5022- 400c-2396- T aab 772655
FTbacl67-2535-40002-bd 15-Ta1 5a2ed0bac
- 22340340-8e60-467c-b422-bab315e07de

(d

Sabd567c-7f42-da2c-a433-dbchaiec363d
w%ﬁcw:—aﬁg&ﬁlbﬁdbwﬁtﬁ
52b4567c-TH2-dadc-a433-dbcbaSccatad

55500957-ab%c-437c-85a8-91h5db 16645

Figure 6.3: Two branches under a parent branch to create two different wrench configurations.
State branch data can be seen in 6.3d which contains all of the states for the different features that
make up Figures 6.3a, 6.3b, and 6.3c.

56

see each change made to the part in correct chronological order thereby moving toward greater
visibility between designers. Keeping the database in a state in which referential integrity is main-
tained helps keep the data passed between designers valid and allows for greater trust in models
that are being developed by multiple designers at the same time. Configuration management tools
allow users to select features needed for a new design without having to copy data or duplicate
work, which allows for quicker modeling practices and a faster turnaround time during the design
process. These features add to the validity of the multi-user environment and the NPCF.

PLM systems manage great amounts of data and the changes made to the NPDB only
account for a very select feature set managed by PLM. These features however increase the ca-
pabilities available to a multi-user environment and the small feature set allows for them to be
implemented securely and accurately. Future work will allow for greater control over CAD data in
any system and a greater decrease for the time and money required currently for translation.

These changes are important because they help to integrate PLM features into the CAD
system giving more power to the designers and allowing for more collaboration. With increased
collaboration, it is believed that there will be fewer turn backs in the design process due to errors
and more innovation due to the ability to collaborate with other users in real time.

Another benefit to this system that has not been implemented but is a possibility is the fast
loading of different configurations. Load times for large assemblies can be extremely long [23]. In
some situations a different CAD assembly is used to track the repair and management of different
parts in the real world [25]. In these cases the base CAD assembly is the same across all the real
world assemblies. When a repair is made changes are made to the CAD assembly which represents
the real world part. In this system a different branch of the main part would be created and the
edits would take place on that branch. This allows for a unique opportunity for switching between
different branches without reloading the entire assembly. This opportunity is not implemented in
the current state of the NPDB configuration management loading but is a possibility. The only
loading that would need to take place in the changing of the assemblies would be the changes
that have been made between the branches. Long load times for complex parts could be reduced
dramatically by allowing the CAD system to only load the parts that are needed for the changes

between the assemblies.

57

An additional benefit to the NPCF is that every object in the system is parameterized auto-
matically by storing the data in a field within a database table. That table data is automatically a
parameter that can be altered in the database, which allows automation within a PLM system with-
out setting up elaborate parametric constraints or learning multiple CAD system APIs [26]. For
this application, an optimization program could write different configurations of a part by changing
the variables in the database which creates a new state and all the different configurations could be

saved for an optimization run without creating the parts physically.

6.2.1 Thesis Overview

The foregoing has demonstrated and validated four key objectives:
1. The database had been expanded to store all revisions of a part.
2. A user interacted with D2 information to view previous part states.
3. A user made and loaded different configurations of a part through branching.
4. The multi-user and multi-CAD package aspects of Interop were maintained.

Figure 6.4 shows how the database was expanded to D2. From Figures 6.1, 6.2, and 6.3 it
is seen that the user was able to interact with D2. Figure 6.3 also demonstrates how a user was able
to create new branches and switch to them as well as showing that the multi-user aspect of Interop

was maintained.

Table 6.1: Comparison with HSTDB and current methods
to show the conclusions of the research.

Translation Comparison IGES STEP NPCF HSTDB

Part Geometry v v v v
Feature Data X X v v
Revision History X X X v
Configuration Management X X X v

This work involved restructuring the Interop database for revision history and configuration

management. I implemented a full NX plugin to communicate with this new database structure.

58

FEATURE
BRANCH STATES
—_—
(|)
p B, -
REVOLVE SKETCH EXTRUDE
STATE STATE STATE
) € A v,
| D A D
I LINE 2D POINT 2D
J_ STATE STATE
[
[
[g p |
)

[. | np e — S S

Figure 6.4: D2 showing addition of states tables as well as the branch table with some relationships
shown.

To prove that the system was not limited to NX I implemented the extrude feature in NX, CATIA
and CREO. Then in NX I added a GUI for the user to interact with the information. I maintained
the multi-user aspect of Interop and maintained state based loading.

In conclusion I have shown that I have completed the objectives outlined in the introduction
to this research to provide an improvement to a new translation process that maintains revision
history and allows for configuration management as seen in Table 6.1. The new Hybrid State
Transactional Database (D2) is able to reduce file save sizes and provide more information to
users. PLM features have been incorporated into the MESH CAD environment and greater control

is available to users.

59

REFERENCES

[1] Olive—Drab.com, 2017. Fmtv: Family of medium tactical vehicles Webpage, 1. vii, 15, 16

[2] Brunnermeier, S., and Martin, S., 1999. Interoperability Cost Analysis of the U.S. Automo-
tive Supply Chain Tech. Rep. 7007. 1

[3] Leach, L. M., 1983. “Language interface for data exchange between heterogeneous cad/cam
databases..” Dissertation Abstracts International Part B: Science and Engineering[DISS.
ABST. INT. PT. B- SCI. & ENG.],, 44(5). 1

[4] Pratt, M. J., 1998. “Extension of the standard iso10303 (step) for the exchange of parametric
and variational cad models.” CDROM Proceedings of the Tenth International IFIP WG,
5(5.3). 1

[5] Haenisch, J., 1990. “Cad-exchange-towards a first step implementation.” In Industrial Elec-
tronics Society, 1990. IECON’90., 16th Annual Conference of IEEE, IEEE, pp. 734-739. 1

[6] Freeman, R. S., Bowman, K. E., Red, E., and Staves, D. R., 2015. “Neutral parametric
canonical form for 2d and 3d wireframe cad geometry.” In ASME 2015 International Me-
chanical Engineering Congress and Exposition, American Society of Mechanical Engineers,
pp- VO11T14A004-VO11T14A004. 2, 12, 16

[7] Li, M., Gao, S., and Wang, C. C. L., 2007. “Real-Time Collaborative Design With Hetero-
geneous CAD Systems Based on Neutral Modeling Commands.” Journal of Computing and
Information Science in Engineering, 7(2), p. 113. 2

[8] Sung, C., and Park, S. J., 2007. “A component-based product data management system.” The
International Journal of Advanced Manufacturing Technology, 33(5-6), pp. 614-626. 8

[9] Phelan, J., 2012. Siemens jt data format accepted as the worlds first iso international standard
for viewing and sharing lightweight 3d product information Website, 12 . 8

[10] Red, E., Jensen, C., Ryskamp, J., and Mix, K., 2010. “Nxconnect: Multi-user cax on a
commercial engineering software application.” In PACE Glob Annu Forum, pp. 1-9. 8

[11] Briggs, J. C., Hepworth, A. L., Stone, B. R., Coburn, J. Q., Jensen, C. G., and Red, E.,
2015. “Integrated, synchronous multi-user design and analysis.” Journal of Computing and
Information Science in Engineering, 15(3), p. 031002. 8

[12] Freeman, R. S., 2015. “Neutral Parametric Canonical Form for 2D and 3D Wireframe CAD
Geometry.” Thesis, BYU. 10

60

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

Qiang, L., Zhang, Y., and Nee, A., 2001. “A distributive and collaborative concurrent product
design system through the www/internet.” The International Journal of Advanced Manufac-
turing Technology, 17(5), pp. 315-322. 10

Ramani, K., Agrawal, A., Babu, M., and Hoffmann, C., 2003. “Caddac: Multi-client collab-
orative shape design system with server-based geometry kernel.” Journal of Computing and
Information Science in Engineering, 3(2), pp. 170-173. 10

Li, M., Gao, S., and Wang, C. C., 2007. “Real-time collaborative design with heterogeneous
cad systems based on neutral modeling commands.” Journal of Computing and Information
Science in Engineering, 7(2), pp. 113-125. 12

Li, M., Gao, S., Li, J., and Yang, Y., 2004. “An approach to supporting synchronized col-
laborative design within heterogeneous cad systems.” In ASME 2004 International Design
Engineering Technical Conferences and Computers and Information in Engineering Confer-
ence, American Society of Mechanical Engineers, pp. 511-519. 12

Li, M., Yang, Y., Li, J., and Gao, S., 2004. “A preliminary study on synchronized collabora-
tive design based on heterogeneous cad systems.” In Computer Supported Cooperative Work
in Design, 2004. Proceedings. The 8th International Conference on, Vol. 1, IEEE, pp. 255—
260. 12

Bowman, K. E., and Shumway, D. “Pseudo-singleton pattern and agnostic business layer for
multi-engineer, synchronous, heterogeneous cad.” Computer-Aided Design and Applications,
In Press. 17

Markowitz, V. M., 1991. Safe referential integrity structures in relational databases Tech.
rep., Lawrence Berkeley Lab., CA (USA). 17

Loeliger, J., and McCullough, M., 2012. Version Control with Git: Powerful tools and tech-
niques for collaborative software development. ” O’Reilly Media, Inc.”. 27

Han, S., 2010. “Macro-parametric: an approach for the history-based parametrics.” Interna-
tional Journal of Product Lifecycle Management, 4(4), pp. 321-325. 32

Hepworth, A. L., Tew, K., Nysetvold, T., Bennett, M., and Greg Jensen, C., 2014. “Au-
tomated conflict avoidance in multi-user cad.” Computer-Aided Design and Applications,
11(2), pp. 141-152. 32

