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ABSTRACT 
 

Distribution of Essential Tremor in the Degrees of Freedom of the Upper Limb 
 

Adam Charles Pigg 
Department of Mechanical Engineering, BYU 

Master of Science 
 

 This study seeks to understand upper limb tremor in subjects with essential tremor (ET). 
A thorough understanding of tremor distribution will allow for the more effective development 
of tremor suppression devices, which offer an alternative to current treatments. Previous studies 
primarily focused on tremor in the hand only. This study seeks to characterize the distribution of 
tremor throughout the upper limb. 
 
 We measured tremor in 25 subjects diagnosed with ET using motion capture, which 
provided displacement information of the limb during multiple postural and kinetic tasks. Inverse 
kinematics allowed us to analyze the motion capture data in the 7 major degrees of freedom 
(DOF) of the upper limb. The power spectral density estimate was used to determine: relative 
tremor magnitude throughout the DOFs, tremor variation between tasks, variation between 
subjects, and frequency variations between DOFs.  
 
 Data analysis revealed that tremor increase is roughly proximal to distal. We also show 
that tremor magnitude in kinetic tasks is significantly higher than in postural tasks. Although we 
found some variation in tremor distribution between subjects, the roughly proximal to distal 
increase in tremor severity holds for several subsets of the study population. Finally, we found 
that tremor frequency doesn’t vary significantly (< 1 Hz) between DOFs, in subjects with severe 
tremor.  
 
 Our study shows that tremor distribution is quite stereotyped between subjects with ET. 
Furthermore, we have shown that tremor is greatest in the distal DOFs. This provides a 
compelling starting point for the development of future tremor suppression devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: essential tremor, motion capture, inverse kinematics, power spectral density, tremor 
characterization, tremor distribution, upper limb, degrees of freedom 
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1 INTRODUCTION 

1.1 Background 

 Essential Tremor (ET) is one of the most common movement disorders, affecting 

approximately 7 million people in the U.S. [1]; and, although treatments are available, many 

patients are left without satisfactory treatment options. The most efficacious medications, 

propranolol and primidone, are only effective in 50% of patients and, on average, only provide a 

50% reduction in tremor [2]. Botulinum toxin A injections also provide some tremor reduction 

but are accompanied by dose-dependent weakness in the hand [3], [4]. Surgical methods such as 

deep brain stimulation produce a greater reduction in tremor but are highly invasive; 

consequently, only few patients opt for surgical treatment (on the order of 1 in 30) [5]. In a 

recent survey designed to discover gaps in their current care, ET patients listed “a treatment 

approach other than just medications and surgery” as one of the top items [6]. 

 Tremor-suppressing devices offer a potential alternative to medication and surgery, but 

optimizing these devices to provide the greatest benefit requires an understanding of how tremor 

is distributed throughout the upper limb. To clarify, the goal of tremor-suppressing devices is 

generally to reduce tremor at the hand, but tremor at the hand is the result of tremor at joints 

throughout the upper limb. To optimally suppress tremor at the hand, we must understand which 

joints contribute most to hand tremor. Surprisingly, the distribution of tremor among the joints of 

the upper limb is completely unknown for ET, though it has been investigated for physiological 
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tremor [7], [8], [9], [10]. Most past studies on ET have focused on tremor in a single joint (often 

wrist flexion-extension) or on endpoint tremor at the hand [11]. Although such focused 

approaches are clearly appropriate for many investigations, they do not reveal how different 

joints contribute to tremor at the hand. 

1.2 Objective 

 To develop more effective tremor suppression devices, and to gain a more thorough 

understanding of ET, we characterized the distribution of tremor in the upper limb of 25 patients 

with ET. More specifically, we measured the displacement due to tremor in each of the seven 

main degrees of freedom (DOF) from the shoulder to the wrist. These data were used to 

determine the power and peak power in the 4-12 Hz band in each DOF. Comparing these 

measures between DOF allowed us to characterize the distribution of tremor throughout the 

upper limb. This information provides a more thorough understanding of ET and will enable 

future work to determine where a subject’s tremor originates mechanically (which muscles) and 

how it propagates through the upper limb and results in tremor at the hand, which is necessary to 

developing more effective tremor suppression devices. 
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2 METHODS 

2.1 Subjects 

 Twenty-five subjects with ET completed the study at the NIH Clinical Center in 

Bethesda, MD, but two subjects were later excluded because of technical difficulties during data 

collection, so here we present results from 23 subjects (Table 2-1). Prior to beginning the study 

each subject provided informed consent in accordance with NIH’s Institutional Review Board. 

