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ABSTRACT 

Estimation of Knee Kinematics Using Non-Monotonic 
 Nanocomposite High-Deflection Strain Gauges 

 
Adin Douglas Martineau 

Department of Mechanical Engineering, BYU 
Master of Science 

 
Human knee kinematics, especially during gait, are an important analysis tool. The 

current “gold standard” for kinematics measurement is a multi-camera, marker-based motion 
capture system with 3D position tracking. These systems are accurate but expensive and their use 
is limited to a confined laboratory environment. High deflection strain gauges (HDSG) are a 
novel class of sensors that have the potential to measure kinematics and can be inexpensive, low 
profile, and are not limited to measurements within a calibrated volume. However, many HDSG 
sensors can have a non-linear and non-monotonic response. This thesis explores using a 
nanocomposite HDSG sensor system for measuring knee kinematics in walking gait and 
overcoming the non-monotonic sensor response found in HDSGs through advanced modeling 
techniques. 

Nanocomposite HDSG sensors were placed across the knee joint in nine subjects during 
walking gait at three speeds and three inclines. The piezoresistive response of the sensors was 
obtained by including the sensors in a simple electrical circuit and recorded using a low-cost 
microcontroller. The voltage response from the system was used in four models. The first two 
models included a physics-based log-normal model and statistical functional data analysis model 
that estimated continuous knee angles. The third model was a discrete linear regression model 
that estimated the inflection points on the knee flexion/extension cycle. Finally, a machine 
learning approach helped to predict subject speed and incline of the walking surface.  

The models showed the sensor has the capability to provide knee kinematic data to a 
degree of accuracy comparable to similar kinematic sensors. The log-normal model had a 0.45 r-
squared and was unsuitable as a stand-alone continuous angle predictor. After running a 10-fold 
cross validation the functional data analysis (FDA) model had an overall RMSE of 3.4° and 
could be used to predict the entire knee flexion/extension angle cycle. The discrete linear 
regression model predicted the inflection points on the knee kinematics graph during each gait 
cycle with an average RMSE of 1.92° for angle measures and 0.0332 seconds for time measures. 
In every estimate, the discrete linear regression model performed better than the FDA model at 
those points. The 10-fold cross validation of the machine learning approach using the discrete 
voltages could predict the categorical incline 90% of the time and the RMSE for the speed model 
was 0.23 MPH. 

The use of a HDSG as a knee kinematics sensor was shown as a viable alternative to 
existing motion capture technology. In future work, it is recommended that a calibration method 
be developed that would allow this sensor to be used independent of a motion capture system. 
With these advancements, this inexpensive and low profile HDSG will advance understanding of 
human gait and kinematics in a more affordable and scope enhancing way. 

Keywords: high deflection, nanocomposite, wearable sensor, gait analysis, kinematic sensor 
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1 INTRODUCTION 

This thesis describes the implementation of a high-deflection nanocomposite strain gauge 

(HDSG) to measure human knee kinematics. Specifically, nickel coated carbon fiber and nickel 

nanostrands were mixed into a silicone matrix to create a piezoresistive strain gauge with a non-

monotonic response that measured flexion-extension angles in the knee. Four models were 

created to estimate continuous knee flexion/extension angles in walking gait (a physics-based 

model and statistical based model), the inflexion points on a walking cycle, and the categorical 

walking incline and speed of the subject. 

Chapter two presents a background literature review on knee kinematic sensors, as well 

as a basic introduction to gait analysis and its applications. Of note, I present a taxonomy chart of 

human kinematic measurement techniques, which includes the nanocomposite high deflection 

strain gauge sensors used in the present work. 

Chapter three is the main work of this thesis. It contains the method and validation of 

using a non-monotonic response nanocomposite high deflection strain gauge as a kinematic 

sensor to measure knee angles and the speed and incline of the subject. Nine subjects walked on 

a treadmill at three speeds and three inclines with the HDSG and motion capture simultaneously 

measuring knee angles. Four different modeling techniques were used to capture distinct aspects 

of the subjects’ knee kinematics, and the accuracy of each model was characterized. This chapter 

will be submitted to a peer-reviewed journal. Co-authors include: Gavin Collins, Alyssa Evans, 
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Aubrey Odom, Matthew K. Seeley, David T. Fullwood, William F. Christensen, Dustin 

Bruening, and Anton E. Bowden.  