Bowland, N., Gao, J., and Sharma, R., 2003. “A pdm-and cad-integrated assembly mod-

elling environment for manufacturing planning.” Journal of materials processing technology,
138(1), pp. 82-88. 48, 57

fandfindustrial.com, 2017. Screw-sizes Webpage, 2. 50

Philpotts, M., 1996. “An introduction to the concepts, benefits and terminology of product
data management.” Industrial Management & Data Systems, 96(4), pp. 11-17. 57

Gomes, S., Varret, A., Bluntzer, J., and Sagot, J., 2009. “Functional design and optimisation
of parametric CAD models in a knowledge-based PLM environment.” International Journal
of Product Development, 9(1/2/3), pp. 60 — 77. 58

61

)

APPENDIX A. WINDOW CODE IN XAML

A.1 Branching Window

& Interap-N¥ - DO B '

Open
Closged

Open

Newsubsranch M |

<Window x:Class="CADInteropNX.BranchesWindow”
xmlns="http: //schemas. microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http: //schemas. microsoft.com/winfx/2006/xaml”
Title="Branches” Height="325" Width="325"
xmlns:connectData="clr —namespace:ConnectData;assembly=ConnectData”>
<Window . Resources>
<HierarchicalDataTemplate DataType="{x:Type connectData:DBBranch}” ItemsSource="{Binding
ChildBranches } ">
<TextBlock Text="{Binding Name}”/>
</HierarchicalDataTemplate>
</Window . Resources>
<Grid DockPanel.Dock="Bottom” x:Name="LayoutRoot” Background="#172a4a”>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="auto”/>

62

22

<RowDefinition Height="auto”/>

<RowDefinition Height="auto”/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition />

</Grid. ColumnDefinitions>

<TreeView DockPanel.Dock="Bottom” x:Name="tvAssemblies” Margin="5" MouseDoubleClick="

Tree_DoubleClick” />

<Button Grid.Row="2" Width="120" Content="Open” Click="open_Click” Padding="3" Margin="5"

HorizontalAlignment="Left”/>
<DockPanel Grid.Row="3">
<Button DockPanel.Dock="Left” Width="120" Content="New Sub Branch”

NewBranch_Click” Padding="3" Margin="5" />

Click="

<TextBox x:Name="txtSubName” VerticalAlignment="Center” Margin="5"/>

</DockPanel>
</ Grid>
</Window>

Listing A.1: Branches Window Code (XAML)

63

A.2 Branches Window Code C#

using ConnectData;

using ConnectData.Messages;

using NXOpen;

using NXOpen.UF;

using System;

using System. Collections . Generic;
using System.Collections.ObjectModel;
using System.Ling;

using System.Threading;

using System.Windows;

using System.Windows.Documents;
using System.Windows. Input;

using ConnectData.MUObjects;

namespace CADInteropNX
{
/1! <summary>
/// Interaction logic for Branches.xaml

/1] </summary>

public partial class BranchesWindow : Window

{

public ObservableCollection<ConnectData.DBBranch> InstanceList { get; private set; }

ClientConnection connection;

MainWindow mainWindow ;

public BranchesWindow (ClientConnection incomingConnection, MainWindow sendingMainWindow)

{

InitializeComponent () ;

connection = incomingConnection;

mainWindow = sendingMainWindow ;

refreshInstanceList () ;

tvAssemblies . ItemsSource = InstanceList;

public void refreshInstanceList ()

{

NXOpen. Part workPart = Utilities.NXSession. Parts.Work;
MUPart workPartMU = MUPart. GetInstanceFromNX (workPart as NXOpen. Part);
DBPart serverPart = workPartMU. ServerPart;

64

44

45

46

47

48

49

50

51

78

79

80

81

FeatureListMessage featureListMsg = (FeatureListMessage)connection.sendReceive (new

WatchPartMessage ("NX”, serverPart.GUID));

List<DBFeature> features = featureListMsg.FeatureList.OrderBy(x => x.TreeOrder).
ToList();

List<DBBranch> branches = new List<DBBranch>();
foreach (DBFeature feature in features)

{

foreach (DBInteropState state in feature.DBInteropStates)

{
if (!branches.Contains(state.DBBranch) && state .DBBranch != null && state.
DBBranch. ParentBranch == null)
{
branches .Add(state . DBBranch) ;
InstanceList = new ObservableCollection<ConnectData.DBBranch>(branches);
return ;
}
}

private ObservableCollection<ConnectData.DBBranch> alphabetizeChildren (ConnectData.
DBBranch parent)

{

foreach (ConnectData.DBBranch child in parent.ChildBranches)
{

if (child.ChildBranches.Count > 0)

{

child.ChildBranches = alphabetizeChildren (child);

}

}

return new ObservableCollection<ConnectData.DBBranch>(parent.ChildBranches.OrderBy (y

=> y.Name) . ToList());

}

private void Tree_-DoubleClick(object sender, MouseButtonEventArgs e)

{

OpenRevision () ;

private void open_Click(object sender, RoutedEventArgs e)

{

65

84 OpenRevision () ;

85 }

86

87 private void close_Click(object sender, RoutedEventArgs e)

88 {

89

90 }

91

92 private void NewBranch_Click(object sender, RoutedEventArgs e)

93 {

94 DBBranch selectedBranch = tvAssemblies. SelectedItem as DBBranch;

95

96 if (selectedBranch == null)

97 return ;

98

99 if (selectedBranch.ChildBranches!= null && selectedBranch.ChildBranches.Any(x => x.
Name == txtSubName.Text))

100 {

101 MessageBox .Show (”A branch with that name already exists in this part.”);

102 return ;

103 }

104 if (selectedBranch.Name == txtSubName. Text)

105 {

106 MessageBox .Show(”Cannot name a branch the same name as its parent branch.”);

107 return ;

108 }

109

110 if (!string.IsNullOrEmpty (txtSubName . Text))

11 {

112 DBBranch newBranch = new DBBranch ()

13 {

114 Name = txtSubName . Text,

115 ParentGUID = selectedBranch .GUID,

116 GUID = Guid.NewGuid () ,

117 TimeStamp = DateTime .Now

118 }

119

120 newBranch . ParentBranch = selectedBranch;

121

122 if (selectedBranch.ChildBranches == null)

123 selectedBranch . ChildBranches = new ObservableCollection<DBBranch>();

124

125 selectedBranch.ChildBranches .Add(newBranch) ;

126

127 connection.send (new AddUpdateMessage (MUODbject.UserName, newBranch));

66

128

129

138

139

140

141

142

143

144

148

149

150

151

156

157

158

160

161

162

163

164

165

166

167

168

169

170

171

connection.send (new AddUpdateMessage (MUObject.UserName, selectedBranch));

mainWindow . currentBranch = newBranch;

OpenRevision (newBranch) ;

this .Close () ;

}
}
private void OpenRevision(DBBranch incomingSelectedBranch = null)
{
DBBranch selectedBranch = tvAssemblies. SelectedItem as DBBranch;
if (incomingSelectedBranch != null)
{
selectedBranch = incomingSelectedBranch;
}
else
{
if (selectedBranch == null)
return ;
}
// Get the current part from the selected branches feature list
DBPart currentPart = null;
if (incomingSelectedBranch == null && selectedBranch.DBInteropStates.Count != 0)
{
currentPart = selectedBranch.DBInteropStates.Last().DBFeature.DBPart;
}
else
{
if (selectedBranch.ParentBranch != null)
{
currentPart = selectedBranch.ParentBranch.DBInteropStates.Last().DBFeature.
DBPart;

/+ We can’t have two parts with the same name open. Scan all open parts and close it
% if they have the same name. s/

foreach (NXOpen.Part openPart in Utilities .NXSession.Parts.ToArray())

{

if (openPart.FullPath.EndsWith(currentPart.PartNumber + ”.prt”))

{

67

172 openPart.Close (BasePart.CloseWholeTree.True, BasePart.CloseModified.
CloseModified , null);

173 break ;

174 }

175 }

176

177 // Open the selected part

178 MUPart topLevelPart = MUPart. GetInstanceFromServer (currentPart , null , CADTypes.NX,

null , selectedBranch);

180 NXOpen. PartLoadStatus status;

181 Utilities .NXSession. Parts . SetDisplay (topLevelPart.NXPart, false, false, out status);

183 mainWindow . currentBranch = selectedBranch;

Listing A.2: Branches Window Code (C#)

68

A.3 Part History Window

A.3.1 Part History Window GUI

[} PartHistory = & | x|

Sketch 1

Eutrude 1

Extrude 1 Edi

Figure A.1: Part hisotry window defined by the xaml code presented in this chapter.

A.3.2 Part History Window XAML code

I <Window x:Class="CADInteropNX.PartHistory”
2 xmlns="http: //schemas. microsoft.com/winfx/2006/xaml/presentation”

3 xmlns:x="http: //schemas. microsoft.com/winfx/2006/xaml”

4 Title="PartHistory” Height="300" Width="300">

5 <DockPanel x:Name="LayoutRoot” Background="#172a4a">

6 <StackPanel DockPanel.Dock="Bottom” Orientation="Horizontal” HorizontalAlignment="Center”
>

7 <Button Width="124" Content="Restore State” Click="open_-Click” Padding="3" Margin="5"

/>
8 <Button Width="124" Content="Close” Click="close_Click” Padding="3" Margin="5"/>
9 </StackPanel>
10 <DockPanel>

1 <ListBox DockPanel.Dock="Bottom” x:Name="tvAssemblies” MouseDoubleClick="

Tree_DoubleClick” Margin="5"
12 ScrollViewer.CanContentScroll="True” ScrollViewer.