Within one year prior to the experiment, each subject underwent a neurological exam performed 

by a neurologist specializing in movement disorders. The neurologist assessed the subject’s 

tremor and determined if it was consistent with ET or other tremor disorders. Subjects were 

excluded from our study if their history included stroke, head trauma, seizures, movement 

disorders other than Essential Tremor, psychotic disorders, or a current cardiac pacemaker or 

brain stimulator. In particular, if the subject’s tremor was found to include elements from other 

tremor disorders (e.g. Parkinson’s Disease or Dystonia), the subject was excluded from the 

experiment. Before the experiment, each subject was evaluated using The Essential Tremor 

Rating Assessment Scale (TETRAS) [12], [13],[14], which was performed by one of two people: 

a neurologist (DH) specializing in tremor or a research assistant (ACP) trained by DH in 

administering the TETRAS. The TETRAS was used to ensure that the study included a broad 

distribution of tremor severity (Table 2-1). 
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Table 2-1: Subject Demographics Not included in the table is handedness and family 
history of ET. All but two subjects were right handed, and all but two had a                 

family history of tremor. 

          TETRAS Scales Numerical 

Subject Sex Age 
Age 
of 

Onset 
Duration ADL Performance Total Severity Severity 

10 M 69 65 4 7 14 21 Mild 4.08E+04 
20 M 72 25 47 13 13.5 26.5 Mild 2.66E+04 
21 M 65 17 48 15 18 33 Mild 1.70E+04 
8 M 48 5 43 14 20 34 Mild 1.74E+05 
18 M 70 64 6 18 16.5 34.5 Mild 3.62E+04 
24 F 52 28 24 16 18.5 34.5 Mild 1.34E+05 
2 F 63 20 43 19 18 37 Moderate 3.48E+04 
19 F 70 22 48 15 22.5 37.5 Moderate 8.45E+04 
17 M 56 17 39 23 17.5 40.5 Moderate 1.62E+04 
14 F 61 35 26 24 20 44 Moderate 4.48E+04 
1 M 63 16 47 24 20.5 44.5 Moderate 1.56E+05 
6 F 66 45 21 25 20 45 Moderate 5.84E+04 
4 M 69 8 61 25 21.5 46.5 Moderate 1.90E+04 
15 M 64 13 51 28 18.5 46.5 Moderate 4.22E+04 
23 M 69 49 20 22 25.5 47.5 Moderate 3.94E+04 
12 F 75 65 10 28 20 48 Moderate 6.72E+04 
9 M 51 16 35 28 21 49 Moderate 6.83E+04 
13 F 76 55 21 26 28.5 54.5 Moderate 4.22E+05 
7 F 81 57 24 30 26.5 56.5 Severe 2.86E+04 
25 F 20 5 15 30 32 62 Severe 4.44E+05 
5 M 58 25 33 29 35 64 Severe 2.50E+05 
3 M 69 17 52 29 37 66 Severe 5.20E+05 
16 F 69 8 61 33 36 69 Severe 1.33E+06 

2.2 Experimental Set-up 

Five electromagnetic motion capture sensors (trakSTAR 3DGuidance by Ascension 

Technologies, Shelburne, VT) were placed on the trunk and right arm of subjects in the 

following locations: sternum, inferior to the suprasternal notch; acromion, straddling the 

acromial angle; dorsal aspect of the distal upper arm, proximal to the elbow; dorsal aspect of the 

distal forearm, a few centimeters proximal to the wrist joint center; dorsum of the hand, bridging 

the third and fourth metacarpals. A sixth motion capture sensor, placed on the end of a stylus, 
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was used for calibration. These sensors measure motion in 6 DOF with a static accuracy of 1.4 

mm in translation and 0.5° in rotation. Data were collected at 360 samples/sec. Subjects were 

also instrumented with wireless surface EMG sensors (Trigno IM by Delsys, Natick, MA) over 

15 muscles of the upper limb (data not included in this paper). 

