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ABSTRACT

Characterization of Dislocation-Grain Boundary Interactions
Through Electron Backscatter Diffraction

Landon Thomas Hansen
Department of Mechanical Engineering, BYU
Doctor of Philosophy

Further understanding of dislocation-GB interactions is critical to increasing the
performance of polycrystalline metals. The research contained within this dissertation aims to
further dislocation-GB interaction understanding through three research studies. First, the effect
of noise in EBSPs on GND calculations was evaluated in order to improve dislocation
characterization via HR-EBSD. Second, the evolution of GNDs and their effects on back stress
was studied through experimental and computational methods applied to tantalum oligo
specimens. Third, statistical analysis was used to evaluate grain parameters and current GB
transmission parameters on their correlation with dislocation accumulation.

Keywords: EBSD, HR-EBSD, GND, dislocation, grain boundaries, tantalum, transmission factor
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1 INTRODUCTION

Grain boundary (GB) strengthening, due to the interaction between dislocations and GBs,
is an important strengthening mechanism in metals [1]. During deformation, GBs impede
dislocation movement thus making deformation more difficult. This manifests in the important
relationship of the Hall-Petch effect, an increase in yield strength with a decrease in grain size
[2,3]. Understanding of dislocation-GB interactions can lead to increased strength and ductility by
introducing new strengthening techniques similar to ones currently used in material design, e.g.
solid solution strengthening, precipitation hardening, transformation hardening, and
crystallographic texture modification. Interest in this topic has led to decades of research [4—8] and

it continues to be a major topic of interest to this day [9—13].

Although dislocation-GB interactions have been heavily studied, there is still much that
remains unknown to the scientific community. One reason these interactions are so difficult to
fully characterize is the immense number of possible GB configurations; Adams calculates that
there are ~133,000,000 grain boundary types assuming 1° angular resolution [14]. Due to the
enormity and complexity of the knowledge base required to fully describe dislocation-GB
interactions, this research aims to tackle only a few areas of research with will contribute its
understanding. Three studies are discussed in this dissertation which focus on 1) the technological
advances in detecting dislocations vis high angular resolution electron backscatter diffraction (HR-

EBSD), 2) the evolution of GNDs and their effects on back stress through experimental and



computational methods, and 3) the statistical analysis of experimental results to characterize

dislocation evolution throughout grains, GBs, and triple junctions (TJs).

In recent years, data collection rates for EBSD have exceeded 2000 points/second [15],
allowing it to scan thousands of GBs in a relatively short period of time. Although high EBSD data
collection rates are available, there is a significant trade-off between the amount of data that can
be collected and the reliability of the GND predictions via HR-EBSD. The decrease in HR-EBSD
reliability when data is collected quickly is associated with the increase in noise that occurs when
SEM settings are optimized for speed. Noise can be particularly prevalent near GBs where the
lattice structure is less regular and there is potential for the electron beam to interact with both
sides of the GB. The relationship between HR-EBSD reliability and noise is complicated and not
fully understood [16-19]. The first study in this dissertation expands the understanding of this
relationship between noise and HR-EBSD results, enabling researchers to select SEM settings for

efficient and reliable dislocation-GB experiments using HR-EBSD.

Knowing the effects of SEM settings on HR-EBSD results, studies relying on HR-EBSD
analysis can be used to characterize GNDs, and the results can be accurately interpreted. GNDs
are stored in deformation gradients — typically at barriers such as GBs — and the stresses they
produce combine in an additive nature to produce elastic long-range stresses, known as back
stresses. These backstresses cause strain hardening by opposing dislocation slip. Ashby
demonstrated that the GNDs which produce this backstress are required in order to maintain
compatibility at GBs. Furthermore, many have proposed that GNDs also occur at GBs due to their
inability to transmit across the interface, and the difficulty in which a dislocation can transmit from
one slip system to another slip system in a neighboring grain can be quantified via a transmission

factor. The second study in this dissertation uncovers a correlation between GB transmission



factors and the accumulation of GNDs at the GB, and it describes ways that GND maps help to
visualize backstress. Furthermore, backstress is quantified and the role of GNDs in producing it is
explored a recently developed crystal plasticity finite element method (CP-FEM) known as the

SuperDislocation (SD) model.

