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ABSTRACT

Real-Time Feedback for In-Class Introductory 
Computer Programming Exercises

Ariana Dawn Sellers

Department of Mechanical Engineering, BYU

Master of Science

Computer programming is a difficult subject to master. Introductory programming courses

often have low retention and high failure rates. Part of the problem is identifying if students under-

stand the lecture material. In a traditional classroom, a professor can gauge a class’s understanding

on questions asked during lecture. However, many struggling students are unlikely to speak up

in class. To address this problem, recent research has focused on gathering compiler data from

programming exercises to identify at-risk students in these courses. These data allow professors

to intervene with individual students who are at risk and, after analyzing the data for a given time

period, a professor can also re-evaluate how certain topics are taught to improve understanding.

However, current implementations do not provide information in real time. They may improve a

professor’s teaching long term, but they do not provide insight into how an individual student is

understanding a specific topic during the lecture in time for the professor to make adjustments.

This research explores a system that combines compiler data analytics with in-class exer-

cises. The system incorporates the in-class exercise into a web-based text editor with data analytics.

While the students are programming in their own browsers, the website analyzes their compiler er-

rors and console output to determine where the students are struggling. A real-time summary is

presented to the professor during the lecture. This system allows a professor to receive immediate

feedback on student understanding, which enables him/her to clarify areas of confusion immedi-

ately. As a result, this dynamic learning environment allows course material to better evolve to

meet the needs of the students.

Results show that students in a simulated programming course performed slightly better

on quizzes when the instructor had access to real-time feedback during a programming exercise.

Instructors were able to determine what students were struggling with from the real-time feedback.

Overall, both the student and instructor test subjects found the experimental website useful.

Case studies performed in an actual programming lecture allowed the professor to address

errors that are not considered in the curriculum of the course. Many students appreciated the fact

that the professor was able to immediately answer questions based on the feedback. Students

primarily had issues with the bugs present in the alpha version of the software.

Keywords: engineering education, programming education, learning analytics, data visualization
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

In the digital age, programming has crept into every facet of life. Commonplace objects

like water bottles and lamps are being enhanced by sensors and data analytics. Purely mechanical

devices are becoming increasingly rare; meanwhile people are carrying computers in their pockets

and wearing them on their wrists. Programming has become so important that New York City

recently started a program to introduce computer science courses in all their middle schools [5].

Coding is going to be taught alongside the traditional math, science, English, and history courses.

It is rapidly becoming a fundamental part of our society, and the trend looks set to continue, with

the federal government making programming education a priority in 2016 [6].

The engineering industry has become increasingly reliant on programming as well. Data

acquisition and control systems, common in mechanical engineering, already required a working

knowledge of programming. With the advent of smart devices, even more mechanical systems are

being integrated with programmable microcontrollers. The ability to program allows mechanical

engineers to work with and design these systems appropriately [7].

Industry has also become dependent on computer-aided engineering programs for complex

structural, fluids, and heat transfer analyses. Much of this software is most useful when it can

be customized for the company’s needs, which often requires programming. Furthermore, an

understanding of how these computer-aided engineering programs work is essential to using them

correctly and efficiently [7]. While not every mechanical engineer will need extensive coding

experience, programming is a skill that can set a mechanical engineering student or employee

apart from their peers.

The need for engineers who can program is clear. Unfortunately, introductory programming

is widely regarded as a very difficult course [8, 9], with a low retention rate and high failure rate.

Watson and Li found that only 67.7% of students pass introductory programming courses after
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evaluating 161 courses in 15 countries. They also found that this rate has not improved over

time, despite significant research in improving introductory programming [10]. There is a high

learning curve for computer programming; it is very similar to learning a completely new language.

Because learning programming is difficult and time consuming, it can have a bad reputation among

students, similar to math anxiety in elementary and high school students [11–13]. Math anxiety

is the phenomenon where a student’s performance in math suffers due to their fear of math, rather

than their lack of ability. When students believe that math is too difficult, they perform poorly;

when a student enters a course already feeling defeated, it is very difficult for them to succeed. A

similar situation could be happening with programming students.

While programming is difficult to learn, it is also challenging to teach [4]. For the most

part, introductory computer programming courses have been organized like other science, technol-

ogy, engineering, and math (STEM) courses, with a lecture session, laboratory assignments, and

homework assignments. Students listen, take notes, and then attempt to solve coding problems

on their own. This can be compared to a language course, where students are required to speak

often in class and collaborate with one another. Language courses are fundamentally interactive;

introductory programming courses should be similar.

Course sizes for introductory programming have increased as more students seek STEM

degrees and more non-computer science students enroll. This leaves instructors with far more than

the ideal number of students for one-on-one interaction, even with generous office hours. It is

very difficult for an instructor to understand how such a large class is understanding the course

material. Researchers have observed that the learning process of students in programming courses

is fairly opaque to instructors [4]. Instructors know who asks questions in class, what questions

are asked, and what grades are given. However, struggling students are unlikely to ask questions

in class, especially if they feel that the rest of the class knows more than they do. This means that

questions asked in class are often more advanced than what the class needs to know. While grades

are a good form of feedback, they are often delayed by one or more weeks. If an instructor relies

on homework grades to determine what students are struggling with, it will be weeks before they

can understand and address the issue. A similar problem occurs with teaching assistant feedback.

Teaching assistants generally help students throughout the week and report to the instructor any
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issues the students are having. Again, this process can take a long time and the help the students

need is delayed.

Mechanical engineering students and instructors face additional challenges with computer

programming courses. Most mechanical engineering programs have long, intense courses of study.

Unlike electrical engineering, which relies heavily on computer science courses, other engineering

disciplines typically teach their own computer programming courses [14]. Programming material

is sometimes coupled with numerical methods, control systems, or mechanical-electrical systems,

requiring students to both learn basic programming and discipline specific applications in a short

period of time.

Despite these challenges, there is minimal research on teaching programming to mechani-

cal engineering students. Mechanical engineering programming courses vary widely between dif-

ferent universities, which may contribute to the lack of research. A few researchers have tested out

using MATLAB in courses that do not traditionally use computer programming [15]. Researchers

did a comprehensive survey of which languages are taught in mechanical engineering in 2002 [14].

One researcher has examined a new method for teaching numerical methods [16]. Much of this

research is based on anecdotal evidence rather than empirical studies. As the need for engineers

who can program increases, more research on teaching introductory programming and applications

to mechanical engineering students is needed.

While mechanical engineering educators have not thoroughly researched programming ed-

ucation, computer science and electrical engineering educators have. There are two main areas

researchers have focused on: 1) making lectures more interactive and 2) gathering data on student

programming behavior. To improve lectures, researchers have investigated the flipped classroom

method, live coding, and pair programming with generally positive results. The flipped classroom

method involves students reviewing lecture material at home and completing assignments and ac-

tivities with the instructor during class [17]. Live coding describes a situation where an instructor

or students program during class instead of showing static, prepared examples [18]. With pair

programming, students are put in groups of two to complete assignments [19]. One student will

program while the other watches and provides input. Pair programming has great potential and has

become very popular in introductory programming courses. While these methods have improved

interaction in lecture, they have not made the students’ status clearer to instructors.
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To help instructors better understand what students are struggling with, researchers have

gathered data on student programming behavior. Earlier researchers had teaching assistants record

what students had problems with over a period of time [3, 20, 21]. More recently, researchers have

created integrated development environments (IDEs) and learning tools that automatically record

student data, analyze it, and visualize it for both instructors and students [1, 4, 22–26]. Learning

tools for students provide automated feedback on their programs without having to wait for an

instructor’s help. Visualizations for instructors show course wide trends in errors, time to comple-

tion, lines of code, etc. Additionally, visualizations can make it easier for instructors to examine

large amounts of student code. While many of these tools and IDEs have been effective, few pro-

vide immediate feedback. Most only show trends over time and take significant computational

power [1, 25]. Instructors were able to use the data to identify individual students who were strug-

gling and improve lecture content for the next semester [23]. This is beneficial; however, the data

was not used to help a large portion of the current class. The few tools that provided live feedback

were used during open office hours or lab sessions [4], rather than in a lecture environment; again,

this limited the ability of the instructor to use the data to help the entire class quickly and obtain a

better idea of how students understand lecture material. Time can be saved by taking care of the

most common issues when the class is together. The additional time could then be spent helping

individual students.

1.2 Research Objectives

The overall objective of this research is to improve introductory programming courses

for mechanical engineering students by introducing live feedback on student code during

programming lectures. The following research questions will be investigated:

1. RQ1: How can live feedback be implemented to improve programming lectures?

2. RQ2: How can live feedback be adapted for a mechanical engineering programming course?

This research aims to answer these questions by accomplishing the following research ob-

jectives:

1. RO1: Develop a live compiler feedback system suited for use during a lecture
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2. RO2: Evaluate the live compiler feedback system

3. RO3: Recommend future improvements for the live compiler feedback system

To determine whether or not the live feedback improved the effectiveness of programming

lectures, two factors were considered: 1) student performance and 2) instructor understanding of

student status. Students took quizzes to measure their performance and fill out surveys to record

what they struggled with. The instructor took a survey recording what they believe the students

struggled with. To determine the effectiveness of live feedback for mechanical engineering courses

specifically, numerical methods topics were tested along with programming topics.

The following hypotheses were made regarding the research objectives:

1. H1: Students will perform better on quizzes when the instructor has access to live compiler

feedback

2. H2: The instructor will more frequently know what students struggled with on an assignment

when they have access to live compiler feedback

3. H3: When error finding exercises are given, the live feedback will have a more significant

effect on quiz scores for programming topics

4. H4: When program writing exercises are given, the live feedback will have a more significant

effect on quiz scores for numerical methods topics

5. H5: The instructor and students will find the live compiler feedback useful

1.3 Thesis Overview

Chapter 2 of this thesis will provide an in-depth literature review of flipped classrooms,

live-coding, pair programming, learning analytics, compiler data, and live feedback. Chapter 3 will

propose a solution to the problem statement. It will then describe and explain the design of live

compiler feedback system developed by the researchers. The preliminary testing performed will

be explained. The case study and experiments used to evaluate the live compiler feedback system

will be discussed in detail. Responses from a survey performed by the BYU ME Department will
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be evaluated. Chapter 4 will present the results of the case studies, experiments, and survey and

provide an analysis. Chapter 5 will conclude this research and discuss limitations, future work,

and conclusions.
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CHAPTER 2. BACKGROUND

There has been extensive research over the last decade on improving both computer pro-

gramming education and engineering education at the university level. Traditional lectures and

a lack of data have been identified as major issues with current methods. This chapter will re-

view past research in improving lectures and gathering data in programming courses. Previous

implementations of compiler data gathering systems and live feedback systems will be discussed

in detail. An overview of the topics discussed is shown in Figure 2.1.

2.1 Alternatives to the Lecture-based Approach

Using the traditional lecture format as the only method of university-level teaching has

many shortcomings. While lectures allow for a large amount of material to be transferred to many

students in a short amount of time, they are often ineffective [27]. The traditional lecture format

also prevents professors from receiving feedback from students except when the students ask ques-

tions. Research has shown that while some students are motivated enough to ask questions, most

struggling students are not [3]. This means that a professor will not know how most students are

struggling based on questions asked during a traditional lecture. Furthermore, students often think

they understand the course material during lecture, and then find themselves completely lost during

a lab or homework assignment. Since these problems only manifest themselves when the student

is outside of the lecture, the professor does not generally hear about it for a significant amount of

time. It is typical for a professor to receive weekly updates on what students are struggling with,

either from teaching assistants or from homework grades. By this point, the troublesome lecture

topic was at least a week ago and the ideal time to address the issue has passed.

Programming courses pose additional issues. Learning to program is similar to learning

a foreign language; it comes with a massive learning curve. Memorization of syntax and logical

reasoning are both necessary to write even a simple program. A single typo can cause a program
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Figure 2.1: Overview of topics discussed in the background section

to fail completely, often leading to lengthy lists of compiler errors for one mistake. This can be

incredibly discouraging for students already tentative about learning programming [28]. Students

may be unable to complete assignments due to these small errors, and therefore struggle to fully

understand the material. Since so many small things can cause errors, from missing semi-colons

to bracket placement, it is difficult for an instructor to evaluate the class’s understanding without

spending time with each student. Additionally, many students do not program during lecture,

further reducing the instructor’s ability to evaluate their errors and areas of confusion. As with

other courses, an instructor generally finds out about student issues at a weekly meeting with

teaching assistants, who can make observations after a week of assisting students with laboratory

and homework assignments. By this point, students may be a week behind where they should be

in terms of understanding the lecture topics.

While these problems are generally recognized, lectures still prevail because they are eas-

ier to implement and maintain. First, the current university system favors the traditional lecture

format, so no radical changes are required. Second, professors are incredibly busy, and lectures are

relatively easy to develop when compared to experimental methods. However, experimental meth-

ods are becoming more common in undergraduate programs due to their effectiveness. The rest of
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this section will focus on several experimental methods that are currently being implemented, and

therefore are promising examples for this research.

2.1.1 Flipped Classrooms

Overview

The flipped classroom is a method that has been implemented across many fields, with

varying degrees of success. The method was developed by two high school instructors trying to

help students who missed class. When they posted lecture videos online for these students, they

found that students who had not missed class also used the videos to help them remember the

course material. After observing the benefits of recording lecture material, they decided to try

teaching in a different way [27].

The premise is to provide students with more hands-on experience with assistance from the

instructor. Instead of having students sit through a lecture and attempt to do homework and labs on

their own, professors provide lecture material in the form of videos or slides. Students go through

the material before class, and then spend class working on assignments.

Advantages

There are many advantages to the flipped classroom model that have been thoroughly in-

vestigated. Students can learn at their own pace, work with classmates in class, and avoid excessive

periods of frustration without aid. Professors can work more directly with students, improve stu-

dent attitudes towards the material, and help students solve more open-ended problems. Overall, it

provides a very flexible approach to learning for both the students and professors. Instructors can

enable collaboration between students more easily than when students perform their assignments

individually at home. Education research in general is moving more towards flexible learning

schemes, as it has become abundantly clear that everyone learns differently. As such, this is a very

timely method and is becoming more and more accepted [27].
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Disadvantages

Unfortunately, there are also several downsides to the flipped classroom approach. The

most significant issue is student involvement. The success of the method hinges on students re-

viewing the lecture material before class. If students do not review the material, they have no

questions in class and cannot proceed on the assignments with the professor lecturing. Researchers

have found that students are generally willing to do the preparatory work early on in a semester.

However, as the semester continues and the workload increases, preparatory work drops off. Addi-

tionally, the amount of preparation done varies student by student. A successful student will spend

significantly more time reviewing the preparatory material. Student preparation is more difficult to

regulate when not in a traditional lecture environment [27].

The second most important issue is the preparation required by professors. Instead of

preparing slides, the professors need to prepare to actively assist with homework and lab assign-

ments, or come up with interactive assignments. This requires both more time and effort, and is

sometimes infeasible. A professor has to be motivated to successfully implement a flipped class-

room [27].

There are several other disadvantages identified by the research, including technical issues,

an informal learning environment, and keeping the class moving. As with any method or system

that relies on the internet, there will invariably be problems where someone cannot access the lec-

ture materials, the formatting becomes distorted, someone does not have access to the internet, etc.

An informal learning environment can also develop when students are watching lecture material

on their own, rather than in a controlled setting. They may fail to take notes or decide not to pay

attention. The additional assistance in class may make them less motivated to understand the ma-

terial on their own. Lastly, when each student is reviewing the material at their own pace, it is

more difficult to keep everyone on the same page. Students in one group might figure something

out with the professor that is not shared with the rest of the class [27].

Implementations in Engineering

In 2015, Kerr wrote a survey paper of 24 studies where the flipped classroom model was

applied to engineering education. Overall, the studies indicated that students were satisfied with
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the flipped classroom method and improved their performance [17]. She determined that while the

flipped classroom can be effective, additional improvements are needed to increase the chances

of success. These measures generally involved adding accountability and credit for students com-

pleting work outside of class, either through quizzes or rubrics. Other factors that can impact the

success of a flipped classroom are class size and the type of course. While previous research has

shown that various class sizes and course types have been effective with a flipped classroom, there

are not sufficient data to draw any conclusions. Overall, the flipped classroom method has poten-

tial and is generally successful in improving problem-solving skills, understanding, retention, and

satisfaction of students [17].

Implementations in Computer Programming

Maher used a flipped classroom method for four different computing courses over two

years, ranging from introductory to graduate courses [29]. She developed several strategies over

those two years, most of which revolved around collaboration. She had students participate in pair

programming and designed all in-class activities to be collaborative.

Students found the videos to be especially useful for programming topics, since they could

follow along with the video at their own speed. Additionally, they could refer back to the videos

when completing other assignments. However, there were a few downsides to the videos, including

occasional poor quality, lack of conceptual information, inability to ask questions, and isolation

while watching the videos [29]. With quality, well-balanced videos, it is likely that these issues

could be remedied.

Along with the videos, students enjoyed having a hands-on experience in class, explaining

things to other students, and the approach overall. Many students were initially concerned about

the new approach, but by the end of the semester had become appreciative of the method. Overall,

the flipped classroom method was successful across a variety of computing courses, but more

research is needed to refine the strategies for maintaining that success.

Harding also implemented a flipped classroom strategy, having his students view tutorials,

lecture videos, and readings before class [30]. He then used a collaborative, web browser-based

IDE for in-class programming exercises. The professor had the ability to upload an instructor

version of a piece of code. Students then each had access to a copy of that code that they could
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individually edit without affecting anyone else. This enabled the professor to easily share code

with the class during lecture, enabling in-class exercises. Students were able to practice what was

being taught immediately and ask detailed questions.

Along with the main student-instructor modes, there were several other modes for website

users: everyone, student leader, watching or “lurking”, and group mode. The “everyone mode” put

all of the students into one IDE, like Google Drive for programming. Student leader allowed one

student to make changes while others watched. Lurking allowed students to view their classmates’

code, generally to assist one another with a problem. Lastly, group mode allowed students to

operate in a collaborative, Google Drive type environment with only specified students.

These different modes enabled several useful flipped classroom features. Students were

able to show their own code to the class and take turns teaching each other and explaining topics.

The instructor could easily view any student’s code, make changes, and explain them. Outside of

the classroom environment, the instructor was able to help students collaboratively in real-time on

their at-home assignments. Students could also help each other collaboratively in this way. While

the instructor aid was not used in this situation, it is a potential benefit of the collaborative, online

IDE system [30].

Overall, both students and the instructor found the flipped classroom format useful for their

introductory programming course. Students found the format helpful compared to following the

instructor’s code on slides. However, no quantitative data were presented. It is therefore difficult

to actually measure the effectiveness of the in-class exercises from this study.

2.1.2 Live Coding

One solution to some of the issues facing the flipped classroom is to only partially flip a

classroom, generally by implementing interactive activities, exercises, or quizzes during lecture.

Live coding is one of these methods. Some instructors use live-coding along with a traditional

lecture [31], while others use live coding in a flipped classroom [18].

Traditionally in programming courses, pre-written programs are included in lecture slides.

Live coding removes these pre-written programs and has either students or the instructor write

code from scratch during lecture. This allows students to practice or watch every step of the pro-

gramming process, including debugging [18]. Live coding also prevents students from memorized
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canned solutions, encouraging them to actually understand how the solutions work. Some past

research has shown that students may learn faster when live coding is used during class [18].

Rubin performed a live-coding experiment with four sections of an introductory program-

ming course over a semester at the Colorado School of Mines [31]. He measured final grades at

the end of the semester, comparing students who had live-coding examples with those who had

static examples. He found that student final grades were statistically the same at the end of the

semester. However, students in the live-coding sections performed significantly better on the fi-

nal project [31]. Project scores generally indicate the ability of students to apply what they have

learned to a new, more complex problem. Rubin concluded that live-coding was at least as effec-

tive as static examples, and potentially more effective. Live-coding made it easier for the professor

to show students how to debug.

Shannon examined the effect of live coding on in-class quiz scores in a flipped classroom

environment to determine whether there were short term benefits to live coding over static examples

[18]. She split four main topics into subtopics, and used a live coding example for one and a static

example for the other. Students watched a lecture video before class. In class, students were able to

ask questions before going through the live coding or static example. After the example, students

were given a 10 minute quiz.

Shannon did not find any significant difference in quiz scores between the live coding

and static examples. However, there was a difference in score distribution. After a live coding

example, quiz scores demonstrated a normal Gaussian distribution. After a static example, quiz

scores exhibited a binomial distribution, with students either performing very well or very poorly

[18]. It is possible that the live coding example allowed for the quiz scores to more accurately

represent the students’ understanding of the topic.