To calibrate the motion capture setup, we used the landmark calibration method 

recommended by the International Society of Biomechanics [15], with a slight modification to 

the landmarks on the hand to enable in-vivo use, as explained in detail in [16]. Briefly, the stylus 

was used to record the location of specific landmarks on the trunk and upper limb relative to the 

motion capture sensors. To locate the center of rotation of the glenohumeral joint, we found the 

instantaneous center of rotation from subjects’ movements in shoulder flexion, extension, and 

abduction [16]. 

 During the experiment, subjects were seated comfortably in front of a table. On top of the 

table were 7 targets distributed throughout the workspace of the subject (Figure 2-1). Each target 

was the end of a thin piece of foam mounted on a dowel. We measured tremor as subjects 

pointed at a target or moved between targets (see below), so foam targets were used because they 

would bend easily and interfere minimally with subject’s tremor if the subject touched the target. 

The seven targets represented posture and movement locations common to activities of daily 

living. Five targets were arranged roughly in the horizontal plane (targets 1-5 in Figure 2-1). The 

closest target (target 5) was placed roughly 4 cm from the subject in the sagittal plane, 

approximately at the level of the xyphoid process. The target farthest from the subject (target 1) 

was also in the sagittal plane, placed so the subject could touch it with the tip of his/her index 

finger when the elbow was extended at 30 degrees. The three middle targets (targets 2-4) were 

placed halfway between the farthest and nearest target, with the left and right targets (targets 2 
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and 4) placed at 45 degree from the line connecting the closest and farthest targets. Two 

additional targets (targets 6 and 7) were placed directly above the closest target (target 5) at the 

level of the top of the subject’s head and the bottom of the subject’s chin, respectively (Figure 

2-1). 

Figure 2-1: Experimental Set-up from top (left) and side (right) views. Both views show the 
subject's right hand in the rest position beside the set-up. The numbers refer to the targets 
which the subject pointed at, or touched, depending on the test (postural or kinetic). 

2.3 Experimental Protocol 

 The experiment included postural and kinetic trials to allow us to measure both postural 

and kinetic tremor. During postural trials, subjects were instructed to point at a given target with 

their index finger, getting close to the target without touching it, and to hold that position for 30 

seconds. We asked subjects to avoid touching the targets to minimize sensory feedback, which 

could potentially affect the tremor. Subjects repeated this task for each of the seven targets, in 

pseudo-random order. During kinetic trials, subjects moved back and forth between target 5 and 

a given target for 30 seconds. We instructed subjects to touch the targets and to move at a speed 
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that could be maintained comfortably for the duration of the test. Subjects repeated this task for 

each of the 6 targets (not counting target 5), also in pseudo-random order. Whether a given 

subject first performed the postural or kinetic trials was also randomized. At the end of each 30 

second trial, subjects were asked to place their hand in a predefined area (Figure 2-1) for 5 to 10 

seconds; this allowed some rest and provided a data marker for the beginning and end of each 

trial. After completing the postural and kinetic trials, subjects repeated the whole process two 

more times, resulting in 21 postural and 18 kinetic trials per subject. The total time to complete 

all of the trials was approximately one hour. 

2.4 Data Processing 

Following the inverse kinematics method described in [16], we converted the motion 

capture sensor data into joint angles in the following DOF (positive direction listed in 

parentheses): shoulder flexion-extension (flexion), shoulder abduction-adduction (adduction), 

shoulder internal-external humeral rotation (internal rotation), elbow flexion-extension (flexion), 

forearm pronation-supination (pronation), wrist flexion-extension (flexion), and wrist radial-

ulnar deviation (ulnar deviation). The carrying angle of the elbow and axial rotation angle of the 

wrist (about the long axis of the third metacarpal) were assumed to be zero. As explained in [16], 

we followed the ISB recommendations [15] in defining all DOF except the three DOF in the 

shoulder. The ISB convention places anatomical shoulder position (zero flexion-extension, 

abduction-adduction, and humeral internal-external rotation) in gimbal lock, where joint angles 

are ill-defined. Since many of our postures and movements are close to anatomical shoulder 

position, we defined the shoulder DOF using a Z-X-Y rotation sequence, which moves gimbal 

lock far from anatomical shoulder position (in 90° of shoulder abduction). As mentioned above, 
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our definition parses shoulder movement into shoulder flexion-extension, abduction-adduction, 

and internal-external humeral rotation. 