While the second study in this dissertation analyzes several GB transmissivity factors and
their correlation with GNDs at 61 GBs, the third study greatly expands on the second studies work
by analyzing the correlations between GNDs and many microstructure features of several thousand
grains, GBs, and TJs. By using statistical methods to analyze large amounts of crystallographic
data obtained via EBSD, relationships between the geometric properties of the microstructure and
GNDs can be uncovered that would not otherwise be feasible via human observation alone. Critical
microstructures parameters, including GB transmission factors, are found to have a strong effect
on the accumulation of GNDs and the resulting macroscopic properties of the material. These three

studies mentioned are presented in chapters 2 through 4, and are followed by a conclusion.

1.1 GND Density Calculations Using EBSD Data

Electron backscatter diffraction (EBSD), and in particular high angular resolution EBSD
(HR-EBSD) also known as cross-correlation EBSD (CC-EBSD), is a well suited experimental
method for investigating dislocations. The advent of HR-EBSD has transformed access to high
integrity strain gradients [20—22] and related geometrically necessary dislocation (GND) fields
[23-25]. HR-EBSD is capable of 20 nm spatial resolution and 0.006 degrees angular resolution
[17,26-28], making it useful for investigating dislocation structures near individual GBs with very

fine resolution. Traditional EBSD has the same special resolution, but can only determine



misorientation within 0.5 degrees [29]. BYU’s scanning electron microscopy (SEM) facilities and

vast knowledge of EBSD and HR-EBSD make it an ideal tool for characterizing dislocations.

The presence of GNDs in a crystalline sample leads to elastic strain gradients (generally
assumed to be dominated by lattice orientation gradients) in the local lattice. This is most easily
visualized by imagining a series of edge dislocations that are stacked above one another, for
example, in a low angle grain boundary (GB); the net effect is a rotation of the lattice, required to
accommodate the extra planes of atoms. The fundamental theorems of continuum dislocation
theory formally relate the gradients in the lattice strain/rotation to the GND content. A
mathematically convenient way to capture the GND density, pgyp, on the various slip systems, m,

via the Nye tensor, o, which is defined as [30,31]:
Qjj = sz{;nND b"vj" (1-1)

where b is the Burgers vector, and v is the line vector. The Nye can also be represented in terms

of the elastic distortion tensor, B€:
Am =V X B = €jimBrj; (1-2)

where € is the permutation tensor and VV X € is the curl of €. The spatial derivatives of 8€,
indicated by the subscript *,i”, are therefore the relevant strain gradients that are required from

EBSD measurements in order to establish GND content.

Such strain gradients are observed as small variations in the EBSD pattern as the scan
position rasters across the sample surface. By considering relative distortions in EBSD patterns
between neighboring scan positions, the associated changes in lattice structure can be detected,

and the strain gradients recovered. This is the underlying idea behind HR-EBSD. An EBSD pattern



is collected from a given scan point, and a second pattern is taken from a point at a known distance
in the desired direction. Regions of interest (ROIs) within the two patterns are compared using
convolutions, implemented via fast Fourier transform methods. Subtle distortions in the patterns
result in shifts of local features (such as bands and band intersections) that are quantified by the
convolution approach. A set of relationships connecting the pattern shifts to the local lattice

distortion is solved, resulting in the desired strain gradient in the chosen direction [26]:

e
B}e; - ﬁp+Axl-

A (1-3)

e __ 9B°
Bkj,i|p = o

where p is the location of the current scan point, Ax; is a vector between the current scan point
and a neighboring scan point in the i direction, L the distance between scan points, and By —
B§+ Ax; 18 the relative elastic distortion determined by comparing the two patterns from these scan

points.

Applying the cross correlation method described in the previous paragraph to equation
(1-2), the Nye tensor can be calculated at every point in an EBSD scan. Equation (1-1) can then

be rearranged, and the total GND density can be approximated via the L1 norm of the Nye tensor:
1
PGND E;Zi2j|aij| (1-4)

where b is the magnitude of the burgers vector. However, since EBSD scans are typically taken
on a 2D surface, the derivatives required in equation (1-2) are only available in the two dimensions
of the sample surface, arriving at only three fully determined and 2.5 partially determined
components of the 9 Nye tensor terms. This is generally considered to be adequate for a reasonable

estimate of the total GND density content via the L1 norm of the tensor [24,28].



GND calculations can also be performed by relying upon the orientations from EBSD
collection software instead of relying upon cross-correlation of saved patterns. This method 