VerticalScrollBarVisibility="Visible” ScrollViewer.HorizontalScrollBarVisibility="Disabled”>

69

13 <ListBox.ItemTemplate>

14 <DataTemplate>

15 <Label Content="{Binding name}” />
16 </DataTemplate>

17 </ListBox .ItemTemplate>

18 </ListBox>

19 </DockPanel>

20 </DockPanel>
21 </ Window>

Listing A.3: Part History Window Code (XAML)

70

A.3.3 Branches Window Code C#

I using ConnectData;

> using ConnectData.Messages;

3 using NXOpen;

4 using NXOpen.UF;

5 using System;

6 using System.Collections . Generic;
7 using System. Collections.ObjectModel;
8 using System.Lingq;

9 using System.Threading;

10 using System.Windows;

11 using System.Windows.Documents ;

12 using System.Windows. Input;

13 using ConnectData. MUObjects;

15 namespace CADInteropNX
16 {

17 /1] <summary>

18 /1/ Interaction logic for PartHistory .xaml

19 /1] </summary>

20 public partial class PartHistory : Window

21 {

22 ClientConnection connection;

23 MainWindow mainWindow ;

24

25 public PartHistory (ClientConnection incomingConnection, MainWindow sendingMainWindow)
26 {

27 InitializeComponent () ;

28

29 connection = incomingConnection;

30 mainWindow = sendingMainWindow ;

31

32 refreshInstanceList();

; }

34

35 public class Readableltems

36 {

37 public string name { get; set; }

38 public DBInteropState state { get; set; }
9 }

40

41 public void refreshInstanceList ()

42 {

43 List<Readableltems> instances = new List<Readableltems >();
44

71

16

47

48

49

50

51

58

59

60

61

62

NXOpen. Part workPart = Utilities.NXSession. Parts.Work;
MUPart workPartMU = MUPart. GetInstanceFromNX (workPart as NXOpen. Part);

DBPart serverPart = workPartMU. ServerPart;

FeatureListMessage featureListMsg = (FeatureListMessage)connection.sendReceive (new

WatchPartMessage ("NX",

List<DBFeature> features
ToList();

foreach (DBFeature feature

{

serverPart .GUID)) ;

= featureListMsg.FeatureList.OrderBy(x => x.TreeOrder).

in features)

if (feature.DBInteropStates.Count != 0)

{

feature . DBInteropStates = new ObservableCollection<DBInteropState >(feature .

DBInteropStates.OrderBy(x => x.TimeStamp));

}

int j = 1;
int k = 1;
foreach (DBFeature feature

{

in features)

int i = 1;
foreach (DBInteropState state in feature.DBInteropStates)
{
if (!(state is DBPoint2DState) && !(state is DBLine2DState))
{
Readableltems item = new Readableltems () ;

if (state 1is

{

if (i ==

{

item

item
}
}
else
{
if (i ==
{
item

DBSketchState)

1)

2

.name = " Sketch + j.ToString () ;

.name = "Sketch 7 + j.ToString() + 7 Edit”;

1)

.name = "Extrude 7 4+ k.ToString();

72

88 else

89 {

90 item.name = "Extrude 7 + k.ToString() + 7 Edit”;

91 }

92 }

93 item.state = state;

94 instances .Add(item);

95 }

96 i =1+ 1;

97 }

98 if (feature is DBSketch)

99 {

100 i=]+ 1

101 }

102 else if (feature.DBInteropStates.Count != 0 && feature.DBInteropStates. First() is
DBExtrudeState)

103 {

104 k =k + 1;

105 }

106

107 }

108

109 instances.Sort((x, y) => DateTime.Compare(x.state .TimeStamp, y.state.TimeStamp));

111 tvAssemblies . Items . Clear () ;

112 foreach (Readableltems item in instances)

13 {

114 tvAssemblies . Items.Add(item) ;

115 }

116 }

117

118 private void Tree_-DoubleClick(object sender, MouseButtonEventArgs e)
119 {

120 OpenRevision () ;

121 }

122 private void open_Click(object sender, RoutedEventArgs e)
123 {

124 OpenRevision () ;

125 }

126 private void close_Click(object sender, RoutedEventArgs e)
127 {

128 this.Close () ;

129 // mainWindow . inLoadedRevision = false;

130

73

131 // mainWindow . messageReceiveChannel = new OneWayChannel<Message >(System. Threading.

SynchronizationContext. Current, mainWindow.handleReceivedMessages) ;

132 // DBInstance selectedInstance = tvAssemblies. SelectedItem as DBInstance;

133 // MUObject. MUFeatures . Clear () ;

134

135 //// Ensure that an instance is selected

136 //if (selectedInstance == null)

137 // return ;

138

139 ///]Set the selected part

140 // DBPart currentPart = selectedInstance .DBPart;

141

142 ///+ We can’t have two parts with the same name open. Scan all open parts and close
it

143 /1 # if they have the same name. =/

144 // foreach (NXOpen.Part openPart in Utilities .NXSession. Parts.ToArray())

145 114

146 I/ if (openPart.FullPath.EndsWith(currentPart.PartNumber + ”.prt”))

147 /1 {

148 // openPart.Close (BasePart.CloseWholeTree.True, BasePart.CloseModified.
CloseModified , null);

149 // break ;

150 /1 }

151 11}

152

153 /117 Open the selected part

154 //MUPart topLevelPart = MUPart. GetlnstanceFromServer(currentPart , null, CADTypes.NX) ;

155

156 //NXOpen. PartLoadStatus status;

157 // Utilities .NXSession. Parts. SetDisplay (topLevelPart.NXPart, false, false, out status)

158 }

159

160 private void OpenRevision ()

161 {

162 //Ensure that an instance is selected

163 if (tvAssemblies. Selectedltem == null)

164 return ;

165

166 DBInteropState selectedState = (tvAssemblies. SelectedItem as Readableltems). state;

167

168 mainWindow . inLoadedRevision = true;

169
170 // Set the selected part

171 DBPart currentPart = selectedState . DBFeature.DBPart;

74

178

179

180
181

182

184

186

188
189
190
191
192
193
194
195
196

197

198
199
200
201
202
203

204 }

/+ We can’t have two parts with the same name open. Scan all open parts and close it
if they have the same name. =/
foreach (NXOpen.Part openPart in Utilities .NXSession. Parts.ToArray())

{

if (openPart.FullPath.EndsWith(currentPart.PartNumber + ”.prt”))
{
openPart.Close (BasePart.CloseWholeTree.True, BasePart.CloseModified.
CloseModified , null);
break ;

// Since the sketch is not the last thing pushed for a sketch but we need to be able
to load its children who get pushed slightly after them this is a band—aid fix where we set
the timestamp passed into

/! the system as the last timestamp from the sketch entities of the dbsketch features
interop states. Not a perfect solution for race cases but this is a proof of concept and I
am not attempting to

// support race cases for sketches.

if (selectedState is DBSketchState)

{
selectedState = (from S in (selectedState.DBFeature as DBSketch).DBSketchEntities
from X in S.DBlInteropStates
where X.TimeStamp <= selectedState . TimeStamp.AddSeconds(5)
orderby X.TimeStamp
select X as DBInteropState).LastOrDefault();
}

// Open the selected part
MUPart topLevelPart = MUPart. GetInstanceFromServer(currentPart , null, CADTypes.NX,

selectedState . TimeStamp) ;

NXOpen. PartLoadStatus status;
Utilities .NXSession. Parts . SetDisplay (topLevelPart.NXPart, false, false, out status);

Listing A.4: Branches Window Code (C#)

75

APPENDIX B. C# CODE

B.1 CATIA Code for Extrudes

/1] <summary>

o

/// This method checks to see if the CATIA extrude is already in the MUFeatures dictionary. If
it is it’s returned, if not it’s created

/1] </summary>

4 public static MUExtrude GetlnstanceFromCATIA (Prism clientExtrude , Guid partGUID)

5 o

6 if (MUFeatures.ContainsKey (Utilities .GetGuid(clientExtrude)))

7 return (MUExtrude) MUFeatures|[Utilities .GetGuid(clientExtrude) |;
8

9 MUExtrude result = new MUExtrude(clientExtrude , partGUID);

1 return result;

14 /// <summary>

15 /// Creates a CATIA Extrude

16 /// </summary>

17 /1] <param name="serverPoint”></param>

18 void CreateCATIAExtrude (DBFeature serverExtrude)

19 {

20 ServerExtrude = serverExtrude;

21 var currentState = CurrentState;

22 GUID = serverExtrude .GUID;

24 MECMOD. Sketch sketch = MUSketch. GetInstanceFromServer(currentState . ReferencedProfile as

DBSketch, CADTypes.CATIA).catVersion;

26 PARTITF. Pad pad;

27 PARTITF. Pocket pocket;

28

29 PartDocument partDoc = CurrentPart. CATIAPart;

30 MECMOD. Body partBody = partDoc.Part.Bodies.Item(1);

31

32 ShapeFactory shapeFactory = (ShapeFactory)partDoc.Part.ShapeFactory;
33 partDoc. Part.InWorkObject = partBody;

76

35 if (!currentState.IsPocket)

36 {

37 pad = (PARTITF.Pad)shapeFactory.AddNewPad ((MBCMOD. Sketch)sketch, currentState .Limitl);

38 pad. FirstLimit.Dimension. Value = currentState.Limitl;

39 pad.SecondLimit.Dimension. Value = currentState . Limit2;

40 pad. DirectionOrientation = currentState .Direction ? CatPrismOrientation.
catRegularOrientation : CatPrismOrientation.catlnverseOrientation ;

41 pad.set_Name(currentState . DBFeature .Name) ;

42 Utilities .SetGuid(pad, serverExtrude .GUID);

43 CATIAExtrude = pad;

44 }

45 else

47 pocket = (PARTITF.Pocket)shapeFactory . AddNewPocket ((MECMOD. Sketch)sketch , currentState .