Overall, live coding has some proven benefits in terms of student performance. Addition-

ally, it makes logical sense; showing students each step of writing a program can help them see the

thought process behind each step. It decreases the cognitive load a student experiences when faced

with trying to comprehend the entire solution at once. Live coding is a flexible method that can be

applied for an entire lecture period, or for only a few minutes for an exercise.
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2.1.3 Collaborative Coding

Another common solution to issues with the traditional lecture approach is collaborative

coding, more commonly referred to as pair programming. Pair programming is a specific teaching

model where students are placed into pairs. There are many different ways to assign pairs, from

skill level to personality tests [19, 32]. Each person will take turns acting as the driver or the

viewer. The driver uses the mouse and keyboard to write code, while the viewer looks on and

catches mistakes, discusses algorithms, etc [33]. While not always implemented in lecture, pair

programming allows students to receive help quickly despite a professor not having the time to

individually assist each student in a large course. Pair programming is becoming more popular

and has been found to be effective in many studies, improving student retention and attitudes about

programming [19, 34–37]. However, pair programming is only effective when pairs are formed

carefully [33]. Extensive research has been performed to improve how pairs are formed and how

best to implement pair programming in various courses, ranging from introductory programming

to senior level courses and distributed learning environments [21, 33, 37–40]. Collaboration has

been shown to particularly help women in programming courses [41].

Several researchers have created collaborative IDEs to further enable pair programming.

Some are plug-ins and others are browser-based, but nearly all of them are language specific.

The browser-based IDEs are very similar to Google Docs, but with compiling capabilities. These

IDEs can also enable better interaction in distance learning environments. Most researchers have

found their collaborative IDEs to be effective, but the amount of empirical evidence varies greatly

[34, 42–47].

2.2 Learning Analytics in Programming Education

Over the past several years, computer science and engineering education researchers have

been gathering data to help tackle the high failure rates in introductory programming courses [10].

These data can provide a detailed view into the concepts with which students struggled in pro-

gramming assignments. The data have been used both to improve course materials and lectures

over an extended period of time and to aid teaching assistants in real-time. There are three main

areas the research has focused on: student code, student errors, and student behavior. Researchers
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Figure 2.2: A mock-up of the instructor view dashboard from [1]. The instructor view shows

number of students passing various percentages of reference tests, the amount of development

time by quartile, and a summary of student grades, classes, branches, and comments.

have developed systems that analyze student code structure, compiler errors, and student behavior,

includes number of compiles, number of lines written, number of questions asked, etc.

For a thorough review of learning analytics in programming education, see [48] and [25].

Issues with data analytics in learning are discussed in [49].

2.2.1 Student Code Analysis

Luke developed a program that continuously collects student data while they program [1].

Events were captured when students performed a variety of actions, such as compiling or running

their code, by a plugin for Eclipse. A snapshot of the current code whenever an event was trig-

gered was stored as well. These data were analyzed and presented in a visual format for both the

instructor and students, shown in Figure 2.2.
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The instructor received a class overview for a specific assignment. This included two pri-

mary plots: a plot of the number of students passing various percentages of reference tests by date,

and the development time by quartile. Lastly, a summary table with data for each student was pre-

sented. This table included each student’s submission status, grade, percentage of reference tests

passed, percentage of code completed, number of commented lines, number of classes, number of

methods, and solution time [1].

Because Luke was experimenting with a computer science course, he was able to utilize

unit testing to gather further information about student code. Most engineering courses, aside from

computer engineering, do not teach or utilize unit tests due to time constraints and quantity of

course material. Some of these additional measures are cyclomatic complexity and code coverage

percentage. Luke analyzed the cyclomatic complexity over time by quartile. He defined cyclomatic

complexity as “the number of logical branches in solution code divided by the total number of

methods” [1]. Code coverage, the percentage of the solution run when all unit tests are used,

measures how much students are using unit tests. While these features are interesting, they may be

less useful in an engineering environment.

Luke also used comment percentage, code churn, code velocity to visualize his data. Com-

ment percentage is simply the percent of the lines of code that are comments. This can indicate

how well students are documenting their code. Code churn is how many lines of code changed

each day over existing code. This allows the instructor to see when students are getting stuck, and

when they are making progress. Code velocity refers to the velocity of edits. In conjunction with

code churn, code velocity can indicate when students are programming a lot but making very little

progress [1].

While Luke developed a very thorough program for gathering live student data, he has not

yet published research evaluating the program. The data collected was based on ease of gathering

it and what might be useful. Furthermore, these data were gathered for at-home assignments.

Glassman studied two main compiler data systems, OverCode, and Foobaz. OverCode

creates a visualization of solution variation for a specific assignment. The solutions are tested

for correctness by an autograder so only “correct” solutions are used for the visualization. This

allows the instructor to focus on program structure and content instead of simple syntax errors.
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OverCode was meant to help teachers find common misconceptions, create rubrics, and choose

good examples to show the class [24].

The user interface allows the instructor to analyze a function or section of code. Common

lines of code and the number of submissions they appeared in are shown in a window. These lines

can be filtered by the number of submissions. Instructors also have the option to combine similar

lines and ignore unimportant variations using a rewrite rule. This again allowed the instructors to

focus on important differences in student code.

To pre-process the student code, Glassman used a Python package to remove style-based

inconsistencies. She then executed each solution on a set of test cases while recording a program

trace. The values of each variable as the tests are executed are recorded. Common variables were

then identified as variables with the same values throughout a program. All of the variables were

then renamed for consistency; common variables were all given the same name. Stacks are then

formed from solutions that share an identical set of lines of code. Extensive work was done to

avoid variable naming conflicts [24].

To evaluate OverCode, Glassman chose three problems from an introductory Python course

to gather data from. She found that the code ran quickly enough to be used easily, with a running

time of 15 minutes for 3875 student solutions. A user study was conducted with twelve subjects to

evaluate user satisfaction with OverCode. Users were asked to use OverCode to look over student

solutions, and then write a page about various ways the students solved the problem. Users found

OverCode “less overwhelming, easier to use, and more helpful for getting a sense of students’

understanding.” Subjects were able to determine that students were having issues with control

flow. However, they were not always clear on what the student was misunderstanding [24].

A second user study was performed to determine how quickly instructors could look through

student solutions using OverCode. The results showed the instructors could look through more so-

lutions using OverCode when the problems were more complicated. Instructors were also able

to provide more feedback when using OverCode on the most complicated test problem. Lastly,

with the most complicated test problem, subjects were more confident that their feedback would

be relevant to many students after using OverCode [24].

Glassman performed a similar study focusing on Foobaz, a compiler analytics program that

gathered data on student variable names and allowed instructors to provide feedback. The process
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and results were very similar to the study on OverCode. Generally, users found the feedback to

be useful. Instructors felt like they were able to help many students at the same time, greatly in-

creasing their efficiency. The number of responses they were able to make confirmed the increase

in efficiency. The software also enabled instructors to create custom quizzes based on the stu-

dent’s variable names. Students with similar issues in their code received the same quiz. Students

found that the quizzes made them think more carefully about variable names. For both OverCode

and Foobaz, clustering algorithms were essential in simplifying a large set of student code into

something easily understandable [50].

Wang et al. created a visualization tool called Path Viewer to help instructors understand

student strategies and areas of confusion. Paths are created based on test cases; a sequences of

zeros and ones is assigned to each run based on which tests the code passed. A plot is created with

student paths over time, from one sequences of tests passed to another. Paths with more than five

students are shown on an aggregate plot. An example plot is shown in Figure 2.3. Paths that result

in successful code are colored green, while incorrect programs that pass the test cases are colored

blue. Example code is shown when the user selects a path. For example, students could be going

back and forth between passing two different test cases. This indicates that their solution to one

problem is causing another problem, demonstrating a lack of understanding [2].

After using Path Viewer during a course, the instructor realized that the test cases given

were often inadequate for the assigned problems. Additionally, the instructor recognized that

students were not utilizing the principles of recursion, and were instead relying on lengthier al-

gorithms [2].

2.2.2 Student Error Analysis

Garner et al. collected data on student problems by having teaching assistants report the

problems after helping a student. He categorized student issues by topic, including basic struc-

ture, program design, arrays, loops, data flow, constructors, etc. Garner found that the number

of problems per student was normally distributed with the student’s final grade in the course [3],

as shown in Figure 2.4. Students achieving average grades had the most problems according to

teaching assistants, while low and high performing students did not report as many issues. Garner

hypothesized that high performing students asked for less help, and therefore had fewer problems
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Figure 2.3: A 4-gram visualization of student paths while performing programming exercises from

[2]. A 1 indicates a test case being passed; a 0 indicates a failed test case. Students with oscillating

paths are likely going between two different errors repeatedly.

reported. Low performing students also likely asked for less help, had fewer problems reported,

but still struggled in the course.

Garner also found that arrays, data flow, loops, constructors, and control flow were the

most problematic topics, which was consistent with other studies. In the end, Garner concluded

that many simple issues persisted throughout the entire semester, suggesting that students were not

actually learning the subject material [3].

Robins also found that simple areas such as understanding the task, program design, and

mechanics had very high frequencies of mistakes [20]. The authors took this as evidence that

the basic design principles of programming can be more important than language specific syntax.

They cautioned that learning analytics must be evaluated very carefully and never generalized, as

there are so many factors that could affect the data.

The previous studies, [3, 20], focused on students performing programming assignments

individually. Hanks replicated [20] with pair programming to determine the difference when col-

laboration was involved. While students had the same number of errors overall as those in studies

without pair programming, they asked for less help, indicating that they were able to solve more

problems on their own [21].
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Figure 2.4: The number of student problems by final grade recreated from [3]. The distribution ap-

pears to be similar to a normal Gaussian distribution, with average students having many problems.

High and low performing students had fewer problems.

Altadmri recently analyzed one of the largest sets of student compilations over the course

of a year [22]. He was able to classify the most common errors, the types of errors that are most

common, and how repeatable errors are. How often a student repeats an error shows whether the

mistake was a simple syntax problem or a deeper lack of understanding. Examples mentioned by

Altadmri as repeating issues include using the wrong type in a function call or missing a return

statement.

The data showed that run-time errors are much more difficult for novice programmers to

solve than compiler errors, as would be expected. This was evaluated by looking at the time to

resolve an error. The authors also looked at the frequency of mistakes made over a semester. The

number of syntax errors generally decreased through a semester. However, the number of semantic

and type errors increased. Altadmri concludes that additional time should be spent on semantic and

type problems [22].
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2.2.3 Student Behavior Analysis

Instead of having teaching assistants manually record student issues, Toll recorded student

programming sessions with an online programming environment [51]. He was able to determine

how much time students spent actively programming. Additionally, he found that students who

turned assignments in early were much faster at completing assignments than students turning in

assignments later. He suggested using these data to inform which students need more instructor

attention [51].

In 2015, Lin et al. tracked student eye movement while students looked at C programs to

find bugs. They found that high performing students looked through programs logically, rather

than line by line. Lower performing students went through programs line by line, often starting

at the error and moving backwards. Lin demonstrated a difference between high and low per-

forming students based on their debugging behavior, which could potentially help instructors teach

debugging more effectively [52].

In 2016, Estey and Coady developed a programming course tool to record compiler and

interaction data for an introductory programming course. The programming course tool allowed

students to ask for hints, ask for a repeated hint, and attempt questions. Along with those data, the

number of submissions and compiles were also recorded. The study was performed over several

semesters. Estey found a significant difference between students at the top, middle, and bottom

of the course. Successful students attempted more questions, compiled more, and submitted more

assignments. Students who failed the course asked for more hints and repeated hints, submitted

less, compiled less, and tried fewer questions [53]. These trends were repeated over three semesters

and were visible within the first two weeks of the semester. Estey was able to identify 30% of

students at risk of failing within the first two weeks of the semester. By the end of the semester,

the metrics from the collected data recognized 81% of the students who failed [53].

Using patterns in the interaction data, Estey was able to identify students who would even-

tually fail the course, even if they began the course with a high grade. Initial success on simple,

early assignments did not indicate success in the course. Instead, study habits directly affected suc-

cess. Attempting more practice problems, compiling multiple times, and refraining from relying

on hints lead to success. The more a student did this, the more successful they were. Relying on

hints, especially repeated hints, without trying to compile was the most sure sign of failure in the

21



course. Estey suggests that these students do not understand that relying on hints is an ineffective

way to learn. These data could be used to help students adjust their perception of effective learning

methods [53].

With the large amount of compiler data that has been gathered, multiple models have been

created to predict student performance based on the data. Both the Error Quotient and Watwin

Score models are based on the differences between a student’s compilation attempts [54,55]. They

can account for between 30 and 40% of the variation in student final grades. Carter, Hundhausen,

and Adesope created a model incorporating semantic correctness along with syntactical correct-

ness called the Normalized Programming State Model (NPSM) [56]. They defined four states:

syntax and semantics correct, syntax correct but semantics incorrect, semantics correct but syntax

incorrect, and both incorrect. Semantic correctness was determined only by the lack of run-time

exceptions, which was an acknowledged weakness of the work. These and a few other factors were

used to create the NPSM model. Carter et al. compared their method with the Error Quotient and

Watwin Score, and it performed significantly better in predicting student final grades. As demon-

strated by [56] and [53], compiler data can be used to predict student performance. More work in

this area can be found in [57, 58].

Olivares and Hundhausen have created a learning analytics platform called OSBLE+ that

allows instructors to visualize various data regarding student performance [59]. OSBLE+ is a

Visual Studio plug-in that gathers student programming data and implements a social media plat-

form [26]. Students can make and reply to posts, which are also recorded by the plug-in. The

instructor has a dashboard that shows the number of active students, lines of code written, time

spent on the assignment, number of compiles, number of errors per compile, number of debug

executions, number of breakpoints, number of runtime exceptions, number of posts, number of

replies, etc [60]. Hundhausen has found that being active in the social media aspect of the tool

correlates with success in the course [61–64]. Olivares and Hundhausen hope to use these data to

automate interventions for struggling students by prompting them to participate in the social media

aspect [60]. Olivares et al. are still in the process of testing OSBLE+ and have not yet, as of the

time of writing, published their results.

Olivares and Hundhausen have also studied and recommended a process model for IDE-

based learning analytics. They suggest that three research questions need to be answered as re-
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searchers continue to use data analytics for computational learning: “What learning data should

be collected within an IDE in order to provide a foundation for improving student learning? How

should the learning data be analyzed in order to provide useful information on student learning?

Based on the learning data, what interventions should be delivered through an IDE in order to bene-

fit student learning?” [25]. Their process model involves collecting data, analyzing data, designing

interventions, and delivering interventions. This model has not yet been evaluated [25].

2.3 Live Feedback Systems

Many automated feedback systems produce displays of data over a period of weeks or days

and thus provide long-term feedback. Live feedback is instantaneous and generally applies to only

one specific exercise or problem. Live feedback has been experimented with in several forms, from

compiler error feedback for students to clicker quizzes to automated feedback for instructors. All

three types will be discussed in the following section.

2.3.1 Student Feedback

IDEs automatically provide feedback in the form of compiler errors. An interesting factor

with compiler errors is the negative psychological affect it has on novice programming students.

Attempting to run a program and finding an extensive list of seemingly incomprehensible errors is

very demotivating, and likely contributes to the high failure and low retention rates in introductory

programming courses [28]. Additionally, one error can cause dozens more, often making the

problem seem worse than it actually is.

Matsuzawa investigated how compiler errors should be visualized to improve students’

view of compiler data and improve students’ self-assessment. He created a compiler error viewer

that allowed students to see the number of errors they had fixed over time, how long it took them to

fix errors, and percentage of working time used to fix compiler errors. This was able to help rectify

false student perceptions of debugging taking up all of their time. In the end, the viewer decreased

student fear of compiler errors for 44% of students and 77% of students found the viewer useful

for learning how to correct compiler errors [28].
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Along with presenting compiler errors for students, several researchers have worked on

automatic feedback systems for students. This allows students to get help at any time and any

place necessary. Keuning performed a review of papers on automated feedback generation for

programming exercises in 2016 and found that most feedback systems simply provide information

about test failures from “black-box” problems, generally based on compiler errors [65]. Automated

feedback for an incorrect solution or poor code quality is much more rare. Unless a feedback

system is programmed with specific problems, they have trouble providing students with help on

how to proceed. Additionally, these pre-programmed feedback systems do not allow for multiple

solution variations; instead, they nudge the student towards the default solution. This can inhibit

students who think differently, as well as stop students from learning different methods. Keuning

concluded that more research is necessary to improve automated feedback systems, as well as more

thorough and empirical research [65].

In 2016, Le classified the different analysis techniques used in automated feedback systems

[66]. The first method, Library of Plans and Bugs, attempts to guess which strategy a student is

using and then finds discrepancies between the student’s program and the stored program. These

discrepancies are matched with potential errors for that specific problem. This method requires an

extensive database of previous student strategies and errors and can be computationally expensive.

However, it is also more broad that some other methods [66].

The second method, Program Transformation, uses only one reference program. It abstracts

the students program and compares high level steps with the reference program. It then compares

the details of the program. This method can help students with both large and small picture issues

[66]. However, it is also limited to one reference solution, which can cause issues as discussed

in [65].

The third method is the Weight Constraint-Based Model. This method was developed by

Le and involves creating a semantic table that contains different solution strategies. Weights were

calculated for a well-formed program and compared to the weights for the student’s program. The

method would then attempt to predict the student’s strategy and analyze the solution accordingly.

This method is very flexible if implemented correctly [66].

In 2017, Parihar combined automated feedback with automated program grading [67].

Common errors were identified and matched with a typical compiler message. Feedback was
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developed for the compiler message including a simple explanation and examples of both valid

and invalid statements. These common errors covered about 78% of the total errors experienced

by students during the course of the study. Parihar’s study showed that students found the more

detailed feedback useful [67]. This provides evidence that compiler errors are confusing and often

unhelpful to introductory programming students. A simple adjustment can make the errors much

more useful.

2.3.2 Instructor Feedback

Live feedback for instructors has generally taken two forms: clicker quizzes and compiler

data. Clicker quizzes can quickly show how the course understands a topic based on multiple

choice questions, while compiler data can show student errors and outputs. Live feedback is useful

for instructors to quickly determine whether or not the class understands a concept. When live

feedback is given, instructors can respond immediately and attempt to remedy any issues.

Rawat tested a more general form of live feedback in 2008. Rawat found that using mobile

tablets in an undergraduate electrical engineering course enabled instructors to instantaneously

poll students and review their work, which improved student performance [68]. Purdue University

implemented a program called Signals that automatically emails students with suggestions on how

to improve their performance when the real-time data indicate they are struggling. They found

improvements in the number of students earning higher grades, as well as more students seeking

help earlier on in the semester [69]. This indicates that many more students would seek help if

they realized they were struggling and were given suggestions on what to do to improve.

Clicker Quizzes

Clicker quizzes are multiple choice quizzes given during class that students respond to

through a hand held device or computer. The results for a clicker quiz are instantaneously available

and are generally viewed in a bar graph or similar chart. In 2006, Chen examined rapid feedback

in a mechanical engineering statics course. He compared using PDAs to flashcards and found no

difference between the two immediate feedback methods. Students found the feedback helpful in

both cases. The instructors found that they were able to determine which concepts were difficult
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for students based on the rapid feedback. Lastly, student grades improved in the following course,

dynamics and mechanics, implying that rapid feedback had a long term effect on the students,

rather than a fleeting effect [70].

Lantz and Stawiski performed a clicker quiz study in a more controlled setting to eliminate

potentially confounding variables present in a traditional classroom, using video lectures. They

found that subjects in the immediate feedback group performed significantly better on quizzes

during the lecture. Additionally, subjects in the immediate feedback group performed significantly

better on follow-up quizzes two days later. Furthermore, their scores improved on the follow-up

quizzes compared to the initial quizzes. They found no difference in results based on the timing of

the quizzes during the video lecture [71].

Compiler Data

In 2016, Char used Cody Coursework, produced by Mathworks [72], to automatically grade

and record results for student solutions written in Matlab in an introductory computing course in

electrical engineering. Instructors write tests for the automatic grading and can view detailed re-

ports online. Data were not gathered on student debugging; students were asked to debug their code

before submitting what they think is correct to Cody Coursework. Char believes Cody Coursework

will be useful and is performing further studies [73].

In 2012, Chang created a mobile instructor interface connected to a collaborative, web-

based programming IDE called CollabodeTA. The instructor interface was used by teaching assis-

tants in lab sessions, which are common in introductory programming courses. The interface gave

teaching assistants an overall idea of how the class was performing on the assignment in real-time

as well as individualized information for the students they were helping [4].