Chapter four finishes this thesis and suggests future work and direction related to this 

research. In particular, it points toward the integration of kinematic and kinetic sensors for a 

complete mobile gait analysis system.  
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2 BACKGROUND 

 Gait Analysis 

Bipedal human locomotion is not only intrinsically complex but unique as a fingerprint 

from person to person [1]. The study of this complex locomotion or gait analysis is the 

investigation of the kinetics, kinematics, and muscle activation that compose human ambulation. 

The first recorded study of kinematics started with Aristotle and over the last two millennia of 

human determination and progress in technology have led to today’s advancements. Through the 

application of Newtonian mechanics and the instrumentation of the human body through force 

plates, motion capture, electromyography, photogrammetry, among others, a wealth of 

knowledge has been created about human locomotion. This knowledge includes from the basic: 

the moments and forces on joints throughout healthy gait [2], to the advanced: the effects of shoe 

insoles on gait for those with knee osteoarthritis [3], to immediate application: diagnosis of 

Parkinson’s disease through gait and tremor investigation [4]. Gait analysis and its tools have not 

only expanded understanding on how humans walk but how to use its analysis as a tool. This 

background will touch on lightly overall human body kinematics and focus mainly on measuring 

human knee kinematics with an emphasis on using high deflection strain gauges to measure knee 

flexion/extension angles.  

The importance of gait and kinematics analysis is evident in its wide assortment of 

applications: cinema, biometrics, diagnosis, patient rehabilitation, and athlete performance and 
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improvement. In the cinematic industry, gait analysis and its tools are used to quicken the 

animation process by measuring human models to simulate animation characters [5]. Biometric 

authenticity analysts have shown that human gait is not only different from person to person but 

also that even poor surveillance video can be used to correctly identify individuals [1]. Evidence 

for gait analysis as a diagnostic tool spans many diseases: Alzheimer’s [6], Parkinson’s [7], 

rheumatoid arthritis [8], cerebral palsy [9, 10], muscular dystrophy [11], and multiple sclerosis 

[12]. Some researchers have taken it a step further and used gait analysis as a rehabilitation tool 

to quantify the recovery of total knee replacements [13]. On the opposite end of the spectrum, 

motion capture analysis has also been used to increase athlete performance such as increasing 

jump height in volley ball players [14]. Motion capture has also been used to provide evidence 

for changing gymnastic technique on the uneven bars [15]. The influence of motion capture in 

athletics extends to equipment optimization [16]. These applications exemplify how ubiquitous 

gait and kinematic analysis has become and its importance as a tool. 

 Measuring Gait Kinematics 

Since the application of gait analysis varies widely and spans multiple industries the tools 

that measure kinematics also vary widely. The tools can be broadly separated into two groups 

(Figure 2-1). First, tools that use a calibrated volume and are subsequently volume restrictive. 

These include video motion capture through normal video cameras and physical rods that specify 

calibrated distances, X-ray motion capture through fluoroscopy and sometimes markers, and 

infrared (IR) motion capture through markers and IR cameras. Another group can be broadly 

categorized as body mounted sensors that include goniometers, inertial measurement units 

(IMU), exoskeletons, and high deflection strain gauges directly attached to the body. All these 

techniques offer ways to measure kinematics and gait of the human body. 
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Figure 2-1: Measuring space for quantifying human knee kinematics. This paper’s sensor space 
is highlighted in blue. x[17]  IR[18-21]  VC[22]  Exgon[23]  IMU[24]  cap[25]  nan[26-28] liq[29] 

 

Calibrated volume techniques provide high accuracy with tradeoffs in types of activities 

that can be measured. IR motion capture is the “gold standard” and is the basis to which most 

kinematic systems are compared to. It uses markers that reflect infrared light back to specialized 

cameras and with marker position can have an accuracy of 63±5 µm and a precision of 15 µm 

when measuring rigid bodies [21]. In terms of rigid bodies angles, Maletsky et. al. reported that 

at 10° rotation bias was 0.05° and a 95% repeatability limit of 0.67° [19]. Though these errors 

are miniscule when measuring rigid hinge joints, the error from motion capture calculated human 

knee joint angles increased because of soft tissue artifacts and errors associated with assuming 

the knee is a revolute or spherical joint. One way soft tissue artifacts have been quantified is 

through comparing markers attached to the skin and markers attached directly to the bone 

through pins. When compared to intra-cortical bone pins the rotational soft tissue artifact RMSE 

measured was 2.1° [30]. Andersen et. al. also conducted a study using a similar method and 

found the mean error estimates in flexion/extension angles increased 0.6°±0.6° by using a 
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spherical joint model and 1.0°±1.2° for a revolute joint model [31]. When comparing other 

kinematic measurement methods to this “gold standard”, it is important to consider the aggregate 

error that stems from soft tissue artifact and modeling limitations are reasonably within 1°-2°. 