Limitl);

48 pocket. FirstLimit.Dimension. Value = currentState . Limitl ;

49 pocket.SecondLimit.Dimension. Value = currentState . Limit2;

50 pocket.DirectionOrientation = currentState.Direction ? CatPrismOrientation.
catRegularOrientation : CatPrismOrientation.catlnverseOrientation;

51 pocket.set_Name(currentState . DBFeature.Name) ;

52 Utilities .SetGuid (pocket, serverExtrude .GUID);

53 CATIAExtrude = pocket;

56 partDoc . Part. Update () ;

58
59 private void UpdateCATIAExtrude (DBFeature serverExtrude)

o0 {

61 ServerExtrude = serverExtrude;

62 DBExtrudeState currentState = CurrentState ;

63 try

64 {

65 IEE]

66 # Right now we don’t support Mirror Extent

67 # If the user selects Mirror Extent, the SecondLimit, below, will be set to READ ONLY
and

68 # throw an error when we try to assign it.

69 s/

70 CATIAExtrude . FirstLimit.Dimension.Value = currentState . Limitl ;

71 CATIAExtrude . SecondLimit.Dimension. Value = currentState . Limit2;

72 }

73 catch (Exception ex)

74 {

77

75 //AHA! we’ve been waiting for you

76 string test = "hi”;

.)

78

79 if (currentState.Direction)

80 CATIAExtrude. DirectionOrientation = CatPrismOrientation.catRegularOrientation ;
81 else

82 CATIAExtrude. DirectionOrientation = CatPrismOrientation.catlnverseOrientation ;
83

84 Utilities . UpdateCatiaPart () ;

85 }

87 /// <summary>

88 /// Use this method when the CATIAVersion has changed.
89 /// </summary>

90 public void UpdateFromCATIA (Prism ClientExtrude)

o1 {

92 CATIAExtrude = ClientExtrude;

93 var currentState = CurrentState;

94

95 bool changed = false;

9%

97 bool oldDirection = currentState.Direction;

98 IProfileReference oldSketch = currentState.ReferencedProfile;

99 double oldLimtl = currentState.Limitl;

100 double oldLimt2 = currentState.Limit2;

101

102 if (currentState.Direction != (ClientExtrude.DirectionOrientation == CatPrismOrientation .
catRegularOrientation))

103 {

104 changed = true;

105 currentState . Direction = ClientExtrude.DirectionOrientation == CatPrismOrientation .
catRegularOrientation ;

106 }

107

108 if (currentState.DBFeature .GUID != Utilities.GetGuid(ClientExtrude . Sketch))

109 {

110 changed = true;

111 currentState . ReferencedProfile = Profile.CurrentState . DBFeature as DBSketch;

12 }

113

114 if (currentState.Limitl != ClientExtrude.FirstLimit.Dimension. Value)

115 {

116 changed = true;

117 currentState . Limitl = ClientExtrude . FirstLimit.Dimension. Value;

78

18 }

119

120 if (currentState.Limit2 != ClientExtrude.SecondLimit.Dimension. Value)
121 {

122 changed = true;

123 currentState . Limit2 = ClientExtrude.SecondLimit.Dimension. Value;
124 }

125

126 if (changed)

127 {

128 if (isExtrudeValid(ClientExtrude))

129 {

130 InteropLogger.LogEntry (” Feature Update Push”, CurrentPart, this);
131 Connection .send (new AddUpdateMessage (UserName, currentState));
132 }

133 else

134 {

135 currentState . Direction = oldDirection;

136 currentState . ReferencedProfile = oldSketch;

137 currentState . Limitl = oldLimtl ;

138 currentState . Limit2 = oldLimt2;

139 }

140 }

141}

Listing B.1: CATIA Code for Extrudes

79

5

29

B.2 CREO Code for Extrudes

void CreateCreoExtrude (DBFeature serverExtrude)
ServerExtrude = serverExtrude;
var currentState = CurrentState ;

GUID = serverExtrude .GUID;

CreoElementTree = CreateElementTree (currentState);

StringBuilder sb = new StringBuilder ()
sb. AppendLine (" CreateFeature”™);

sb. AppendLine (ServerExtrude . DBPart .GUID. ToString ());

sb. AppendLine (ServerExtrude .GUID. ToString ());
sb. AppendLine (CreoElementTree) ;
Utilities . PerformCommand(sb, sb.Length);

string CreateElementTree (DBExtrudeState serverExtrude)

{

double limitl , limit2 , tmp;

limitl = serverExtrude.Limitl ;
limit2 = serverExtrude.Limit2;
if (limitl < 0 || limit2 < 0)
{

tmp = limitl ;

limitl = —1limit2;

limit2 = —tmp;
}

StringWriter sw = new StringWriter () ;

sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_LFEATURE_TREE, O,
sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_FEATURE_TYPE,

? 79167 : "9177));

sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_FEATURE_FORM,
sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_STD_FEATURE_NAME,

DBFeature .Name)) ;

sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_EXT_SURF_CUT_SOLID_TYPE,
sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_LE_REMOVE_MATERIAL,

IsPocket 2 7916”7 : “—=17));

sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_IS_SMT_CUT |,
sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_.SMT_CUT_NORMAL_DIR,
sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_SKETCHER,

80

serverExtrude . IsPocket

serverExtrude .

serverExtrude .

46

47

48

49

50

51

58

59

60

61

62

64

65

66

67

68

69

70

71

SwW

sSw

sSwW

. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .

ReferencedProfileGUID . ToString ()));

SW.

SW.

SW

SW.
SW.
SW.
SW.

Direction ? 717

SW
sW
swW
swW

O
sW
sW
sW

SW

)

SW

SW

SW

SW

SwW

sSw

sSwW

SW

SW

SW

SW

SwW

SW

SW

SW

SW

SW

SwW

sSw

sSwW

SW

SW

SW

WriteLine (WriteElement ((int)ElementID .
WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
WriteLine (WriteElement ((int)ElementID .
WriteLine (WriteElement ((int)ElementID .
WriteLine (WriteElement ((int)ElementID .
WriteLine (WriteElement ((int)ElementID .
=170

. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID.
)

. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID.
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement (5112, 1, 0, 70"
. WriteLine (WriteElement ((int)ElementID.
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID.
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID .
. WriteLine (WriteElement ((int)ElementID.
. WriteLine (WriteElement ((int)ElementID .

. WriteLine (WriteElement ((int)ElementID .

wicPRO_E_STD_SECTION, 1, 9));
wicPRO_E_STD_SEC_METHOD, 2, 0,
wifcPRO_E_SEC_USE_SKETCH, 2, 10,

"07));

serverExtrude .

wfcPRO_E_FEAT_FORM_IS_THIN, 1, 0,
wfcPRO_E_STD_MATRLSIDE, 1, 0, 707));
wfcPRO_E_THICKNESS, 1, 1, 707));
wicPRO_E_SRF_END_ATTRIBUTES, 1, 0,
wicPRO_E_TRIM_QUILT, 1, 9));
wfcPRO_E_TRIM_QLT_SIDE, 1, 0,
wfcPRO_E_STD_DIRECTION, 1, 0,

707))

"0

707))

serverExtrude .

wfcPRO_E_STD_EXT_DEPTH, 1, 9));
wicPRO_E_LEXT_DEPTH_.FROM, 2, 9));
wicPRO_E_EXT _DEPTH FROM_TYPE, 3, O,
wfcPRO_E_EXT_DEPTH FROM_VALUE, 3, 1,

"1287)):
limit2.ToString

wfcPRO_E_LEXT_DEPTH_.FROM_REF, 3,
wfcPRO_E_EXT_DEPTH_TO, 2, 9));
wfcPRO_E_EXT_DEPTH_TO_TYPE, 3, 0,
wicPRO_E_EXT_DEPTH_TO_VALUE, 3, 1,

9));

72621447));
limitl . ToString ()

wfcPRO_E_EXT_DEPTH_.TO_REF, 3,
wfcPRO_E_INT_PARTS, 1, 9));
wfcPRO_E_PATTERN, 1, 9));
wfcPRO_E_STD_SMT._THICKNESS, 1, 1, 707));
wfcPRO_E_STD_SMT_SWAP_DRV_SIDE, 1, 0, 707));
wfcPRO_E_SMT_WALL_SHARPS_TO_BENDS, 1, 0, “07));
))s

wfcPRO_E_SMT_FILLETS, 1, 9));
wfcPRO_E_SMT_FILLETS_SIDE, 2, 0, 707));
wfcPRO_E_SMT_FILLETS_VALUE, 2, 1, 707));
wfcPRO_E_SMT_DEV_LEN_CALCULATION, 1, 9));
wfcPRO_E_SMT_DEV_LEN_SOURCE, 2, 0, ~07));
wfcPRO_E_SMT_DEV_LEN_Y FACTOR, 2, 9));
wfcPRO_E_SMT_DEV_LEN_Y_FACTOR_TYPE, 3, 0,
wfcPRO_E_SMT_DEV_LEN_Y FACTOR_VALUE, 3, 1,
wfcPRO_E_SMT_DEV_LEN_BEND_TABLE, 2, 0,
wfcPRO_E_SMT_PUNCH.TOOL_DATA, 1, 9));
wfcPRO_E_SMT_PUNCH_.TOOL_ATTR, 2, 0, "07));
wfcPRO_E_SMT_PUNCH_TOOL NAME, 2, 9));
wfcPRO_E_SMT_MERGE_DATA, 1, 9));
wfcPRO_E_SMT_MERGE_AUTO, 2, 0, 707));
wfcPRO_E_SMT_MERGE _KEEP_LINES, 2, 0,
wfcPRO_E_EXT_COMP_DRFT_ANG, 1, 9));

9));

707))
707))
707))

"07))

81

83 sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_E_LEXT_DRFT_.ANG, 2, 0, "—17));