After converting the motion sensor data to joint angles, we calculated angular 

acceleration in each DOF using numerical differentiation. Prior to each differentiation, the data 

were filtered using a 10th order Butterworth filter with cut-off frequency at 20 Hz. The power 

spectral density of the acceleration data was estimated using Welch’s method, implemented via 

Matlab‘s pwelch function. After testing several window sizes, 18 windows with 50% overlap 

were selected as it offered the best balance between frequency resolution, noise reduction, and 

peak detection. 

 The following tremor measures were calculated from the power spectral density of each 

DOF: the power in the tremor band (4-12 Hz) and the amplitude and frequency of the tallest peak 

in the tremor band. Power was determined by numerical integration of the power spectral density 

from 4 to 12 Hz. Peak detection was performed over the 4 – 12Hz band using a sliding-window 

constant-false-alarm-rate detection algorithm [17], with a 1.0 Hz window and 1.5 Hz sidebands. 

This method performs a statistical comparison between the maximum in the sliding window and 

the means of the sidebands. A maximum was considered to be a peak if its amplitude was 

statistically significantly greater than the sidebands (𝛼𝛼 = 0.05), i.e. if its amplitude was at least 2 

standard deviations above the mean of the sidebands. If more than three peaks were detected, the 

3 peaks with the greatest amplitude were reported. 

Data Analysis 

The primary purpose of the analysis was to determine which DOF were most affected by 

tremor and how this distribution varied between tasks (postural vs. kinetic) and subjects. To 

ensure robustness in our results, we compared tremor between DOF using multiple measures and 
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multiple comparison methods. First, we compared the tremor-band power between DOF in the 

following ways: 1A) We summed the power in each DOF across all 39 trials and ranked the 

DOF in terms of total power, and 1B) we ranked the DOF in terms of power for each trial and 

summed up the rankings (1-7) across all 39 trials, resulting in a total ranking across all trials. 

Second, we repeated A-B using the amplitude of the tallest peak in the tremor band instead of 

power (2A and 2B). Since the methods performed similarly, all of the reported results use 

methods 1A and 1B. 

To determine the effect of task (postural vs. kinetic) on tremor distribution, we repeated 

these four comparison methods (1A-B and 2A-B) separately for the 21 postural trials vs. the 18 

kinetic trials. The effect of subject characteristics on tremor distribution was investigated for four 

characteristics: sex, age of onset, duration of disorder, and tremor severity. Dividing by sex 

separated the subjects into male (13 subjects) and female (10 subjects) groups. Dividing by age 

of onset resulted in three groups: early onset (≤20 years, 11 subjects), middle onset (>20 and ≤60 

years, 9 subjects), and late onset (>60 years, 3 subjects). Disorder duration was determined by 

subtracting the subject’s estimated age of onset from their current age and was divided into three 

groups: short duration (≤20 years, 5 subjects), medium duration (>20 and ≤40 years, 8 subjects), 

and long duration (>40 years, 10 subjects). Tremor severity was determined by summing a 

subject’s power over all trials and DOF and dividing subjects according to total power into 

groups: mild tremor (<4x104 deg2/sec4, 8 subjects), moderate tremor (≥4x104 and <105 deg2/sec4, 

7 subjects), and severe tremor (≥105 deg2/sec4, 8 subjects). For all subject characteristics, the 

distribution of tremor among DOF was determined for each group by summing each subject’s 

power in each DOF across all 39 trials and averaging across all subjects within a group. We then 
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compared the ranked DOF between groups. These comparisons were then repeated separately for 

the 21 postural trials vs. the 18 kinetic trials. 

 We were also interested in whether tremor in different DOF exhibited the same 

frequency. To characterize the dominant frequencies in each DOF, we created for each subject a 

histogram of the frequency of the tallest peak in each DOF across all 39 trials. These histograms 

were then compared across DOF. 
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3 RESULTS 

3.1 Overall Distribution 

 As described above, raw sensor data were transformed into joint angles, filtered joint 

accelerations, and finally power spectral density estimates (Figure 3-1). Subjects exhibited a 

wide range of tremor amplitudes; between subjects, power spectral density peaks varied over 

several orders of magnitude (Figure 3-1). 