With these relatively small errors, cost for IR motion capture varies widely but can reach in the 

millions for buying the cameras, markers, software, and for maintenance of the system.  

X-ray motion capture is also very accurate with less than 10 µm accuracy and a precision 

of 46 µm when measuring rigid bodies [17]. Fluoroscopy, as it is also known, has the advantage 

of visualizing the bone directly for calculation of angles. Standard video cameras can be used to 

measure three-dimensional information by using calibration rods with known distances and at 

least two cameras. Two dimensions can also be measured by using one camera and similar 

calibration rods. Accuracy of 2-D video cameras measuring body angles are more accurate in the 

sagittal plane than the frontal plane when compared to a 3-D motion capture system [22]. 

Specifically, the trunk, hip, knee, and ankle sagittal angles and knee frontal angles from 2-D 

video cameras were statistically equivalent to a 3-D IR motion capture system [22]. All these 

methods are only possible within a pre-calibrated volume which eliminates the ability to measure 

quotidian life.   

Goniometers, exoskeletons, inertial measurement units (IMU), ultrasound, and radio are 

body mountable kinematic sensors that can be used to measure joint angles (Figure 2-1). 

Goniometers come in both digital and analog varieties. The digital kind have an accuracy of less 

than 2° at each joint, requires precise alignment at each joint, and can limit the subject’s range of 

motion [23]. The digital goniometer’s power consumption is low [23]. Exoskeletons are full 

body suits that use potentiometers, encoders, or goniometers to measure body angles and, in 

many cases, offer mechanical support for the user [23]. They also have less than 2° accuracy at 
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each joint [23]. Yet, they require several batteries to function for just a few hours but are 

excellent for rehabilitation applications [23]. IMUs which are composed of an accelerometer, 

gyroscope, and magnetometer have an accuracy of less than 2° at each joint but can be affected 

by external interference and measurement drift [23, 24]. Their low power consumption makes 

them available to collect data anywhere from 1 day to 1 week [23]. Ultrasound, short-range 

radio, ultra-wideband, and radio frequency identification have been used in conjunction with 

IMUs to add additional location information to reduce signal drift in IMUs effectively [23, 25, 

32]. Many body-mounted sensor systems have built a strong foundation for mobile gait analysis 

techniques. 

 Measuring Knee Kinematics Through a High Deflection Strain Gauge 

 High deflection strain gauges (HDSG) come in many forms but can be divided into two 

main groups: capacitive and resistive (Figure 2-1). Capacitive strain gauges in general have two 

conductive films separated by an insulative layer whose thickness changes as they are strained. 

This in turn changes the capacitance between the two layers [25, 32]. Nakamoto et. al. used a 

capacitive strain sensor to measure knee and ankle flexion/extension angles compared to motion 

capture in one healthy male subject [25]. For knee flexion/extension angles, the subject flexed 

his knee at interval chimes played at 0.67 Hz while measuring the sensor voltage and motion 

capture angles. Overall the mean error was 4.4° over a complete cycle but decreased to 1.7° for 

the knee in extension and increased to 8.9° while the knee was in flexion.  

More studies have shown evidence that resistive type strain sensors have the ability to 

measure human knee kinematics [26, 27, 29]. These resistive strain gauges can be divided into 

two groups: nanocomposites and liquid metal films (Figure 2-1). Nanocomposite HDSG consist 
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of a conductive particle or strand suspended in a flexible matrix. Cheng et. al. demonstrated the 

capabilities of their novel sensor, a graphene-based fiber in polyurethane, by measuring the knee 

during flexion and extension, walking, jogging, jumping, and squatting [26]. They did not 

however, compare the sensor values to motion capture or any other sensor. Yamada et. al. also 

measured the knee with a carbon nanotube film strain gauge during multiple activities including 

extending, flexing, marching, squatting, jumping, and jumping from squatting but also without 

comparison to motion capture [27]. Mengüç et. al. used a liquid metal high deflection strain 

gauge to measure hip, ankle, and knee kinematics during walking and running gait with moderate 

accuracy [29]. Specifically, the RMSE for knee flexion extension angles was at best close to 4° 

for 2 MPH walking and at worst 15° for 6 MPH running [29]. High deflection resistive strain 

gauges have the potential to measure knee kinematics accurately in human gait.  