The interface includes four key components: class layout view, console output view, student

panel view, and a help queue. The class layout shows each student’s image in their corresponding

seat in the classroom, shown in Figure 2.5. Each student image also contains a summary of their

status on the current assignment. The console output view shows summaries of current outputs

students were producing during the lab session. The student panel view shows more detailed

information for each student, shown in Figure 2.6. The help queue shows which students were in

the queue, as well as how many errors they had [4].
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Figure 2.5: Class layout view from [4]. 1) shows the student cards, each with a student image and

an indicator showing whether or not they are on the help queue. 2) shows the toolbar, allowing the

user to select a view. 3) shows the help queue. 4) shows the area left for additional information if

needed.

Each student panel contained a time line of how often the student had run their code as well

as whether or not the runs were successful. The panel also included an event stream with output

from each run, including whether or not it was successful, errors, and run time exceptions. If any

other students got the same errors or exceptions, it is noted on the panel next to the error. The user

can check the other students’ similar errors or view the current student’s code causing the error.

The user can also see whether or not the student is currently in the help queue [4].

Chang used cluster optimization to combine similar errors and exceptions and increase the

usefulness of the data and speed up the visualization process. Clusters are formed using fuzzy

string comparisons between outputs, errors, and exceptions. Each cluster is then stored in the

database and mapped to a unique identifier. This made it easier for Chang to store and retrieve the

data [4].
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Figure 2.6: Student panel view from [4]. 1) shows the student’s image and name. 2) shows the

event stream, including time stamps, errors, and exceptions. 3) shows a timeline indicating when

successful and unsuccessful runs occurred. 4) indicates whether or not the student is on the help

queue.

To validate the interface, Chang used recorded data from a semester of an introductory

programming course at the Massachusetts Institute of Technology (MIT). The recorded data were

run through CollabodeTA and shown to teaching assistants from that semester to simulate an actual

lab. Teaching assistants were given a list of questions to consider while viewing the data to evaluate

how useful the interface was and whether or not they could determine the issues students were

having. All of the study participants felt that the console output view and classroom view were

useful. They appreciated the mobile aspect because it was easy to use. They were able to answer all

of the questions asked them by the study. No quantitative data were provided in the dissertation [4].

Researchers also used the recorded data to analyze each lab and examine student behavior.

They found that students did not run their code often and did not iterate on each assignment. This
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suggests students were not testing as they went along and did not improve their algorithms once

they passed initial tests. No quantitative data were provided on these studies in the dissertation [4].

Chang suggested several additions for CollabodeTA, including adding compiler metrics,

unit testing, and non-fatal errors. However, it was acknowledged that gathering these types of data

would be more difficult. Additional visual cues could be added to the student cards in classroom

model, including progress bars and colors indicating struggling students. She suggests using fuzzy

comparison to eliminate unnecessary clusters [4]. Chang demonstrated the potential of a live

feedback system in an introductory programming course.

2.4 Programming and Numerical Methods Education in Mechanical Engineering

There is minimal research on programming and numerical methods education in Mechani-

cal Engineering, despite the growing prominence of programming in the field [14]. In 2002, Hodge

and Steele felt that with the advent of Mathcad and Matlab, the need for structured programming

languages would become less necessary over time. They sought to examine the current state of

programming courses in mechanical engineering programs across the country. They found that

most programs require more than one programming language, generally C++ and Matlab. Despite

this, C++ is rarely required in future courses, while Matlab is. Hodge and Steele were surprised by

the number of courses still involving a structured programming language like C++, when Matlab

is easier to use. They hypothesized that as time goes on, structured programming languages will

be replaced completely with Matlab [14]. However, as noted by [7], that has not yet occurred.

Most research involving programming in mechanical engineering focuses on introducing a

programming tool, generally Matlab, in a freshman or sophomore level engineering course [15].

These additions are typically effective based on anecdotal and survey evidence, with little quan-

titative data. More recently, Aden-Buie examined different types of final exams for a numerical

methods course, finding that a multiple choice test with partial credit was the most appropriate [74].

Coller performed one of the few studies on improving the teaching of numerical methods

in mechanical engineering in 2009. He created a video game based on a race car and had students

implement various numerical methods to control the race car. Coller found that students were

much more engaged, spending additional time on the projects, and had a better comprehension

of the course material as determined by concept mapping. Students working on the video game
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project felt that both numerical methods and computer programming were much more important

than students in a traditional numerical methods course [16].
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CHAPTER 3. METHODS

This chapter will introduce the proposed system to integrate live compiler feedback with

in-class exercises. The tools used to develop the feedback system and the final result will be

described. All of the experiments used to evaluate the feedback system will then be discussed,

including a case study, a simulated course experiment, and a teaching assistant study.

3.1 Proposed System

The traditional educational feedback method involves teaching assistants gathering infor-

mation from student help sessions and reporting back to the instructor. This process typically takes

at least one week. By this point, students have had multiple additional lectures that build on that

previous topic. If students were confused with the original material, they are likely more confused

with the new material. The cycle of feedback for students can be even slower; assignments can take

weeks to be graded, especially in large courses. Students are often unsure if they really understood

the material until they receive their grades.

This work attempts to inject feedback for the instructor into an interactive lecture envi-

ronment to 1) increase student involvement and 2) improve instructor understanding of student

comprehension. The interactive lecture environment was accomplished by incorporating a live-

coding exercise, shown to be effective by [31]. Live-coding is defined as the instructor coding an

exercise from scratch in front of students, rather than presenting students a completed solution.

To improve instructor understanding, feedback based on student compiler data was provided as

suggested in [1,4,23,26]. Unlike previous studies, the feedback in this study was given live during

lecture as students completed an in-class exercise.

Previous research suggests that a browser-based integrated development environment (IDE)

can enable in-class interaction and compiler data gathering [4, 30]. A website with compiler ca-

pabilities was developed that would continuously gather student compiler data and display it for
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Figure 3.1: The welcome page of the website for an administrator.

the instructor. A detailed discussion of the website is included in Section 3.2. A website was cho-

sen in part because students could program on their own laptops without having to download any

additional software, minimizing the barriers to adoption.

3.2 Browser-Based IDE

The user interface of the browser-based IDE will be described in detail in the current sec-

tion. The development of the website and packages used will then be discussed.

3.2.1 User Interface

The basic user interface includes a log-in and welcome page, shown in Figure 3.1. Addi-

tional pages are restricted based on the user’s authorization and appear in pull down menus at the

top of the screen. There are four levels of authorization: student, teaching assistant, instructor, and

administrator. The student has access only to the student interface, while the teaching assistant, in-

structor, and administrator have access to the instructor interface. Administrators also have access

to an Admin tab, shown in Figure 3.2, that allows them to change the authorization of any user and

update passwords.

Student Interface

The student interface includes only one tab, Practice. This tab takes the student to the

assignments page, shown in Figure 3.3. This is a list of assignments created by the instructor.

A student can select an assignment and choose to start the assignment from the menu shown in

Figure 3.4. The student is taken to a text editor with Save, Compile, and Run buttons, shown
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Figure 3.2: The administrator page of the website.

Figure 3.3: The assignments page of the website.

in Figure 3.5. The text editor was created by CodeMirror and can recognize language specific

syntax [75]. If the instructor saves the assignment with code already written, that code will appear

in the text editor. Students can write code and save, compile, and run their programs. Any compiler

errors or console output are shown in the bottom left of the screen, seen in Figure 3.5.

There are a few limitations to the student interface. Students cannot use the C++ cin com-

mand, as there is no console for users to provide input. This was deemed irrelevant to the research

because file input and output is only one short topic in a programming course, and therefore was

not included; however, it could be added in the future. Additionally, common lines of code used in

ME 273 such as system(“pause”) cannot be used, as the code is compiled on a Linux server rather

than through a Windows system. System pause is unnecessary for the website, as it was used to

keep the output window open after the program finished executing. With the website, the output

remains on the screen until the next compile attempt. If cin or system pause are used, the server

times out after 15 seconds and sends a message to the user explaining that their code is incorrect.
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Figure 3.4: The student assignment menu.

Figure 3.5: The student text editor.

Instructor Interface

The instructor interface has the same assignments page as the student interface shown in

Figure 3.3. Instructors have access to the blue “Add Assignment” button, which takes them to the

“Create Assignment” page, shown in Figure 3.6. Students do not have access to this button or

page. The assignment is created by entering a name and clicking the submit button. This takes the

instructor back to the assignments page. Clicking on an assignment allows the instructor to edit,

start, and view data for any assignment through the menu shown in Figure 3.7.

The edit feature allows the instructor to give students a starting point or code solution if

desired. The edits are made on the page shown in Figure 3.8. The instructor writes code in the

text editor and saves the new file with the save button. The Add and Remove buttons shown
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Figure 3.6: The instructor create assignment page.

Figure 3.7: The instructor assignment menu.

in Figure 3.8 are there for future functionality and will allow the instructor to add and remove

files from the programming project. This would be useful for experimenting with object oriented

programming. If the instructor has edited an assignment, when students first start an assignment,

they will receive the instructor’s edited version. After students work on the assignment, their own

changes are saved over the instructor’s on their local version.

An instructor can start an assignment just as a student can. The instructor’s text editor page

is the same as the student’s shown in Figure 3.5. However, the instructor’s data will not be included

in the visualization.

The view data option takes the instructor to the Compiler Data page, shown in

Figures 3.9 - 3.12. The purpose of the Compiler Data page is to help the instructor visualize

how the class is performing on an in-class assignment. The included metrics were chosen after

reviewing previous research and discussing potential metrics with three mechanical engineering

professors who have taught introductory programming. The six metrics are: 1) persistence of er-

rors, 2) current outputs, 3) total errors, 4) total outputs, 5) times compiled, and 6) run success per-
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Figure 3.8: The instructor edit assignment page.

centage. A brief definition of each metric is provided in Table 3.1. Each metric will be described in

more detail in the following paragraphs. Previous work by Luke involved several in-depth metrics

in his compiler data feedback system [1]. However, these measures were displayed with respect

to time over the course of several days. Since the current proposed system needed live feedback,

simpler measures were chosen. The simpler the measure, the more quickly the instructor can inter-

pret the data and take action. Additionally, Luke’s proposed measures had not yet been tested, so

their effectiveness was unknown. Chang used both output and compiler errors in her live feedback

system [4], and found them to be effective and informative. Number of times compiled and run

success percentage were suggested by the consulted professors.

The Compiler Data page consists of six bar graphs and two tables divided into four sections,

shown in Figures 3.9-3.12. The first section shows the current state of student solutions overall,

with persistent errors and current outputs. The second section shows the total errors and outputs

throughout the exercise. The third section shows data for individual students, with the number of

times compiled and the run success percentage for each student. The final section contains two

tables, one for current errors and one for total errors.

The first bar graph shows “Persistent Errors”, as seen in Figure 3.9. Persistence is defined

here as the current occurrences of an error over the total occurrences of that error for the exercise.
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Table 3.1: The definitions for each compiler metric used for the website

Metric Definition
Persistence of Errors The number of current occurrences of an error over the total num-

ber of occurrences of that error for all students combined

Current Outputs The number of occurrences of the most recent output printed to

the console by each student

Total Errors The number of occurrences of each error that occurred during the

exercise

Total Outputs The number of occurrences of all output printed to the console by

the students

Times Compiled The number of times each student compiled

Run Success Percent-

age

The percentage of runs that were successful for each student

This provides a value between 0 and 1 describing how often the error has been fixed; or alterna-

tively, how infrequently the error has been fixed. For example, if a “variable is not declared” error

occurred five times during the exercise, but only two instances occurred on the most recent compile

for each student, the persistence would be 2/5 = .2. This calculation is shown in Equation 3.1.

persistence =
current occurrences
total occurrences

(3.1)

This statistic is calculated for the class as a whole. An error with high persistence has rarely

been resolved, while an error with low persistence may occur often but is fixed quickly. The y-axis

of the bar graph is the persistence, while the corresponding error messages are displayed along the

x-axis. Due to space limitations, only the top five persistent errors are shown.

The second bar graph shows “Current Outputs”, as seen in Figure 3.9. Output refers to the

text students are printing to the console. In the future, controls could be added to only include

specific types or formats of output to better filter the outputs included. This provides the instructor

with information about the current state of student solutions, such as how many students are getting

the correct answer. Intermediate outputs can be seen as well. The number of occurrences is shown

on the y-axis, with the outputs on the x-axis. Again, only the topic five most frequent outputs are

included, but this can be adjusted.

The third bar graph shows “Total Errors”, as seen in Figure 3.10. Total errors refers to all

of the errors encountered by students throughout the exercise. This provides the instructor with
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Figure 3.9: The first section of the instructor Compiler Data page showing persistent errors and

current outputs.

an idea of how many errors are encountered and which ones are most common. A comparison

between this graph and the Persistent Errors graph can emphasize which errors need more attention

and which are common but easy to fix. The number of occurrences is shown on the y-axis, with

the error messages on the x-axis. Only the top five most frequent errors are included.

The fourth bar graph shows “Total Outputs”, as seen in Figure 3.10. Total outputs refers

to everything written to the console by students throughout the exercise. By comparing the total

outputs to the current outputs, the instructor can see how student solutions changed during the

exercise, as well as what percentage of solutions were correct. The number of occurrences is

shown on the y-axis, with the outputs on the x-axis. Only the top five most frequent errors are

included.

The fifth bar graph shows “Times Compiled”, as seen in Figure 3.11. This graph depicts

how many times a student ran or compiled their code (running includes compiling the code). Times

compiled allows the instructor to see how often students are testing their code. The number of

times compiled has been correlated with success in an introductory programming course [56]. If

an instructor sees that students are not compiling frequently, he or she can recommend that they

test their code more often and explain that compiling more often can help the students become
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Figure 3.10: The second section of the instructor Compiler Data page showing total errors and

total output.

Figure 3.11: The third section of the instructor Compiler Data page showing times compiled and

run success percentage for each student.

better programmers. The number of compiles is shown on the y-axis, while an ID indicating the

student is shown on the x-axis. This is currently just an integer from 1 to the number of students.

It could easily be replaced with student names or other identifiers if desired.
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Figure 3.12: The third section of the instructor Compiler Data page showing tables for the current

and total errors.

The sixth and final bar graph shows “Run Success Percentage”, as seen in Figure 3.11. The

Run Success Percentage (RSP) is calculated and shown for each student. The RSP is defined as the

number of successful compiles over the number of total compiles. An RSP of one indicates that

the code ran without errors every time. An RSP of zero indicates that the student still has errors in

their code or has not yet attempted to run their code. This graph allows the instructor to see how

many students have eliminated errors from their programs. Because the times compiled and RSP

graphs are next to each other, the instructor can also compare how the number of times compiled

relates to success. The run success percentage is shown on the y-axis, while a number indicating

the student is shown on the x-axis.

The final section of the Compiler Data page consists of two tables, one for Current Errors

and one for Total Errors, as shown in Figure 3.12. Each error is message is displayed next to the

number of times it occurred. While these tables show the same data as two of the bar graphs, the

tables were considered useful because of the extra space for the message being displayed. The bar

graphs required the error messages to fit in a small space along the x-axis, occasionally cutting

off part of a longer error message. The tables allow for the full error messages to be displayed.

Additionally, the tables hold all of the errors, rather than the five most common errors. The tables

were primarily used when the bar graphs indicated a problem and the instructor wanted more
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information. Because the tables are a secondary source of information, they are located at the

bottom of the Compiler Data page.

3.2.2 Website Development

The website was developed using several different languages and packages that will be

discussed in this section. The server, database, and text editor used will also be described. The

processing used to sort the compiler data and visualize them will then be explained.

Programming Languages Used

The browser-based IDE was developed using C#, HTML, and JavaScript. HTML was used

to design the web pages and JavaScript was used to allow for interaction. The Bootstrap library was

used for the visual style of the website, to keep the formatting consistent and neat. C# was chosen

for the rest of the website, including the server and data analysis. C# was injected into JavaScript as

needed by means of Razor pages on the server. C# was selected due to the developer’s familiarity

with the language and its useful querying functions.

Server

The server was created using a C# Core Web Application template. This provided default

code for database access, user log in, web pages and associated controllers, and all necessary

backing code for running the site. The server sets up an HTTP connection to listen for requests

and respond to them.

The server attempts to follow a REST (Representation State Transfer) design pattern. This

allows the system to be highly scalable as it removes the need for the server to store the current

state of each of the users. It also allows all resources to be requested easily by means of a simple

URL (Uniform Resource Locator).

Each part of the website is managed by a different controller. The controllers determine

what content should be returned and whether the user has the correct privileges to request the

information.
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The server is also responsible for compiling student code. This was achieved by using

gcc, a free, open source compiler. When the server received code from the students, it started a

new process which compiled the code. It would then verify if the program compiled correctly by

looking at the exit code. If it compiled correctly, the server would then start a process to run the

student code. All output was intercepted by the server and processed so it could be returned to the

student.

Database

The database was created using Microsoft Entity Framework. This handles the access to

the database automatically regardless of the chosen SQL implementation. SQlite was chosen as

the back end due to its simplicity as a file based implementation of SQL, which means it does not

require the installation of a SQL server. A server based SQL implementation such as PostgreSQL,

MySql, or Microsoft SQL server could be used in a future implementation as they perform better

at handling data races.

Information was broken into tables which handled user information, assignments, assign-

ment files, student files, and compiler/program output messages. User information stores the user-

name and password information for students. Passwords were handled by means of salt and hash.

Assignments and assignment files store information about the assignment and any files provided

by the instructor. Files submitted by the student are stored in student files and are broken into what

are referred to as sessions. A session is all the files submitted by the student for a single compile

attempt.

Any messages generated by either the compiler or the student code are stored in messages

and are also tracked in terms of sessions. Messages that refer to errors are flagged so they can be

analyzed.

Text Editor

As suggested by [30], CodeMirror was used as the text editor for the website. CodeMirror

is an open source text editor built for browser applications [75]. It is implemented using JavaScript

and can be specialized for a variety of different programming languages, including C++, the lan-
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guage taught in the experimental course. CodeMirror handles color-coding of reserved characters

in a programming language, tabbing, line numbers, and other formatting generally taken care of

by an IDE. It also has an extensive API that can enable auto-completion, search and replace func-

tionality, and other useful features of IDEs. While these additional features are not implemented

at the present time, they could be integrated in the future to improve the website.

Processing the Compiler Data

Compiler data were stored in the database for each student every time they compiled or ran

their code. The data consisted of a session, compiler messages, whether a compile was performed,

whether a run was attempted, and whether a run succeeded. The compiler messages contained

error messages, console output, and default compiler messages such as “Compilation complete

with code: ” or “Program completed with code:”. The data were sorted and processed to produce

the outputs for the instructor’s Compiler Data page.

First, the default compiler messages were removed, as they referred to neither errors nor

output. Dictionaries were created for total error, current errors, total output, current output, suc-

cessful runs, failed runs, and compiles. A dictionary is a data type that connects a key and a value.

In this case, they key was either the error or the output. The value was the number of times each

occurred. This data type was chosen because it allowed the number of occurrences of an error or

output to be looked up by the corresponding error message, and similarly with outputs. With runs

and compiles, the student identifier was connected with the number of runs and compiles, again

allowing for easy look up.

Old sessions were stored in a list of globally unique identifiers (GUIDs). Both sessions

and student identifiers were stored as GUIDs. A GUID, sometimes referred to as a universally

unique identifier (UUID), is a 128-bit integer that can be considered unique because it has a very

low chance of being duplicated [76]. GUIDs were used as identifiers both to maintain unique

identifiers and to remove personally identifying information from the database and protect student

privacy.

Error messages were identified by looking for a string containing the word “error.” The

error messages were then trimmed by a custom function that removed extraneous text, leaving only

the error message. A fuzzy string comparison [77] was then used to compare the error message
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to previously stored error messages. If a match was found, the count was increased for that error

message in a dictionary. If no match was found, the error message was added to the total errors

dictionary. If the session was the most recent session for the user, the same process was followed

for the current errors dictionary.

Output was identified by a property in the message indicating that it was not an error mes-

sage. Since the default compiler messages had already been removed, this indicated that the mes-

sage was console output. The console output was checked against the dictionary of total outputs in

the same manner as the errors, using a fuzzy string comparison. The current outputs were extracted

in the same way as the current errors, again with the fuzzy string comparison.