84 sw. WriteLine (WriteElement ((int)ElementID . wfcPRO_LE_LEXT_DRFT_ANG_VAL, 2, 1, 707));
85

86 sw. WriteLine (" Sketch™) ;

87 sw. WriteLine (serverExtrude . ReferencedProfileGUID . ToString ());

88

89 return sw.ToString () ;

90 }

9 void EditCreoExtrude (DBFeature newExtrude)

93 {

94 ServerExtrude = newExtrude;

95 DBExtrudeState currentState = CurrentState ;

96

97

98 // bool updated = false;

99

100 //updated = updated || currentState.Direction != ParseElementTree(CreoElementTree, GUID,
newExtrude . DBPart .GUID) . Direction ;

101 //updated = updated || currentState.Limitl != currentState.Limitl;

102 //updated = updated || currentState.Limit2 != currentState.Limit2;

103 //updated = updated || currentState.IsPocket != currentState.IsPocket;

104 //updated = updated || currentState.DBSketch.GUID != currentState .DBSketch.GUID;

105

106 //if (updated)

107 114

108 // CurrentState = currentState ;

109 CreoElementTree = CreateElementTree(currentState);

110

111 StringBuilder sb = new StringBuilder ();

112 sb.AppendLine(”EditFeature™);

113 sb. AppendLine(ServerExtrude . DBPart.GUID. ToString ());

114 sb. AppendLine(ServerExtrude .GUID. ToString ()) ;

115 sb. AppendLine (CreoElementTree) ;

116 Utilities . PerformCommand(sb, sb.Length);

117 11}

18}

Listing B.2: CREO Code for Extrudes

82

&)

18

19

20

B.3 NX Code for Extrudes

/1] <summary>

/11 This method checks to see if the NX extrude is already in the MUFeatures dictionary.

/// If it is it’s returned, if not it’s created

//'/ </summary>

public static MUExtrude GetlnstanceFromNX (NXOpen. Features.Extrude clientExtrude , Guid partGUID,

DBBranch currentBranch)

if (MUFeatures.ContainsKey (Utilities .GetGuid(clientExtrude)))
return (MUExtrude) MUFeatures[Utilities .GetGuid(clientExtrude)];

return new MUExtrude(clientExtrude , partGUID, currentBranch);

/1] <summary>
/11 Creates an NX Extrude
/1l </summary>
/] <param name="serverPoint”></param>
void CreateOrUpdateNXExtrude (DBFeature serverExtrude , DateTime? timestamp = null)
{
try

{

ServerExtrude = serverExtrude;

var currentState = CurrentState;

// Check if we are opening a revision that isn’t current
List<DBInteropState> states = new List<DBInteropState >();
if (timestamp != null)
{
currentState = (from S in ServerExtrude.DBInteropStates
where S.TimeStamp <= timestamp
orderby S.TimeStamp
select S as DBExtrudeState).Last();

GUID = serverExtrude .GUID;
NXOpen. Part featurePart = MUObject. MUParts[serverExtrude . DBPart.GUID]. NXPart;

// Switch the work part
NXOpen. Part currentPart = MUObject. CurrentPart. NXPart;
Utilities .SetWorkWithoutHandler(featurePart);

/] Get the sketch to be extruded, and get the sketch feature
Profile = MUSketch. GetInstanceFromServer(currentState . ReferencedProfile as DBSketch,
CADTypes .NX) ;

83

48

49

50

51

60

61

62

66

67

68

69

70

76

77

78

NXOpen. Sketch nxSketch = Profile.nxVersion;
NXOpen. Features . SketchFeature nxSketchFeature = (NXOpen.Features.SketchFeature)nxSketch.

Feature ;

// Create the direction of extrusion from the sketch. Set sense to forward if the
connectData.sketch direction is true ,
//and set the sense to reverse if set to false
NXOpen. Direction sketchDir;
if (currentState.Direction)
sketchDir = featurePart.Directions.CreateDirection (nxSketch, Sense.Forward,
SmartObject. UpdateOption. WithinModeling) ;
else
sketchDir = featurePart.Directions.CreateDirection (nxSketch, Sense.Reverse,

SmartObject. UpdateOption. WithinModeling) ;

}

// Create extrude builder, and create section in extrude builder

NXOpen. Features . ExtrudeBuilder extrudeBuilder = featurePart.Features.CreateExtrudeBuilder
(NXExtrude) ;

NXOpen. Section section = featurePart.Sections.CreateSection ()

extrudeBuilder. Section = section;

// Get extrude length
extrudeBuilder.Limits . EndExtend. Value . RightHandSide = currentState .Limitl.ToString();
extrudeBuilder.Limits. StartExtend . Value.RightHandSide = (—currentState.Limit2).ToString ()

// Pass sketch feature into the section

// sketch feature —> feature array —> CurveFeatureRule —> SelectionIntentRule array —>

section
NXOpen. Features . Feature [] featureContainer = new NXOpen.Features.Feature[1];
featureContainer [0] = nxSketchFeature;
NXOpen. CurveFeatureRule curveFeatureRule = featurePart.ScRuleFactory.

CreateRuleCurveFeature (featureContainer);

NXOpen. SelectionIntentRule [] rule = new NXOpen. SelectionIntentRule [1];

rule [0] = curveFeatureRule;

NXOpen. Point3d helperPoint = new NXOpen.Point3d(0, 0, 0);

section.AddToSection(rule, null, null, null, helperPoint, NXOpen.Section.Mode. Create ,
false);

//set extrude direction

extrudeBuilder. Direction = sketchDir;

84

79
80 // Get all the bodies from the work part, and set solid bodies as targets for either

addition/subtraction boolean operation

81 NXOpen.Body[] bodies = featurePart.Bodies.ToArray();

82 List<NXOpen.Body> targetBodiesList = new List<NXOpen.Body>();
83 for (int i = 0; i < bodies.Length; i++)

84 {

85 if (bodies[i].IsSolidBody == true)

86 {

87 targetBodiesList.Add(bodies[i]);

88 }

89 }

90 NXOpen.Body[] targetBodies = targetBodiesList.ToArray();

91

92 // Create an undo mark for undoing this operation if there are any bodies found that need

to be united to this body

93 Utilities . NXSession.SetUndoMark(Session.MarkVisibility . Visible , “extrudeUndo”);

94

95 //is it an extrusion or subtraction?

96 if (currentState.IsPocket == true && targetBodies.Length != 0 &% currentState.Limitl +
currentState . Limit2 != 0.0)

97 {

98 extrudeBuilder.BooleanOperation.Type = NXOpen. GeometricUtilities.BooleanOperation.

BooleanType . Create ;

99 NXOpen.Body[] nullBodies = { null };

100 extrudeBuilder.BooleanOperation. SetTargetBodies (nullBodies) ;

101 }

102 else

103 {

104 extrudeBuilder.BooleanOperation.Type = NXOpen. GeometricUtilities . BooleanOperation.

BooleanType . Create ;

105 NXOpen.Body[] nullBodies = { null };

106 extrudeBuilder.BooleanOperation. SetTargetBodies (nullBodies) ;
107 }

108

109 // Commit builder

110 List <NXOpen.Body> connectedTargetBodies = new List<NXOpen.Body>();

11 try

12 {

113 NXOpen. Features . Extrude result = (NXOpen.Features.Extrude)extrudeBuilder.Commit() ;
114 result.SetAttribute ("Name”, serverExtrude .Name) ;

115 Utilities .SetGuid(result , GUID);

116

117

118 NXExtrude = result;

85

120 //Try to unite to bodies

121 foreach (NXOpen.Body target in targetBodies)
122 {
123 NXOpen. Features . BooleanBuilder booleanBuilder = Utilities .NXSession. Parts.Work.

Features.CreateBooleanBuilderUsingCollector (null);

124 NXOpen.Body resultBody = (NXOpen.Body) Utilities . NXSession. Parts.Work.Bodies.
FindObject(result.Journalldentifier);

125 if (resultBody != target)

126 {

127 try

128 {

129 // Unite the body just created to the target and see if it works

130 booleanBuilder. Tolerance = .025;

131 booleanBuilder.Operation = NXOpen. Features .Feature.BooleanType. Unite;

132

133 booleanBuilder. Targets.Add(resultBody);

134 NXOpen.Body[] testBodies = new NXOpen.Body[1];

135 testBodies [0] = target;

136 NXOpen.BodyDumbRule bodyDumbrule = Utilities . NXSession. Parts.Work.
ScRuleFactory . CreateRuleBodyDumb (testBodies);

137 NXOpen. SelectionIntentRule [] rules = new SelectionIntentRule[1];

138 rules [0] = bodyDumbrule;

139 ScCollector scCollector = Utilities .NXSession. Parts.Work. ScCollectors .

CreateCollector () ;

140 scCollector.ReplaceRules (rules , false);

141 booleanBuilder. ToolBodyCollector = scCollector;

142

143 NXOpen.NXObject newObject = booleanBuilder.Commit() ;

144

145 //'1f the last line worked add it to the connectedTargetBodiesList
146 connectedTargetBodies.Add(target);

147

148 booleanBuilder . Destroy () ;

149 }

150 catch

151 {/* We don’t actually want this to do anything. Just catching errors so that

I can get a list of the objects that work. =/

152 booleanBuilder. Destroy () ;

156 }

157 catch (NXException ex)