 Nickel Coated Carbon Fiber and Nickel Nanostrand High Deflection Strain Gauge 

The HDSG of this thesis is a piezoresistive nanocomposite sensor made up of nickel 

nanostrands (NINS) and nickel coated carbon fiber (NCCF) in a silicone matrix. The piezo 

resistivity of this sensor is thought to be caused by two major phenomena: quantum tunneling 

and percolation theory [33-35]. As the sensor is strained, the distance between the conductive 

particles in the insular matrix changes. The distance, or gap size, is directly proportional to the 

probability that an electron will jump or quantum tunnel from one conductive particle to the next. 

The minimum distance an electron will tunnel from one conductive particle to the next is the 

barrier height. Percolation theory states that the electrons will subsequently follow the random 

array of conductive particles and gaps smaller than the barrier height until they have gone from 

one end of the sensor to the other. The overall resistance decreases in the sensor as the size of the 

gaps decrease. This creates a non-monotonic log-normal response described by Baradoy and 
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Johnson (Figure 2-2) [36, 37]. Baradoy specifically found that the slopes of region 1 and 2 and 

the critical strain (the strain where region 1 and 2 meet) of this log-normal curve could be 

characterized by the percent volume fractions of NINS and NCCF added [36]. This allows the 

strain gauge to be customized according to the needs of the application. For example, high slopes 

of regions 1 and 2 would turn the sensor into a switch at a specific strain. In contrast, a lower 

slope allows a larger region where the sensor can measure a more gradual change in strain. The 

physics behind the HDSG lend itself to be used in a high-strain sensing application. 

 

 

Figure 2-2: Sample log-normal response of a high deflection nanocomposite strain gauge. 

  

The same physics that allow the sensor to be customable also creates a non-monotonic 

strain response. In previous work the HDSG has accurately predicted sitting posture [38], 

measured contractions during pregnancy [36], and measured ligament strain [39]. In general, 

these applications applied a pre-strain to avoid the first linear region of the log-normal curve and 

avoid difficulties of modeling the non-monotonic nature of the piezoresistive response. This 
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thesis explores simplifying the implementation of the nanocomposite, non-monotonic, HDSG by 

modeling the sensor while it is being utilized in regions 1 and 2 of the strain resistance response 

during human walking gait.  

The high deflection nanocomposite strain gauge’s modulus and strain at break allow it to 

be used in human measurement applications. The modulus must closely match the item being 

measured in order not to change the kinematics of the system. A higher strain at break allows the 

sensor to measure at larger strains before breaking. There are two main types of matrices used so 

far in HDSG nanocomposites: Sylgard and Ecoflex. With Syglard as the matrix the modulus was 

a high 1.84 MPa and a strain at break of 40% [40]. Ecoflex performs a bit better especially for 

human skin strain applications. Its modulus is much closer to skin with 0.37 MPa and a strain at 

break of 50-80% [41]. For a human knee angle kinematic application, Ecoflex is best suited 

because of its higher strain at break and modulus closer to the modulus of human skin [32]. 
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3 ESTIMATING WALKING HUMAN GAIT KNEE KINEMATICS WITH 

NANOCOMPOSITE HIGH DEFLECTION STRAIN GAUGES 

 Abstract 

This paper describes a method to measure knee kinematics using a nanocomposite high 

deflection strain gauge (HDSG) sensor system with a non-monotonic sensor response during 

walking gait. Nine subjects (6 males, 3 females) walked on a treadmill at three speeds and 

inclines with a HDSG over the right knee. Voltage from the HDSG, was used in four models to 

estimate knee angles, measured by the motion capture IR cameras, and speed and incline, 

designated by an instrumented treadmill. First, a physics based, log-normal model computed 

continuous knee angles with an r-squared of 0.45. Second, a functional data analysis approach 

found through a 10-fold cross validation process estimated continuous knee angles with an 

overall RMSE of 3.4°. Third, a discrete linear regression model estimated the inflection points on 

the knee flexion/extension cycle with an average RMSE of 1.92° for angle measures and 0.0332 

seconds for time measures. Finally, a machine learning approach went through a 10-fold cross 

validation and predicted subject speed with an RMSE of 0.23 MPH and predicted categorical 

incline (3% incline, level, or 3% decline) 90% of the time. Through advanced modeling 

techniques, the HDSG sensor system could accurately estimate knee flexion/extension angles 

outside of a traditional laboratory setting despite its non-monotonic sensor response.  
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 Introduction 

Bipedal locomotion is a feat of nature and has been studied formally since Aristotle. 