To gather data for each student individually, namely compiles, failed runs, and successful

runs, properties of the session were queried. If the session indicated a compile performed, the

student ID was checked for in the compiles dictionary. If not present, it was added with a count of

one. If already present, the compiles count was incremented for the corresponding student ID. The

same method was used to collect runs performed and runs attempted (i.e. failed runs). If a run was

successful, it was not checked if the run was attempted since it must be attempted to be successful.

Therefore, the only runs marked as failed were those attempted but not successful.

After all of the data were gathered into the correct dictionaries, the dictionaries were sorted

by the counts from highest to lowest. The data were stored in instances of classes created specifi-

cally for errors, output, and run information. A list was created with instances of each class. The

RSP for each student was calculated at this point and stored in the correct class. A number was

assigned to each student and stored in the class as well. These lists were then added to a data

structure containing all of the data for the Compiler Data page.

The only compiler metric not calculated at this point is the persistence of each error. Be-

cause of how the class was structured, this is calculated when the displayed data are updated. The

code iterates through each current error and finds the corresponding error in the total errors list

using fuzzy string comparison. It then divides the number of occurrences of the current error over

the total number of occurrences and stores this value.

A fuzzy string algorithm was used to compare errors and outputs because similar errors

often vary by only a few words. For example, if a student forgot to declare the variable x before

using it, the error message might read, “Var x not declared.” If another student named that same
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variable y, the error message would read “Var y not declared.” These error messages would not

be evaluated as equal, despite the type of error being the same. This complicates the visualization

because the top five errors could all be the same error with just slightly different wording. Fuzzy

string algorithms calculate approximate equality between strings. The use of a fuzzy string al-

gorithm was recommended by [4] and implemented by [24]. There are other ways of combining

similar errors, such as using clustering algorithms [78] or machine learning [57]. However, these

are more computationally intensive, and this system aimed to provide live feedback. Fuzzy string

algorithms allowed the system to quickly combine similar errors. Console outputs had the same

problem, so the fuzzy string algorithm was applied to outputs as well.

There are several fuzzy string algorithms that were investigated for implementation in the

website. A C# library called FuzzyString [77] was used. It provided access to eleven different

fuzzy string algorithms, including the Hamming distance, Jaccard distance, Levenshtein distance,

longest common subsequence, longest common substring, overlap coefficient, etc. After testing

several of these algorithms, a combination of longest common subsequence, longest common sub-

string, and overlap coefficient was used with a normal tolerance, as defined by the package. More

complex calculations like the Levenshtein distance took too long to calculate for long strings, such

as the error messages, and therefore were impractical. The fuzzy string algorithms were tested on a

few common error messages to make sure they were not equating errors that were significantly dif-

ferent from one another. They were also tested on a few output strings for the same reason. While

the algorithms did not give perfect results, they correctly combined most messages and were con-

sidered effective and sufficient to meet the research objectives. This allowed the most common

errors and outputs to be identified.

Visualizing Compiler Data

To visualize the compiler data collected, bar graphs were created using Plotly [79]. Plotly is

a powerful visualization tool with a JavaScript API. The bar graph was chosen because it is simple

and still effectively displays the data, although other types of graphs were available. Since Plotly

was used, the instructor has the option to export any bar graph if desired. Plotly also automatically

adds some interactivity, like mouse-over actions and zooming. In the end, Furthermore, Plotly was
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chosen because of its simple implementation and powerful capabilities and it was easy to integrate

into the website.

Tables were created in HTML using Bootstrap for consistent formatting.

3.3 Evaluation of the Browser-Based IDE

To make sure the website worked correctly, several preliminary tests were performed.

These served the purpose of an initial load test on the database and server, as well as checking

for bugs.

To test the website in both realistic and controlled environments, case studies and a simu-

lated course experiment were performed. The case studies allowed an instructor to use the website

as they wished, with few restrictions. The experiment allowed the researchers to control variables

and test the impact of each. To further evaluate the effectiveness of the website’s feedback, another

study was run with several ME 273 teaching assistants. The case studies are described in Section

3.3.2 and the simulated course is described in Section 3.3.3.

For all of these experiments, the website was tested with course material from Brigham

Young University’s (BYU’s) ME 273 course. ME 273 includes material on introductory computer

programming as well as numerical methods, an engineering specific topic, and therefore was ideal

for testing the live feedback system in an engineering environment. Additionally, ME 273 was

taught by the same instructor for consecutive semesters, allowing for consistency between experi-

ments.

3.3.1 Preliminary Tests

Preliminary tests were performed for load testing in the CAD Lab. Load testing allowed

the researchers to determine how many users the website could handle simultaneously. A basic

version of the website with only the tables on the Compiler Data page was used. Fourteen vol-

unteers logged onto the website at the same time and attempted to program a Newton-Raphson

algorithm to find the root of a simple polynomial function. The website and server were monitored

for issues. General trends and bugs were observed and recorded. It was immediately evident to

the researchers that the experimental subjects primarily programmed in Python and not C++; the
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most common errors were missing semi-colons and not declaring variable types, two significant

differences between Python and C++. While not statistically significant, this indicated that the data

could potentially be used to determine what students were struggling with.

Further tests were performed during Spring Term 2017 in the ME 273 course. The class

consisted of around thirty students. Students were asked to bring a laptop to class and log into

the website. They then performed an exercise created by the instructor. At this point, editing an

assignment was not enabled and the assignments were emailed to the students. Several issues were

resolved as a result of both of these tests, including a CodeMirror integration problem and the

website’s ability to deal with changing window sizes. If the website crashed, it was either restarted

immediately or the experiment was ended.

3.3.2 Case Study Design

Case studies were used to test the website in a realistic environment. The instructor and

students were given access to the website and the instructor was free to use the website in any way

they wanted. This allowed for observation of how the website might be used by an instructor, and

what training might be needed for it to be effective. Tests were planned during Fall Semester 2017

in the ME 273 course, taught by the same instructor as Spring Term. The class contained about

90 students. Students were asked to bring a laptop to class to participate. While not every student

did this, many were able to contribute. Instead of fuzzy string matching, the most common error

messages were replaced with a predefined string. For example, any error message containing the

phrase “variable not defined” was rewritten to say “undefined variable.”

Data were collected in three forms: notes taken during the lecture period, student code

recorded in the website, and a student survey at the end of the semester. Because student data were

involved and because one of the researchers was a teaching assistant for the course, approval was

obtained from the Internal Review Board (IRB) before the experiment began. The IRB approval

documents and application are included in Appendix D. Students gave consent for their data to be

used by taking the survey at the end of the semester. A research assistant unrelated to the course

was assigned to remove identifying data from the survey and website before being analyzed by the

researchers. No data were analyzed until grades were finalized and submitted for the semester. For

additional protection of student rights, the researcher did not participate in grading for the duration
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of the experiment and did not know which students had consented to be part of the experiment.

This ensured that students’ grades would not be affected by their participation in the experiment.

Student Code Data

Student code was collected for each assignment given during the experiment. Any errors

encountered and output written to the console were stored, as well as the number of times compiled

and run. Data about the success of the run were stored as well. The data were initially stored in a

SQLite database. A research assistant parsed through the data to remove data for students who had

not given consent.

Student Survey

At the conclusion of the semester, students were asked to complete a survey. The full

survey is included in Appendix B.1. As discussed in Section 3.3.2, the survey fulfilled the dual

purposes of gathering data and obtaining student consent to participate in the experiment and have

their data used. The survey thoroughly explained the student’s rights and available communication

outlets should they need assistance.

The survey then asked students to rate their experience with the website and how well the

professor used the website. They were then requested to provide any additional feedback.

3.3.3 Simulated Course Experimental Design

After the case studies were performed, a more thorough experiment was performed to ob-

tain more data and evaluate the effect of several different variables. The experiment aimed to test

four different aspects of the in-class exercises and the website:

1. The effect of having the website feedback on student quiz scores

2. The effect of having the website feedback on how well the professor knows what the students

are struggling to understand

3. How error-finding exercises vs. program-writing exercises affect the usefulness of the web-

site feedback
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4. How useful the website feedback is for programming concepts vs. numerical methods prob-

lems

Simulated Course Design and Overview

A simulated ME 273 course was designed for the experiment. Eight lecture topics were

chosen from ME 273: four on C++ and programming and four on numerical methods. The top-

ics, shown in Table 4.5, were chosen based on which would lend themselves to shorter in-class

programming exercises and which would work well with the limitations of the website.

The simulated course took place over the course of one month, with one or two experiments

each week depending on scheduling conflicts. Twelve volunteers were recruited to be students, and

one volunteer was recruited to be an instructor. The instructor was chosen from a group of former

ME 273 teaching assistants, while the students were former ME 273 students. Recruiting will

be discussed further in Section 3.3.3. The twelve volunteer students were separated into control

and experimental groups based on schedules. The same number of graduate and undergraduate

students were included in each group to maintain balance.

Each simulated course period took less than thirty minutes. The first five to seven minutes

were spent in lecture, in which the instructor would review an ME 273 topic. Students were al-

lowed to ask questions during this part of the experiment. After the lecture, students were given an

in-class exercise between five and ten minutes long. Students were asked to stop after the time was

up. Random assignment was used to determine the type of exercise. To simulate a large course

Table 3.2: The topics used in the simulated ME 273 course. The topic

types and assigned exercise types are also shown.

Topic Topic Type Exercise Type
C++ Basics Programming Program writing

C++ Flow Control Programming Program writing

C++ Functions Programming Error finding

Roots of Equations Numerical methods Error finding

C++ Static Arrays Programming Program writing

Numerical Integration Numerical methods Error finding

Least Squares Regression Numerical methods Program writing

Initial Value Problems Numerical methods Error finding
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where few students will ask questions, students were not allowed to ask questions during the ex-

ercise. With the experimental group, the instructor used the website to see live compiler feedback

while students programmed. The instructor was allowed to address any issues he identified through

the exercise. With the control group, the instructor did not have access to any feedback. Because

of this, the control group’s experiments were always the day before the experimental group’s ex-

periments. This ensured that the instructor was not using any information from the compiler data

for the control group.

After the in-class exercise, students took a three question quiz about the day’s lecture topic.

The students and instructor then both took a five minute survey indicating what they were confused

about during the exercise, and what the instructor believed students were confused about during

the exercise. No questions were allowed during the quiz or survey.

Lecture Development

Lectures were adapted from ME 273 course materials. Since students had already taken the

course, the number of slides was decreased and the material simplified to be a refresher rather than

an introduction to the material. Unessential topics and examples were removed. Lectures were

shortened to five to seven minutes, rather than 90 minutes.

Exercise Development

In-class exercises were developed primarily from examples provided in the ME 273 lecture

slides. Modifications were made if the exercise was deemed too easy or too difficult for the five to

ten minute exercise time limit.

Two types of exercises were developed: error-finding and program-writing exercises. Error-

finding exercises involved giving the students already-written code with several errors, including

syntax, semantic, and logic errors. Students were asked to remove the errors and provided the

correct final output for comparison. Program-writing exercises asked students to write code from

scratch, or nearly from scratch.
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Figure 3.13: The error-finding exercise used for Topic 3, C++ Functions. Students were told to

find and fix the errors in the exercise. The corrected code should accurately find the average of 5

and 4.

Figure 3.13 shows the error-finding exercise used for Topic 3, C++ Functions. Students

were given code meant to use a function to find the average of two numbers. This code contains a

number of errors, shown in Table 3.3.

Figure 3.14 shows the program-writing exercise used for Topic 7, Least Squares Regres-

sion. Students were provided with a basic template and instructions and asked to write a program.

The exercise type for each lecture period was assigned at random before the experiment

began, except for the last lecture period. The last period was assigned to keep an even number of

each exercise type. The randomization device used was the website Just Flip a Coin [80].

Exercises were written on the website using the instructor’s “Edit Assignment” feature.

Notes about limitations of the website were included with each exercise.

Table 3.3: The four errors in Figure 3.13 by line number.

Line Number Error
N/A No function prototype even though function is below main function.

14 Missing comma in average function call.

17 Wrong return type. Int will truncate the average.

17 No variable types given for input parameters.
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Figure 3.14: The program-writing exercise used for Topic 7, Least Squares Regression. Students

were asked to find the linear regression coefficients for a set of points.

Quiz Development

Quizzes were developed from the ME 273 slides and were written in Google Forms. There

was one quiz for each lecture topic, and each had three questions. For programming topics, these

questions followed a simple pattern: Q1) Choose the valid syntax, Q2) What is the output of this

code segment, Q3) What is the error in the following code. Pictures of code written in Visual

Studio were provided for the output and error finding questions. Because the compiler provides

visual feedback indicating where errors occurred, the images were edited using Microsoft Paint to

remove those visual indications. For numerical methods topics, questions involved identifying the

correct method and selecting strengths and weaknesses of a method.

Recruiting

The instructor was recruited from a set of former ME 273 teaching assistants, ensuring that

they had adequate exposure to the material and was accustomed to explaining it.

Students were recruited from a group of researchers in the BYU CAD Lab due to their

programming experience; in order to gather sufficient data on errors, students had to be competent

enough to attempt the in-class exercises after only a brief refresher. The CAD Lab students include

undergraduate, masters, and doctoral students. All had taken ME 273 before participating in the
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Figure 3.15: A type 1 quiz question for Topic 2, C++ Flow Control. Option 2 is the correct answer.

A semi-colon is needed after the while statement.

experiment. Students were recruited through an email explaining the time commitment required

and the overall purpose of the experiment. Students were then selected based on availability.

Twelve students were recruited overall. Six were placed in the control group, and six in

the experimental group. Group assignment depended solely on scheduling availability. There were

two masters students in each group and four undergraduate students.
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Figure 3.16: A type 2 quiz question for Topic 2, C++ Flow Control. Option 3 is the correct answer.

The conditional statement is not true when x and y both equal 8.

One student was excluded due to his extremely high skill level in computer programming.

It was determined that he would not be reasonably representative of the target level of programming

experience.

Data Collection

Before the experiment began, participants were asked to complete a Qualtrics survey eval-

uating their programming skill. Feigenspan and others have found that self-evaluation is as accu-

rate as testing students to determine their programming skill [81]. The survey used was derived

from [81] and is shown in Table 3.4. A few questions were modified from [81] to better fit a me-

chanical engineering environment, including asking about MATLAB, Python, and object-oriented

programming instead of logic programming.

54



Figure 3.17: A type 3 quiz question for Topic 2, C++ Flow Control. Option 1 is the correct answer.

Break statements are needed in each case in a switch statement.

Feigenspan found that questions 3 and 8 were the best indicators of programming skill and

performed a regression with those questions [81]. Since he validated his findings, his regression

parameters were used. Equation 3.2 shows the regression used to estimate student programming

skill.

skill = .441Q3+ .286Q8 (3.2)

The audio of each lecture was recorded using a cell phone. With the audio recorded, dif-

ferences in the lectures between groups could be determined and accounted for.

OCAM, a free screen capture tool, was used to record each student’s screen as they per-

formed the programming exercises [82]. OCAM was also used to record an additional computer
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screen with the website Compiler Data page. No audio was captured in these videos as students

were working separately and not allowed to communicate with one another.

During the lecture, a Google Sheets spreadsheet was used to record any questions the stu-

dents asked. Questions were organized by topic.

Students took a quiz after each exercise using Google Forms. The link to the Google Form

was sent out before each class period in an email.

After the quiz, both students and the instructor took a Qualtrics survey to capture “points

of confusion,” or what the students struggled with during the class period. The responses were

collected in free response form.

After the entire experiment was over, participants were asked to take another Qualtrics sur-

vey rating the website. The instructor was also asked to rank the graphs provided on the website

Compiler Data page and give feedback on additional outputs and features that could be imple-

mented. Students were asked about the instructor’s behavior to determine if there was a difference

with the live feedback.

Hypotheses

The simulated course experiment tested four hypotheses.

1. Student quiz scores will be higher in the experimental group, when the instructor has access

to the website feedback

Table 3.4: Survey questions from the programming skill self-evaluation survey.

Question Type
1 For how many years have you been programming? Text

2 How do you estimate your programming experience? 1 to 10

3 How do you estimate your programming experience compared to your classmates? 1 to 10

4 How experienced are you with C++? 1 to 10

5 How experienced are you with MATLAB? 1 to 10

6 How experienced are you with Python? 1 to 10

7 If you are very experienced with any other languages, please list them here. Text

8 How experienced are you with object-oriented programming? 1 to 10
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2. The instructor will better predict what students are struggling with when the instructor has

access to the website feedback

3. When an error finding exercise is paired with a programming topic, the difference in student

quiz scores will be more significant between the experimental and control groups than when

error finding exercises are paired with a numerical methods topic

4. When a program writing exercise is paired with a numerical methods topic, the difference in

student quiz scores will be more significant between the experiment and control groups than

when program writing exercises are paired with a programming topic

3.3.4 Teaching Assistant Study

A third study was conducted to further evaluate the effectiveness of the website feedback.

Since the simulated course experiment only involved one instructor, the teaching assistant study

was designed to involve multiple instructors to gather more data.

Experimental Design

Former and current ME 273 teaching assistants (TAs) were recruited. TAs were sent an

email explaining the experiment and asking them to volunteer for 30 minutes. Seven teaching

assistants participated in the experiment.

Experiments were completed on an individual basis and lasted 30 minutes. Participants

were given 10 minutes to go over two exercises given during the simulated course experiment.

Participants could complete the exercise, check their solutions, and ask the proctor questions. Af-

ter the ten minutes, participants were given a brief overview of the Compiler Data page of the

website. They then watched recorded video of the Compiler Data page from the simulated course

experiment. After watching the video, the participants were given access to the website with the

final data on the Compiler Data page. The participants were asked to complete a Qualtrics survey.

The survey combined questions from the skill evaluation survey, the points of confusion survey,

and the instructor survey from the simulated course experiment. Additionally, participants were

asked about their experiences teaching ME 273.
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Exercises

Two exercises were selected from the eight used in the simulated course experiment. Ex-

ercises were chosen to allow for comparison between a C++ topic using an error-finding exercise

and a numerical methods topic using a program-writing exercise.

The first exercise lasted for approximately five minutes and dealt with C++ Functions.

Students were given code that used a C++ function to find the average of two numbers and were

asked to remove any errors. Four errors had been added by the researchers. Table 3.3 shows each

of the errors, and Figure 3.13 shows the exercise.

The second exercise lasted for approximately ten minutes and dealt with Least Squares

Regression, a numerical methods topic. Students were given a set of points and asked to determine

the coefficients for a linear regression. They were given the formula, but had to translate it into

code. The template is shown in Figure 3.14. The correct coefficients were provided to the TAs.

Videos

The videos used in the experiment were recorded using screen capture software. Because

the video quality was not perfect, the TAs were also allowed to use the Compiler Data page on the

website if they could not clearly make out words in the video.

Survey

The participants were asked to complete a survey evaluating their programming skill level

using the same questions discussed in Section 3.3.3. The survey then asked the participants to

explain what students struggled with during the exercises. The survey then had the participants

evaluate the different metrics and graphics of the website and provide feedback on their experiences

in ME 273. A list of all survey questions is provided in Appendix B.3.
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CHAPTER 4. RESULTS

4.1 Case Study Results

The experimental website was used in an ME 273 lecture several times during the Fall

2017 Semester. The instructor, Dr. Salmon, was allowed to use the website however he saw fit to

explore how an actual instructor might use the website. Observations were noted by the researcher,

who attended these lectures. After the semester ended, students who agreed to participate in the

experiment filled out a survey about the website.

4.1.1 Observations

During one class period when the experimental website was used, students were asked to

write a short program with a FOR loop that added a small number to a variable 50 times. While the

students worked on the exercise, the instructor observed the Compiler Data page of the website.

The instructor identified the most common errors, one of which was “variable is not declared in

scope.” After allowing the students to work on the exercise for a few minutes, the instructor paused

the exercise and discussed variable scope. Variable scope is not explicitly covered as a topic in ME

273, although it is mentioned when loops and control statements are discussed. The website data

allowed the instructor to quickly identify that students did not fully grasp the concept of scope. He

was then able to further explain the concept.

The instructor used the website in two ways. He generally provided an initial template or

example with which students could start. He then either had students follow along as he completed

the exercise or had students attempt the exercise themselves. Sometimes these methods were

combined, with the instructor providing some of the code, and then allowing students to complete

a short section on their own.
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Figure 4.1: Student responses to the question “The website was easy to use”.

One student happily exclaimed “That’s me!” when a specific error was discussed. He

was pleased to have personal interaction during a large lecture and excited to have his problem

addressed. Individualizing education is often considered the ideal, but is nearly impossible in large

courses. Having data from each student can start to address this issue.