Figure 3-1: Representative Postural Test Data for wrist flexion-extension (WFE) and wrist 
radial-ulnar deviation (WRUD) in mild, moderate, and severe subjects. The top row shows 
joint angle data. The second row depicts angular acceleration, and the bottom row shows 
the power spectral density estimate for the 2 DOFs. Of particular consequence are the 
difference in tremor magnitudes between mild, moderate, and severe tremor, which is 
clearly seen in the scaling of the power spectral density estimates. 
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 For most subjects, some DOFs clearly had more tremor than others (Figure 3-2). Whether 

compared in terms of tremor-band power or peak amplitude, the DOF usually separated into a 

clear hierarchy. On average, the DOF with the greatest tremor had about 26 times more power 

than the DOF with the least tremor (Figure 3-3). The exact order varied slightly between tasks 

(postural vs. kinetic) and subjects (see below), but averaged over all tasks and subjects, tremor 

increased roughly from proximal to distal except that SIE and WRUD were slightly out of order: 

SAA < SFE < EFE < WRUD, SIE < FPS, WFE (Figure 3-4). 

Figure 3-2: Representative Test Data for a Single Subject, sorted by increasing total power 
over all trials. Total power in postural trials (left) is up to 3 orders of magnitude lower than 
total power in kinetic trials (right). 
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Figure 3-3: Comparison of Power in Postural and Kinetic Tests. The combined data is the 
average total power of all tests, postural and kinetic. 
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Figure 3-4: Distribution of Tremor Magnitude Throughout the DOF. A: Data analyzed 
using method 1A, summation of areas (e.g. total power). B: Data analyzed with method 1B, 
sorted areas. Count, on the y-axis, denotes the number of times that a DOF was given a 
particular ranking from least to greatest, for the 23 subjects. Centroids of the distributions 
noted with markers of the same color as the DOF. 
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3.2 Postural v. Kinetic Tremor 

 Subjects exhibited far more tremor during kinetic tasks than during postural tasks (Figure 

3-3). Averaged across subjects, kinetic tremor had 67 times more power (range 1–286) than 

postural tremor. There were slight differences in tremor distribution between postural and kinetic 

tasks. However, in either task, SAA had the least tremor and WFE had some of the greatest 

tremor (Figure 3-5). 

3.3 Subject Variability 

 The distribution of tremor varied somewhat between subjects, though most subjects 

showed a roughly proximal-to-distal increase in tremor (Figure 3-6). To determine if this 

variability was due to differences in subject characteristics, we plotted the distribution between 

DOF separately by sex, age of onset, duration of disorder, and tremor severity (Figure 3-7). The 

distribution was similar for all groups, indicating that these subject characteristics did not have a 

significant effect on tremor distribution. 

3.4 Frequency 

 Peaks were detected in only some of the power spectral density plots. Overall, at least 

one peak was detected in a DOF’s power spectral density in 81% of trials (range 70-90%). 

Subjects with more severe tremor generally exhibited clearer peaks (Figure 3-1). For severe 

subjects, the frequencies of the peaks in different DOF tended to fall within 1 Hz of each other, 

suggesting that the DOF within a limb tremored at the same frequency (Figure 3-8). We 

performed the same analysis for subjects with mild and moderate tremor but the results were 

unreliable because their power spectral densities exhibited fewer peaks. 
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Figure 3-5: Differences in Kinetic and Postural Task Tremor Distribution. A: Kinetic tasks. 
B: Postural tasks. Although tremor increases roughly proximal to distal in both tasks, the 
distribution in kinetic tasks is much more apparent. 
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Figure 3-6: Subject Variability of Tremor. The bold line represents the average over 23 
subjects. 
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Figure 3-7: Tremor Distribution by Demographic Subgroup. Although there are slight 
variations within the subgroups, in general tremor increases from proximal to distal. A: 
Subjects analyzed by sex. B: Subjects analyzed by severity. C: Subjects analyzed by age of 
onset. D: Subjects analyzed by disorder duration.  
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Figure 3-8: Frequency Distribution Throughout the DOF of a Subject with Severe Tremor. 
A: Graphical representation of histogram of peaks detected for each DOF. As shown, the 
vast majority of peaks fall within 4 to 5 Hz. This indicates that tremor frequency is roughly 
the same throughout all DOFs. B: Data for all DOFs over all tests (postural and kinetic) for 
the same subject. This is an alternative way of showing that the majority of peaks detected 
occurred around 5 Hz and reinforces the notion that tremor frequency is constant among 
DOFs regardless of test (postural or kinetic). Data points at 0 Hz indicate a trial where no 
peak was detected. 
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4 DISCUSSION 