Modern multi-camera video motion capture systems record the movements of locomotion 

accurately at high spatial resolution, but carry a high monetary cost from the perspectives of 

hardware, software, and data analysis time [10], and are limited to a confined laboratory 

environment [23]. Increased availability of accurate locomotion measurement through the 

introduction of a sensor system that is inexpensive, wearable, and unconstrained by calibrated 

volumes could dramatically increase both the availability and potential applications of 

locomotion analysis. In particular, high-deflection strain gauges (HDSG) represent a novel class 

of sensors that holds potential to fill this void. Though resistive HDSG sensors can have a high 

gauge factor [32, 34, 42-48], their non-linear properties [27, 32, 37, 42, 45, 47, 49-52] can make 

them difficult to use as a sensor. This paper seeks to develop techniques to use a non-monotonic 

HDSG as a wearable sensor to measure knee kinematics.  

 Over the last decade, the types of sensors used to measure human kinematics has greatly 

expanded, thus it makes sense to give context to the HDSG sensors used in this work in the 

context of a taxonomy chart (Figure 2-1). As noted in the chart, they can be classified as body-

mounted sensors which operate by measuring wide-range strains using changes in the electrical 

resistance of the sensor. Advantages of a HDSG approach include flexibility in spatial location 

of the activity being measured (lack of a need to operate in a calibrated volumetric space) [25, 

29, 32], low-profile, non-intrusive sensor mounting, and in many cases (including this work), 

low cost (e.g. the materials cost for the HDSG sensor cost was 2.06 USD). Disadvantages 

include material creep (the matrix material of these sensors is typically an elastomeric polymer) 

[32, 53], electrical signal drift (due to electromechanical degradation of connectivity of the 
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network of conductive nanofillers) [53], sensitivity of the sensor properties to ambient conditions 

(i.e. temperature) [32], and a nonlinear strain-resistance response [32, 37, 47]. 

Recent work in developing HDSGs has indicated that they may be an excellent choice for 

measuring human kinematics. As noted in Figure 2-1, high-deflection strain gauges can be 

broadly divided into two categories: resistive and capacitive. Resistive type gauges are more 

common when it comes to measuring human movement. The activities they have been used to 

measure range from large deflection activities like a squat jump to minute deflection changes like 

breathing [23, 27], and include measuring motion of human fingers, throat, forearm, elbow, hip, 

ankle, and knee [27, 29, 42, 54-56]. Linearly modeled HDSGs have shown they have the 

potential to measure articular motion, however many high-deflection strain gauges exhibit a 

more complex, non-linear electromechanical response and require more advanced modeling 

techniques [32, 37, 42, 45, 47, 49-52]. 

The present work utilized a specific HDSG sensor, which was invented at Brigham 

Young University and is comprised of nickel nanostrands (NiNs) and nickel coated carbon fiber 

(NCCF), which are sparsely dispersed throughout a silicone matrix. These conductive fillers 

create a piezoresistive effect through a combination of quantum tunneling and percolation theory 

[34]. The sensors exhibit a characteristic log-normal piezoresistive response (Figure 2-2). The 

slopes of regions 1 and 2, as well as the critical strain (i.e., the inflection point separating regions 

1 and 2 in Figure 2-2), of this HDSG can be tailored according to the desired sensor 

characteristics for a particular application. For example, some applications may require a narrow 

piezoresistive response curve that acts as a “switch” at a specific strain, while others, such as 

kinematic analysis, benefit from a more graded response over a broad strain range. Tailoring of 

the piezoresistive response is accomplished through variation of the volume percentage of each 
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conductive filler element (NiNs, NCCF) added to the matrix [36, 37]. In previous work, this 

HDSG has been used to accurately predict sitting posture [38], measure maternal contractions 

during pregnancy [36], and measure ligament strain [39]. Typically, these applications have 

leveraged the 2nd linear region of the piezoresistive response (region 2 of Figure 2-2), by 

applying a pre-strain to the sensor to avoid the difficulties of modeling the non-monotonic nature 

of the piezoresistive response. This paper explores using this sensor in the non-monotonic region 

(Region 1 & 2 of Figure 2-2) of the strain resistance response, which facilitates a simpler 

implementation, but requires a more challenging sensor model. It also validates the wearable 

HDSG sensor system measuring one degree of freedom knee flexion-extension angles during 

walking gait.  

