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ABSTRACT 

Examining the Mechanics Responsible for Strain Delocalization 
in Metallic Glass Matrix Composites 

Casey Owen Messick 
Department of Mechanical Engineering, BYU 

Master of Science 

Metallic glass matrix composites (MGMCs) have been developed to improve upon the 
ductility of monolithic metallic glass. These composites utilize a secondary crystalline phase that 
is grown into an amorphous matrix as isolated dendritic trees. This work seeks to understand the 
mechanisms underlying strain delocalization in MGMCs in order to better direct efforts for 
continual progress in this class of material. A mesoscale modelling technique based on shear 
transformation zone (STZ) dynamics is used to do so. STZ dynamics is a coarse grained 
technique that can provide insight into the microscopic processes that control macroscopic 
behavior, but which can be difficult to resolve experimentally.  

A combined simulated-experimental approach to extract the individual material 
properties of the amorphous and crystalline phases is presented. Numerically, STZ dynamics is 
used to simulate nanoindentation of the crystalline and amorphous phases respectively. The 
indented phases are modelled as discs with varying thickness embedded in the other phase. 
Indentation depths are held constant. Experimentally, nanoindentation is carried out on DH2 and 
DH3 MGMC composites under varying loads at Stony Brook University (SBU). Specimens are 
cross-sectioned and using scanning electron microscopy, indentation sites are chosen so that the 
indenter targets individual phases. For both experimental and simulated nanoindentation, 
hardness and modulus values are calculated from the load-displacement data. The experimental 
and simulated values are normalized and compared. Good agreement between results suggests 
accurate characterization of the individual phases at low loads on both DH2 and DH3 
composites. Length scales at which indentations begin sampling outside the intended phase are 
presented. 

Work is then presented on simulated uniaxial tensile loading of MGMCs. Dendritic 
microstructural sizes are varied and shear banding characteristics are measured. A competition of 
shear band nucleation and propagation rates that previously had only been seen in monolithic 
metallic glasses under certain loading conditions is found to exist in MGMCs as well. The stages 
of shear banding in MGMCs are presented and the influence of dendrites on shear band 
nucleation and propagation are discussed. It is proposed that the introduction of dendrites into 
the amorphous matrix work to inhibit shear band propagation and encourage shear band 
nucleation to delocalize strain in MGMCs. In particular, it was found that smaller dendrite sizes 
and spacings are better at doing so. 

Keywords: shear transformation zone, shear band, metallic glass, metallic glass matrix 
composites, competition of rates, strain delocalization, STZ dynamics 
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1 INTRODUCTION 

1.1 Bulk metallic glass 

Designing materials that have an impressive array of mechanical characteristics, such as 

strength, toughness, elasticity, and ductile failure, has driven the research work of many 

materials scientists. The study and development of bulk metallic glasses (BMGs) is a classic 

representation of this endeavor. The first metallic glass was produced by Duwez and coworkers 

in 1960 [1]. By cooling a liquid melt at sufficiently high rates (~106 K s-1) they succeeded in 

bypassing crystalline nucleation resulting in an amorphous metallic alloy. These alloys could 

only be fabricated as thin ribbons due to the necessarily high cooling rates. In the early 1990s 

however, new La-, Mg-, and Zr-based amorphous structures that could be created using lower 

cooling rates allowed the formation of the first BMGs of up to 1cm in size [1]–[5]. These 

advances resulted in the ability to investigate the structural and mechanical properties of these 

glassy metals at the macro-scale. 

By successfully retaining their amorphous atomic structure in solid state, BMGs 

demonstrate drastically improved yield strengths over their crystalline counterparts. This is 

attributed to their lack of long range order which negates mechanisms, such as dislocations, 

common in crystalline metals. BMGs also have high elastic limits, that when combined with 

their high strengths place BMGs in unique material property spaces not before attainable with 

traditional materials [6]–[9]. This is demonstrated in Figure 1-1 where the elastic and strength 

properties are displayed on an Ashby type plot.  
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An amorphous atomic structure also results in low shrinkage rates. Combined with 

viscous flow at high temperatures, metallic glasses are able to undergo thermoplastic polymer 

and conventional glass forming processes. This provides incredible flexibility in shaping metallic 

glass with micro scale precision and eliminating the need for expensive secondary finishing 

processes (injection molding, superplastic extension and extrusion, and blow molding for 

example) [9]–[12]. Because of these and other traits, BMGs have been hailed as the material of 

the future since the 1960s [1], [3]–[5], [9], [13]. Despite their accolades, metallic glasses have 

not seen widespread adoption into small-scale structural applications. This is largely a result of 

their tendency to fail catastrophically upon yield.  

 

Figure 1-1: Ashby type chart  
Demonstrating the superiority of combined strength and elasticity in metallic glasses over other 
material classes (used with permission from LiquidMetal Technologies). 

1.1.1 Shear localization in metallic glass 

The reason why BMGs fail catastrophically upon yield is attributed to the rapid growth 

and development of shear bands. Shear bands develop from the accumulation of many local 
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rearrangements in the atomic structure due to applied stresses [14]. Unlike crystalline metals that 

often demonstrate a variety of microscale deformation mechanisms (dislocations, twinning, grain 

boundary sliding…etc.), the deformation of metallic glass is governed primarily by one 

mechanism [15]–[17]. One such explanation of this mechanism has been termed a shear 

transformation zone (STZ).  

An operation or activation of an STZ is described as a cluster of atoms that undergoes 

shear distortion to accommodate strain. Although the collective activation of many STZs can 

vary depending on loading condition, under normal loading rates and temperatures, STZ 

activations tend to form into STZ clusters that then form into unstable shear bands. Under 

unconstrained modes of loading, further accumulation of strain is concentrated in one to a few 

shear bands, resulting in fracture. This entire process is seen to occur over periods of 10-5-10-3 s 

in experiments [18]–[21].  

 

Figure 1-2: Two dimensional schematic depicting an STZ proposed by Argon [15] 
Figure taken from [22]. 

 

Despite the tendency for metallic glass to fail catastrophically, a unique and encouraging 

observation can be seen. The individual accommodation of strain by a single shear band can be 

on the order of 100% or more and demonstrates incredible local ductility. Because strain is 

usually concentrated in only a few shear bands that develop quickly, there is little to no 



 

4 
 

detectable strain at the macroscopic level [23]. It then follows that if a greater number of shear 

bands would form, macroscopic plasticity could improve. In recent work, this has been 

demonstrated in two ways: 1) Deformation of metallic glass at high strain rates and 2) the 

introduction of a secondary crystalline phase into the amorphous matrix.  

1.1.2 Rate dependence in metallic glass 

As previously introduced, when metallic glasses are deformed, fracture will rapidly 

develop along a few runaway shear bands [14], [24]–[29]. In contrast, when deformed at higher 

strain rates, a higher number of fracture planes corresponding with an increased number of 

runaway shear bands are seen. Accompanied increases in macroscopic plasticity is also evident 

from stress-strain curves (Figure 1-3) [25]–[29].  

 

Figure 1-3: True stress-strain curves for Vitreloy 1  
Data shown is from tensile tests at different strain rates [27] 
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Figure 1-4: Nanoindentation of Vitreloy-105  
Indentations at different loading rates from [30]. Inset showing SEM micrograph of shear 
banding steps from a nanoindentation site.  
 

This flow transition has also been demonstrated in experimental nanoindentation. Due to 

constrained modes of loading under nanoindentation, when metallic glasses are indented, they 

produce a distinctly serrated load-displacement curve. The serration points correspond with 

displacement bursts from propagating shear bands [31]–[34]. As metallic glasses are indented at 

higher rates, serrations become smaller and smaller until they are virtually non-existent (Figure 

1-4 [30]). Schuh et al. employed nanoindentation to more fully quantify flow regimes as a 

function or rate and temperature populating a deformation map shown in Figure 1-5. For the 

transition from strong to medium to light flow serration at lower temperatures, Schuh et al. 

hypothesized that this was a result of a change from a few to many shear bands as a result of a 

competition between shear band nucleation and propagation rates. As the strain rate surpasses an 



 

6 
 

intrinsic shear banding frequency, shear bands are able to nucleate but unable to propagate fast 

enough to relax the material sufficiently. Consequently, the yield criterion for STZ activation and 

shear band nucleation is still widely met throughout the specimen encouraging STZs to activate 

in a homogeneous manner. In other words, more shear bands enter the nucleation stage but fewer 

enter the propagation stage resulting in the increased and simultaneous operation of many shear 

bands [35]–[38]. 

 

Figure 1-5: Strain rate-temperature deformation map for metallic glass 
Taken from a review article by Schuh et al. [14]. Homogenous and inhomogeneous flow is 
separated by the thick solid line. 
 

This hypothesis was corroborated in a recent work by Harris et al. [39]. Using shear 

transformation zone (STZ) dynamics, they were able to numerically simulate the deformation of 

metallic glass at varying strain rates. The magnitude of flow serration in the simulation appeared 

to show transitions from strong to medium and medium to lightly serrated flow at the same rates 

predicted by nanoindentation experiments carried out by Schuh et al. [35]. Not only this, but 
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analysis of shear banding characteristics demonstrated that accompanying the transition from 

strongly serrated flow (low strain rates) to lightly serrated flow (high strain rates) was an 

increase of shear band nucleation rates and a decrease in shear band propagation rates. They 

were able to verify the hypothesis in [35] that at lower strain rates, shear bands nucleate and 

propagate quickly to allow stress to reduce in the surrounding material; but at high strains rates, 

strain is not accommodated quickly enough to relieve stress resulting in the simultaneous 

operation of shear bands throughout the specimen. 