158 {

86

159

160

161

162

163

164

165

166

167

168

169

176

177

179

180

181

182

183

184

186

187

188

189

190

191

192

193

194

195

196

197

198

//Undo to the last undo and then do the extrude with the connectedTargetBodies if the
list length > 0
if (connectedTargetBodies.Count == 1)
{
Utilities . NXSession.UndoToLastVisibleMark () ;
if (currentState.IsPocket)
extrudeBuilder.BooleanOperation.Type = NXOpen. GeometricUtilities.BooleanOperation
.BooleanType . Subtract;
else
extrudeBuilder.BooleanOperation.Type = NXOpen. GeometricUtilities.BooleanOperation
.BooleanType . Unite;

extrudeBuilder.BooleanOperation. SetTargetBodies (connectedTargetBodies.ToArray());

try
{

NXOpen. Features . Extrude result = (NXOpen. Features.Extrude)extrudeBuilder.Commit()

result. SetAttribute ("Name”, serverExtrude .Name) ;

Utilities . SetGuid(result , GUID);

NXExtrude = result;
} catch (NXException ex)
{
}
}
else if (connectedTargetBodies.Count == 0 && currentState . IsPocket)
{
Utilities .NXSession.UndoToLastVisibleMark () ;
extrudeBuilder.BooleanOperation.Type = NXOpen. GeometricUtilities.BooleanOperation.
BooleanType . Subtract;

extrudeBuilder.BooleanOperation. SetTargetBodies (targetBodies);

CurrentState = currentState;

// Change work part back to part user was working on
try

{

Utilities .SetWorkWithoutHandler(currentPart);

}

catch (NXOpen.NXException ex) { }

87

199

200

201

202

203

204

205

206

207

208

209

}

catch (NXException ex)

{

MUSketch sketch
DBSketch, CADTypes.NX) ;

sketch.nxVersion. Color 146;

sketch.nxVersion.RedisplayObject () ;

MUSketch. GetInstanceFromServer (CurrentState . ReferencedProfile as

throw new Exception(”An error occured creating an extrude” + ex.Message, ex);
/]] <summary>
/1] This method is called by the Instance method above. A NX extrude is converted to a server
extrude

/1l </summary>

private MUExtrude (NXOpen. Features . Extrude clientExtrude ,

{

//HACK: There
NXExtrude

must be two extrude builders

clientExtrude ;

NXOpen. Part featurePart

Guid FeatureGUID Guid . NewGuid () ;

NXOpen. Features . ExtrudeBuilder clientExtrudeBuilder

CreateExtrudeBuilder (clientExtrude);

bool
bool

direction true ;

isPocket = false;

// set the direction of the extrusion

if (clientExtrudeBuilder.Direction.Sense == Sense

direction false ;

//make it a subtraction
if (clientExtrudeBuilder.BooleanOperation.Type ==

BooleanType. Subtract)

isPocket = true;
// find the sketch that the extrude is based on
NXOpen. Features . Feature [] parents = clientExtrude

NXOpen. Sketch parentSketch null ;

foreach (NXOpen.Features.Feature feat

{

in parents)

if (feat

{

is NXOpen. Features. SketchFeature)

parentSketch

88

Guid partGUID, DBBranch currentBranch)

running?

MUObject . MUParts [partGUID]. NXPart ;

featurePart.Features .

.Reverse)

NXOpen. GeometricUtilities . BooleanOperation .

. GetParents () ;

((NXOpen. Features . SketchFeature) feat). Sketch;

240

242

243

244

254

255

256

260

261

262

263

264

265

266

267

268

269

270

271

272

276

277

278

279

280

281

282

283

break ;

NXOpen. Features . SketchFeature parentSketchFeature = (NXOpen.Features.SketchFeature)
parentSketch . Feature;

Profile = MUSketch. GetlnstanceFromNX (parentSketchFeature , CurrentPart.GUID, currentBranch);

// create the new extrude
var currentExtrudeState = new ConnectData.DBExtrudeState ()
{
Direction = direction ,
IsPocket = isPocket,
Limitl = Convert.ToDouble(clientExtrudeBuilder.Limits.EndExtend. Value.RightHandSide) ,
Limit2 = —Convert.ToDouble(clientExtrudeBuilder.Limits. StartExtend. Value.RightHandSide),
//Name = GUID. ToString () ,
GUID = Guid.NewGuid() ,
// DBPart = MUObject. CurrentPart. ServerPart ,
ReferencedProfile = Profile.DBSketch as DBSketch,
ReferencedProfileGUID = Profile .GUID,
/! FeatureTypelD = 5
DBBranch = currentBranch ,

BranchGUID = currentBranch .GUID

+s

currentExtrudeState . DBFeature = new DBFeature ()

{

GUID = FeatureGUID ,

Name = FeatureGUID.ToString (),

DBPart = MUObject. CurrentPart. ServerPart ,
FeatureTypelD = 5

s

GUID = FeatureGUID;

Utilities .SetGuid(clientExtrude , GUID);

Utilities .SetName(clientExtrude , currentExtrudeState . DBFeature.Name) ;

Message message = new AddUpdateMessage (UserName, currentExtrudeState . DBFeature);

Connection.send (message) ;

Message message2 = new AddUpdateMessage(UserName, currentExtrudeState);
Connection.send (message2) ;
currentExtrudeState . DBFeature. DBInteropStates .Add(currentExtrudeState);

ServerExtrude = currentExtrudeState . DBFeature;

89

284
285 MUFeatures . Add(GUID, this);
286}

Listing B.3: NX Code for Extrudes

90

)

w

APPENDIX C. LOADING CODE

void CreateNXPart(DBPart serverPart, DateTime? timestamp = null, DBBranch currentBranch

{

GUID = serverPart.GUID;
PartNumber = serverPart.PartNumber;
ServerPart = serverPart;

MUParts . Add(GUID, this);

/+ Remove part changed handler before creating a part. This ensures that
the WorkpartChanged handler doesn’t fire before the GUID of the new
* part is set. We’ll add the handler back after the part is created. =/

Utilities . RemovePartHandlers () ;

// Create a blank part file to pull the features into

NXOpen. FileNew newFile = Utilities .NXSession. Parts.FileNew () ;
newFile. TemplateFileName = “model—plain —l-mm-template . prt”;

newFile. Application = NXOpen. FileNewApplication.Modeling;
newFile . Units = NXOpen. Part. Units.Millimeters ;

newFile . NewFileName = “C:\\Temp\\” + ServerPart.PartNumber + 7.prt”;
newFile. MakeDisplayedPart = true;

NXOpen. Part nxPart = newFile.Commit() as NXOpen. Part;

NXPart = nxPart;

Utilities .SetGuid (NXPart, GUID);
Utilities .SetName (NXPart, PartNumber) ;

MUObject. CurrentPart = this;

Utilities . AddPartHandlers () ;

/1 Look up the features related to the part

FeatureListMessage msg = (FeatureListMessage)Connection.sendReceive (new WatchPartMessage ("NX”

, ServerPart.GUID));
List<DBFeature> NewFeatures = msg. FeatureList.OrderBy(x => x.TreeOrder).ToList();

// Upon load if the branch is null then set it to the first features branch

var count = NewFeatures.Where(x => x is DBSketch). ToList().Count;

91

null)

40

41

60

var sketchList = NewFeatures.Where(x => x is DBSketch).ToList().OrderBy(x => x.TreeOrder);

if (currentBranch == null && NewFeatures.Where(x => x is DBSketch).ToList().Count > 0 &&
NewFeatures . Where(x => x is DBSketch).ToList().OrderBy(x => x.TreeOrder). First ().
DBInteropStates .OrderBy (x => x.TimeStamp).ToList().First().DBBranch != null)

{

currentBranch = NewFeatures.Where(x => x is DBSketch).ToList().OrderBy(x => x.TreeOrder).
First (). DBInteropStates.OrderBy(x => x.TimeStamp). ToList().First () .DBBranch;

}

else if (NewFeatures.Where(x => x is DBSketch).ToList().Count == 0)

{

currentBranch = new DBBranch ()

{

Name = "Main”,

GUID Guid . NewGuid ()

/! Check to make sure features were created before the timestamp
if (timestamp != null)

foreach (DBFeature feature in NewFeatures. ToList())

{

if (feature.TimeStamp > timestamp)

{

NewFeatures .Remove(feature) ;

// Get the parent branches
List<Guid> parentBranchGuids = new List<Guid>(); //Also will include current branch
var parentBranch = currentBranch.ParentBranch;
parentBranchGuids .Add(currentBranch .GUID) ;
while (parentBranch != null)
{
parentBranchGuids .Add(parentBranch .GUID) ;
var tempBranch = parentBranch;

parentBranch = tempBranch.ParentBranch;

Dictionary <Guid, DateTime> timestampDictionary = new Dictionary <Guid, DateTime >();

92

78

79

80

81

88

89

90

91

92

93

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

// Check to make sure the features have states
parent branches.

foreach (DBFeature feature in NewFeatures.ToList())

{
var stateCount = 0;
List<DBSketch> sketchesToRemoveEntities = new List<DBSketch>();
DateTime? latestTimestamp = null;

foreach (DBInteropState in feature.DBInteropStates.ToList())

{

state

//See if the state is an extrude or sketch and make sure it is
or a parent branch.
if ((state is DBExtrudeState || state is
Contains (state . DBBranch.GUID)))
{
var tempCount = 0;
stateCount ++;
tempCount++;
that the

// Check to make sure state

child branch which is related to the current branch was created.
var parent = currentBranch.ParentBranch;

var temp = currentBranch

while (parent != null)

{

/1 1f the
if (state.DBBranch.GUID == parent.GUID)

{

state is on a parent branch.

// And if the current

branch was created remove the count for that state.

if (temp.TimeStamp < state.TimeStamp)
{

stateCount ——;

tempCount ——;
local stash so it

//Remove the state from the

branch was created before the

isn’t

were created on the current branch or its

on the current branch

DBSketchState) && (parentBranchGuids.

if on a parent branch was made before the

state on the parent

loaded.