 

 Methods 

HDSG sensors were made using Ecoflex 00-30 two-part platinum-catalyzed silicone, 9% 

by volume nickel nanostrands (Conductive Composites, UT, USA), and 3% by volume nickel 

coated carbon fiber (1 mm chopped 20% Ni) (Conductive Composites, UT, USA). This mixture 

was placed into the 50.6mm x 101.45mm x 1mm female portion of the aluminum mold shown in 

Figure 3-1 and placed in a vacuum at -20Pa for 5 min. The mixture was smoothed out and the 

male portion was placed into female portion, secured with c-clamps and cured at room 

temperature for twenty-four hours. The gauge was then removed and cut into 6mm x 1mm x 

101.45mm strips. The strips were cyclically strained to 50% strain on a materials testing machine 

(Instron®, MA, USA) until <1% permanent deformation strain change between cycles was 

observed (approximately 5 cycles). This preconditioned sensor was placed in a metal crimp on 

each end that connected to the electric circuit (Figure 3-2). The metal crimp connectors were 
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glued to athletic tape (KT Tape®, UT, USA) and the entire construct was covered with an 

insulating layer of silicone glue (Sil-Poxy©, Smooth-On Inc., PA, USA). This sensor was then 

placed in a voltage divider circuit which was connected to and compared with ground (Figure 3-

2). The voltage supplying this circuit was a 3.2 V AC, 100 Hz square wave. A 1.66 Kohm 

resistor was the other element in the circuit. A custom microcontroller collected the voltage data 

at 1031 Hz specified by the timer in the microcontroller (Figure 3-2). The voltage data was 

down-sampled to 1000 Hz and the root mean square average of each complete square wave cycle 

(10 points) was computed, allowing for an exact match to the sampling frequency of the motion 

capture data.  

 

 

Figure 3-1: Mold for HDSG. 
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Figure 3-2: HDSG connected to voltage divider and circuit schematic. R1 = fixed resistor, R2 = 
HDSG, and V1 =AC source. 

 

 The HDSG sensors were utilized to capture a suite of 9 separate trials conducted on 10 

individual subjects (90 total trials). Subject gender was mixed (4 females and 6 males) and ages 

ranged from 52-60 years old (mean 55.4 y.o.) (age was selected based on potential applications 

with Alzheimer’s, knee osteoarthritis, and total knee replacement). Each subject had the HDSG 

sensor and circuit placed on their right knee approximately over the patella (Figure 3-3). One 

cluster of reflective markers was placed on the shank and another on the thigh. Subjects were 

instructed to straighten legs during the static trial. This data was compared to motion capture 

(Vicon Motion Systems, United Kingdom) data collected at 100 Hz which was processed 

through Visual 3D (C-Motion Inc., MD, USA) to get flexion and extension knee angles through 

the native knee model found in Visual 3-D. Subjects completed 9 trials each: 3 walking speeds 

(slow, medium, fast) at 3 distinct inclines (level, 3% uphill, or 3% downhill). Before data 

collection, subjects were instructed to walk on the treadmill and notify the data collector what 
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treadmill speed they felt comfortable walking while the data collector increased the speed in 0.5 

MPH increments. All subjects selected 2 MPH as the slow walk, medium walk was either 2.5 or 

3 MPH, and fast walk was either 3.5 or 4 MPH. Trials were excluded if missing marker data 

made it impossible to extract motion capture data and a treadmill malfunction prevented 

acquisition of downhill data for one subject. One subject was completely excluded because an 

improper static trial made it impossible to extract motion capture data. After data exclusion, there 

were 61 complete trials included in the study from 9 subjects.  

 

 

Figure 3-3: HDSG set up applied to a subject. 

 

Data from the HDSG were analyzed using four separate models: a modified log-normal 

model (Matlab, Mathworks, MA, USA), functional data analysis model (FDA) (R Software), 

discrete linear regression model (R Software), and a machine learning speed and incline model 
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(WEKA, University of Waikato, New Zealand). Depending on the application, different 

modeling techniques are needed to provide the appropriate accuracy in the measurement and the 

necessary information for that application. There are four main users of kinematic human data: 

biomechanists, exercise scientists, physicians, and athletes. In biomechanical research, 

continuous knee flexion/extension data is needed to calculate power and joint moments. 