1.2 Metallic glass matrix composites 

1.2.1 Increased shear banding in metallic glass matrix composites 

Another way that strain has been effectively delocalized in amorphous metals has been 

with the development of MGMCs [40]–[42]. These composites utilize a secondary crystalline 

phase that is grown into the matrix as isolated dendritic trees [42]–[46]. They have demonstrated 

more than 10% strain under biaxial tensile loads with strengths as high as 1.5 GPa. Their high 

strengths combined with tensile ductility make them very attractive for applications where high 

toughness is needed [46]–[51].  

As already mentioned, when metallic glasses are plastically deformed at conventional 

loading rates, they fail along a fairly defined shear plane and show little, if any, overall plasticity. 

However, when MGMCs are deformed, strain is delocalized through the proliferation of shear 

bands throughout the specimen. This is commonly evidenced by an undefined shear plane 

signifying numerous runaway shear bands seen on fracture surfaces under uniaxial loading 

conditions (Figure 1-6) [48], [52].  
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Figure 1-6: SEM micrograph of the tensile surfaces of DH2, DH3, and a monolithic BMG 
(listed left to right) [46] 

 

Notably, the development of DH1, DH2, and DH3 zirconium based MGMCs by 

Hofmann et al. [53] has seen particular success [46]–[51], [53]. Microstructural and 

fractographic analyses revealed matching length scales between shear band sizes and dendrite 

spacings. Hofmann et al. hypothesized that dendrites can serve to limit shear band propagation to 

within the domains between the dendrites. If shear band length scales are matched with dendrite 

spacings, then shear bands are kept from reaching crack initiation sizes and crack development is 

arrested. As individual shear bands cannot sufficiently relax strain, the simultaneous operation of 

multiple shear bands is consequently encouraged [53], [54].  
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Figure 1-7: Development of DH1, DH2, and DH3 
(a) DH1 and (b) DH3 backscattered SEM micrographs illustrating the dendritic structure of the 
secondary crystalline phase. (c) Engineering stress-strain curves for DH1, DH2, and DH3 at 
room temperature demonstrates improved tensile ductility when dendrite length scales match 
shear band sizes Figure taken from [46]. 

1.2.2 Effects of microstructural features in metallic glass matrix composites 

The extent to which the secondary phase can delocalize strain is influenced by some 

microstructural characteristics including volume fraction, dendrite size, dendrite spacing, and 

dendrite morphology [44], [46], [49], [55]–[57]. Some efforts to optimize composite design 

based on the influence of these dendrite features have been documented [44], [50], [58], [59].  

First, it is well-known that increasing the volume fraction of the crystalline phase results 

in significant increases in plasticity. This is most effective when a soft crystalline phase is used, 

as they are thought to reduce shear band propagation velocities by lowering stresses at the point 

when shear bands encounter crystalline regions. Despite enhanced plasticity in these cases, it can 

come at the detriment of decreased composite strength [51], [60]–[66].  

Other correlations with dendrite length scales and strain delocalization has also been 

found [42], [51], [53], [66]–[68]. Some groups have reported that a bimodal distribution of 

dendrite sizes may be optimal in enhancing plasticity in composites. They theorize that smaller 
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dendrites lead to an increase in nucleation sites for shear bands, while larger dendrites work more 

effectively to slow down their propagation [44], [69].  

1.3 STZ dynamics 

Examining the various stages of shear localization is difficult due to the various time and 

length scales of these events. STZ activations occur on timescales of about 10-12 to 10-11 s  while 

shear band formations spans timescales of 10-5 to 10-3 s [19], [70]. On the other hand, shear band 

thickness is on the order of 10-8 to 10-7 m [71], [72], while STZ sizes are on the order of 10-10 to 

10-9 m [47], [73]. STZ dynamics developed by Homer et al. [22] that can span these various time 

and length scales.   

The STZ dynamics model is a mesoscale simulation technique that uses STZs as its 

fundamental unit of deformation. STZs are modelled as Eshelby inclusions and are coarse-

grained onto a finite-element mesh. The activation of STZs is controlled by using a kinetic 

Monte Carlo (kMC) algorithm [74] and an activation rate law, given by the following: 

�̇�𝑠 = 𝑣𝑣0 ∙ exp �−
∆𝐹𝐹 − 𝜏𝜏 ∙ 𝛾𝛾0 ∙ Ω0

𝑘𝑘𝑘𝑘
� , (1-1) 

 
 

where �̇�𝑠 is the STZ activation rate, ∆𝐹𝐹 is the activation energy barrier for an STZ activation, 𝜏𝜏 

and 𝑘𝑘 are the local shear stress and temperature in Kelvin respectively, 𝑘𝑘 is the Boltzmann’s 

constant, 𝛾𝛾0 is the incremental shear strain applied to an STZ, Ω0 is the volume of an STZ, and 

𝑣𝑣0 is the attempt frequency. The interested reader is directed to [22] for a more detailed 

explanation of this modelling framework. 
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1.3.1 Modelling MGMCs using STZ dynamics 

The deformation model for a secondary crystalline phase was added to the STZ 

Dynamics framework by Hardin et al. [75]. The crystalline model follows a ductile plastic 

constitutive law based on a Taylor dislocation model and the work of Qiao et al. [52] and Zhang 

et al. [68]. The tensile stress-strain relationship of this model is given by the following: 

𝜎𝜎 = 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟��
𝜎𝜎𝑦𝑦
𝐸𝐸

+ 𝜀𝜀𝑝𝑝�
(2𝑛𝑛)

+ 𝐿𝐿�̅�𝜂 , (1-2) 
 

 

where 𝜀𝜀𝑝𝑝 is the plastic strain, 𝐸𝐸 is the Young’s modulus, 𝜎𝜎𝑦𝑦 is the yield stress, 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝑛𝑛

𝜎𝜎𝑦𝑦𝑛𝑛−1
 , 𝑛𝑛 is 

the hardening coefficient, 𝐿𝐿 = 180𝑏𝑏 � 𝑎𝑎𝑎𝑎
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

�
2
 is the intrinsic material length where 𝜇𝜇, 𝑏𝑏, and 𝑎𝑎 is 

the shear modulus, Burgers vector length, and an empirical constant of 0.1 respectively, and �̅�𝜂 is 

the average strain gradient approximated by 𝜀𝜀
𝑝𝑝

𝐷𝐷
 where 𝐷𝐷 is a characteristic diameter of the 

crystalline phase microstructure. The interested reader is directed to [75] for a more detailed 

explanation.  

Hardin et al. [75] added the ability to partition the finite element mesh into two phases to 

either follow the STZ dynamics deformation model or the Taylor dislocation model. This 

provides the ability to vary the morphology of the microstructure of the secondary phase and 

examine its effect on the shear banding process.  

1.4 Motivation, aim, and approach 

The timeline for including new and novel materials in structural applications is often 

lengthy and drawn out. Despite the incredible suite of mechanical properties that are already 
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demonstrated in MGMCs, safety and reliability concerns keep them from being integrated more 

fully into industry. This research seeks to clarify the underlying mechanism behind strain 

delocalization in MGMCs.  

In particular, it is hypothesized that the competition of rates seen in pure metallic glass at 

high strain rates also exists and is responsible for strain delocalization in MGMCs. Where high 

strain rates are the motivating factor for this phenomenon in metallic glass, a secondary dendritic 

phase can also serve to encourage shear band nucleation by limiting shear band growth. 

Although some evidence has supported this conclusion, there has been no clear demonstration of 

rates measurements in MGMCs. This work seeks to validate this hypothesis and provide further 

insight into the phenomenon behind enhanced ductility in MGMCs. 

This research seeks to do so by utilizing STZ dynamics to examine shear banding in 

MGMCs. Chapter 2 presents a combined simulated-experimental nanoindentation approach for 

characterization of the individual phases of MGMCs. Chapter 3 utilizes results from 

nanoindentation experiments and simulations to calibrate model inputs for tensile test 

simulations of MGMCs. Dendrite length scales are systematically varied to investigate their 

effects on shear banding characteristics and macroscopic responses. Competition of rates is 

verified in MGMCs. Correlations between microstructural dendrite length scales and shear 

banding characteristics are presented.
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2 MODELLING THE INFLUENCE OF PROXIMAL PHASES 
IN NANOINDENTATION OF METALLIC GLASS MATRIX COMPOSITES 

2.1 Introduction 

2.1.1 Nanoindentation and characterization of individual phases in composites 

The extent to how well MGMCs perform are influenced by the individual material 

properties of its constituents. Although much work has been done to improve properties of these 

composites, the complex structure of the crystalline dendritic phase make it difficult to unravel 

the elastic and plastic interactions between the different phases. Continued improvement of these 

materials will require knowledge of individual phase properties as well as length scales at which 

the two phases interact. Due to their ability to sample extremely small volumes, nanoindentation 

can be a useful tool to do obtain this information. 

The goal of many nanoindentation tests is to determine the material hardness and 

Young’s modulus from load-displacement data [76]–[80]. For specimens with varying material 

composition or fine microstructures, this characterization becomes a challenge. In order to 

accurately capture the material response of one phase, indentation sites must only sample the 

intended phase. Therefore accurate measurements of individual phases must require sufficiently 

large regions of indented phases or indentations must be sufficiently shallow so as not to sample 

the other phases (nanoindentation experiments are on the order of a few microns or hundreds of 

nanometers [81]).  
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In order to combat these challenges, shallower indents can be a solution; however, this is 

not always the appropriate approach as it can introduce new problems [82], [83]. Surface 

roughness becomes a factor at shallow loads. Polishing effects can also begin to skew 

measurements. Without a priori knowledge of the elastic and plastic zone sizes, it is difficult to 

confirm if the calculated material properties truly reflect the indented phase using 

nanoindentation experimentation alone. 