NewFeatures . Find (x => x.GUID == feature .GUID).DBInteropStates .Remove(

state);

if (state is DBSketchState) {

sketchesToRemoveEntities .Add((state as DBSketchState).DBFeature

as DBSketch) ;

}

parent = parent.ParentBranch;

93

116

117

118

119

120

126

127

128

129

138

139

140

141

142

143

144

146

147

148

if (tempCount > 0)

{
if (latestTimestamp != null && state.TimeStamp > latestTimestamp)
{
latestTimestamp = state.TimeStamp;
}
}
}
else if (state is DBExtrudeState || state is DBSketchState)

{

NewFeatures . Find(x => x.GUID == feature .GUID).DBInteropStates .Remove(state)
if (state is DBSketchState)

’

{
sketchesToRemoveEntities .Add((state as DBSketchState). DBFeature as DBSketch);
}
}
}
if (stateCount == 0 &% (feature is DBSketch || feature.FeatureTypeIlD == 5))
{
NewFeatures .Remove(feature) ;
}
//1f the feature is a sketch we must also remove all of its sketch entities or the system
will build the sketch anyway.
//We don’t want to remove all unless their sketch is gone from the newFeatures list or if
they have states that do not exist in the current branch we also want to remove those.
if (feature is DBSketch)
{
foreach (var sketchEntity in NewFeatures. ToList())
{
if (sketchEntity is DBSketchEntity)
{
if ((sketchEntity as DBSketchEntity).DBSketch.GUID == feature .GUID)
{
if (stateCount == 0) {
var itemToRemove = NewFeatures.Find(x => x.GUID == sketchEntity .GUID)

NewFeatures . Remove (itemToRemove) ;

} else if (sketchesToRemoveEntities.Count != 0) {

foreach (var sketchEntityState in (sketchEntity as DBSketchEntity).

DBInteropStates. ToList())

{

if (sketchEntityState.TimeStamp > latestTimestamp)

{

var itemToRemove = NewFeatures.Find(x => x.GUID ==

sketchEntity .GUID) ;

94

156 NewFeatures . Remove (itemToRemove) ;

158 }

159 }

160 }

161 }

162 }

163 if (latestTimestamp != null)
164 {

165 timestampDictionary .Add(feature .GUID, latestTimestamp.Value);
166 }

167 }

168 }

169
170 // Add new features to the part

171 while (NewFeatures.Count > 0)

172 {

173 if (timestampDictionary.ContainsKey (NewFeatures [0].GUID))

174 {

175 CreateFeature (NewFeatures [0], CADTypes.NX, timestampDictionary[NewFeatures[0].GUID].
AddSeconds (5));

176 }

177 else

178 {

179 CreateFeature (NewFeatures[0], CADTypes.NX, timestamp);

180 }

181 NewFeatures . Remove(NewFeatures [0]) ;

182 }

183

184 // Add child components to the part

185 List<DBInstance> Children = ServerPart.Children. ToList();

186 foreach (DBInstance child in Children)

187 {

188 MUInstance . GetInstanceFromServer (child , CADTypes.NX) ;

189 }

190

191 Connection.send (new AddUpdateMessage (UserName, currentBranch));

192

193 CurrentBranch = currentBranch;

194 }

Listing C.1: Loading code within MUPart.cs showing how the algorithms provided in the thesis

were applied.

95

APPENDIX D. DATABASE .EDMX FILE

Figure D.1: Full database .edmx file showing all connections and tables.

96

APPENDIX E. ADDING A NEW FEATURE

E.1 Database Setup
1. Remote into server
2. Open SQL Management Studio

3. Under the database ’State-Transaction” add 2 new tables

* Feature
This table represents the feature in the database, this Feature Table only has a primary
key which can be seen in Figure E.1. Every table that is created in the database should

have this primary key which is a GUID.

e L

- \WIN-CSDETEGG, FointZCEtate. | WIN-C5DPT3GO...dbo,DBPoINt2D |
| colonNams DataType | dllowe Nislls |
FEI TEJ.-EI-'.'J :: urinueidentifisr =

| [

Figure E.1: Feature Table for DBPoint2D which shows a GUID as the primary key.

 State
This table contains the information to define an instance of this feature using the Neutral
Parametric Canonical Form. In Figure E.2 a 2D point is represented. As shown in the
example, to create a point in any CAD system the CAD system needs an X coordinate

and a Y coordinate.

4. Add relationships to the tables

Every table that you add to the database needs to inherit from another table that exists in the

97

'_WIH—E5DPT3ED...PDint2D5I:-E|I:E [__'I:}ﬂN-C_E'DF_TQE@. dbljDHFﬁmtED :|
| colmnpame | patatyse | Allowniis |
3% unigueidenkifier r
= b Flexat =
oy ¥ Float i
=1 I~

Figure E.2: Table containing the state information to define an instance of the Point2DState.

database if you are adding a feature. In order to add a new relationship right click on the

table and select relationships. Figure E.3 shows how to add a new relationship between the

feature and other features that it needs in order to be created. In Figure E.3 an example from

Line2D is shown. In the window on the right, the primary key table is the feature table that

you want to relate the current feature to, in this instance the table is DBSketchEntity which

represents a Point2D. The reference should always be GUID under this primary key table.

Under Foreign Key Table the feature for which you are creating relationships should auto-

matically be selected. In this relationship window select the table entry for the relationship.

In Figure E.3 the connection is StartPointGUID. In summary by doing this you are creating

a link between StartPointGUID and the Point2D table’s primary key allowing the code side

implementation to grab the data contained in the Point2D table.

5. Add inheritance relationship

In addition to possibly creating table relationships you also need to create an inheritance

relationship. In Figure E.4 the typical relationship for a new sketch feature is shown. The

SketchEntityState is what the table should point to and both fields should be GUID. For a

typical feature that is not contained in a sketch the Primary key table should be DBInterop-

State.

6. Return to visual studio (Images from Visual Studio 2012)

7. Add table to edmx file.

In order to add these new tables to the code we return to Visual Studio 2012 and open the

Interop solution. Under the solution explorer find and open the file under the ConnectData

98

“WIN-C5DPT3GO...DBLineZDState | WIN-CEOPTS60, PONEZDEtas” | WIN-CHDPTGRO., dba.DBPOIt2D. || WIN-CEDRTAG0; . DESkatchotats | WIN-CSDPTAGOE, . Bintsropatats |

pidd ootz |

Check Existing Data On Creal Mo
Tables And Columns Sperifics
E Identity

(iame)

Dgéc\'ibunn
[l Table Designer

Enfarce For ﬁepl‘\ca!;lun Yes

Enforce Foreign .k:ey Cons"‘:rai .\;as
INSERT And UPDATE Specific

FK,LIljeZDJn\ntZD

dese |

| colvihae | daamie | Alewts |

U uriqueideritifier i

StartPaintaLID uriiguidentifier =

EndPintELIT uniqueidentifier]

-
Foreigh Key Relatiboshipy nﬁ Tables and Colunns E

ol s el

F_LIng2h_paintz Editjng propsitiss for exjsting relationship. | F_Line2n Pintzo|

FK_LineZD_Paink201

Fi_Line2D,_SketchFeature Primary kiy table: Forsign ey tablet

[peskatchentity =l |DBuneznatate
|5 (General) .
GUIC StartPaintGLIT

o[]

Figure E.3: Foreign Key Relationship between Line2D and Point2D for a start point.

WIN-CSDPT3G0...DBLine2DSkate | WIN-CSDPTIGM. | Poink2DState® | WIN-CSDPT2G0.. dbo.BBPoint2D | | WIN-CEDPT3G0: | DBSketehStats: | WIN-CSDPTIGOE. . BlrteropSkate: |

| coluiinese | Camryee | Al |
GUID uniquedentifier [9
SkartPointGLID unigueidentifier T
EndPomtGUID uniquedentifier T
-
Foreign Key Retationships: x| T 7]
Selected fielationshi| Relationship name:,
F¥_Line2D_PalntzD Editing propertiss For existing relationship. I ;.c_unegg_'smmhp'gamm{_
FE_LinezD_Pointzb1
Ffé_Line2D Shetehesture Prifiary hey bable: Forelon key bable:
= |pBsketchEntivyState >l |DEmezostats
= {General) .
Check Existing Bata On Creal No GUID GHID
[Tables And Calumns Specifics.
B Identity
(Mairig) F_Line2l SketchFeature
Dezcription
£ Table Designer
 Enforce For Replication Yes
Enfarce Forelgn Key Constral Yes
[, IMSERT And UPDATE Specific
| |

Figure E.4: Foreign Key Relationship to define inheritance between Line2D and SketchFeature.

project titled ConnectData.edmx. With this file open right click to bring up the menu seen
in Figure E.5. Click the line ”"Update Model from Database...” to open the window seen in
Figure E.6. Under the add tab, select the table that you would like to add. You will have to
add both the feature and the state tables. In Figure E.6 the DBLine2DState table is selected

to be added. Click “Finish” in the bottom to add the table.

99

Add New
Diagram
Zoomy

Gnd

Scalar Property Format

Sefect Al

Validats

Update Modzl fiom Databasze
Generate Database from Model.
Add Code Generation |tem..
Mapping Details

Wodel Brows

Properties Alt=Enter

Figure E.5: Right click menu in the .edmx file window of visual studio with “Update Model from
Database” highlighted.

Update Wizard

i.p (Choose Your Database Objects and Settings

Add | Refresh | Delete
o Vi@ dbo

(18 DBArcZDState
{71/ DBBaseCsys
[C188 DBCirele2Dstate
(18 DBCSYS
(1 DBCsyshvis
[T1f8 DBCsysPlane
716 DBExtrudeState

[ZIEE DBOfsetplane
[78 DBOffsetPtPlane
[JER DBGriginCsVs
[DBPlane

[1em DPoint

758 DEPointzy
[JFE PEPoint2DState

T DBSketchSiate

9] Plursizs

[Inclode foreign key cotumns in the model

&) stored py the entity model

Selict items to add o the model.