4.1.2 Survey Results

28 students responded to the survey. 22 of those students indicated that they used the

website during the course. 81% of students surveyed either somewhat or strongly agreed that the

website was easy to use, shown in Figure 4.1. Making the website easy to use was important to

reduce the barriers to implementing it in a real course. Only 36% of students found the website

enjoyable to use, with 45% indicating no opinion, shown in Figure 4.2. Whether or not the website

is enjoyable is less significant than its usefulness.
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54% of students found that the website made it easy to do in-class exercises, as shown in

Figure 4.3. The comments section of the survey indicates that students who disagreed did so due

to the bugs and technical issues encountered during the course of the experiment. These technical

issues have been resolved in later versions of the website, which could increase the percentage of

students believing that the website makes it easy to do in-class exercises. As this is one of the

website’s primary purposes, this is an important statistic.

63.6% of students indicated that the instructor changed his lecture based on the website

feedback, shown in Figure 4.4. This indicates that the majority of students felt that the instructor

was responding to the website feedback. The instructor was therefore able to glean some meaning

from the website feedback. However, only 54.5% of students felt that the instructor was able to

address confusion in class using the website feedback, shown in Figure 4.5. More work needs to be

done to translate the instructor’s observations from the website feedback into effectively addressing

the issues in class.

Overall, the results indicate that the website is easy to use and can enable in-class exercises,

especially when improvements have been made to remove bugs. The instructor did noticeably

change his lecture when he used the website feedback. However, whether or not he was able to

address student confusion is less clear. More students agreed than disagreed, but more than a

third of students indicated neither agreement nor disagreement. For all five questions, only one

student indicated “strongly disagree,” and it involved bugs that have been remedied in the later

versions of the website. These results suggest that the website is easy to use, lowering the barrier

to implementation, and potentially useful. The usefulness could be improved through instructor

training and further use.

4.1.3 Exploratory

Each student’s code for each exercise, each compile attempt, its success, error messages,

console outputs, and time stamps were recorded in a database. These data were explored to get a

better picture of how ME 273 students were performing on the in-class exercises.
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Figure 4.2: Student responses to the question “The website was enjoyable to use”.

Total Errors

Overall, there were 784 compiler errors that occurred during the five different exercises.

The most common errors are shown in Table 4.1. 392, or 50%, of these errors dealt with variable

scope, or the variable not being declared where it was being used. The next most common error

type was missing semi-colons, at 87 instances or 11% of total errors. Declaring variables and

consistently placing semi-colons are two fundamentals of C++ that are not necessary in Matlab.

Because the students study both languages as part of the current curriculum, it is possible that these

differences are causing them to commit more errors.

“Expected primary expression” took up about 7% of the total errors. This error gener-

ally occurs when the user incorrectly uses a control statement, such as an if-statement or if-else-

statement. This indicates a lack of understanding of the syntax used for control statements.

“Unqualified-id” errors were 4.8% of the total errors. This often occurs when a user puts a

semi-colon in an incorrect location, as opposed to omitting a semi-colon. Remembering where to
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Figure 4.3: Student responses to the question “The website made it easy to do in-class exercises”.

place semi-colons is one of the more difficult parts of C++ syntax for a beginner, since semi-colons

are required on all statements but not after certain curly brackets or pre-processor directives.

Omitting a curly bracket caused 4.5% of total errors. This may have been less present in a

Visual Studio or professional IDE environment since they generally handle automatically adding

brackets. However, it is still a common error.

Table 4.1: Total errors for the case study. The top five

errors are listed with their counts and percentages of

the total errors.

Error Count Percentage
Scope 392 50

Semi-colons 87 11.1

Expected primary expression 55 7

Unqualified-id 38 4.8

Missing curly brackets 35 4.5
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Figure 4.4: Student responses to the question “The instructor changed his lecture based on the

feedback”.

In 2006, Jadud recorded the compilation behavior of students in an introductory computer

science course (CS1) over two years. CS1 was taught in Java, which is fairly similar to C++ in

terms of syntax [54]. He found that the three most common errors were “unknown variable”,

“semi-colon”, and “bracket expected”, in that order. These results are very similar to those ob-

served in ME 273. The most common error, dealing with variable scope, is the same as “unknown

variable” because they both deal with undeclared variables. The difference in wording is likely due

to the different programming languages. The second most common error is the same, dealing with

semi-colons.

The third most common errors found by Jadud were bracketing errors, generally dealing

with a missing bracket. “Expected primary expression” is different from a missing bracket, but

generally involves something being misplaced in relation to a bracket. While omitting a curly

bracket is slightly less common than an unqualified-id error, when all bracketing errors are com-

bined (parentheses and square brackets included), they take up 6.25% of all errors, becoming the
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Figure 4.5: Student responses to the question “The instructor was able to address student confusion

based on the feedback”.

fourth most common error. It is possible that Jadud classified unqualified-id errors as semi-colon

errors, which would similarly place bracketing errors in fourth place.

This suggests that mechanical engineering students generally face the same issues as in-

troductory computer science students, despite potentially having different backgrounds and skill

sets. It appears that novice programmers struggle with the same syntax issues regardless. This

information could be motivational to students who feel they are struggling alone. Most students

struggle with these concepts.

The main difference between these results and Jadud’s is the “expected primary expression”

error. Primary expression errors generally have to do with control statements, loops, brackets

or semi-colons. It is possible that these errors would have been classified differently in Jadud’s

system. However, it is also possible that mechanical engineering students struggled more with the

syntax involved with if statements and loops than computer science students. This would need

further analysis to prove if there is actually a difference.
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Errors by Exercise

Four exercises were performed in the ME 273 course using the website. Each exercise will

be explained and the errors for each will be discussed.

Exercise 1: FOR Loops In the first exercise, the instructor asked students to write a FOR

loop adding a very small number to the initial value of one 50 times. No template code was

provided for this exercise. 16 of the 22 students participated in this exercise.

84 errors occurred during the exercise. 31% of the errors, or 26 instances, were scope

errors, where a student either forgot to define a variable before using it or defined it in the wrong

location. This mirrors the overall results from all of the exercises, where the most common errors

were scope related. Seven different students contributed to the 26 scope errors. 28.6% of errors

were missing semi-colons. Eight of the 14 students had this error at some point during the exercise.

One student struggled with defining the counter variable inside the FOR loop, with eight

instances of the error before it was fixed. There were nine “unqualified-id” errors, all of which

dealt with declaring int main(). Two students either forgot to declare int main() or declared it

incorrectly, without curly brackets. There were five primary-expression errors, all of which related

to one student using commas instead of semi-colons in a FOR loop. Two students declared the

same variable twice, causing a re-declaration error.

Overall, students struggled the most with basic syntax. Simply remembering to declare

a variable before using it appears to be a barrier to running code correctly. Remembering semi-

colons and using them in the appropriate places is the next most significant issue.

Of the 16 participants, eight were able to fix their errors while eight were not. The average

number of compiles is 4.31 per student. Successful students compiled 5.875 times on average

while unsuccessful students compiled on average 2.75 times. Using a Welch’s t-test to account

for unequal standard deviations results in a two-sided p-value of .056, showing suggestive but

inconclusive evidence that there is a difference between the successful and unsuccessful groups

based on how many times they compiled. Figure 4.6 shows the average compiles by whether or

not the student was successful, with the standard error shown for each group.

The two most common errors were experienced by approximately 50% of the participating

students. Errors after the two most common applied to only one or two students in this sample.

Further research would be required to determine how common an error needs to be for it to be
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Figure 4.6: Mean compiles vs. success for exercise 1 with standard error shown

addressed in a group setting. A double bar graph indicating the number of occurrences of the error

alongside the number of users experiencing the error could potentially address this problem.

Exercise 2: Root Finding Exercise 2 was a root finding problem. The instructor provided

pseudocode that was not syntactically correct but provided a framework to solve the problem. The

code included a function and the algorithms for the bisection and false position root finding meth-

ods. Students followed along as the instructor programmed for much of the exercise, explaining

why many of the students have the same errors. 13 of the 22 users participated in this exercise.

In total, 407 errors occurred during this exercise. The high number of errors is likely due

to the students following along with the instructor, who made some errors on purpose to explain

how students should debug. Additionally, there were errors included in the pseudocode provided

by the instructor, an unfinished if-statement and an undeclared variable.

287, or 70.5% of the total errors that occurred during this exercise were scope errors. 11

of the 13 students experienced scope errors. Generally, the students added new variables without
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declaring them first. The next compile sometimes showed the students fixing this problem. Even

more scope errors then occurred when the next variables were added. 10.3% of errors were primary

expression errors, likely due to an empty if-statement included in the pseudocode. Despite the fact

that it was already present, only nine students experienced this error, indicating that four students

were able to fix the error. There were 22 unqualified-id errors accounting for 5.4% of total errors,

which six students experienced. There were 15 missing semi-colon errors at 3.7% of total errors.

Only four students had semi-colon errors.

The students who compiled the most, with 9 compiles, were closest to completing the

exercise. Each only had one or two errors left to fix and had steadily decreased their number of

errors throughout the exercise.

Exercise 3: Arrays Exercise 3 was an array problem. The instructor provided a template

with an array and instructions to print out the array, print it out in reverse, replace the spaces with

dashes, and print out the final array. 16 of the 22 participants completed the exercise.

There were 70 total errors during this exercise. There were 13 scope errors at 18.6% of

the total errors for the exercise, with seven students experiencing the scope errors. The next most

common error related to the cin and cout operators, with 11 occurrences. However, these errors

were all produced by one student. The student eventually fixed one instance of the error but never

remedied the second. The next most common error type was the primary expression error, with

eight instances and four students experiencing the error.

Other common errors included empty character constant, unqualified-id, brackets, and

semi-colons. With the exception of the empty character constant errors, these errors have been

common throughout all of the exercises. The empty character constant errors dealt with incor-

rectly assigning a character to the array. Since this exercise related directly to arrays, the topic at

hand, it is only logical that this error occurred primarily in the array exercise.

On average, students compiled 6.6 times, ranging from one time to 17 times. All three

students who compiled the most, with 10, 11, and 17 compiles, completed either two or three parts

of the exercise.

15 of the 16 participants were able to remove all errors from their program at some point,

allowing for an analysis of which parts of the exercise they were able to complete based on the

outputs. 15 of the 16 participants were able to print out the array. Six participants were able to
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print out the array in reverse, and five were able to replace the spaces with dashes. Three students

were able to complete all parts of the exercise, and five were able to complete two of three parts of

the exercise.

Exercise 4: Numerical Integration The exercise provided a function and two vectors, one

with x values and another with function values. Students were asked to numerically integrate the

function between the first and last provided x values using both the trapezoidal and Simpson’s

rules. 15 of the 22 participants completed Exercise 4.

A total of 222 errors occurred during this exercise. There were 66 scope errors, again

the most common error at 29.7% of total errors. Nine of the 15 participants had a scope error

at some point. 20.7% of errors were missing semi-colon errors, with 46 occurrences and eight

students experiencing them. The next three most common errors all had 18 occurrences from five

students: incomplete line, vector class, and missing parentheses. The average number of compiles

per student for this exercise was 8.3, ranging from one to 17.

Again, the most common errors line up with the overall most common errors with the

exception of vector errors. This is once again logical, as this is the first exercise where vectors

were used. The incomplete line error refers to missing components of lines.

There is a statistically significant difference using a rank-sum test between the number of

compiles for successful and unsuccessful students, with a p-value of .0015. Successful is used here

to define students who were able to remove syntax errors from their program and obtain an output,

not necessarily the correct outputs. Figure 4.7 shows the average number of compiles based on

success with the standard error shown.

These results are similar to those for Exercise 1. Exercises 2 and 3 were not analyzed due

to no students completing Exercise 2 and nearly every student completing Exercise 3. Exercise

2 was more lengthy than the other exercises and ended early due to limited time during class. It

appears that students who fail to remove errors compile infrequently, with a low standard deviation

between students. Students who successfully remove errors have a higher standard deviation of the

number of times they compile, but a higher average number of times compiled. It appears that a

higher number of compiles can indicate success, while a lower number most likely means failure.
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Figure 4.7: Mean compiles vs. success for exercise 4 with standard error shown

4.2 Simulated Course Results

The website was used in a simulated ME 273 course experiment. Students were divided

into two groups, the experimental group and the control group. One subject was chosen as an

instructor. The instructor gave the same lecture to each group. Each group then performed a

short, 5-10 minute exercise using the website. With the experimental group, the instructor used

the website feedback to address problems the students were having. With the control group, the

instructor did not have access to the website feedback.

After the exercise, students took a brief quiz and answered survey questions about what

they struggled with during the experiment.

4.2.1 Observations

Notes were taken on the questions asked by each student during the lecture, as well as the

number of suggestions made by the instructor while using the website feedback. For Topics 3 and
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5-8, the instructor was able to make suggestions to the class based on the website feedback. This

feedback generally included gentle reminders to use semi-colons, define variables in the correct

scope, and declare the size of an array. As the experiments went on, the instructor became more

comfortable giving suggestions to the students. He also began looking up errors online when he

could not immediately determine the likely cause of the error.

One student admitted that he felt uncomfortable admitting he had produced an error when

asked by the instructor. This may have been due to the fact that the students and instructor are

peers, rather than students and their superior. Additionally, the test subject students already knew

how to program and likely felt that they should know the material. The uncertainty of students

sharing their errors could be addressed through training or an option to opt out of a session.

4.2.2 Quiz Results

Students took a three question quiz after each exercise. The quiz scores ranged from zero

to three, with one point allocated for each question. The average score for the experimental group

was higher than the average score for the control group by .2, or a .06% difference. As shown in

Figure 4.8, there is a difference between the two groups, but not a significant one. Additionally, a

difference of .06% is not significant in practice. A larger sample size would be needed to demon-

strate significance. This result addresses Hypothesis 1, “Students will perform better on quizzes

when the instructor has access to live compiler feedback.”

A regression of the quiz scores and student skill in each group showed a correlation between

score and skill. This indicates the quizzes accurately represented the students’ pre-existing skill

level, providing evidence that the quiz scores are not random. The distribution of skill between

groups was not equal, as students were assigned to groups based on schedule and not randomly, as

well as the limited size of each group. Skill is somewhat normally distributed in the control group,

but skewed or binomial in the experimental group.
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Figure 4.8: Mean quiz scores by group with standard error shown

4.2.3 Points of Confusion Results

After each quiz, students indicated what they were confused about during the exercise on

a survey. The instructor also indicated what he believed the students were confused about during

the exercise on a survey.

Several students misunderstood the survey question and responded with anything they were

confused about during the experiment, rather than the in-class exercise. Due to this issue, the

results were analyzed both from the survey results and from watching each student’s recorded

programming session and collecting issues.

Overall, the average percentage of issues the instructor identified was higher for the exper-

imental group. However, the difference is not statistically significant using a Student’s t-test.

For program writing exercises, the percentage identified was higher for the experimental

group, but not significantly, with a two-sided p-value of 0.29. For error finding exercises, the

percentage was slightly higher for the control group, but extremely insignificantly with a two-sided

p-value of 0.55.
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For C++ questions, the experimental group had a higher percentage of issues identified

than the control group by 20%. However, this is insignificant with a two-sided p-value of 0.32. For

numerical methods questions, the percentage correct is not significant.

There is only one data point for a C++ topic matched with an error finding exercise. How-

ever, in this instance for the control group the instructor predicted 0% of the students errors, but for

the experimental group he predicted 100% of the students errors. For C++ with program writing,

there are three examples. In each case, the instructor identified more issues with the control group.

This could suggest that error finding exercises are better suited for C++ topics, as hypothesized.

There is also only one data point for a numerical methods topic matched with a program

writing exercise. There is a large difference here as well, with 60% of issues identified for the

experimental group to 33% of issues identified for the control group. For a numerical methods

topic with an error finding exercise there are three examples. For the first exercise, the percentage

of issues identified is the same for both groups. For the second, the experimental group has a

slightly higher percentage of issues identified. For the last, the control groups has a significantly

higher percentage of issues identified.

4.2.4 Survey Results

Both the students and the instructor took a survey at the end of the exercise to evaluate the

website. The results are summarized in the following sections.

Student Responses

There was no statistically significant difference in student responses based on group for any

survey question.

The average score on a scale of 1 to 7, 1 being strongly disagree and 7 being strongly agree,

was 6.083 for “The website is easy to use”. A score of 6 corresponds with “agree”, indicating that

on average, students believed the website was easy to use. This agrees with the results from the

ME 273 case study. The responses are shown in Figure 4.9.
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Figure 4.9: Student responses to the question “The website was easy to use” by group.

The average score for “The website is enjoyable to use” was 5.25, falling somewhere be-

tween “somewhat agree” and “agree”. Students somewhat enjoyed using the website. As shown

in Figure 4.10, two students, one from each group, did disagree.

The average score for “The website made it easy to do in-class exercises” was 5.83, indi-

cating “agree”. Enabling in-class exercises is one of the primary purposes of the website, and these

results suggest that the website is successful in doing so. The responses are shown in Figure 4.11

and show that all participants either agreed or had no opinion on the statement.

The average score for “The instructor addressed issues during the exercise” was 5.167, a

little higher than “somewhat agree”. The control group was the only group that had any students

disagree with the statement, as shown in Figure 4.12. Allowing the instructor to address student

issues during an in-class exercise was another primary purpose of the website, and these results

suggest that the website has the potential to do so. The instructor improved as the course went on,

indicating that training may improve the instructor’s ability to address issues in class based on the

website feedback. Additional features and enhancements could also improve this score.
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Figure 4.10: Student responses to the question “The website was enjoyable to use” by group.

The average score for “The instructor was aware of how the students were doing on the

exercise” was 4.83, approximately a “somewhat agree”. The website was intended to improve

instructor awareness of how the students were performing real-time, during class. Interestingly,

while there was no significant difference between groups, the average for the control group was

slightly higher. One more student disagreed in the experimental group than in the control group.

A larger sample size would likely be needed to validate these results. The responses are shown in

Figure 4.13.

The average score for “I enjoyed doing exercises on the website” was 5.5, halfway be-

tween “somewhat agree” and “agree”. The results are shown in Figure 4.14. One of the original

hypotheses was that students would enjoy using the website. This has been somewhat confirmed.

The average score for “Doing in-class exercises helped me understand the material” was

5.83, approximately an “agree”. Combining this information with the comments in the open re-
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Figure 4.11: Student responses to the question “The website made it easy to do in-class exercises”

by group.

sponse question in the survey, students generally appreciated doing the in-class exercises. The

responses are shown in Figure 4.15. Only one student disagreed with the statement.

Students were asked what features they would like to be added to the website to improve it.

The requests are summarized in Table 4.2. The most common requests asked for features common

in professional IDEs, such as keyboard shortcuts, autocomplete, and the highlighting of syntax

errors. CodeMirror, the text editor used for the website, has the ability to implement some of

these features, such as autocomplete and highlighting errors. However, the implementation varied

between browsers and therefore have not yet been implemented.

The next most popular request was for hints when students get stuck. This feature has been

explored in other literature [23, 65] and can be helpful. Students also requested a debugger. The

other requests were only made by one student but will be discussed further in Chapter 5.

At the end of the survey, students were asked for any further input. A participant from the

experimental group said,
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Figure 4.12: Student responses to the question “The instructor addressed issues during the exer-

cise” by group.

“I thought this experiment was really beneficial. Other engineering classes can have

a different approach - a student can go to class and comprehend the main principles

and concepts, then take them home and successfully apply them to their assignments.

However, in programming, a student can understand principles and concepts, but so

Table 4.2: Student requests for website enhancements

Students Request
4 IDE enhancements (hotkeys, autocomplete, highlighting syntax errors)

3 hints when errors are not fixed

3 debugger

1 user input

1 data sent between compiles

1 larger code window

1 allow students to post questions

1 allow students to see others’ errors
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Figure 4.13: Student responses to the question “The instructor was aware of how the students were

doing on the exercise” by group.

much of the difficulty in programming is in the details, like syntax errors. Learning

the principles is important, but students learn programming by actually doing it... And

with instant instructor feedback, the students can correct their small errors so that

later they will have more success in implementing the principles in their assignments.”

A participant from the control group stated that it was “helpful being able to try the code

rather than staring at it.” A participant from the experimental group said that “This should become

a thing. I would have loved learning this way. It would allow for much more interaction.” All

of these comments validate the hypothesis that the website will be helpful and that students will

appreciate it.

Another response from the experimental group was “The software was easy to use, if the

teachers gave more helpful responses to my issues though, that would have been nice.” The student

acknowledged that the instructor responded to his/her issues, but would have liked better responses.
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Figure 4.14: Student responses to the question “I enjoyed doing exercises on the website” by group.