2.1.2 Combined simulated-experimental approach to determine properties of the 

individual phases of composites 

A combined simulated-experimental approach can be used effectively to verify material 

properties calculated by indentation. Experimental nanoindentation can provide data points to 

either validate or deny using numerical simulations.  Numerical simulations can be adapted and 

fitting parameters can be adjusted to determine the closest representative material properties.  

Numerical simulations has be useful in understanding the mechanics behind composite 

nanoindentation [84]–[90]. Yan et al. [91], [92] conducted a finite element analysis on the 

nanoindentation of elastic spherical particles embedded in an elastic matrix. They reported 

numerous values denoted by “particle-dominated depth” beyond which the matrix will influence 

the apparent elastic properties of the particle. Durst et al. [86] also demonstrated the simulated 

nanoindentation of a particle-matrix system but examined depth limits for hardness. They 

similarly reported a transition from particle to matrix deformation behavior during indentation 

and concluded that particle hardness can be reliably tested up to normalized contact radius of 

about 70% particle diameter.  
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STZ dynamics was previously used to simulate case of indentation loading [74]. 

However, the work presented was not appropriate for a quantitative comparison with 

experimental nanoindentation. The main reasons being the use of plane strain elements (the 

indenter is assumed to be an infinitely long cylinder indenting an infinitely thick out of plane 

specimen) and differing material properties. In the present work, a combined simulated-

experimental approach is used to verify material properties of the individual phases in MGMCs. 

Insight is also shared as to the length scales on which the two phases interact.  

2.2 Method 

A combined simulated-experimental approach is utilized to calculate individual phase 

properties in Zirconium based MGMCs [53]. Numerical simulations are run at Brigham Young 

University using STZ dynamics and nanoindentation experiments are carried out at Stony Brook 

University (SBU) by Jonathan Gentile, under the direction of Jason Trelewicz, on DH2 and DH3 

composites [46]. All measurements on experimental nanoindentation presented here was 

provided by SBU. This section first details the process used to measure nanoindentation load-

displacement data experimentally. Next, the modelling framework for using STZ dynamics to 

simulate nanoindentation of MGMCs is described. Finally, the method used to convert both the 

numerical and experimental data into hardness and modulus properties is explained.  

2.2.1 Experimental nanoindentation of DH2 and DH3 composites 

2.2.1.1 Procedure 

To obtain individual phase properties, nanoindentation tests are carried out on DH2 and 

DH3 composites at SBU (DH1 dendrite sizes and spacings were too small to be able to 

comfortably locate the indenter entirely in one phase). Scanning electron microscopy (SEM), 



 

16 
 

images in Figure 2-1 show targeted indentation of the individual phases. Indentations are carried 

out for both DH2 and DH3 at the following loads: 2mN, 3mN, 4mN, 5mN, 7.5mN, and 10mN. 

At each load, roughly 3 sets of indentations were conducted (see Figure 2-1 for an example of 

one set). After the indentations were completed, hardness and elastic modulus values were 

calculated using conventional methods described in the Section 2.2.2 below. 

 

Figure 2-1: Indentation of the crystalline phase in DH3 at 2mN indentation load 

2.2.2 Simulating nanoindentation of MGMCs using STZ dynamics  

2.2.2.1 STZ dynamics modelling framework 

2.2.2.1.1 Element type 

For quantitative comparison of numerical simulations with experimental data, the STZ 

dynamics model is modified to allow the use of axisymmetric elements (CAX6MT) in place of 
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plain strain elements (CPE6MT). This allows the model to more accurately capture the boundary 

conditions and mechanics seen in experiments. 

 

Figure 2-2: Representation of several possible STZ definitions in the finite element mesh.  
The group of 24 elements is utilized in this work. 

 

2.2.2.1.2 Mesh refinement 

The STZ dynamics model is also adapted to utilize a denser mesh to account for the 

complex stress state in these simulations. Optimally, the mesh would have been refined directly 

beneath the indenter tip and coarsened gradually as the elements are further form the indentation 

site. However, in order to model STZs accurately, STZs are coarse-grained as a group of 

elements that together approximate the shape of a circle. In order to keep STZ volumes 

consistent, element size must remain consistent throughout the finite element mesh. In this work, 

the center of STZs are represented by any corner node of an element. Two rows of elements 

extending radially outward will participate in the STZ activation (or a group of 24 elements as 

denoted in Figure 2-2). This allows the use of an appropriately refined mesh while keeping 

computation burdens manageable. It was found that using the configuration denoted by 54 

(meaning 54 elements) in Figure 2-2 did not yield significantly improved indentation responses 

suggesting convergence of the mesh with 24 elements. 
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2.2.2.1.3 Boundary conditions 

The simulation specimens are modelled as a cylinder 120nm tall with a radius of 70nm. 

These sizes are limited by computational constraints. The bottom edge of the cell is fixed and an 

axisymmetric boundary condition is applied to the wall coincident with the y-axis. This allows 

elements touching this wall to displace vertically but keeps nodes from crossing over the axis. 

For the indentations in this work, it was found that there was no significant interaction of the 

stress field with the boundaries at these sizes. 

2.2.2.1.4 Indentation conditions 

In the axisymmetric model, the indenter is located above the axis of revolution, which is 

defined as the far left wall as shown in Figure 2-4. The indenter is modelled as a rigid surface. A 

70.3° half-angle conical indenter is employed which has the same contact area-to-contact depth 

ratio as a Berkovich tip and is commonly used in 2D simulations [93], [94]. A friction coefficient 

of 0.05 is applied to the contacting surfaces between the indenter and the specimen [95].  

A constant displacement rate is used to achieve a strain rate of roughly 10 s-1. While 

experimentally, the loading rate is held constant and the displacement rate is allowed to vary, in 

this work, it was found to yield no difference in numerically measured values if displacement or 

loading rates were held constant. As such, a constant displacement rate of 0.1 nm/s is used in this 

work in order to match average rates seen in nanoindentation experiments. Additionally, it is 

worth noting that measured material properties were not sensitive to differences in displacement 

rates. 
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2.2.2.2 STZ dynamics model inputs 

In an effort to match the properties of the DH2 and DH3 composites tested 

experimentally, the model uses independent properties for the amorphous and crystalline phases. 

Values for these properties are taken from the literature where possible.  

The crystalline phase is modeled with a yield strength of 850 MPa, a Young’s modulus of 

90.5 GPa, and a strain hardening exponent of 0.2 are used. These values are chosen as the yield 

strength is comparable to estimated yield strength values reported by Hofmann et al [53] and to 

calculated yield strengths from different material models [96], [97].  

For the amorphous phase we use a slightly adjusted model provided by Harris et al. [39] 

to calculate the material and geometric STZ properties. This model is required to account for 

strain rate dependent yield strength when using STZ dynamics. To achieve the yield strength of 

2.1 GPa (common to monolithic metallic glasses [98]) at a strain rate of 10 s-1, Harris’s adjusted 

model requires an STZ volume of 1.8 nm3 and an activation energy barrier of 1.535 eV is used. 

This was verified with a uniaxial tensile loaded simulation. Additional properties for the metallic 

glass phase used a shear modulus of 39.94 GPa, a Poisson’s ratio of 0.352, and a Debye 

temperature of 327 K [22].  

All required inputs for the two phases are summarized in Table 2-1 and characteristic 

indentation load-displacement curves for the amorphous and crystalline phases are shown in 

Figure 2-3. Initial simulated and experimental load-displacement data yielded similar curves 

indicating valid inputs.  
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Table 2-1: Model parameters for the amorphous and crystalline phases 

Property Symbol & value 

Amorphous parameters  
Shear modulus µ = 39.94 GPa 
Poisson’s ratio 𝜈𝜈 = 0.352 
Debye temperature 327 K 
Activation energy barrier ΔF = 1.535 eV 
STZ shear strain ɣ0 = 0.1 
STZ volume Ω0 = 1.8 nm3 
  
Crystalline parameters  
Shear modulus  µ = 34.02 GPa 
Poisson’s ratio 𝜈𝜈 = 0.33 
Yield stress σys = 850 MPa 
Microstructure length D = 50 nm  
Burger’s Vector b = 2.858 Å 
Empirical constant a = 0.1 
Hardening coefficient n = 0.2 

 

Figure 2-3: Load-displacement curves for the amorphous and crystalline phases. 
Simulations created using material inputs shown in Table 2-1. 
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2.2.2.3 Procedure 

Indentations are carried out on the crystalline and amorphous phases and load-

displacement data is measured. To understand the influence of the size of the region being 

indented and its proximity to neighboring phases, the indented phase is modelled as a disc of one 

phase with varying thickness embedded in a matrix of the other phase. The thickness of the 

indented disc, t, is varied while the indentation depth, h, is held constant such that the normalized 

indentation depth (h/t) ranges from 2% to 90% (see Figure 2-4). The max indentation depth, h, is 

fixed at 2 nm for all simulations. 

Due to the stochastic nature of the STZ dynamics, indentations of the glass phase 

required an average of 3 simulations to estimate the hardness and Young’s modulus properties. 

This is unnecessary for the crystalline material model because its lack of stochasticity results in 

identical load displacement curves in each simulation. 

 

Figure 2-4: Schematic illustration of simulated nanoindentation.  
a) Indentation of the crystalline phase and b) indentation of the matrix both with varying 
thickness, ‘t’. 
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After all the simulations are run, material hardness and elastic modulus is calculated 

using load-displacement data as described in Section 2.2.2 immediately following.  