Finish | | Cancel

Figure E.6: Window showing how to add a new database table by updating the model from the
database.

8. Remove the inheritance line

At this point the inheritance is treated as a normal relationship so select the line that displays

to show the table’s relationship with its parent table as seen in Figure E.7. Delete this line.

9. Add inheritance relationship

100

(Y} DBSketchEntityState
=D DBInteropState

&} DBLinezDstate &

= Properties
& Reference = Properties

= Navigation Properties lo..] ¢ GUID
4= DBLine2DState F StartPointGUID
F EndPointGUID
= Navigation Properties
+= DBSketchEntity
a3 DBSketchEntity1
=l DBSketchEntit...

Figure E.7: Edmx file window showing the DBLine2DState and its parent table DBSketchEntityS-
tate right after being added in visual studio.

Right click in the background of the .edmx file and select add and then inheritance.

When the ”Add Inheritance” window appears select the base entity as the parent table
and the derived entity as the table that you just added as seen in Figure E.8 for the
Line2D table.

* Select ok to add the inheritance relationship.

* Select the GUID in the new table and delete it since the GUID is now being inherited

from a parent table. The missing GUID can be seen in Figure E.9.

{3 DBSketchEntityState

=D DBInteropState o ———————
i1} DBLine2DState & |
| i

Add Inheritance

= Praperties i Selectthe base and derived entities to creste a new inheritance relationiskip:

| & Reference } = Properties Select 3 base entity:
= Navigation Properties | ¢ GuD DESKetchEntityState
K startPointGUID M e

& EndPointGUID DBLine2DState

| = Navigation Propertiesi
=l DBSketchEntity
=1 DBSketchEntity1

Figure E.8: Edmx file window showing the DBLine2DState and its parent table DBSketchEntityS-
tate with the add inheritance window showing how to create a new inheritance relationship.

10. Rename navigation properties

As seen in Figure E.9 the navigational properties are generic names to the table the feature

101

is linked to. We need to rename these properties to give context later in the code. In this
instance we select the DBSketchEntity and we can see that StartPointGUID is highlighted
meaning that this navigational property points to the SketchEntity for the start point of the
line. We rename this property ”StartPoint” and the second entry "EndPoint”. We also need
to rename the navigation properties under DBSketchEntity to "DBLine2DStartPoint” and

”DBLine2DEndPoint”. These changes can be seen in Figure E.10.

DBSkstchEntity & *,
=D DBFeature
vy DBLine2DStatz= <& |

= Propesties - = DBSkatchEntity...
K SketchGUID Ml - Properties
| FEntiType # StartPointGUID

= Navigation Properties § . # EndPoimtGUID |
v"_;l DBSketch = Navigation Properties ‘

+=! DBLine2DState | (B DBSketchEntity
y= DBLine20State1 y= DBSketchEmit ! |

Figure E.9: Initial view of the DBSketchEntity and DBLine2DState before renaming navigation
properties.

41 DBLine2DState &
| =iy OB SketchEntity...

B Propertias
& StartPointGUID
F EndraimGUID

= Properties
M ShetchialiD
F EntiyType
Navigation Froperties i
y=! DBSketch
J= DBLine2DStart...

=l rin

y= OBLine2DEndPa...

Figure E.10: Initial view of the DBSketchEntity and DBLine2DState after renaming navigation
properties.

The current state of the database tables for Interop can be seen in Appendix D.

E.2 Code

1. Register UI Callbacks
Collect the name of the button in NX and add to the .men file. This changes for each system

102

but to do so in NX open NX and right click on the ribbon and select “customize” at the
bottom of the right click menu. From here select "Keyboard”. After the keyboard window is
open select the button you would like to know the name of on the left and copy the id from

the right side of the window.

2. Add feature to list in MainWindow.xaml.cs function PushFeature.
In the push feature function add a new if statement for the feature you are creating, similar

to Figure E.11 but customized for your feature.

isEdit = Utilicie= HasGuid(n¥Feature);
it (nxFeature NXOpen, Features, Pointfestur

nt point = MiPcint.GetInst ot CurrentPart.6UID) ;

¢ (isEdit) point.UpdateFromix(

¢ (mxFeature NX0pen . Features Skstehfeature)

Figure E.11: Code segment for finding and updating a feature in NX.

3. Add function GetlnstanceFromNX for your feature
In the ConnectData project under MUObjects you will find a file for your newly created
tables. (If you do not see it go to the .edmx file we manipulated previously and select build
from the file menu and then select transform all t4 templates.) Inside this file add a function
for GetInstanceFromNX that looks similar to Figure E.12. This will check to see if the object
exists and if it doesn’t then system will create a new feature using the constructor for your

new object passing in the object, partGUID, and current branch.

ctrude GetTrstanceFromNX(NXOpen. Features. Extruds clientExtrude; GUId partGUID, DBErsncH currentBranch)

&, [partGUID, currestBranch);

Figure E.12: Code segment for getting instance from NX.

4. Update the constructor for your current object
At this point this code will change depending on the CAD system that you are adding the

feature for. For a full example of extrude see Appendix B.

103

For NX you need to grab the feature, which is the first object passed in to the constructor,

and create a builder. This process can be seen in Figure E.13.

= MUExtrude(NXOpen.Features, B ide clientExtrude, Guld partGUID, CEBranch currentBranch)

MXExtrude = clisntExtrude;

NXOpen.Fart festurePart = MUOhjzct . MUParts| partEldD] . MXPart;

1id FeaturssUID = Suid, Newsuid();

NXCpen.Features, Extrudesullder cHentExtrudeBuilder = festurefart. Features. CresteExtrudeBuider (CidantExtrude) 5

Figure E.13: Code segment to create a builder for an extrude in NX.

At this point you need to create the message to send to the server. This message must contain
all of the data needed to fill the database table that you created. For Extrude the information
that is needed can be seen in Figure E.14. This creates the new state and feature tables,
sets the GUID to a new GUID, sets the name of the feature, and then sends the messages
to the server. These messages must be sent in order, the parent feature must be pushed
before the child state table data. After this has been done we must add the feature GUID to
the MUFeatures dictionary. This section of the code should be very similar between CAD

systems with the only part that changes being the data on the right side of the equals sign.

This is all that is needed to update the code to push the feature data. This step will require
research along with creating the state table which requires the user to define the NPCF for

the feature which takes time and research.

. Check edits

To check edits add the function Update from NX to the MUNewFeature file you are currently
editing. In this updateFromNX function you need to check every data point that is being set
in the table to see if it has changed. If no change has been made, do not send a message
because that will create a new edit state which is not needed as no edit took place. Figures

E.15 and E.16 this process can be seen but without any of the data.

. Handle incoming features from other users
To handle incoming features the msg will be executed in the function executeMessage which

is in the MainWindow file of the CAD program plug-in that you are working on. For the most

104

clirrentExtrudeState =

Direction = direction,
isPockst,
Tobouble! clientixd eBui . L md dExtend .Valls . RightHandSide),
nd . Value. RightHandSide),

GUID

Ref le = Prefil=.DES
ReferencedProfileGUID = Profil
DBBrarch =-curre anch,
BranchGUID = curremtBranch.GUID

currentEx
atureGUID,

reGUID. Tastring(),
entPart. ServerPart,

GUID = FeaturscUID;

BUID)
rude, currentExtrudeState.DBFeature . Nam:

(Useriame, currentExtrudeState. DBFaatura);

Conmecti
currentk:
ServerE

Figure E.14: Code segment showing how to create a new extrude state and feature then send those
features to the database.

JpdateFromid{NXOpen . Featiures. Extruds i g, DREEranch currentBranch)
MiExtrude = ClientExtrude;
changed =

nxopen. Features, Extrudedu llder extrudesuilder = MlObifect -CurrentPart. NXPart. Features . CreateExtrudeBuilde tExtrude);

Figure E.15: Code segment for creating a builder in an update from NX.

(changed)

Connection.send(n el s serilame, currentstate));

Figure E.16: Code segment for only sending the updated state if an edit has been performed.

105

part features will be handled by the UpdateFeature function call inside of executeMessage
(seen in Figure E.17) but sometimes this file will need to be edited such as for incoming

plane objects.

id h:(ecuteﬂﬂsagef L

({ {inLoadedRevision)

DeleteFsature((D
¥ (sumsg. ItemToAddUpdate iz DBEFestu { (Of cure jaumsg. ItemTofddUpdate) . FeatureTypeID i= 5
ct . MUFeatures. Containskey (DB Vaumsg . CtemToAddUpdate) LGUID))

t.CreateFeature F «)aumsg. TtemToAddUpdate, CADTyp=s.NX);

UpdateFeaturs((L =) sumsg . TtemToAddUpdate) ;

Figure E.17: Code segment for executeMessage showing how new messages from the server are
handled.

Create feature will always need to be edited for new features and the feature you are adding

will need to be added to the if statement contained within this function.

nch currentBranch =

rver(feature, cadType, timestamp);
rver ((ConnectData. DBBaseC5vs)Teature,
featurs =5 Connectbata.DBPlans,
ature ConnectData.Dif=valy=, cadTyp

rver (feature s ConnectData, U Avis, cadType);

newFeature = Sketch.GetInstancefFromSery § e as ConnectData.DEskstchintity) DESketch, cadType, timestamp);

newFeature;

Figure E.18: Create feature if statement showing where and how to add a new feature in the create
feature list.

106

7. Handle feature specific bugs
This method is the general method for adding new features to the state-transactional database
but as new features are added they will need to be debugged. I have only implemented a new
feature that worked exactly right first try two times out of 70 or so features so changes will

most likely be needed to fix feature specific bugs.

107