4.1 Background 

 Past research in ET has generally focused on tremor in a single DOF or at the hand. Such 

studies are certainly appropriate for isolating and understanding neuromuscular phenomena of 

tremor. However, tremor is also a musculoskeletal phenomenon; because the DOF of the 

musculoskeletal system are mechanically coupled, tremor spreads from a given muscle 

proximally and distally throughout the upper limb. Therefore, understanding tremor and how 

best to intervene also requires studies involving multiple DOF. Here we have taken a step in this 

direction by characterizing how ET is distributed among the DOF of the upper limb. 

4.2  Main Findings 

 We found the distribution of tremor to be quite stereotyped: subjects’ tremor tended to 

exhibit clear separation between DOF in terms of tremor amplitude (Figure 3-2) and increase in a 

roughly proximal-distal manner (Figure 3-4): SAA < SFE < EFE < WRUD, SIE < WFE, FPS. 

This distribution was relatively robust against differences in tasks (postural vs. kinetic) and 

differences between subjects (sex, age of onset, duration of disorder, and tremor severity). In 

their investigations of physiological tremor in healthy subjects with fully extended arms, 

Morrison and Newell similarly found that the linear acceleration of limb segments increased in a 

proximal-distal manner (in excess of what would be expected due to the kinematic chain) [7]. 



 

21 
 

 There is no a priori reason to assume that the distribution of ET would be stereotyped. 

Distal limb segments certainly “inherit” some of the movement of proximal limb segments, 

which can cause the absolute movement of limb segments to grow from proximal to distal. 

However, we quantified tremor in terms of the angular motion of one DOF relative to another, so 

the proximal-distal increase in tremor we observed is not a simple consequence of the kinematic 

hierarchy. Instead, the distribution of tremor should be viewed as the result of a multi-input 

multi-output filtering operation, with tremorogenic activity in various muscles as the inputs, the 

musculoskeletal system as the filter, and tremor in various DOF as the outputs [18]. In other 

words, tremor is the product of both the input and the filter. The filtering properties of the 

musculoskeletal system are similar between subjects and have been shown to favor a proximal-

distal increase in tremor [18]. However, this is only half of the story since the distribution of 

tremor also depends on the distribution of tremorogenic activity among the muscles of the upper 

limb (the inputs). There is no a priori reason to assume that this distribution would be similar 

between subjects, especially since the amount of tremor varied over several orders of magnitude 

between subjects. The fact that the distribution of tremor was quite stereotyped suggests that the 

distribution of tremorogenic activity among the muscles of the upper limb may be stereotyped as 

well—as far as we know, this has not been measured. 

 We also found that subjects’ kinetic tremor was significantly greater than their postural 

tremor. This finding matches a previous study involving 369 ET patients in which patients’ 

postural and kinetic tremor were rated on a 4-point scale (0-3) during a standardized neurological 

exam [19]. Kinetic tremor was found to be statistically significantly larger than postural tremor, 

but only by about 0.5-1 point on average. Our quantitative data showed a greater difference; 

averaged across patients, kinetic tremor was 67 times greater than postural tremor. 
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 In addition, we noted that tremor frequency generally varied little (<1 Hz) between DOF 

(verified only for severe tremor). Prior studies on tremorogenic muscle activity found high 

coherence in EMG between muscles of the same limb but low coherence between muscles of 

different limbs [20]. A system (such as the arm) driven by periodic input (such as tremorogenic 

muscle activity) will generally respond with periodic output at the same frequency, though the 

output may also contain additional frequencies. Therefore, our finding that different DOF of the 

same limb had similar tremor frequencies is consistent with the high intra-limb EMG coherence 

found in previous studies. 