2.2.3 Conventional method to calculate hardness and modulus of the indented phase 

For both the experimental and simulated nanoindentation, the hardness and elastic 

modulus are calculated using conventional methods established by [80], which are explained 

here. 

Hardness is measured as a ratio of the maximum indentation load and the contact area at 

maximum depth [80]:  

𝐻𝐻 =
𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚
𝐴𝐴

 (2-1) 
 

 

where Pmax is the maximum indentation load and A is the projected contact area at maximum 

depth.  

The modulus is measured by the relationship between contact area and the measured 

unloading stiffness, given as, 

where Er is the reduced elastic modulus defined by, 

1
𝐸𝐸𝑟𝑟

=
1 − 𝜈𝜈2

𝐸𝐸
+

1 − 𝜈𝜈𝑖𝑖2

𝐸𝐸𝑖𝑖
 (2-3) 

𝑆𝑆 =  β
2
𝜋𝜋
𝐸𝐸𝑟𝑟√𝐴𝐴 (2-2) 
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where E and v is the modulus and Poisson’s ratio for the specimen and indenter (denoted with no 

subscript and the subscript i, respectively) and β is the correction factor. A value of 1.025 for β is 

used in this work [80]. The stiffness, S, is calculated by fitting the unloading portion of the 

indentation graph data to the following power-law relation: 

𝑃𝑃 = 𝐵𝐵(ℎ − ℎ𝑟𝑟)𝑚𝑚 , (2-4) 

where B and m are fitting parameters, P is the indentation load, and h is the indentation depth 

with hf being the residual indentation depth after unloading. The contact stiffness is then 

determined by differentiating Eq. (2-4) and evaluating at the maximum depth, hmax. This yields 

the following equation: 

 

In the numerical simulations, displacement bursts from high levels of STZ activation in 

the amorphous phase and the small scale of the simulations lead to load-displacement data that is 

noisy. To combat sensitivity of these calculations the data used for fitting parameters only uses 

between 5% and 80% of the unloading portion of the load-displacement curve. This was not 

done for the experimental data.  

2.3 Results  

2.3.1 Hardness and Modulus measurements 

Hardness and modulus values are calculated from the load displacement data using the 

method described in Section 2.2.2. These values are shown in Figure 2-5. Subsets a) through d) 

show experimental modulus and hardness values as a function of maximum indentation load. 

𝑆𝑆 = 𝐵𝐵𝐵𝐵(ℎ𝑚𝑚𝑎𝑎𝑚𝑚 − ℎ𝑟𝑟)𝑚𝑚−1 , (2-5) 
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DH3 and DH2 measurements are shown on plots separate from each other for ease of 

interpretation. The blue and orange dots show average hardness and modulus values as measured 

when the crystalline phase and the amorphous phase was targeted respectively at each 

indentation load. The yellow and grey lines represent chosen reference hardness and modulus 

values for the amorphous and crystalline phases respectively. The measured values for the DH3 

specimens at their lightest load are chosen as reference values, which would be expected to be 

representative of the individual phases. They allow ease of viewing deviations as indentation 

load is varied. For reference, as indentation loads are increased, the indenter is pushed further 

into the specimen. This can be compared to indenting a thinner phase. As such, the values from 

left to right can be approximated as indenting a phase that gets progressively thinner. Subsets e) 

and f) show modulus and hardness values as measured numerically as a function of normalized 

indentation depth, h/t (thick to thin from left to right). The yellow and grey lines represent the 

calculated hardness and modulus values for the amorphous and crystalline phases respectively if 

the specimen consisted entirely of one phase or the other. Again, this is useful to examine 

deviations as normalized indentation depth increases.  

2.3.2 Influence of the underlying phase 

The measured hardness and modulus values for DH3 specimens do not begin to sample 

the underlying substrate as early as it does in the DH2 specimens. This can be attributed to 

smaller dendrites and spacings found in DH2 MGMCs. The indentations to the same depth will, 

on average, penetrate a greater portion of the indented phase in the DH2 than the DH3 

specimens. This means that the underlying substrate will begin to influence measured material 

properties at much lower indentation loads.  
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For experimental results, as indentation loads get higher, we see a convergence of 

material properties towards the softer phase. This is most clearly seen with measurements in the 

DH2 phase. In contrast, simulated results do not demonstrate this same effect. As the indented 

phase gets thinner, values begin to simply reflect more of the underlying phase. This is likely 

because the experimental microstructure is much more complex than what has been simulated 

here. 

For numerical measurements of the elastic modulus, the measured values can be visibly 

seen from Figure 2-5(e) to almost immediately begin to deviate as the indented phase gets 

thinner or the indenter is pushed deeper. Despite an obvious influence of the underlying 

substrate, this influence is slightly exaggerated on the scale shown in Figure 2-5(e). When the 

percent error is calculated for the simulated nanoindentation, there is in fact very little deviation 

from the known value. Even when indented 15% into the phase, the deviation of the measured to 

actual modulus values are less than 1% for the glass phase and less than 5% for the crystalline 

phase (see Table 2-2). At the very deepest normalized indentations, the percent deviation is still 

less than 15%.  

On the other hand, at first glance, numerically measured hardness values look to be fairly 

consistent till about indentation of about 20% into the intended phase. This is to be expected 

because hardness is related to plasticity which has a much smaller field. This is verified by 

looking at the percent deviation from known inputs. At 20% indentation, we see hardness values 

still very close to the known input. However, after this inflection point, percent deviation begins 

to increase quickly. In fact, at just 31% indentation, there is over 15% error in measured values. 

See Table 2-2 for greater detail on the percent deviations.  
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It seems that although modulus values begin to deviate earlier, they see less of an 

influence from the secondary phase at deeper indentations than hardness. On the other hand, 

hardness values deviate later, and once they begin to see the influence of the secondary phase, 

the values are drastically compromised. Because hardness measurements are plastic and more 

localized in nature, once it begins to sample the secondary phase, a large portion of the plastic 

field will quickly be consumed by the secondary phase. On the other hand, modulus 

measurements are elastic in nature and much less localized. Therefore, despite the indenter 

getting fairly close to the secondary phase, the elastic field still samples a large portion of the 

indented phase and the secondary phase fails to dominate to as large a degree when compared 

with hardness.  

Table 2-2: Percent error of measured values against known model inputs. 

 Percent Error 
h/t (%) E (crystalline) H (crystalline) E (glass) H (glass) 

2% 0.25% 2.43% 0.94% 0.49% 
3% 0.48% 2.39% 2.85% 0.73% 
3% 0.81% 2.34% 2.58% 2.89% 
5% 1.60% 2.24% 0.64% 1.28% 
8% 2.54% 2.12% 0.07% 1.38% 

10% 3.33% 2.00% 0.91% 2.71% 
13% 4.19% 1.85% 0.52% 0.52% 
14% 4.21% 1.69% 0.50% 0.87% 
20% 6.80% 0.19% 2.23% 5.98% 
31% 10.10% 7.02% 3.40% 15.89% 
40% 7.32% 4.31% 5.72% 31.16% 
50% 8.94% 8.80% 6.39% 23.85% 
67% 10.94% 13.99% 5.20% 33.27% 
80% 12.31% 18.31% 7.33% 35.75% 
90% 15.29% 25.71% 9.96% 26.25% 

 

 



 

27 
 

 

Figure 2-5: Hardness and modulus values 
(a-d) Experimental and (e and f) simulated. Dashed lines signify the DH3 measured values at the lowest load for a)-d) and the inputted 
material properties for e) and f)
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2.4 Discussion 

2.4.1 Convergence to the properties of the composite 

Originally, a cross-over of measured material properties was expected as it was thought 

that the indenter would begin to reflect the underlying phase. However, upon further 

investigation, once a sufficiently high load results in stress fields passing through the indented 

and underlying phase, the stress field begins to sample a complex microstructure of both phases 

resulting in a measurement of composite properties as a whole instead of individual phases. This 

was verified by Jonathan Gentile at SBU by using a large indenter on the DH1 phase at 10mN. 

Each phase was targeted and resulting hardness and modulus values were calculated. Because the 

dendrites are so small and the indenter so large, there is little to no significant sampling of 

individual phases even at the lowest loads. Figure 2-6 provide by Jonathan Gentile at SBU shows 

that regardless of which phase was targeted for indentation, measured modulus values are 

inseparable from each other and hardness values are close to converged as well. These values are 

also seen to have converged to almost the same values seen in the DH2 modulus values from 

Figure 2-5. Values are slightly higher in DH1 as a higher volume fraction of metallic glass exists 

which would suppose that the values will not trend as close to crystalline.  

The measured values tend to converge towards the crystalline phase. If dendrite sizes are 

to be taken as the average radius of crystalline dendrites and dendrite spacings are taken as the 

average distance spanning domains between crystalline dendrites (from border to border and not 

dendrite center to center as most literature reports), then it was found that dendrite sizes are twice 

as large as dendrite spacings in the DH2 and DH3 specimens used in this work. With this 
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understanding, indentations will naturally sample more of the crystalline phase and measured 

values will reflect as such. 

 

Figure 2-6: Comparison of measured hardness and moduli. 
Indentation of DH1 composites demonstrates converging hardness values and converged 
modulus values on the composite properties as a whole. Figure was created by Jonathan Gentile 
at SBU. 

2.4.2 Normalization of measured values 

Experimental and numerical results are normalized so that they can be quantitatively 

compared on the same plot. For simulations, indented depth is already normalized by h/t. 