Overall, the feedback from the students was positive. This supports Hypothesis 5, “The

instructor and students will find the live compiler feedback useful.”

Instructor Results

The instructor agreed that website was easy to use. He slightly agreed that the website was

enjoyable to use and agreed that the website made it easy to do in-class exercises.

The instructor then answered questions about the Compiler Data page of the website. The

usefulness of each chart was rated from useful to not useful. The results are shown in Table 4.3. The

Persistent Errors metric was by far the most useful graph. Current Output, Number of Compiles,

and Run Success Percentage were all somewhat useful. Both Total Errors and Total Output were

neutral. While the instructor did not find these results helpful as they did not help immediately

address issues, collecting the total errors and outputs can be helpful in the long run addressing the

most common issues throughout a course.
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Figure 4.15: Student responses to the question “Doing in-class exercises helped me understand the

material” by group.

The instructor then ranked the graphics, including the total and current errors tables. The

results are shown in Table 4.4. Both tables scored above their corresponding bar graphs, likely

due to the better readability in the tables. Readability will be improved in future implementations.

Both the current errors and outputs were more helpful than the total errors and outputs. This is

likely due to the live feedback nature of these experiments. Again, having the picture of the entire

Table 4.3: Instructor ratings for the useful-

ness of the website metrics

Metric Usefulness
Persistent Errors Useful

Current Output Somewhat useful

Total Errors Neutral

Total Output Neutral

Number of Compiles Somewhat useful

Run Success % Somewhat useful

80



exercise may be more helpful for long term changes, while having a current snapshot can help

the instructor address immediate problems within a lecture. The emphasis in this experiment was

placed on immediate problems, likely influencing these results.

The number of compiles was not found to be particularly useful by the instructor. However,

it was mentioned by professors at BYU when questioned about potential metrics for the website.

As the instructor was a teaching assistant, he may not have been as aware of the impact of the

number of compiles on student success as a professor may have been. Previous research has found

that students who compile frequently as they code are more successful than those who write many

lines of code before compiling [56].

The instructor was asked to rate the adequacy of the data for C++ topics, numerical methods

topics, error finding exercises, and program writing exercises. The results are summarized in

Table 4.5. The instructor found the data to be more adequate for C++ topics and program writing

exercises. This was contrary to the hypothesis, which postulated that C++ topics and error finding

exercises would be more useful with the website feedback.

The instructor somewhat agreed that the website helped him understand what students were

struggling with. He also somewhat agreed that the website helped him assist the students with their

exercises. While not a strong result, this does indicate that the website has potential. This result is

also limited to only one person, and more data would be needed to verify it.

Lastly, the instructor commented on useful additional outputs and features. The instructor

suggested having access to the code snippets that caused the errors appearing on the Compiler

Data page, the ability to view student code, and a metric for how many students the persistent

Table 4.4: Instructor ranking of the different

graphics used in the website

Rank Graphic
1 Current Errors Table

2 Current Output Graph

3 Persistent Errors Graph

4 Run Success Percentage Graph

5 Total Errors Table

6 Total Errors Graph

7 Total Output Graph

8 Number of Compiles

81



errors came from. An additional feature he requested was the ability to share screens between

users, either to show students his solution or to view their solutions.

4.3 TA Experiment Results

Seven former and current teaching assistants from ME 273 were asked to evaluate the

website. They reviewed two exercises used in the Simulated Course Experiment and watched a

video recording of the Compiler Data page taken during the exercises. They took notes on their

observations and filled out a survey. The survey focused on their evaluation of the website, what

students struggled with during the recorded exercises, and their perceptions of ME 273.

4.3.1 Points of Confusion Results

The percentage of points of confusion identified by the test subjects that matched those

listed by the students are shown in Table 4.6. The skill level of the TA is somewhat correlated with

the percentage of errors identified, with an r-squared value of .41 and a two-sided p-value of .11.

More data points are needed to show any real significance.

Five of the seven TAs were able to identify 50% or more of the students’ errors just by

watching the videos and looking through the website data. The TAs had a higher success rate for

the first exercise (an error-finding exercise dealing with C++ functions) with percentages ranging

from 17% to 100%, with an average of 71%. With the second exercise, a program writing exercise

dealing with least squares regression, the TAs identified 61.9% of errors on average, with a low of

0% and a high of 100%.

Table 4.5: Instructor ratings of adequacy of the

data for different topics and exercises

Topic/Exercise Adequacy
C++ Moderately adequate

Numerical Methods Slightly adequate

Error Finding Slightly adequate

Program Writing Moderate adequate
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Overall, the teaching assistants were successful in identifying the students’ areas of con-

fusion. More skilled TAs may be even better at identifying errors. One area of confusion was

excluded because it did not relate to programming, but to how an equation was presented.

4.3.2 Evaluation of Website Metrics and Graphics

The TAs were asked to evaluate the different metrics gathered for the website. The average

response to whether or not the metric was useful for persistent errors, current outputs, total errors,

compiles, and run success percentage was between “agree” and “somewhat agree”, leaning to-

wards “somewhat agree”. Total output was rated at a “neither agree nor disagree”, with the lowest

average.

The TAs then ranked the different visualizations from one to eight. The average, median,

and mode responses were calculated. The average and median results yielded the same order, and

were used as the final result, shown in Table 4.7. However, it is important to note that the standard

deviation for most of the visualizations was close to two or three, which is rather large. Therefore,

determining these orders through medians may not be very accurate.

Interestingly, these results differ from those in the Simulated Course Experiment shown in

Table 4.4. This may be due in part to the lack of similarity between TA responses. Additionally,

the instructor in the Simulated Course Experiment used the website for 16 days, while the TAs

used the website for less than an hour. However, there are some similarities. Both experiments

show that the total outputs graph is less useful. Current outputs and persistent errors are generally

more useful. The run success percentage graph is ranked fourth in both experiments.

Table 4.6: The percentage of confusion areas identified by each teaching assistant

by exercise

TA Pct. Errors Identified Pct. Errors Ex. 1 Pct. Errors Ex.2 Skill
1 17 33 0 3.659

2 67 33 100 6.257

3 67 100 33 5.244

4 50 100 0 3.945

5 67 33 100 7.27

6 100 100 100 6.257

7 100 100 100 5.53
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On average, the TAs found the data to be between extremely and moderately adequate,

leaning towards moderately adequate, for C++ topics. They found the data to be moderately ad-

equate for numerical methods topics. They found the data to be between moderately and slightly

adequate, leaning towards moderately adequate, for error finding exercises. They found the data

to be moderately adequate for program-writing exercises. Overall, the data was adequate for most

types of topics and exercises. It was slightly better for C++ topics. This makes sense, as syntax

errors most often relate directly to C++ topics.

The TAs on average agreed that the website helped them determine what the students were

struggling with. The TAs also on average agreed that the website would have helped them assist

students. No response was less than a somewhat agree, emphasizing that the TAs believed the

website would be effective. Interestingly, the TAs believed the website would be more slightly

more useful than the instructor in the Simulated Course Experiment.

4.3.3 Ideas for Improvement

The TAs suggested labeling the axes on the graphs and the ability to look at the students’

code when they get an error. Additionally, they wanted to know how many students were getting

each error.

Table 4.7: Teaching assistant ranking of

graphics by usefulness

Rank Graphic
1 Persistent Errors Graph

2 Total Errors Graph

3 Current Outputs Graph

4 Run Success Percentage Graph

5 Number of Compiles

6 Total Outputs Table

7 Current Errors Table

8 Total Outputs Graph
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Table 4.8: Teaching assistant ranking of diffi-

cult subjects in ME 273

Rank Topic
1 Initial Value Problems

1 Boundary Value Problems

2 C++ Flow Control

2 C++ Classes

2 Linear Systems Solvers

3 C++ Functions

3 Numeric Integration

4 C++ Basics

5 C++ File Input/Output

5 Numeric Derivatives

5 Least Squares Regression

6 C++ Arrays

6 Numeric Root Finding

4.3.4 Teaching Assistant Insight on ME 273

On average, the TAs agreed that ME 273 is a difficult course. As the teaching assistants

performed well in the course, this means that it’s not only students who do poorly who believe the

course is difficult. The TAs strongly agreed that students perceive ME 273 to be a difficult course.

Their reasons mostly consisted of students lacking previous programming experience, the large

amount of course material, and the fear students have of programming.

The TAs then indicated which subjects the students struggled with the most. Initial and

boundary value problems received the most votes, with six out of seven TAs indicating that students

struggled with these subjects. Linear systems solving, C++ classes, and C++ flow control received

five votes. The rest of the course subjects are listed in Table 4.8. It is interesting that C++ flow

control, C++ functions, and C++ basics are listed at two, three and four respectively. All of these

subjects are discussed early on, and yet students struggle with them throughout the semester. As

evidence by the most common errors in all of the exercises, simply declaring variables, placing

semi-colons, and correctly defining if statements and loops cause the most problems throughout

the semester. This suggests a misunderstanding of variable declarations and syntax rules.

Initial and boundary value problems were most often selected to be difficult for students.

These topics are taught at the end of the semester and relate to differential equations, a course that
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some students have not yet taken when they are in ME 273. This is likely why these topics are

considered the most difficult.

Most teaching assistants recommended having students take an introductory programming

course before ME 273 to lessen the learning curve. Other suggestions included having in-class

exercises and using templates to lessen the burden on students.

4.4 BYU Survey Results

The Department of Mechanical Engineering at Brigham Young University conducted a sur-

vey in March 2017 to evaluate the current status of ME 273, Introduction to Computational Meth-

ods. 232 students participated in the study, including both undergraduate and graduate students.

Questions focused on student performance, student perceptions of the course, and suggestions for

improvement.

68.1% of survey participants either agreed or strongly agreed that ME 273 prepared them

for the programming required in courses they took after ME 273. Despite this, several students

complained that C++ was overemphasized compared to MATLAB, the primary language used in

the following ME courses. The emphasis placed on C++ or MATLAB can vary between professors

and semesters, which could be causing this disparity.

Only 33.74% of survey participants either agreed or strongly agreed that ME 273 prepared

them for the programming required in jobs they had after ME 273. 43.58% were neutral, potentially

indicating that these participants did not have a job where programming was required. 22.7% of

participants either disagreed or strongly disagreed that they were prepared for the programming

required in their jobs. If the students without a programming job are removed, 92 students remain

for analysis. 40.2% of those students did not believe ME 273 prepared them for a job requiring

programming, while 59.8% did. While more students agreed than disagreed, 40.2% is a significant

number of students to not feel prepared for a job after a course. Since students felt prepared for the

following courses but not for jobs, it is possible that the course did not go into enough depth for

the coding required for a job.

28.16% of study participants had more than 2 months of programming experience before

starting ME 273. Only 5.34% of participants had over a year of programming experience. How-

ever, 43.21% of students felt that more than 30% of their classmates had programming experience
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before starting the course. About 30% of students underestimated how many of their classmates

had experience, and about 30% of students correctly estimated how many of their classmates had

some programming experience.

71.69% of study participants felt disadvantaged at the beginning of the course because

others had more prior programming experience. At the end of the course, 41.35% of participants

still felt disadvantaged because others had more prior programming experience. Based on the

actual skill level of students before the course, this perception is largely incorrect and needs to

be remedied. In 2016, Harvey Mudd found that decreasing the number of in-class questions by

students with previous experience improved female students’ experiences and increased the rate

at which they signed up for more programming courses [83]. Experienced students were asked to

save their questions for office hours to take up less lecture time. Based on comments in the survey

results, several students at BYU not only felt disadvantaged but felt that the course was being

taught to too high a level of experience, potentially because students asking questions had more

experience and therefore gave the false perception that the students overall had more experience.

The survey also investigated potential improvements and changes to the course. 76.62% of

students with previous programming experience agreed or strongly agreed that the programming

portion of ME 273 was beneficial even though they had prior programming experience. Addition-

ally, several students mentioned in comments that they appreciated the help and expertise of the

more experienced students. Despite this, 61.04% of experienced students believe that students with

significant programming experience should be allowed to test out of the programming portion.

76.68% of study participants agreed or strongly agreed that the course needs to be taught

in a computer classroom so all students can immediately, in-class, implement and practice what is

being taught. However, only 18.4% of participants always used a laptop in class to practice, and

25.77% sometimes used a laptop in class. Over 55% of participants either rarely or never used

a laptop for practice. A participant mentioned in the comments that students without access to a

laptop are disadvantaged when in-class examples are used interactively. They reinforced the idea

of holding lecture in a computer classroom. A few other comments indicated that a lecture on

programming syntax was not very effective without interactive examples. This has been discussed

in previous literature [4, 8, 9, 18, 31].
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The most difficult aspects of the ME 273 course were the cumulative load of the course,

followed by numerical methods and C++. 64.81% of students highlighted the cumulative load as

one of the most difficult aspects of ME 273. The next most common answers are the core subjects

of the class: numerical methods and C++, with 32.1% and 29% respectively. While most students

felt that the amount of material was the most difficult part, about a third of all participants felt that

the two main topics in the course were the most difficult parts.

Interestingly, the most difficult parts of the course were also some of the more enjoyable

parts of the course, with 49.69% of students selecting C++ as one of the most enjoyable aspects

of the course and 29.56% of students selecting numerical methods. Matlab was by far the most

enjoyed topic, with 60.38% of students selecting it. Labs were tied with numerical methods at

29.56%, showing the appreciation for more hands on applications. It is worth noting that in the

free response section, seven students specifically pointed out projects as the most enjoyable aspect,

something listed by five students as the most difficult aspect of the course. Alternatively, five

students enjoyed nothing about the course.

Overall, the most common suggestions to improve the course were splitting the course into

two blocks to separate programming and numerical methods and adding online resources, from

53.21% and 35.26% respectively.

4.5 Cost Benefit Analysis

The results show some of the potential benefits of using a live feedback system in a lecture

environment. An instructor can immediately see what errors and outputs students are getting,

and can potentially address widespread problems quickly, in lecture. Additionally, the simplified

interface of the website text editor, compared to a full IDE, may lower the cognitive load required

of students as they learn how to program. Students do not have to download any software to use

the website as long as they have a web browser. Overall, the interface is simple and has many

potential benefits.

There are always costs associated with implementing something new in a course. The first

is the learning curve required. Both the students and the instructor will need to learn how to use

the website. The website has been designed to be simple to use, but may still require some time

to adjust to. Using the website will also require instructors to plan interactive examples ahead of
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time, and to schedule enough time to get sufficient data from the students’ code. There is a small

amount of time required to interpret the data and form a response as well. Students will need to

bring a laptop to class to use the website, or the course will need to be taught in a computer lab. The

website is available in mobile format and will therefore work with smart phones, but programming

on a smart phone is very difficult as typos are common.

Despite the costs, the potential benefits are significant. Implementing new software in a

course is always difficult, but this website has been designed to be as simple as possible to use.

The benefits include helping instructors better understand their students’ difficulties, which in turn

should help the students learn programming more easily. Students who are better at programming

have another skill set to assist them in their future careers, making them more competent and

competitive.
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CHAPTER 5. CONCLUSION

Limitations, potential future work, and conclusions will be discussed in this chapter.

5.1 Limitations

There were two main categories of limitations with the experiments presented in Chapter 3.

The first is dealing with human subjects in an experiment, specifically students in an educational

setting. The second category is technologically based, and deals with the limits of the website

implementation. Both categories will be discussed in the following sections.

5.1.1 Human Subjects

Human subjects by their nature add a certain amount of uncontrolled variables into any

experiment. Gathering demographic data about the subjects is generally used to account for the

impact of these uncontrolled variables. However, due to a conflict of interest where the instructor

for the ME 273 course was part of the research team, demographic data were not collected to com-

ply with the IRB. For the case study, this limited the analysis to be done for the group overall. The

effects of gender, socioeconomic status, etc. on programming performance can not be determined

from this study.

Another limitation of the case study was working with students in an educational setting.

It is difficult to set up a controlled experiment in an already existing course with only one section.

Most engineering education research working with existing courses will use one section of the

course as a control and another section as the experimental group. This setup removes the ability

to randomly assign subjects to a group, but allows for a control and experimental group. Students

could not be forced to participate in the experiment, and therefore participants were selected on a

volunteer basis, disallowing random assignment to each group. This greatly limits the inferences

that can be made from any results.
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A significant limitation is the sample size used for each experiment. Since students had to

volunteer, the sample size for the case study was limited to 22 out of 90 enrolled students. The

simulated course experiment similarly was limited to 12 students based on scheduling conflicts. A

larger sample size is often necessary to show significance and to limit the effects of outliers. Only

seven teaching assistants responded for the teaching assistant study, again limiting the significance

of the results. Additionally, four of the seven teaching assistants had participated in the simulated

course experiment, and potentially had an advantage in determining what students struggled with

since they had performed the exercises previously. To compensate for this, each participant was

given the same amount of time to look over and perform the exercises before evaluating student

performance. Two months had also passed between the two experiments, so the information was

not in the immediate short term memory of the participants.

Ideally, the simulated course experiment would have been done in an actual ME 273 course

with novice students. However, completely controlling the ME 273 course would have been too

difficult. For this reason, the simulated course experiment was developed. More experienced

students were used because of the limited time frame available, and to ensure that some of the

participants could complete the in-class exercises and provide data for the experiment. This may

have provided different results than if actual novice ME 273 students had been used. Additionally,

ideally an actual ME 273 instructor would have been used for the simulated course experiment.

However, a teaching assistant was chosen instead, again due to scheduling conflicts. Some of the

results may have been different if the instructor had more experience both with the subject matter

and with teaching.

Lastly, a few of the simulated course experiments were affected by scheduling problems.

Three students missed a lecture period during the experiment. The instructor missed a lecture

period twice. This was remedied by either reading directly from the slides or recording a lecture

beforehand.

5.1.2 Technology

The website itself had several limitations. Some of these limitations will be discussed in

Section 5.2 as future improvements. The most serious limitations will be discussed here.
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The first limitation is the lack of user input from the console, a concept frequently used in

ME 273. Students were unable to use the cin command as the website only contained a text editor,

not a console. While this is frequently used in ME 273, it was easy to change the in-class exercises

to use default values instead of asking for user input.

System pause is a command commonly used in ME 273, but not in the programming world

at large. Because the website runs student code on a Linux server and directly prints out any

compiler messages and output, there is no need for system pause, which tells Windows to pause

the execution of a program until a keystroke is received. This is used when students are using

the console for their output, and need to pause the program to see the output before the program

completes. Using system pause actually throws an error when used with the website.

The website did not originally have exception handling. When a student ran a program

with a run-time exception, rather than a compiler error, the website would crash. This problem

was originally remedied by having students program within a try-catch statement, and has since

been resolved in the current version of the website. For the first two exercises in the simulated

course experiment, students crashed the website a few times before the end of the experiment.

The website server was restarted each time, allowing the experiment to continue with minimal

interruptions.

Another limitation of the website was due to high levels of traffic. A load test was per-

formed with 30 students, and the website was able to handle all 30 students compiling and running

their code simultaneously. However, the website was not able to handle 90 students without slow-

ing down. Some students were unable to load the website when there were too many users. This

is likely due to a limitation of the server hosting the website, and could be resolved by moving the

website to a more powerful server.

5.2 Future Work

Potential future work was derived from two sources, feedback from research participants

and ideas from the researchers. Both are discussed, with the feasibility of each and an estimate of

how many hours they would take to implement.
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5.2.1 Feedback from Research Participants

Several changes have already been made to the website based on participant feedback from

all of the experiments performed. The suggestions that have not yet been addressed have been dis-

cussed with the website developer, and the feasibility of each has been evaluated. Future research

projects building off of this work were also discussed and evaluated with the website developer.

Small, aesthetic issues with the website have been fixed, such as a button that was the

incorrect size in specific browsers, adding axis labels on the Compiler Data page, changing the

graphs to be easier to read, and increasing the size of the text editor on the Assignments page.

Additionally, exception handling has been added to increase the robustness of the website. The

ability for the instructor to delete assignments has been added.

Study participants made many suggestions for additions or improvements to the website.

The most common suggestions are listed in Table 5.1. Future work could involve implementing

these changes. The most common suggestion was the ability to link errors to student code, either

allowing the instructor to click on an error and see the student’s entire program or providing the

snippets of code causing the error. Many participants felt it would be much easier to determine what

students were struggling with if they could see the actual code. All of the code and corresponding

errors are saved each time a student compiles, so implementing this change would mostly involve

changing website pages to show the student’s code and making database queries. The time estimate

to complete this change is between 10 and 15 hours by a skilled programmer.