Currently, infrared motion capture techniques have an RMSE close to 2° on the knee when 

compared to bone pins [30, 31]  If continuous knee angle estimation is close to this error it could 

be deemed acceptable to biomechanists. A simple physics-based model based on the natural 

phenomena of the sensor is best suited for continuous knee angle estimation if the accuracy is 

high. The modified log-normal model fits this category (Figure 3-4) and was based on a 

previously reported quasi-static relationship between the sensor strain and sensor resistance (e.g., 

Baradoy [36]). If the accuracy is not high enough in the physics-based model, a statistical 

approach that is dependent on the application can be used to achieve higher accuracy. The FDA 

model utilizes this statistical approach and was used to estimate continuous knee angles 

throughout the gait cycle (Figure 3-4). Physicians and at times exercise scientists only need 

specific points on the knee walking gait cycle with high fidelity. The accuracy needed for 

discrete measures is dependent on the application. In general, differences between control and 

pathological groups were found using motion capture. If the discrete model RMSE is also 

comparable to motion capture error, it could be used as an acceptable tool to exercise scientists 

and physicians. The discrete linear regression model was used to estimate inflection points on the 

knee flexion/extension gait cycle with high fidelity (Figure 3-4). Finally, general information like 

speed and slope of the incline are useful for athletes and exercise scientists for performance 

measurement.  Currently athletes use IMUs to measure speed and incline and if HDSG match 
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their RMSE error HDSG could be used as a suitable replacement.  The machine learning models 

helped to quantify this performance (Figure 3-4) and were used to estimate the speed and slope 

of the trial (necessary prerequisites for accurate models of caloric expenditure [57, 58]). More 

detailed information on the specific implementation of each model is provided in the 

corresponding results section below.  

 

 

Figure 3-4 Audiences for each kind of model. 

 

 Results 

3.4.1 Modified log-normal model 

The nonlinear log-normal model was a curve-fit parametric model based on the 

underlying sensor physics but does not consider time-dependent phenomena. This modified log-

normal model was fit to all the trials within each subject (3-1) taken from a previous log-normal 
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characterization of a similar gauge by Baradoy [36]. Knee angle was used as the independent 

variable and the voltage as the dependent variable to make the model a one-to-one function. A 

non-linear least squares optimization routine was used to identify three model-characteristic 

parameters: a (the shape parameter), c (x-axis scaling parameter), and d (y-axis scaling 

parameter). Bi-square weighting was the parameter that was minimized. The r-squared was 

extracted to determine how much the instantaneous sensor signal in isolation could predict knee 

angles without requiring a more complex model. 
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 The r-squared for all subjects was 0.45 for the models. The data distribution around the 

model was very spread (Figure 3-5). The sensor voltage dependency upon knee angle generally 

followed the modified log-normal function, but overall curve shape was not as steep in region 

two as previously reported by Baradoy. This is likely a consequence of a different sensor 

formulation combined with the fact that knee angle is not a linear surrogate for strain. Baradoy 

also reported only single cycle to failure testing of the piezoresistive response, thus his models 

failed to capture the hysteresis inherent in the sensor system. 
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Figure 3-5: Example of log-normal fit for subject 6. 

 

3.4.2 Functional data analysis model 

The FDA model was used to estimate continuous knee angles throughout the entire stride 

(useful for calculating joint power and moment for orthopedic applications). Knee angle and 

voltage data were separated into strides manually, where the beginning of each stride was 

identified as the time at which a relative minimum occurred in the knee angle data, just prior to 

the peak angle of the stance phase. Knee angle and voltage data were resampled to 100 data 

points per stride to facilitate the functional data of the stride for statistical analysis, and the 

derivative of the voltage data was computed at each point. Each stride of the knee angle data, the 
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voltage data, and derivative of voltage data was then assigned a smooth representation using a 

17-term Fourier series (an intercept, 8 sine, and 8 cosine terms) for use in a functional linear 

model (3-2). Because of essential characteristics of the voltage data between subjects, a separate 

model was built for each of the nine subjects. This would require a calibration procedure for each 

subject in a practical setting. For subject j = 1, … ,9, let 𝜃𝜃𝑖𝑖(𝑡𝑡) be the Fourier representation of the 

subject’s 𝑖𝑖𝑡𝑡ℎ knee angle stance,  i = 1, … , nj, where 𝑛𝑛𝑗𝑗  is the total number of stances for subject j. 