Hardness and modulus values are normalized against the expected hardness and modulus values 

from the material inputs (the yellow and grey lines from Figure 2-5e) and f) and explained 

above). For experimental data, the maximum indentation depth for each indentation is taken to 

be he; te is taken to be the average dendrite size when indenting the crystalline phase and the 
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average dendrite spacing when indenting the amorphous phase. Normalized depth is then 

calculated as he/te. These values were measured using SEM images of the indented samples. 

These values are listed in Table 2-3. Note again that the dendrite spacing here is measured as the 

average distance spanning the domains between dendrites as opposed to the dendrite center to 

center distance commonly reported in literature [53]. Hardness and modulus values were 

normalized by the average values measured from indentation of DH3 at its lowest load (yellow 

and grey lines from Figure 2-5a)-d) and explained previously) 

Table 2-3: Average dendrite sizes and spacings.  
From SEM images of indented samples. 

 DH2 DH3 
Dendrite Sizes (nm) 1500 5200 
Dendrite Spacing (nm) 750 2500 

  

When experimental and simulated nanoindentation measurements are able to be

superimposed onto the same axes as shown in Figure 2-7, it is easy to see good agreement in 

measurements. The figure is split into 4 plots: one each for the measured modulus values for the 

amorphous and crystalline phases respectively and one each for the measured hardness values for 

the amorphous and crystalline phases respectively. Square data points reflect simulated results 

and circular data points reflect experimental results. Not only do numerical simulations agree 

with the experimental data, but different dendrite size composites (DH2 and DH3) are able to 

span normalized indentation depths in agreement with each other as well. The clearest agreement 

in data comes from measurements of the elastic modulus when indenting the glassy phase. 

Shown is a clear interaction between the two phases beginning at 15%-20% normalized 

indentation depth. Once these length scales are reached, the elastic zone begins to sample the 

underlying dendrite.  
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2.5 Summary 

A combined simulated-experimental nanoindentation approach was taken to investigate 

the material properties of the individual phases in DH3 and DH2 MGMCs. Experimental 

nanoindentation of DH3 specimens at its lowest loads were verified by numerical modeling to 

accurately reflect material properties of the individual phases. As indentations are indented 

deeper into the sample, it was found that the elastic modulus begins to deviate from first before 

the hardness values begin to deviate. It was also found that when nanoindentation is loaded at 

higher loads and measured values begin to deviate, measured values will begin to converge to the 

properties of the composite as a whole. 
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Figure 2-7: Comparison of simulated vs experimental values of hardness and modulus.  
a)-b) are glass values and c)-d) show Crystalline values
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3 EXAMINING THE MECHANICS RESPONSIBLE FOR STRAIN 
DELOCALIZATION IN METALLIC GLASS MATRIX COMPOSITES 

3.1 Introduction 

As explained in Chapter 1, the main goal of this work is to verify that the competition of 

rates seen in metallic glasses strained at high strain rates is also seen with the introduction of 

crystalline inclusions into the amorphous matrix. By doing so, we can simultaneously gleam 

correlations between microstructural variables and strain delocalization via competition of rates. 

The STZ dynamics simulation method proposed by Homer et al. [22] is used to 

systematically vary dendritic structures. Tensile test simulations are run with changing dendrite 

lengths scales to investigate their effects on macroscopic and shear banding characteristics. 

3.2 Method 

3.2.1 Mimicry of dendritic structures in MGMCs 

A variety of MGMCs have been developed with unique alloy composition and dendrite 

morphology via a variety of processing techniques [40], [41], [61], [99]–[102], [43], [45], [48], 

[49], [53]–[55], [58]. SEM images of DH3 composites [53] are used here to create the 

microstructure for the simulations in this work. SEM images are binarized, correcting any image 

defects during the process, and a variety of dendrite length scales and their effects on the shear 

banding process is examined. The length scales examined here are on the order of nanometer 

sized dendrites (see below). Although these dendrite sizes are smaller than those generally 
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studied, computational constraints limit the sizes that can be reasonably examined. That said, 

there are some examples that approach length-scales studied here [99] and the results in this 

work corroborate experiments at larger scales. 

Systematic variation of dendritic structure is accommodated by providing a target or 

desired dendrite size for each simulation, scanning and scaling a random area in an image to 

achieve the target dendrite size, and then mapping the binary matrix onto the finite element 

mesh. Dendrite size (L) is approximated as the diameter calculated from the dendrite area. 

Although some discrepancy does exist between the binary matrix and triangular mesh, by using a 

fairly dense mesh (about 103000 elements), the effects are minimized (see Figure 3-1).  

 

Figure 3-1: Using SEM images to systematically mimic and vary dendritic microstructure 
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3.2.2 Procedure 

Simulations are run with varying dendritic size. 4 different levels of dendrite size are run 

and for each level, 3 different simulation cell morphologies are created that meet those values. 

Due to the stochastic nature of the modelling framework, identical models run multiple times 

could yield slightly various responses. As such, each morphology is run twice resulting in a total 

of 24 simulations. The microstructural variables and simulations are described in Table 3-1. 

Dendrite spacings and volume fractions are also reported in this table for reference, however, the 

rest of the paper will only refer to dendrite size as dendrite spacing scales with size and volume 

fraction is held constant. Example morphology from each level is shown in Figure 3-2.  

Table 3-1: Systematic variation of dendrite microstructural features. 

Simulation Dendrite Size (nm) Dendrite Spacing (nm) Volume Fraction 
1 7 17 64.6% 
2 10 23 64.8% 
3 16 38 64.8% 
4 20 50 64.3% 

3.2.3 Model inputs 

2D simulations are strained under tensile loading conditions at a constant strain rate of 

10-3 s-1 (or 0.3nm/s) along the long axis. The simulations are 300nm tall and 100nm wide. 

Because the modelling framework has not incorporated a failure mechanism, each simulation is 

simply strained to 0.035. At 0.035 strain, the specimen has been strained enough to characterize 

shear banding in the specimen. 
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Figure 3-2: Example morphology at each dendrite size labeled below each image 
 

The STZ Dynamics model uses a kMC algorithm that requires a maximum time step. For 

this work, a maximum time step of 1s was used. This maximum time step is used to suppress any 

STZ activations that would require a time step larger than 1s. When this happens, the system 

steps forward by 1s, or a strain of 0.001. For a simulation 300 nm in height, this leads to a 

maximum possible displacement of 0.3nm per step [74].  

Results from chapter 2 is used to calculate the required yield strengths and strain 

hardening rates as inputs for the crystalline phase in this model. Because a few combinations of 

yield strengths and strain hardening rates would match results from nanoindentation experiments 

and simulations, they were systematically varied between 0.9 GPa to 1.9 GPa and 0.05 to 0.3 

respectively. Using Clausner’s expanding cavity model [96], a map of resulting hardness values 

were calculated (see Figure 3-3). A few combinations of material properties could have been 
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chosen that matched experimental results closely. A yield strength of 900 MPa and strain 

hardening exponent of 0.3 was chosen to match reported strain hardening rates for high entropy 

alloys [103].  

 

Figure 3-3: Systematic variation of yield strength and strain hardening exponent 
The result percent error for calculated hardness using Clausner’s expanding cavity model is 
shown [96]. 

 

Table 3-2: Model parameters for amorphous and crystalline phases 

Property Symbol & value 

Amorphous parameters  
Shear modulus µ = 35.69 GPa 
Poisson’s ratio 𝜈𝜈 = 0.352 
Debye temperature 327 K 
Activation energy barrier ΔF = 1.59 eV 
STZ shear strain ɣ0 = 0.1 
STZ volume Ω0 = 2.2 nm3 
  
Crystalline parameters  
Shear modulus  µ = 39.96 GPa 
Poisson’s ratio 𝜈𝜈 = 0.33 
Yield stress σy = 900 MPa 
Microstructure length D = 50 nm  
Burger’s Vector b = 2.858 Å 
Empirical constant a = 0.1 
Hardening coefficient n = 0.3 

 



 

38 
 

The parameters of the amorphous phase are calculated using the simulated strain rate and 

a slightly adjusted model provided by Harris et al. [39]. This provides an approximate yield 

strength of 2.1 GPa using an STZ volume of 2.2 nm3 and an activation energy barrier of 1.59 eV. 

The shear modulus of the glass is 35.69 GPa, the Poisson’s ratio is 0.352, and the Debye 

temperature is 327 K [22]. 

 

Figure 3-4: Characteristic stress-strain curves for the amorphous and crystalline phases 
Simulations created using material inputs for this chapter. Circles denote the first few STZ 
activations. 

 

The parameters for the amorphous and crystalline phases are described in Table 3-2. For 

a more complete explanation of the material properties and how they influence the modelling 

framework, the interested reader is referred to [75], [104]. A characteristic stress-strain curve for 

the crystalline and amorphous phase is provided in Figure 3-4.  
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3.3 Analysis approach 

After each simulation, macroscopic and shear banding characteristics are calculated and 

analyzed. This section describes the various characteristics 

3.3.1 Macroscopic characterization 

In this study, two measures have been classified as macroscopic in nature: localization 

index (‘Γ’) and two-point statistic localization (L2). These measures help provide a general view 

of the specimen as a whole without measuring specific characteristics at the microscale.   