The most difficult change to implement would be adding a debugger to the website. While

technically feasible, this would require interacting with the process running the student’s code.

Currently, student code is copied into a folder on the server and a process is started programmati-

cally to compile and run the code. After the run command, no interaction is had with the process

until any messages are returned. This would need to be changed, and a method for how to in-

teract with the process would need to be developed. Additionally, it would need to be decided

which debugger features are desired, such as breakpoints, watch windows, etc. The time estimate

to implement the changes is 25-30 hours by a skilled programmer. However, this estimate does

not include the time necessary to determine what features to enable and assumes the features are

possible to enable.
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The simplest change is to allow students to see the Compiler Data page. One participant

suggested this to boost students’ self-esteems and allow them to see that other students are strug-

gling too. While this would be relatively easy to fix, the question remains as to whether or not

it is necessary. The instructor could simply show the Compiler Data page in class. Additionally,

it may actually be discouraging for a student to see that they have more errors than anyone else.

A potential solution would be to show a student if another student has the same error, and enable

them to work together to solve the problem.

5.2.2 Ideas from the Researchers

As the website was developed and used, the researchers had several ideas for improving

the website and potential future research projects. The researchers felt that the Compiler Data

page could be improved significantly. Most of the teaching assistants and the simulated course

instructor did not find the total errors and total outputs metric to be very useful. However, they

might be useful to an instructor looking for trends over the entire exercise or a semester. To

remedy this, the Compiler Data page could become customizable, allowing an instructor to select

which metrics he/she wants to view. Customizing the Compiler Data page would likely take 5-10

hours, depending on how much customization was desired.

For the metrics that study participants did find useful, such as current output and persistent

errors, it would be useful to know how many students produced each error. Errors that have several

Table 5.1: Participant suggestions, feasibility, and hours to im-

plement by a skilled programmer

Suggestion Feasibility Hours
Link errors to student code feasible 10-15

Allow students to post questions feasible 10-15

Add a debugger somewhat 25-30

Allow user input feasible 15-20

Enable reading/writing to files feasible 10-15

Add hints when errors occur feasible 20-25

Allow students to see others’ errors feasible 1-5

Allow multiple files for a project feasible 5-10

Add IDE features (autocomplete, etc.) feasible 10-15
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occurrences but are all coming from one student may be better addressed in an individual session,

while widespread errors could be resolved more easily in a lecture setting. To fix this, a second

bar for the number of students experiencing the error or output could be placed next to each bar in

the bar graphs. Adding the number of students would take some refactoring in how the data are

collected for the visualizations. It would likely take 5-10 hours to implement.

The output graphs were problematic because there was no control over the desired output

or how many outputs from a compile were displayed. If a student output a number from a for

loop 100 times, it would show up 100 in the output graph. Again, a bar indicating the number

of students producing the output could partially remedy this problem. However, more control is

likely needed to gain real information from the output graphs. For example, an instructor could

indicate the correct output and could then see which students were producing the correct answer.

Outputs could be filtered to one per student, or students could use a tag to indicate their final output

or solution. A time estimate for how long this would take to implement depends on what strategy

is chosen to handle student outputs.

Statistics for the course overall, or over a period of time rather than an exercise, have been

explored by others [1]. Estey has even used certain metrics to predict whether or not students

will pass the course within the first two weeks [23]. While these metrics are not the focus of

this research, they could easily be implemented from the current collected data. The number of

compiles and the changes between compiles for each student can be calculated from the database.

Student compilation behavior has been shown to predict student outcomes in programming courses

[56].

Four future longer term research projects were also suggested by the researchers. The first

was modifying the website to work with Matlab. Matlab can be run from another program, making

this feasible. Additionally, CodeMirror, the text editor used in the website, supports Matlab syntax.

However, there are also several complicating factors. Matlab is not a compiled language, but a

scripting language. It is therefore slower than C++, which could impact the website’s performance.

Most Matlab errors are run-time errors, since Matlab is not compiled. The current website is set up

to receive messages from a C++ compiler; this would need to be changed to handle Matlab. Matlab

is also expensive and requires a license, which would need to be available on the server hosting

the website. Whether or not the website can handle multiple run attempts at once with only one
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license would need to be investigated. Furthermore, Matlab has extensive plotting abilities. The

website currently does not have the capability to determine if a student’s plot is correct, or even

to store that type of data. There are many questions that could be investigated while integrating

Matlab into the website.

Another question discovered throughout the experiment is related to cybersecurity. In a

normal IDE, users are prevented from going out of the bounds of an array. With the g++ compiler

used in the website, users simply access garbage data, rather than being blocked. A hacker would

be able to use this loophole to access data on the server. How to prevent users from accessing data

through arrays is an interesting research question. One idea is to find anywhere an array is used

and replace it with the C++ array class, which prevents arrays from going out of bounds. This

could be done with a regex statement or something similar. There are likely many other methods

that could be successful in improving the security of the website.

One student requested access to other students’ errors. As discussed briefly in Section 5.2.2,

the effectiveness of this is unknown. Some researchers have experimented with activity streams

for programming homework assignments and found them to be useful [61]. However, having live

feedback in class might be different than while working at home, alone. The effectiveness of

students understanding how the class is doing as a whole should be investigated to further improve

the usefulness of the website.

Lastly, a longer term study in an actual ME 273 course should be done using the website.

Repeating the experiment over several semesters and years is the only way to truly evaluate its

usefulness in a realistic learning environment. As the website is improved, it will be better suited

for use in class and should be easy to integrate into a lecture.

The four research projects are just a few of the possibilities. Further studies could be done

to evaluate the changes made to the website and determine what training is necessary for instructors

and students. These could be combined with the suggested longer term study.

5.3 Conclusions

The hypotheses addressed by each experiment will be discussed in the following sections.

Any discoveries made in the exploration of the data will also be addressed. Conclusions derived

from the experiment as a whole will then be given. The five hypotheses are listed here for reference.
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1. H1: Students will perform better on quizzes when the instructor has access to live compiler

feedback

2. H2: The instructor will more frequently know what students struggled with on an assignment

when they have access to live compiler feedback

3. H3: When error finding exercises are given, the live feedback will have a more significant

effect on quiz scores for programming topics

4. H4: When program writing exercises are given, the live feedback will have a more significant

effect on quiz scores for numerical methods topics

5. H5: The instructor and students will find the live compiler feedback useful

5.3.1 Case Study Conclusions

The case study primarily addressed Hypothesis 5, “The instructor and students will find

the live compiler feedback useful”, focusing on the students. 54% of participating students found

that the website made it easy to do in-class exercises. Those who did not think the website made

it easy to do in-class exercises listed website bugs as their issue with the software. Many of these

issues have since been resolved. Future work would be required to determine if these fixes would

increase the number of students believing that the website makes it easier to do in-class exercises.

64% of students indicated that the instructor responded to the website feedback by changing

his lecture. This also addresses Hypothesis 5, as it supports the idea that the instructor was able to

use the website. 55% of students felt that the instructor was able to address confusion in class using

the website feedback, indicating that a slight majority of students found the instructor’s changes

to be helpful. While not as impressive as a larger percentage, at least half of the students felt they

were aided by the instructor using the website. This supports Hypothesis 5, suggesting that the

students found the live compiler feedback useful.

Analyzing student code and compilation behavior revealed that on average, students who

compile more frequently are more successful at removing errors from their programs. This cor-

roborates other researchers’ findings, such as those in [56]. The standard deviation of the number

of compiles for unsuccessful students was much lower than the standard deviation for successful
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students. Additionally, it was discovered that the number of students producing an error varies

between errors. This information should be included in future iterations of the website. The most

common errors over four in-class exercises in an ME 273 course closely matched the most common

errors experienced in CS1 courses that have been analyzed [54]. This suggests that ME students

struggle with many of the same concepts as computer science students, and methods used to aid

computer science students might also help ME students.

5.3.2 Simulated Course Experiment Conclusions

The simulated course experiment addressed all five hypotheses. A summary of the con-

clusions is shown in Table 5.2. Hypothesis 1, “Students will perform better on quizzes when the

instructor has access to live compiler feedback”, is somewhat supported by the results of the sim-

ulated course experiment. The average quiz score is higher for the experimental group. However,

the difference is not statistically significant. The evidence is merely suggestive, and would need to

be replicated with a larger sample size to improve results.

Hypothesis 2, “The instructor will more frequently know what students struggled with on

an assignment when they have access to live compiler feedback”. Again, the average percentage

of errors identified by the instructor was higher with the experimental group. However, the results

were not statistically significant. The evidence is therefore only suggestive, and would need further

experimentation to provide a conclusion.

Hypothesis 3, “When error finding exercises are given, the live feedback will have a more

significant effect on quiz scores for programming topics”, was not supported by the results of

the simulated course experiment. There was no impact for group when error finding exercises

were paired with programming topics. Additionally, due to random assignment of experimental

conditions, these two conditions only overlapped once. More experiments would be needed to

determine the effect, if any, of these two conditions together.

Hypothesis 4, “When program writing exercises are given, the live feedback will have

a more significant effect on quiz scores for numerical methods topics”, was not supported by

the results of the simulated course experiment. There was no impact for group when program

writing exercises were paired with numerical methods topics. Similar to Hypothesis 3, due to
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random assignment of experimental conditions, these two conditions only overlapped once. More

experiments would be needed to determine the effect of these two conditions together.

Hypothesis 5, “The instructor and students will find the live compiler feedback useful”,

was supported by the results of the simulated course experiment. The students, on average, agreed

that the website made it easy to do in-class exercises. They somewhat agreed that the instructor

addressed issues during the exercise, and somewhat agreed that the instructor was aware of how

the students were doing on the exercise. The instructor somewhat agreed that the website helped

him understand what the students were struggling with and that the website helped him assist the

students with their exercises. Both the students and the instructor found the live compiler feedback

useful.

5.3.3 Teaching Assistant Study Conclusions

The teaching assistant study focused on answering Hypothesis 5, the instructor finding the

website feedback useful. On average, the TAs agreed that the website helped them determine what

the students were struggling with. The TAs also on average agreed that the website would have

helped them assist students. No response was less than a somewhat agree, emphasizing that the

TAs believed the website would be effective. This supports the hypothesis that the instructors

would find the website feedback useful.

Additionally, the study sought to determine whether or not the instructors could determine

what the students were struggling with. This does not entirely address Hypothesis 2, as a control

was not performed with TAs identifying errors without the website feedback. However, it is still

useful to note that on average, the TAs were able to identify 67% of student areas of confusion

Table 5.2: Conclusions for hypotheses based

on the simulated course experiment

Hypothesis Conclusion
1 Suggestive but inconclusive

2 Suggestive but inconclusive

3 Inconclusive

4 Inconclusive

5 Supported
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overall, just by watching a video of the Compiler Data page recorded while students programmed

two exercises. This cannot entirely support Hypothesis 2, but it does provide evidence that the

website feedback allows the instructors to determine the majority of what students are struggling

with. With training, enhancements, and more skilled instructors, this percentage could increase, as

skill was slightly correlated with the percentage of errors identified.

5.3.4 ME 273 Survey Conclusions

The ME 273 survey was not aimed at supporting a specific hypothesis, but sought to better

understand the current status of ME 273 and potential improvements. One of the problem areas

identified in the survey was the lectures. Several students commented that they struggled in lecture

and requested more hands on learning. 76.68% of study participants agreed or strongly agreed that

the course needs to be taught in a computer classroom so all students can immediately, in-class,

implement and practice what is being taught. However, only 18.4% of participants always used

a laptop in class to practice, and over 55% of participants either rarely or never used a laptop for

practice. The idea presented in this research of using live compiler feedback for in-class exercises

lines up well with what the students are suggesting in the survey.

71.69% of study participants felt disadvantaged at the beginning of the course because

others had more prior programming experience. At the end of the course, 41.35% of participants

still felt disadvantaged because others had more prior programming experience. The live compiler

feedback has the potential to show students that they are not the only ones getting errors, hopefully

dispelling the myth that many other students are more skilled than they are (only 5% of students

have significant programming experience before the course). Overall, the survey results showed a

need for a development like the live compiler feedback website.

5.3.5 Overall Conclusions

The hypotheses are summarized in Table 5.3, with the supporting experiments listed. Hy-

potheses 1 and 2 have some evidence supporting them, but are not conclusively supported. Hy-

pothesis 2 has some additional support from the TA study. Hypotheses 3 and 4 have no evidence

supporting them. Hypothesis 5 is supported by three different experiments, the case study, the
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simulated course experiment, and the TA study, and has the strongest support. Overall, instructors

and students found the website feedback to be useful.

The following proposed research objectives were accomplished.

1. RO1: Develop a live compiler feedback system suited for use during a lecture

2. RO2: Evaluate the live compiler feedback system

3. RO3: Recommend future improvements for the live compiler feedback system

RO1 was completed by developing a website that allowed students to program and col-

lected real time data from each compile. The data were presented to the instructor using the same

website. The website is discussed thoroughly in Chapter 3. RO2 was accomplished by running

three different experiments, a case study in the ME 273 course, a simulated course experiment,

and a TA study. The case study evaluated whether or not the website was easy to use, enjoyable

to use, and whether or not the instructor changed their lecture material effectively based on the

website feedback. The simulated course experiment evaluated student performance when the in-

structor had access to the website feedback as opposed to having no feedback. Additionally, the

simulated course experiment asked for the instructor’s input on the usefulness of the data. The TA

study evaluated the instructor’s performance using the website by recording how many areas of

confusion the instructor could identify by looking at the website data.

RO3 was completed by asking all test subjects to provide input on improvements for the

live compiler feedback system. These results were coded and the most common suggestions were

analyzed by the researcher and the website developer for feasibility and time to implement. More

suggestions were gathered from the researcher’s observations throughout the experiments and the

website developer’s input. The suggestions are listed in Section 5.2.

Table 5.3: Conclusions for hypotheses with supporting experiments listed

Hypothesis Conclusion Experiment
1 Suggestive but inconclusive Simulated Course

2 Suggestive but inconclusive Simulated Course, TA Study

3 Inconclusive Simulated Course

4 Inconclusive Simulated Course

5 Supported Case Study, Simulated Course, TA Study
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The following research questions were answered.

1. RQ1: How can live feedback be implemented to improve programming lectures?

2. RQ2: How can live feedback be adapted for a mechanical engineering programming course?

To answer RQ1, live feedback can be implemented to improve programming lectures by

using a web-based compiler to collect data on in-class exercises. This creates a more interactive

environment and allows the instructor to receive feedback on the students’ progress and areas

of confusion. Overall, the website was found to be effective in helping instructors understand

student confusion. Students generally appreciated the chance to learn with in-class exercises and

instructors found the data to be useful.

To answer RQ2, live feedback may not need to be adapted much for a mechanical engineer-

ing programming course. Overall, the most common errors produced by ME 273 students match

those in other studies based on introductory computer science courses [54]. Based on user feed-

back, the data were slightly less useful for numerical methods topics. Additionally, the Current

Output graph could be modified to show student output better by including the student who pro-

duced the output and/or customizing which outputs are shown. These improvements could adapt

the live feedback to better suit a mechanical engineering course that involves numerical methods

as well as programming topics.

While not every hypothesis has significant supporting evidence, this work demonstrated

the potential of using live compiler feedback on in-class exercises in an introductory mechanical

engineering programming course. Methods that have been developed for computer science courses

can be applied to mechanical engineering programming courses. Future work could improve the

website and make it even more useful, and longer term experiments could better evaluate its use-

fulness. This tool has the potential to improve an instructor’s ability and efficiency in addressing

student confusion during lecture, freeing up more time for teaching or helping individual students.
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APPENDIX A. EXPERIMENTAL PROCEDURES

A.1 Simulated Course Experimental Procedures

A.1.1 Proctor Instructions

1. Set up OCAM

(a) Make sure videos are being saved to the right folder

(b) Use name structure: group# lastName topic#

(c) Check which screen is being captured on OCAM

(d) Start OCAM at the beginning of the experiment

2. Check that website is running

3. OCAM website on my computer

4. Record Derek talking

5. Introduce rules to students at the beginning of the first experiment

6. Write down any questions the students ask

A.1.2 Instructor Experimental Procedure

Rules:

• You can only use the View Data page for Group 2 (Wednesday Friday). You may address

issues the students are having if you infer them from the View Data page.

• You can answer questions during the lecture
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• You cannot answer questions during the exercise

• Do not change slides during the exercise

• You can answer questions after the exercise, but only if they ask questions (Group 1). Do not

prompt them for questions. With Group 2, you can address issues based on the data collected

by the website.

• Do not allow students to take notes

Schedule:

• If W/F, sign in to website at me273vm.et.byu.edu

• Lecture - less than 10 minutes

• Exercise - give students 5 minutes unless they all finish early

• Quiz - students will have 3 minutes to take a quiz that has been emailed to them

• Survey - students will have 2 minutes to take a survey that has been emailed to them. You

will also take this survey.

A.2 Teaching Assistant Study Experimental Procedures

A.2.1 Proctor Instructions

1. Set up account for subject at me273.vm.et.byu.edu

2. Provide exercise code for subject.

3. Set timer for 10 minutes. Instruct subject to look through the exercises, attempt to do the

exercises, and think about problems as if they were going to use the exercise as an example

in class. Subjects may ask questions during this time.

4. Open website Compile Data page for Exercise 1. Open video for Exercise 1. Provide TA

Experiment Website Instructions and answer any questions. Instruct subject to take notes on

what students are struggling with.
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5. Open website Compile Data page for Exercise 2. Open video for Exercise 2. Answer any

questions. Instruct subject to take notes on what students are struggling with.

6. Have subject take Qualtrics survey.

A.2.2 Website Explanation

Students were asked to complete 5-10 minute programming exercises using this website.

The website collected compiler and output data as the students programmed. This data is displayed

visually on the Compiler Data page.

The Compiler Data page consists of six graphs and two tables.

1. Persistent Errors

(a) Persistent errors shows only current errors divided by the total number of occurrences

of that error. For example, if an error occurred five times over the course of the exper-

iment, and currently one person still has that error, the persistence would be 0.2. This

is intended to help you identify how difficult an error is to fix.

2. Current Outputs

(a) Current outputs shows the top five most common current outputs. Output is defined as

console output, so whatever was written to the screen using “cout”. Current means the

most recently compiled version for each student. This is intended to help you identify

if students are getting the correct solution.

3. Total Errors

(a) Total errors shows the total number of errors at any given time.

4. Total Outputs

(a) Total outputs shows the total outputs at any given time.

5. Times Compiled
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(a) The number of times each student has tried to compile or run their code. This is in-

tended to show you how often students are attempting to solve the problem.

6. Run Success Percentage

(a) The number of successful runs over the number of total attempted runs. A success

percentage of 1 means that the students code ran every time without errors. A success

percentage of 0 means none of the runs were successful. This is intended to show you

the progress students are making.

7. Current Errors Table

• This table allows the instructor to see all of the current errors more clearly.

8. Total Errors Table

(a) This table allows the instructor to see all of the errors more clearly.

113



APPENDIX B. SURVEY QUESTIONS

B.1 ME 273 Winter Semester Survey

B.1.1 Consent Document

My name is Ariana Sellers, I am a graduate student at Brigham Young University and I

am conducting this research under the supervision of Professor Salmon, from the Department of

Mechanical Engineering . You are being invited to participate in this research study of an In-Class

Exercise Software Tool. I am interested in finding out about your perceptions of the utility and

usefulness of the software.

Your participation in this study will require the completion of the attached survey. This

should take approximately 2 minutes of your time. Your participation will be anonymous and you

will not be contacted again in the future. You will not be paid for being in this study. This survey

involves minimal risk to you. The benefits, however, may impact society by helping increase

knowledge about teaching programming to engineering students.

You do not have to be in this study if you do not want to be. You do not have to answer

any question that you do not want to answer for any reason. We will be happy to answer any

questions you have about this study. If you have further questions about this project or if you have

a research-related problem you may contact me, Ariana Sellers, at pedersenariana@gmail.com or

my advisor, Dr. Salmon, at johnsalmon@byu.edu.

If you have any questions about your rights as a research participant you may contact the

IRB Administrator at A-285 ASB, Brigham Young University, Provo, UT 84602; irb@byu.edu;

(801) 422-1461. The IRB is a group of people who review research studies to protect the rights

and welfare of research participants.

The completion of this survey implies your consent to participate. Your consent gives me

permission to publish the results of in-class exercises and follow-up quizzes anonymously and in
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aggregate (only averages for the entire class will appear), as well as the anonymous results of this

survey. If you choose to participate, please click the button below and complete the survey by June

21st, 2017. Thank you!