4.3 Methods 

As far as we know, this is the first characterization of tremor in the 7 major DOF of the 

upper limb (shoulder to wrist) for any kind of tremor. Past studies of tremor involving multiple 

DOF sometimes characterized tremor in terms of linear acceleration of limb segments [7], [8], 

[9], [10]]. This approach describes the absolute motion of a body segment, which includes the 

motion of more proximal segments as well. In contrast, performing inverse kinematics allows 

one to isolate tremor to individual DOF. Also, past studies sometimes investigated tremor in 

postures close to the end of the range of motion of a DOF (e.g. with the elbow fully extended), 

effectively reducing the total number of DOF of the arm. We investigated upper-limb postures 

closer to the middle of the range of motion of the various DOF, which is more representative of 

postures in daily life. 

Great care was taken to include only patients with ET. Before participating in our study, 

each subject was evaluated by a neurologist specializing in movement disorders. The neurologist 

assessed the subject’s tremor and determined if it was consistent with ET. Subjects were 
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excluded if their tremor was found to include elements from other tremor disorders (e.g. 

Parkinson’s Disease or Dystonia). 

 Detecting peaks in PSD is notoriously difficult, in part because the shape of the PSD 

depends somewhat on the method by which it is calculated. To achieve a robust estimate of the 

PSD, we used Welch’s method and varied the number of windows between 8 and 38 to 

determine the optimal number of windows. We found that increasing the number of windows 

beyond 18 produced only slight changes in the PSD shape (and therefore in the peaks), so we 

used 18 windows instead of the default of 8 windows in Matlab’s pwelch function. 

4.4 Limitations 

 Since the goal of this study was to characterize the distribution of tremor in ET patients, 

we tried to enroll as many ET patients as possible. In the end we included 23 patients in our 

analysis. Although a larger population would have been preferred, our population was large 

enough to observe stereotyped behavior across a wide range of tremor severities, age of onset, 

and disorder duration. 

 Ideally, we would have measured tremor as subjects performed their normal activities of 

daily living (ADL). However, subjects were instrumented with a total of 20 sensors, some of 

which were tethered, making it difficult to perform ADL in a natural manner. That said, the 

postures and movements included in the experiment were chosen to approximate those required 

during ADL. 

 To characterize tremor, we used a motion capture system that measures position, 

performed inverse kinematics to obtain joint angles, differentiated twice to obtain joint 

accelerations, and calculated the PSD of joint acceleration. We chose to measure position 

(instead of directly measuring acceleration) to facilitate the inverse kinematics required to 
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separate motion into individual DOF. Unfortunately, numerical differentiation amplifies high-

frequency noise, creating a noisy estimate of acceleration. We could have avoided differentiation 

by analyzing the PSD of joint angle instead of acceleration. We chose to characterize tremor in 

terms of the acceleration because this is more common practice (and would therefore allow for 

comparison with future studies) and because, compared to the PSD of joint angle, the PSD of 

joint acceleration emphasizes higher-frequency movements, including tremor, over lower-

frequency movements such as those required during the kinetic tasks (differentiation 

preferentially amplifies higher-frequency content), making it easier to detect peaks in the tremor 

band. To minimize the effect of the noise amplified during differentiation, we low-pass filtered 

before each differentiation and computed the PSD using a large number of windows to further 

average out noise. Nevertheless, the remaining noise made it more difficult to detect peaks than 

it would have been using direct measurements of acceleration, especially in patients with mild 

tremor. 

4.5 Conclusion 

According to our observation that tremor increases in a roughly proximal-distal manner, 

efforts to suppress tremor should focus first on distal DOF. For example, a single orthosis 

targeting FPS, WFE, and WRUD could potentially suppress most of a patient’s tremor. The fact 

that this distribution was relatively stereotyped between subjects indicates that a single design 

may benefit a large proportion of patients. Since tremor frequency was similar between DOF, 

low-pass filtering with a single (perhaps patient-specific) cut-off frequency may be effective for 

all DOF. That said, developing devices that suppress tremor in an optimal manner requires 

additional research to understand which muscles are most responsible for a patient’s tremor—

and therefore where to intervene most effectively. 
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