3.3.1.1 Localization Index ( Γ ) 

The localization index (‘Γ’) provides a general measure to help classify the distribution of 

plasticity throughout the specimen and is introduced in [105]. It is calculated using the 

following: 

Γ = 1 −
(∑ 𝛾𝛾𝑛𝑛2𝑛𝑛 )2

𝑁𝑁 ∑ 𝛾𝛾𝑛𝑛4𝑛𝑛
 

(3-1) 

 

γn is the plastic strain associated with each of the N elements of the sample. Γ ranges 

from 0 to 1 where 0 represents a totally uniform strain distribution and 1 represents strain being 

concentrated in an infinitely small region. 0.5 would represent a specimen that deforms with very 

homogeneous flow. Due to the nature of this measurement, any specimen that experiences any 

degree of localization will have similar values to that which may experience significantly more 

localization. That being said, there is some insight to be gained by any discrepancies in the 

values. This measure is calculated at the end of each simulation.  
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3.3.1.2 Two-point statistic localization (L2) 

 

Figure 3-5: Autocorrelation example 
a) Example of plastic scalar field distributed through a specimen. b) Autocorrelated field. The 
degree of localization can be calculated and given a scalar value by averaging the strain inside 
the square and dividing by the strain averaged outside the square. 

 

The second measure to macroscopically characterize the specimens uses two-point 

statistics to characterize the degree of localization found during deformation. This is done by 

first calculating the Von Mises plastic strain component in each element and mapping to a 2D 

evenly spaced grid. This produces a scalar field 𝑃𝑃(�⃗�𝑥), an example of which is shown in Figure 

3-5. The two-point statistics are then generated by autocorrelation by evaluating the following 

[75]: 

T(�⃗�𝑥) = �
1
√𝑛𝑛

ℱ−1 �ℱ{𝑃𝑃}������� ∙ ℱ{𝑃𝑃}��
1/2

 
(3-2) 
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where n is the number of raster squares in P and ℱ{ } is a fast Fourier transform. The overline 

signifies complex conjugation and the dot represents element-wise multiplication. The two-point 

statistic localization can be reduced to a single number by averaging the strain in an area around 

the center of the field in T and dividing by the strain averaged everywhere else in T (see Figure 

3-5). The area around the center is chosen to follow [75] or a square with sides 5.3nm in length. 

The interested reader is directed to [75], [106], [107] for further details.   

3.3.2 Shear banding characterization 

After the simulations are run, the shear banding characteristics are analyzed. The plastic 

strains corresponding to each element in the finite element mesh is calculated every 5 steps. In 

the elements belonging to the amorphous phase, plastic strains are only accumulated by STZ 

activation and therefore any amorphous elements that accumulate plastic strain are counted as 

part of the shear banding network in a simulation. However, for the crystalline phase, by the end 

of the simulation, every element has accumulated some degree of plastic strain. Therefore, a 

strain threshold is implemented. Crystalline elements that do not meet this threshold are not 

counted as part of the shear banding process. Although the exact value is subjective, we 

examined varying levels and ultimately picked 0.03 strain as the threshold. It is relatively 

straightforward to see how shear bands grow and choose the value that best demonstrates shear 

banding. 

Elements that meet the strain threshold and are connected by at least one node are 

considered to belong to an individual shear band. After grouping elements into individual shear 

bands, the shear band areas are calculated and only those shear bands that meet a minimum shear 

band size are included in the shear band characterization analysis. The goal with this size 
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threshold is to reduce the likelihood of mistakenly counting one shear band nucleus as multiple 

smaller nuclei while at the same time still distinguishing the emergence of multiple distinct 

nuclei that eventually join together. The threshold also helps eliminate misleading propagation 

rates when shear band nuclei still consist of just a few STZs. For example, the addition of one 

STZ to another lone STZ would result in a 200% growth rate. As is the case with any nucleation 

type growth, size thresholds are somewhat subject to interpretation. Li et al [108] reports a 

critical nucleation size of 10-20 nm in diameter by simulating a mode I fracture using molecular 

dynamics. Harris et al. [39] reports critical nucleation sizes anywhere from 15-30 nm3 using STZ 

dynamics when strained at 10-3 s-1.  A brief study by varying different nucleation sizes (15-

29nm2) and analyzing the resulting shear band nucleation rates yielded little variation. As such, a 

threshold of 15nm2 is chosen (or a cluster of roughly 5-7 STZs).  

Once shear bands are thresholded, each new shear band and all its elements are classified 

and assigned a shear band identity. As the simulation progresses, shear band identities are 

maintained unless multiple shear bands merge into a single shear band. When this occurs, the 

identity of the largest shear band is maintained and all elements belonging to the now singular 

shear band follow this identity. After elements have been assigned to shear bands and evolution 

tracking of shear bands have been stored, it is somewhat straightforward to then measure the 

following shear banding characteristics. 

3.3.2.1 Number of shear bands (#SBs) 

The number of shear bands can easily be counted and provides one measure of nucleation 

rate. The number of shear bands can be counted in two ways: 1) the number of shear bands that 

nucleate throughout the simulation and 2) the number of shear bands that exist at the end of the 

simulation. These numbers differ because many shear bands that nucleate will eventually merge 
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with another shear band. Therefore, the number of shear bands that nucleate throughout the 

simulation is expected to be significantly higher than the number of shear bands at the end. The 

number of shear bands is divided by time to provide a nucleation rate. 

3.3.2.2 Propagation rates (�̇�𝛆𝑺𝑺𝑺𝑺) 

There are numerous ways to calculate the overall growth rate of shear bands. In this 

work, the measure of propagation rate is represented by calculating the rate of change of the area 

averaged strain towards the end of the simulation for the largest shear band. This is done by 

calculating a linear fit of the area averaged strain vs. time and taking the slope of that line. Shear 

bands that grow from joining together with another shear band are ignored. Towards the end of 

the simulation, strain rates of dominant shear bands are relatively constant which provides a 

more consistent propagation rate value. In this work, of the total 3.5% strain, only the last 0.3% 

strain is used to calculate this measure as strain growth rates are relatively constant after this 

point. Only the rate of strain accumulation in the largest shear band is evaluated as this is 

identified as the run-away shear band. Using the largest shear band or a few of the largest shear 

bands yields little variation. This measure will provide insight as to how shear band growth is 

affected by microstructural sizes.  

3.3.2.3 Involvement of the crystalline phase (C) 

Unique to this paper, the crystalline phase’s degree of involvement in the overall shear 

banding process is reported. This is reported as the overall percentage of shear band elements 

that are crystalline. This can help provide some further light on the competition of shear band 

nucleation and propagation rates. 
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3.3.2.4 Proportion of strain localized in 3 largest shear bands (L1) 

The fraction of strain that is accumulated by the 3 largest shear bands at the end of the 

simulation is measured. This will describe somewhat the degree of localization in a specimen 

and how shear banding participates in strain accumulation. 

3.3.2.5 Shear band domination (Ɒ) 

During the early stages of shear banding in MGMCs, numerous shear bands may compete 

before a run-away shear band occurs. During this competition, shear bands may alternate 

between which shear band is propagating the fastest for periods of time. The number of shear 

bands that take their turn dominating a simulation is calculated and reported here. This can 

provide insight as to how quickly strain is localized in a shear band.  

3.4 Results 

Figure 3-6 shows examples of simulations run at each microstructural size.  The images 

of the dendritic structure are taken at the end of the simulation (or 0.35 strain). The dendrites are 

denoted by gray and closely resemble those seen in experimentation. The white areas denote 

amorphous regions of the composite. The blue and red fields are the plastic strains seen by the 

crystalline and amorphous phases respectively. These images allow side-by-side shear banding 

comparison and clearly demonstrate greater localization with the larger dendrites.  

A couple observations can be made from this figure. First, it is quite easy to see that the 

degree to which the crystalline phase participates in shear banding is much higher in the smaller 

dendrite composites. The larger dendrite composites tend to only propagate through a dendrite 

when it traverses narrow or short sections of the dendrite. Shear bands that encounter the full 
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thickness of a large dendrite seem to often be obstructed and kept from initiating further shear 

banding into and through the dendrite.   

A second observation can be seen by noting the variation in vibrancy of coloring. The 

larger dendrite simulations see brighter red and blue signifying higher levels of strain achieved 

by a smaller group of elements. This indicates a higher degree of strain localization found within 

these larger dendrite specimens.  

 

Figure 3-6: An example of each microstructural size evaluated 
The blue and red fields delineate the plastic strain in the crystalline and amorphous phases 
respectively (shaded gray areas are crystalline and white areas are amorphous). Corresponding 
stress-strain curves are shown on the left. 
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Figure 3-7: Stress-strain curves for all simulations 
 

Stress strain curves for all simulations are shown in Figure 3-7. Yield stresses are seen to 

increase as dendrite sizes decreases. This is not consistent with what was expected. Due to a 

higher participation of the crystalline phase as dendrites get smaller as evident from Figure 3-6, it 

would be expected that yield points would decrease. However, due to lack of a failure 

mechanism in the model, the crystalline phase continues to strain harden and in fact the opposite 

is true here. By slowing down shear band propagation rates, shear band growth is delayed and 

higher stresses can be reached.  

3.4.1 Macroscopic measures of strain localization 

3.4.1.1 Localization Index 

Localization indices were measured according to Equation (3-1) for each simulation. A 

box plot of the measured localization indices binned into different dendrite sizes is shown in 



 

47 
 

Figure 3-8. This box plot and subsequent box plots use a line through the box to denote the 

median value. The tops and bottoms of the boxes mark the upper and lower quartiles of the 

distribution with maximum and minimum values denoted by the extended whiskers. Any 

statistical outliers will be marked with a cross (+).  

 

Figure 3-8: Box plot of the localization indices in each simulation arranged by dendrite size.  
This indicates increased strain localization is evident in simulations with larger dendrites. 

 

Although the numbers are fairly close in value, there is a strong downward trend as the 

dendrites get smaller. In other words, the degree of localization decreases with dendrite size. 