Please provide your name for consent purposes. This allows us to only include data for the

participants who consent to participate. NOTE: The researchers, Ariana Sellers and Dr. Salmon,

will not see your name in the survey results. A research assistant has been employed to anonymize

the survey data to prevent a conflict of interest. If you wish to remove your consent at any time,

you may email landon.wright91@gmail.com and request that your information be removed.

B.1.2 Student Survey

1. Did you use the experimental software?

2. Rate your agreement with the following statements:

(a) The experimental software was easy to use.

(b) The experimental software was enjoyable to use.

(c) The experimental software made it easy to do in-class exercises.

(d) When the experimental software was used, the instructor changed his/her lecture to

address the results of the in-class exercise.

(e) When the experimental software was used, the instructor was able to address student

confusion during lecture.

3. Please include any other comments about the experimental software.

B.2 Simulated Course Experiment Surveys

B.2.1 Programming Skill Survey

1. What is your name?

2. For how many years have you been programming?

3. On a scale from 1 to 10, how do you estimate your programming experience?
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4. How do you estimate your programming experience compared to your classmates?

5. How experienced are you with C++?

6. How experienced are you with MATLAB?

7. How experienced are you with Python?

8. If you are very experienced with any other languages, please list them here.

9. How experienced are you with object-oriented programming?

B.2.2 Student Survey

1. Were you in group 1 or group 2?

2. Rate your level of agreement with the following statements:

(a) The experimental software was easy to use.

(b) The experimental software was enjoyable to use.

(c) The experimental software made it easy to do in-class exercises.

3. Rate your level of agreement with the following statements:

(a) The persistent errors graph was useful.

(b) The current output graph was useful.

(c) The total errors graph was useful.

(d) The total output graph was useful.

(e) The number of compiles graph was useful.

(f) The run success percentage graph was useful.

4. Rate your level of agreement with the following statements:

(a) The instructor addressed issues the students were having.

(b) The instructor knew how the class was doing on the exercises.
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(c) I enjoyed doing exercises on the website.

(d) Doing exercises after the lecture helped me learn the material.

5. What improvements or additional features would have made the experimental software more

useful?

6. Provide any other comments on the experiment or the software here.

B.2.3 Instructor Survey

1. Rate your level of agreement with the following statements:

(a) The experimental software was easy to use.

(b) The experimental software was enjoyable to use.

(c) The experimental software made it easy to do in-class exercises.

2. Rate your level of agreement with the following statements:

(a) The persistent errors graph was useful.

(b) The current output graph was useful.

(c) The total errors graph was useful.

(d) The total output graph was useful.

(e) The number of compiles graph was useful.

(f) The run success percentage graph was useful.

3. Rank the types of data visualizations in order of usefulness.

(a) Persistent errors

(b) Current output

(c) Total errors

(d) Total output

(e) Number of compiles
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(f) Run success percentage

(g) Current errors table

(h) Total errors table

4. Answer the following with extremely adequate to extremely inadequate:

(a) How useful was the data for C++ topics?

(b) How useful was the data for numerical methods topics?

(c) How useful was the data for error finding exercises?

(d) How useful was the data for non-error finding exercises?

5. What additional outputs would have been useful?

6. What additional features would have been useful?

7. Rate your agreement with the following statements:

(a) The experimental software helped me understand what the students were struggling

with.

(b) The experimental software helped me assist the students with their exercises.

8. Provide any other comments on the experiment or the software here.

B.3 Teaching Assistant Study Survey

1. For how many years have you been programming?

2. On a scale from 1 to 10, how do you estimate your programming experience?

3. How do you estimate your programming experience compared to your classmates?

4. How experienced are you with C++?

5. How experienced are you with MATLAB?

6. How experienced are you with Python?
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7. If you are very experienced with any other languages, please list them here.

8. How experienced are you with object-oriented programming?

9. What do you think the students struggled with during the in-class exercise you watched?

10. Rate your agreement with the following statements:

(a) The persistent errors graph was useful.

(b) The current output graph was useful.

(c) The total errors graph was useful.

(d) The total output graph was useful.

(e) The number of compiles graph was useful.

(f) The run success percentage graph was useful.

11. Rank the types of data visualizations in order of usefulness.

(a) Persistent errors

(b) Current output

(c) Total errors

(d) Total output

(e) Number of compiles

(f) Run success percentage

(g) Current errors table

(h) Total errors table

12. Answer the following with extremely adequate to extremely inadequate:

(a) How useful was the data for C++ topics?

(b) How useful was the data for numerical methods topics?

(c) How useful was the data for error finding exercises?
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(d) How useful was the data for non-error finding exercises?

13. What additional outputs would have been useful?

14. What additional features would have been useful?

15. Rate your agreement with the following statements:

(a) The experimental software helped me understand what the students were struggling

with.

(b) The experimental software helped me assist the students with their exercises.

16. What improvements or additional features would have made the experimental software more

useful?

17. Provide any other comments on the experiment or the software here.

18. Rate your agreement with the following statements:

(a) ME 273 is a difficult course.

(b) The students perceive ME 273 as a difficult course.

19. Why do students find ME 273 to be difficult?

20. What topics or concepts did students find difficult? Select all that apply.

(a) C++ Basics

(b) C++ Flow Control

(c) C++ File Input/Output

(d) C++ Functions

(e) C++ Static Arrays

(f) C++ Classes

(g) Numerical Derivatives

(h) Numerical Integration
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(i) Root Finding Methods

(j) Least Squares Regression

(k) Initial Value Problems

(l) Boundary Value Problems

(m) Linear Systems Solvers

21. What should be done to improve ME 273?

B.4 BYU ME 273 Survey

This survey and the data were provided by Dr. Charles.

1. Are you a graduate student or an undergraduate student?

2. How much programming experience did you have before enrolling in ME 273?

(a) None

(b) Hours

(c) Days

(d) Weeks

(e) Months

(f) Years

3. How did you learn to program?

(a) Self-taught

(b) High school course

(c) High school club

(d) University level course

(e) Off-campus job

(f) On-campus job
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(g) Other

4. What languages did you learn on your own?

(a) Java/Javascript

(b) Python

(c) Arduino

(d) Other

5. In your opinion, how many of your classmates in ME 273 had programming experience

before enrolling in ME 273?

6. Rate your agreement: The programming portion of ME 273 was beneficial even though I

had prior programming experience

7. Rate your agreement: This course needs to be taught in a computer classroom so all students

can immediately (during class) implement and practice what is being taught

8. Rate your agreement: ME 273 prepared me for the programming required in courses I have

taken after ME 273

9. Rate your agreement: ME 273 has prepared me for the programming required in jobs that I

have had after ME 273

10. Rate your agreement: Students with significant programming experience should be allowed

to test out of the programming portion.

11. How should C++ and MATLAB be taught?

(a) Interweaved

(b) C++ first, then MATLAB

(c) MATLAB first, then C++

(d) Other

12. Did you use a laptop in class to practice what was being taught?
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(a) Always

(b) Sometimes

(c) Rarely

(d) Never

13. What were the most difficult aspects of ME 273?

(a) C++

(b) MATLAB

(c) Numerical methods

(d) Homework

(e) Labs

(f) Cumulative load

(g) Other

14. What were the most enjoyable aspects of ME 273?

(a) C++

(b) MATLAB

(c) Numerical methods

(d) Homework

(e) Labs

(f) Other

15. How could the experience in ME 273 be improved?

(a) Reduced load

(b) Split into two blocks

(c) Projects over labs

(d) Online resources
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(e) Other

16. Rate your agreement: Any comments or suggestions

17. Rate your agreement: When the course began, I felt at a disadvantage because others had

more prior programming experience

18. Rate your agreement: In hindsight, I really was at a disadvantage in this course because

others had more prior programming experience

19. What should be done to level the playing field?

(a) Nothing

(b) Extra sessions for those without prior programming experience

(c) Require extra sessions for those without prior programming experience

(d) Require all students to take a CS class

(e) Provide more TA help for homework and labs

(f) Provide more online resources

(g) Allow those with significant prior programming experience to test out of the program-

ming portion

(h) Other
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APPENDIX C. SIMULATED COURSE MATERIALS

C.1 Lecture Slides

C.1.1 Topic 1: C++ Basics

Figure C.1
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Figure C.2

Figure C.3

126



Figure C.4

Figure C.5
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Figure C.6
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Figure C.7
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Figure C.8

Figure C.9
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Figure C.10

Figure C.11
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Figure C.12

Figure C.13
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C.1.2 Topic 2: C++ Flow Control

Figure C.14

Figure C.15
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Figure C.16

Figure C.17
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Figure C.18

Figure C.19
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Figure C.20

Figure C.21
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Figure C.22

Figure C.23
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Figure C.24

C.1.3 Topic 3: C++ Functions

Figure C.25
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Figure C.26

Figure C.27
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Figure C.28

Figure C.29
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Figure C.30

Figure C.31
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Figure C.32

C.1.4 Topic 4: Root Finding Methods

Figure C.33
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Figure C.34

Figure C.35
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Figure C.36

Figure C.37
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Figure C.38

Figure C.39
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C.1.5 Topic 5: C++ Static Arrays

Figure C.40

Figure C.41
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Figure C.42

Figure C.43
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Figure C.44

Figure C.45
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Figure C.46

C.1.6 Topic 6: Numerical Integration

Figure C.47
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Figure C.48

Figure C.49
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Figure C.50

Figure C.51
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Figure C.52

Figure C.53
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Figure C.54

Figure C.55
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Figure C.56

Figure C.57
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C.1.7 Topic 7: Least Squares Regression

Figure C.58

Figure C.59
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Figure C.60

Figure C.61
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Figure C.62

Figure C.63
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Figure C.64

Figure C.65
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Figure C.66

C.1.8 Topic 8: Initial Value Problems

Figure C.67
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Figure C.68

Figure C.69
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Figure C.70

Figure C.71
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Figure C.72

Figure C.73
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C.2 Quiz Questions

C.2.1 Quiz 1: C++ Basics

1. Which of the following is a valid declaration statement?

(a) x = 10;

(b) int x = 1.75;

(c) double x(1.75);

2. What is the output of the following code?

Figure C.74

(a) 1.25

(b) 1

(c) 1.5

(d) 2

3. What is wrong with the following code?
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Figure C.75

(a) <<going the wrong direction for cin

(b) Cin used instead of cout

(c) Missing semi-colon

C.2.2 Quiz 2: C++ Loop Control

1. Which of the following is a valid syntax for a do while loop?

(a) 1

Figure C.76

(b) 2
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Figure C.77

(c) 3

Figure C.78

2. What is the output of the following code?
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Figure C.79

(a) 5 176 147 118 89 5

(b) 5 176 147 118 8

(c) 5 176 147 11

(d) 5 176 14

3. What is wrong with the following code?
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Figure C.80

(a) break is missing from cases 0, 1, and 2

(b) there’s no semi-colon at the end of the switch statement

(c) parentheses are missing: case(0): instead of case 0:

C.2.3 Quiz 3: C++ Functions

1. Which of the following is a correct way to define and use a function?

(a) 1
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Figure C.81

(b) 2
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Figure C.82

(c) 3
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Figure C.83

2. What is the output of the following code?

170



Figure C.84

(a) 5 44

(b) 5 4

3. What is wrong with the following code?
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Figure C.85

(a) The function prototype doesn’t indicate the double is passed by reference

(b) The function prototype doesn’t specify the variable name

(c) fun(x) needs to be fun(&x) to pass the variable by reference

C.2.4 Quiz 4: Root Finding Methods

1. Which of the following methods is a bracketing method?

(a) Bisection

(b) Secant

(c) Newton-Rhapson

2. What is a benefit of the Newton-Rhapson method?

(a) It always converges

(b) It converges quickly

(c) It doesn’t require a derivative calculation

172



3. Do one iteration of the Newton-Rhapson method for the following function with an initial

guess of 5. Report the new guess. f(x) = x2

C.2.5 Quiz 5: C++ Static Arrays

1. Which of the following is a valid way to initialize an array?

(a) string names[5] = ”Percy”,”Fred”,”George”,”Bill”,”Charlie”;

(b) int nums[] = 1, 2, 3, 4;

(c) double points[3] = [5,4,3];

2. What is the output of the following code?

Figure C.86

(a) Ron is Harry Potter’s best friend.

(b) Ginny is not Harry Potter’s best friend.

(c) Luna is not Harry Potter’s best friend.

3. What are the errors in the following code?
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Figure C.87

(a) Did not declare the size of the array

(b) Used curly brackets instead of square brackets

(c) Didn’t use square brackets after creatures

C.2.6 Quiz 6: Numerical Integration

1. What is a shortcoming of the trapezoid rule?

(a) the points must be equally spaced

(b) the number of points must be even

2. Which algorithm involves summing up odd and even segments?

(a) Simpson’s 3/8

(b) Trapezoid

(c) Simpson’s 1/3

3. Which method has less error in general?

(a) Simpson’s 3/8

(b) Trapezoid

(c) Simpson’s 1/3
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C.2.7 Quiz 7: Least Squares Regression

1. True or false: a higher order regression is always a better representation of the trend

(a) true

(b) false

2. True or false: interpolation goes through every point, while regression shows a general trend

(a) true

(b) false

3. a0 and a1 are:

(a) the intercept and slope of the regression line

(b) the interpolation parameters

(c) the intercepts of the regression line

C.2.8 Quiz 8: Initial Value Problems

1. Decreasing step size generally makes Euler’s method more accurate

(a) true

(b) false

2. Heun’s method is more accurate than Euler’s method because:

(a) it does more iterations

(b) it uses two points to calculate an estimated slope

(c) it uses a smaller step size

3. How many initial values does a second order differential equation need?

(a) 3

(b) 2

(c) 1
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C.3 Exercises

C.3.1 Exercise 3

//do not use cin

//do not use system pause

//Exercise: Fix the errors in the following code.

//This program should find the correct average of two numbers using a function.

#include <iostream>

using namespace std;

int main()

{

double x = 5;

double y = 4;

cout << average(x y) << endl;

return 0;

}

int average(num1, num2)

{

return (num1 + num2) /2;

}

C.3.2 Exercise 4

//do not use cin
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//do not use system pause

//do not use arrays

//You can use cmath, but not math.h

//Fix the errors in the following code.

//There are both syntax and algorithmic errors

(typos that may not throw an error message).

//This program uses the Newton-Rhapson method to find the root of a function

//Newton-Rhapson algorithm: x_(n+1) = x_n - f(x_n)/f’(x_n)

//The correct answer is x=1.707

#include <iostream>

using namespace std;

//the function we’re finding the root of

double f(x)

{

return x*x*x + 5*x*x - 12*x + 1;

}

//the derivative of the function we’re finding the root of

double fprime(x)

{

return 3*x*x + 10*x;

}

int main()

{

double error;
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double guess = 3;

while(error > .0001)

{

guess = guess + f(guess)/fprime(guess);

error = f(guess);

cout << error << endl;

}

cout << endl << guess << endl;

return 0;

}

C.3.3 Exercise 6

//do not use cin

//do not use system pause

//write your code in the try catch statement

//Fix the errors in the following code. These may be logical/algorithmic

errors or syntax errors.

//The following code uses the trapezoid rule to estimate the integral of

the function

//f(x) = x^2 + 5x - 20 between a = -4 to b = 2 with n = 5 segments

//The trapezoid rule formula: I = h/2 * (f(x0) + 2*sum from 1 to n-1

of f(xi) + f(xn))

//where h = (b-a)/n
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//The exact answer is I = -126

#include <iostream>

#include <string>

using namespace std;

double f(double x)

{

return x*x + 5*x - 20;

}

int main()

{

try

{

//put your code here

int a = -4;

int b = 2;

n = 5;

int h = b-a/n;

double sum = h/2*(f(a) + f(b));

double x = a + h;

for(int i = 0; i < n; i++)

{

sum = 2*f(x);
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x += h;

}

cout << sum << endl;

}

catch(exception ex)

{}

return 0;

}

C.3.4 Exercise 8

//Do not use cin

//Do not use system pause

//Fix the errors in this program. There may be both syntax and

algorithmic errors.

//Solve the given differential equation function using Euler’s method with

the following parameters:

//y(0) = 1

//dy/dx = -2x^3 + 12x^2 - 20x + 8.5

//deltax = .25

//x0 = 0

//xn = 4 (from x = 0 to x = 4)

//Euler’s method:

//y(i+1) = y(i) + dydx(x(i))*deltax

//Print out the value of y(4). The correct answer is 3, but with your given
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step size it should be close to 5.

//You can try testing smaller step sizes and see if it converges to 3.

#include <iostream>

using namespace std;

int dydx(double x)

{

return -2x*x*x + 12*x*x - 20*x + 8.5;

}

int main()

{

try

{

double step = .25;

double lb = 0;

double ub = 4;

double num = ub-lb/step;

//set up y values

double yvals[num];

//initial condition

yvals[1] = 1;

//set up x values

double xvals[num];

xvals[1] = 0;
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for(int i = 1; i < num; i++)

{

xvals[i] = xvals[i-1] + step;

}

//Euler’s method

for(int i = 0; i < num; i++)

{

yvals[i+1] = yvals[i] + dydx(xvals[i])*step;

}

//Print solution for last value

cout << yvals[num-1] << endl;

}

catch(exception ex)

{}

return 0;

}
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APPENDIX D. IRB DOCUMENTS

D.1 IRB Approval

Memorandum

To: Ariana Pedersen

Department: ME

College: E&T

From: Sandee Aina, MPA, IRB Administrator

Bob Ridge, PhD, IRB Chair

Date: May 24, 2017

IRB#: E17213

Title: Live In-Class Compiler Feedback in Programming Exercises

Brigham Young Universitys IRB has approved the research study referenced

in the subject heading as exempt, category 2.

The approval period is from May 24, 2017 to May 23, 2018. Please reference

your assigned IRB identification number in any correspondence

with the IRB.

Continued approval is conditional upon your compliance with the following
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requirements:

CONTINGENCY: Submit the classroom announcement script.

A copy of the informed consent statement is attached. No other consent

statement should be used. Each research subject must be provided with a copy

or a way to access the consent statement.

Any modifications to the approved protocol must be submitted, reviewed,

and approved by the IRB before modifications are incorporated in the study.

All recruiting tools must be submitted and approved by the IRB prior to use.

5.In addition, serious adverse events must be reported to the IRB immediately,

with a written report by the PI within 24 hours of the PI’s becoming aware

of the event.

Serious adverse events are (1) death of a research participant;

or (2) serious injury to a research participant.

6. All other non-serious unanticipated problems should be reported to

the IRB within 2 weeks of the first awareness of the problem by the PI.
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Prompt reporting is important, as unanticipated problems often require some

modification of study procedures, protocols, and/or informed consent processes.

Such modifications require the review and approval of the IRB.

A few months before the expiration date, you will receive a continuing review

form.

There will be two reminders. Please complete the form in a timely manner to

ensure that there is no lapse in the study approval.

IRB Secretary

Office of Research and Creative Activities

A 285 ASB

Brigham Young University

(801)422-3606

irb@byu.edu

D.2 Recruiting Script

Classroom Script: Students, Dr. Salmon and Ariana Pedersen are doing an experiment to

improve how people teach computer programming to mechanical engineers. They have created

a website that gathers data on students programs as they code. This data includes any errors

that occurred, number of lines, how many times a user tries to run the program, and program

output. Dr. Salmon receives anonymous summaries of this data to see how the class is doing

overall. Using this website is required for in-class exercises during the course. You will also be

required to complete 5-10 minute at home quizzes as a control. These quizzes will be graded on

participation only and the accuracy of your answer will not affect your grade at all. You are not
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required to allow your data to be used and published as part of this experiment. Any data that is

published will be completely anonymous and only reported in aggregate, in the form of averages,

standard deviations, etc. Allowing your data to be used in the experiment will be very helpful to

the researchers, and will hopefully improve how programming courses are taught and make the

course easier for students. I am going to pass a piece of paper around. If youre interested in giving

your consent or want to find out more about the experiment, please write down your email address.

I will send you a survey that explains the experiment a little more and asks whether or not you

consent to having your data used. Dr. Salmon and Ariana will not know which students have

consented to participate in the experiment. I (Landon) am in charge of anonymizing all of the data

and keeping track of which students have given their consent. The website is also set to exclude

Dr. Salmon and Ariana from seeing any identifying information. If you want to withdraw your

consent at any point during the experiment, you can email me and I will remove your data within

24 hours. Are there any questions?

D.3 Other Relevant Documents

The consent document is included in Appendix B.1.1 as part of a survey.
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