Also, due to the nature of the measurement, results were really only expected to span 0.6 < L2 < 

1 at the most so the measured distribution is actually quite telling. When dendrites are large, the 

median localization index is as high as 0.936 (again, for reference, a value of 1 would have strain 

concentrated in an infinitely small area). As the dendrites get smaller, the localization index also 
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gets smaller with median values reaching 0.830 when dendrite sizes are 7nm. There is still some 

localization in both cases although the magnitude has decreased. This is also verified in the 

following two-point statistical measure of localization. 

3.4.1.2 Two-point statistic localization 

Measured values for two-point statistic localization was also found to decrease with 

decreasing dendrite size. This numerically confirms what can be visually seen from strain maps 

(Figure 3-6). Numerical values are quite small as the ratio of inner to outer area used to calculate 

this ratio was also small and so values shown here are appropriate. For the large dendrites, a 

median value of 0.00444 is calculated. This decreases to 0.00343 for the small dendrites. The 

two-point statistical measures of localization for the simulations are shown as a box plot in 

Figure 3-9.   

 

Figure 3-9: Box plot for a measure of localization using two-point statistics 
Arranged by dendrite size. This verifies that larger dendrites experience higher degrees of strain 
localization. 
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3.4.2 Shear band characteristics 

Shear band characteristics were calculated as described in Section 3.3.2. These measures 

were averaged and are shown in Table 3-3.  

Table 3-3: Measured shear band characteristics 

L (nm) #SBs �̇�𝛆𝑺𝑺𝑺𝑺 (s-1) C (%) L1 Ɒ 
20 1.8 0.35 26.5 0.82 56.5 
16 2.6 0.0063 37.6 0.75 78.8 
10 3.9 -0.014 42.3 0.62 110.7 
7 4.4 -0.059 45.5 0.53 118.2 

 

3.4.2.1 Nucleation rate (#SBs) 

 

Figure 3-10: Box plot of measured nucleation rates arranged by dendrite size 
Illustrated by counting the number of shear bands that nucleate throughout the simulation (in red) 
and exist at the end of the simulation (in blue). 
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After the simulations were completed, the number of shear bands were counted. They 

were then divided by the simulation time to provide a nucleation rate. These rates are illustrated 

using box plots shown in Figure 3-10. Red boxplots show the number of shear bands that 

nucleate throughout the simulation whereas blue boxplots only count the number shear bands 

found at the end of the simulation. These numbers are different because shear bands that nucleate 

early on can merge with other shear bands as the specimens are strained. Table 3-3 shows 

average nucleation rates calculated using the number of shear bands that nucleate throughout the 

simulation. Clearly, as dendrite size decreases, there are more shear bands. This matches 

expectations and forms a good measure of nucleation rate.  

3.4.2.2 Propagation rate (�̇�𝛆𝑺𝑺𝑺𝑺) 

The average rate of strain accumulation of the largest shear band is calculated for all the 

simulations. This measurement is used as a representation for shear band propagation rates and 

results are shown in Figure 3-11. The propagation rate measures how the area average strain of 

the shear band changes over time. Therefore, a negative rate can be calculated if additional strain 

elements that join the shear band have a strain lower than the average strain in the shear band in 

the step prior. This does not necessarily mean that the shear band is no longer growing but that 

the rate at which it is growing at has decreased. The larger the dendrites, the larger the 

propagation rate and the larger the spread of results. There is strong downward trend despite 

some overlap. When dendrites are large, the median rate of strain accumulation is 0.29 % s-1. 

When dendrites are small, the median rate of strain accumulation is -0.04 % s-1. The rate of 

decrease of propagation rate between different microstructural sizes decreases quickly when 

dendrite sizes are still large. It decreases at a slower rate when dendrite sizes are small. Also, at 
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smaller dendrite sizes, the largest shear band has little to no strain accumulation. These 

observations suggest a convergence of rates.  

 

Figure 3-11: Box plot of propagation rates arranged by dendrite size 
 

3.4.2.3 Involvement of the crystalline phase (C) 

The involvement of the crystalline phase is measured as the percentage of strain in the 

shear band elements that accumulated by the crystalline phase. The measurements are illustrated 

in Figure 3-12. As dendrites get smaller, the crystalline phase participates more in the 

localization. At the highest, dendrites account for more than 45% of plastic straining in shear 

bands. When dendrite sizes are 20nm, the median crystalline involvement is 26.5%. At 16nm, 

the next size down, the crystalline percentage increases drastically to 37%.  
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Figure 3-12: Box plot of crystalline phase involvement in shear banding 
Arranged by dendrite size. 

 

3.4.2.4 Proportion of strain in the 3 largest shear bands (L1) 

The fraction of total strain in the 3 largest shear bands is measured at the end of the 

simulation. Measurements are portrayed in Figure 3-13. Even as total strain in all shear bands 

increases, the fraction of strain taken by the 3 largest shear bands also increases suggesting 

greater localization than this data portrays. At the highest, a median of 81.5% of total strain is 

carried by the largest shear band. This number drops to 56% at the smallest dendrite sizes. The 

inset in Figure 3-13 shows measurements of the fraction of strain taken by the largest shear band 

only. Although there is a downward trend, it is not as convincing. It is thought that this is 

attributed to the fact that some simulations see one shear band accumulating most of the strain 

whereas others still see significant growth in multiple shear bands even at the end of the 

simulation. This provides a smattering of results regardless of dendrite size.  
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Figure 3-13: Box plot of fraction of plastic strain by 3 largest shear bands 
Arranged by dendrite size. Inset shows fraction of strain taken by largest shear band. 

3.4.2.5 Domination of shear bands (Ɒ) 

During the early stages of deformation, different shear bands will dominate the plastic 

deformation of the specimen. The number of shear bands that dominate during the entire 

simulation is counted. Each time the growth rate of a shear band becomes the highest over a 5 

step window, it is counted as a dominant shear band. Shear bands are only counted once. Results 

are shown in Figure 3-14. As dendrite sizes decrease, the number of shear bands that have at one 

point been dominant has increased. This suggests greater competition between shear bands. 
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Figure 3-14: The number of shear bands that dominant plastic deformation 

3.5 Discussion 

3.5.1 Competition of rates 

As mentioned previously, the competition of shear band nucleation and propagation rates 

are of interest in this work. This competition of rates has previously been demonstrated in purely 

amorphous metals strained at high rates [35], [39]. This work demonstrates that the same 

phenomena exists in MGMCs and sheds light on the underlying mechanisms behind strain 

delocalization. Additionally, this contrasts other views based solely on matching length scales 

[53]. These simulations enable a detailed view of the characteristics of shear banding in 

MGMCs. Further, the stochastic nature of the simulations allows some variability in results, 

which allows an examination of the effect of an averaged microstructural quantity rather than 

unique and specific conditions.  
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Nucleation and propagation rates are superimposed onto the same figure using 

normalization by their respective largest calculated values, shown in Figure 3-15. This figure 

demonstrates the competition of rates previously seen in metallic glasses at high strain rates. The 

relationship between dendrite size and these shear band characteristics demonstrate strong 

support for the hypothesis that an introduction of the crystalline phase results in strain relief via 

two mechanisms: 1) By lowering the propagation rates of shear bands and 2) by increasing the 

nucleation rates of new shear bands. The net effect is that the dendritic phase works to limit shear 

band propagation rates and encourage shear band nucleation rates resulting in reduced 

accumulation of strain in 1 or a few shear bands as seen in purely amorphous specimens.  

  

Figure 3-15: Competition of rates 
Comparison of mean values of measured nucleation (blue) and propagation rates (orange). The 
relationship of dendrite sizes with nucleation and propagation rates supports the hypothesis that 
increased homogeneous flow is a direct result of strain relief by competition of rates. 



 

56 
 

For the dendrite sizes examined here, there is clearly a lack of local minima or maxima 

for shear band nucleation or propagation rates. In other words, there is no optimal 

microstructural size that works best to delocalize strain. This contrasts with reported optimal 

matching of dendrite length scales and shear band crack initiation sizes [53]. For the data shown, 

there is greater homogenization of strain the smaller the dendrites. These trends suggest that 

attempts at decreasing dendrite size experimentally may result in increased shear banding and 

strain delocalization.  

This work suggests that the mechanism responsible for strain delocalization in MGMCs 

is the competition of nucleation versus propagation rates that work to limit strain accumulation in 

one to a few shear bands. As a direct result, this work then also proposes the method for greater 

strain delocalization in MGMCs is two-fold: 1) encourage shear band nucleation throughout the 

specimen and 2) decrease the rate of growth of shear bands. The question then remains, what 

exactly does encourage shear band nucleation to occur? And of course consequently what then 

discourages them to accumulate more strain once nucleated? 

3.5.2 Examination of shear banding in MGMCs 

One of the great benefits of using numerical simulations is the ability to examine much 

smaller time and length scales. This allows us to resolve mechanics not visible to 

experimentation such as the early stages of shear banding. Of particular interest here are 

understanding specific conditions that encourage shear band nucleation and propagation.  

To better understand the mechanisms behind the competition of rates, we examine the 

conditions for initiation of STZs, nucleation of shear bands, and growth of shear bands. 
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3.5.2.1 Initial STZ activations 

Snapshots of stress fields immediately before and after the first STZ activation in two 

example simulations at two microstructural sizes are shown in Figure 3-16 and Figure 3-17 

(large and small dendrites respectively). Light yellow fields denote areas of higher stress. The 

red dots signify the first STZ activation in b) of these figures. Due to the nature of the STZ 

dynamics modelling framework, areas of high stress are, although not guaranteed, much more 

likely to experience an STZ activation than others. This is verified by the first STZ activation 

happening in one of highest stress concentrations on the map. This is consistent with what has 

already been noted in literature [109].   

 

Figure 3-16: Examining the stress-fields in 2 example simulations with large dendrites  
a) immediately prior and b) after the first STZ activation. Red arrows point to areas of high stress 
concentrations and red dots show where the first STZ activation occurred. 
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When examining Figure 3-16, stress concentrations are particularly prevalent where there 

exist dendrites spanning both sides of a glassy domain along a 45° angle to the longitudinal axis 

or planes of highest resolved shear stress. Stress concentrations are higher the smaller the 

domain. Therefore, it can reasonably be inferred that in order to disperse STZ activations 

throughout the specimen, smaller domains will provide a larger number of desirable sites for 

STZ activations for uniaxial tensile loaded specimens. This could be achieved successfully with 

many round small dendrites. 

 

Figure 3-17: Examining the stress-fields in 2 example simulations with small dendrites  
a) immediately prior and b) after the first STZ activation. Red arrows point to areas of high stress 
concentrations and red dots show where the first STZ activation occurred. 
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Conversely, when looking at Figure 3-17, there is an increased number of high stress sites 

although the magnitudes are lower. This is verified in Figure 3-18. Figure 3-18 shows a plot of 

the maximum local Von Mises stress values in the specimen over time. This demonstrates that 

stress values are on average lower when dendrites are small. The inset in this figure also shows 

that stress concentration levels are higher before the first STZ activation in simulations with 

large dendrites than simulations with small dendrites (see inset in Figure 3-18). This means that 

STZ activations have less reason to cluster and therefore operate collectively in a more 

homogeneous manner in specimens with smaller dendrites as stress concentrations are lower in 

magnitude.  

 

Figure 3-18: Comparison of maximum Von Mises stresses  
Comparisons between two example large and two example small dendrite simulations are shown. 
Inset denoted by black dashed box shows stress concentrations as a result of the first STZ 
activation in each simulation. Circles denote first STZ activations in each of these simulations. 
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3.5.2.2 Shear band nucleation or STZ clustering 

STZ clustering in MGMCs occurs in a different fashion than in pure amorphous metals. 

In monolithic metallic glass, STZ clustering happens much faster and with far fewer clusters 

[110]. In MGMCs, due to restricted domains and an increased number of stress concentrations 

from elastic mismatches, STZ clustering is encouraged to occur for an extended period of time. 

This is demonstrated in Figure 3-19. This figure shows the number of shear bands that exist as 

the simulation progresses. The shear band nucleation stage exists for as long as the number of 

shear bands are growing. When the number of shear bands begin to decrease, shear bands are 

now propagating and absorbing other shear bands and the STZ clustering stage has ended. Where 

shear band growth is the governing stage in amorphous metals, STZ nucleation is the governing 

stage in MGMCs.  

For the simulations run here, the shear band nucleation stage is longer for MGMCs with 

smaller dendrites (see Figure 3-19). When dendrite sizes are decreased, the number of suitable 

nucleation sites increases. This encourages shear bands to nucleate in more areas. The number of 

shear bands in the simulations with larger dendrites increase more quickly in the beginning. 

However, they also peak earlier in the simulation as shear bands begin to run away and absorb 

other shear bands at lower stress levels.  

As STZ clustering is examined, there seems to be no reason for one region to be more 

likely to accumulate STZ clusters than any other region in the specimen. After the first few 

initial STZ activations throughout the specimen, the choice of which STZ will first accumulate 

more STZs seems to be at random suggesting homogeneous deformation during this early stage. 
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And no significant trends were found as to the choice of which shear band nucleus will continue 

to grow in size and which will not.  

 

Figure 3-19: The number of shear bands during straining of each simulation.  
All 6 simulations for each dendrite size is plotted together as one large data set. 

 

3.5.2.3 Shear band propagation 

There are numerous ways in which shear bands interact with dendrites [75]. Smaller 

dendrites are more prone to participate in shear banding as shear bands are able to propagate 

through the dendrite. Larger dendrites tend to act as a barrier and shore up strain accumulation at 

the dendrite-matrix interface. This is shown by the plot in Figure 3-20. This plot shows for 4 

example simulations the degree of participation by the crystalline phase in shear banding over 
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time. This figure shows that simulations with smaller dendrites on average saw a larger 

participation in shear banding by the crystalline phase. This can have three repercussions: 1) 

ductility is enhanced as the crystalline phase is accommodating more strain, 2) crack initiation is 

either delayed or discouraged from happening in the metallic glass phase as there is less overall 

strain in the metallic glass matrix, and 3) shear bands propagate slowly through crystalline 

dendrites resulting in shear bands not being able to relax the specimen sufficiently fast enough 

which encourages strain accumulation in other shear bands.  

 

Figure 3-20: Percentage of shear band strain carried by the crystalline phase 
2 large (20nm) and 2 small (7nm) example simulations (red – small, green – large) are shown. 

 

On the other hand, simulations with large dendrites will tend to stop a shear band at the 

boundary between dendrite and glass matrix. Interestingly, this is less desirable than having the 

shear band propagate through the dendrite. This is because shear bands that grow through a 

dendrite will dissipate stress concentrations better than shear bands piling up at the interface. 
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Eventually, enough stress will accumulate that will then propagate the shear band very quickly 

through the dendrite resulting in a run-away shear band. In this sense, smaller dendrites are more 

desirable as more of the crystalline phase participates in shear banding earlier in the simulation. 

3.6 Summary 

MGMCs were modelled numerically using STZ dynamics. The dendrite sizes were 

systematically varied between 4 different dendrite sizes. Analysis of shear banding 

characteristics yielded evidence of a competition of shear band nucleation and propagation rates 

previously seen only in metallic glasses strained at high rates. Increased strain delocalization as a 

result of a competition of rates was seen to occur at smaller dendrite sizes.  
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4 CONCLUSIONS 

4.1 Combined simulated-experimental nanoindentation and verification of individual 

phase material properties 

Indentation of phases of varying thickness was carried out numerically. Results were 

normalized and compared with nanoindentation experiments. The following length scales were 

discovered:  

1) An indenter displacement less than 10% of the average dendrite size is needed to 

accurately capture the crystalline phase elastic modulus. 

2) An indenter displacement less than 50% of the average dendrite size is needed to 

accurately capture the crystalline phase hardness. 

3) An indenter displacement less than 20% of the average dendrite spacing is needed to 

accurately capture the amorphous phase elastic modulus. 

4) An indenter displacement less than 30% of the average dendrite spacing is needed to 

accurately capture the amorphous phase hardness. 

Material properties as measured from a combined simulated-experimental approach was 

reported and found to be consistent with other literature. Numerical and experimental material 

properties are in agreement with each other and verifies the material properties reported here.  
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4.2 Competition of rates in MGMCs 

The present work provides new insight into the mechanisms behind strain delocalization 

in MGMCs. This mechanism is investigated using systematic variation of life-like dendritic 

structures in MGMCs using STZ dynamics. This allows examination time and length scales 

intermediate to atomistic and continuum methods. Both macroscopic and microscopic 

characterizations are analyzed and discussed. Dendrite sizes and spacings examined spanned 7-

20nm and 17-50nm respectively while volume fraction was held constant at ~64.5%. Images of 

DH3 MGMC specimens were used to create the dendritic structure. Material inputs determined 

from a combined simulated-experimental nanoindentation approach were used in this model 

Statistical analysis of shear banding characteristics supports the hypothesis that the 

competition of shear band nucleation and propagation rates is the underlying mechanism 

encouraging strain delocalization in MGMCs. By introducing a crystalline dendritic structure 

into the amorphous matrix, a greater number of shear bands are encouraged to nucleate. At the 

same time, the crystalline dendrites also reduce the propagation or growth rates of shear bands.  

It was demonstrated that decreasing dendrite sizes yielded greater strain delocalization 

among more shear bands. It was also found that at these smaller microstructural sizes, the onset 

of run-away shear bands was delayed and overall growth rates were lower. These smaller 

dendrites allowed greater strain delocalization by allowing a greater fraction of the crystalline 

phase to participate in the shear banding process.  

These findings suggest a particular approach to utilize in the creation of less brittle 

MGMCs. In order to encourage more homogenous deformation, the goal is to distribute plastic 

strain over as many shear bands as possible. This results in a two-fold approach: 1) encourage as 
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large a number of shear band nucleation events as possible and 2) reduce the propensity for shear 

bands to propagate. This can be done to a greater degree using smaller dendrites oriented 

randomly throughout the matrix. This allows a larger number of stress concentrations 

encouraging diverse shear band nucleation early on in the simulation. Small dendrites can then 

participate in shear banding which reduces their propagation rates. This in turn encourages 

greater shear band nucleation events to help relax the system as shear bands are not growing fast 

enough to do so.  

These results are consistent with findings in experimental work while clarifying the 

mechanics underpinning what is seen.  

4.3 Future work 

Results demonstrated here would be strengthened with the following recommended work: 

• Smooth dendrite-matrix interfaces: elements are triangular in nature and results in 

a somewhat jagged interface. This can cause stress concentrations not seen in 

experiment. 

• Failure mode for the crystalline phase: incorporating a failure mode would allow a 

real examination on the effects of microstructure on MGMC tensile strengths. It 

would also remove potential hardening effects that might be occurring (see Figure 

3-20). 

• N-factorial analysis on the effects of different microstructural characteristics: this 

would allow us to capture the extent and isolate the effects of different 

microstructural characteristics. 
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• Extend dendritic mimicry to 3D: the current simulation utilizes plane strain 

elements which assumes an infinitely thick specimen.
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