We model 𝜃𝜃𝑖𝑖(𝑡𝑡) as follows: 

 

𝜃𝜃𝑖𝑖(𝑡𝑡) = 𝛽𝛽0(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡)𝛽𝛽𝑣𝑣(𝑡𝑡) + 𝑑𝑑𝑖𝑖(𝑡𝑡)𝛽𝛽𝑑𝑑(𝑡𝑡) + 𝜀𝜀𝑖𝑖(𝑡𝑡)        (3-2) 
    

 

where 𝜃𝜃𝑖𝑖(𝑡𝑡) , 𝑣𝑣𝑖𝑖(𝑡𝑡), and 𝑑𝑑𝑖𝑖(𝑡𝑡) are the Fourier representations of the subject’s 𝑖𝑖𝑡𝑡ℎ knee angle, 

voltage, and derivative of voltage strides, respectively, at time t ∈ 1 … 100. The function 𝛽𝛽0(𝑡𝑡) is 

the intercept term and is a very close imitation of the subject’s mean knee angle curve. The terms 

𝛽𝛽𝑣𝑣(𝑡𝑡) and 𝛽𝛽𝑑𝑑(𝑡𝑡) are functional coefficients associated with the voltage and the derivative of 

voltage data, respectively. These coefficients are optimized to leverage correlation between the 

voltage and knee angle data in order to pinpoint stride-to-stride differences in the subject’s knee 

angle. Finally, 𝜀𝜀𝑖𝑖(𝑡𝑡) represents the residual error term for stride i at time t. For the details of 

fitting a functional linear model, see Ramsay et. al. [59]. 

Figure 3-6 shows both the measured angle and the predicted angle from a representative 

stride for that subject. The model performed moderately well in predicting individual stances, but 

we noted that it performed exceptionally well at predicting the average stance of each subject 

(Figure 3-7). This performance at predicting the average continues across all speeds and inclines 
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(Figure 3-8). Table 3-1 details the performance of the functional data model at each speed and 

incline. The model’s RMSE seems to be more consistent across inclines than across speeds. 

Using a 10-fold cross validation, the continuous functional data models on average had an 

RMSE of 3.4° for all subjects across all trials. By stance, the highest error occurred at the 

transition from stance phase to swing phase (Figure 3-9).  

 

 

Figure 3-6: All stances for all subjects depicted in gray. The stance with the lowest RMSE 
prediction in dotted red and the corresponding angle depicted in black. 
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Figure 3-7: All stances for each subject are depicted in gray with the min and max stances in 
dotted gray. The average knee angles for all stances are depicted in black with the average 
prediction in dotted red. 
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Figure 3-8: Average stride for each speed and incline for one subject.  

 

Table 3-1: RMSE across speeds and inclines for the functional data model. 

 Slow Speed 
[MPH] 

Medium Speed 
[MPH] 

Fast Speed 
[MPH] 

Average 
[MPH] 

Up 3.94  2.79 2.93 3.15 
Level  3.48  3.03 3.16 3.16 
Decline  3.54 2.85 3.50 3.31 
Average 3.62 2.92 3.24 3.40 
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Figure 3-9: RMSE by index for all subjects. 

 

3.4.3 Discrete linear regression model 

The discrete linear regression model sacrificed overall accuracy in favor of highly 

accurate prediction of specific points (the inflection points) on the knee angle kinematics graph. 

The inflection points are more easily communicated and compared numerically between 

kinematic studies (as compared to the entire knee kinematics curve) and have been shown to 

contain highly useful patient diagnostic information [6, 13, 60]. The three inflection points of the 
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knee angle kinematics graph were defined by 2 discrete coordinates for each point: a knee angle 

magnitude and its corresponding time within the gait cycle (Figure 3-10):  t max stance, θmax stance, t 

midstance, θmidstance, t max swing , θmax swing.  

 

Figure 3-10: Discrete points estimated by linear regression model. 

 

A separate model was created for each subject and 7 response variables derived from the 

sensor data were utilized in each model (3 voltage inflection points, 2 time values, a maximum 

derivative value, and the voltage at the max derivative value). A 10-fold cross validation 

procedure was carried out on the data for each distinct knee characteristic, which acted as the 

different response variables. The procedure found the model with the lowest cross validation 
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error. To evaluate the performance for each subject, the RMSE using the residuals from the final 

selected model was calculated across all six point coordinates. To assess performance in relation 

to the FDA model, the discrete linear regression model RMSE for each of the six point 

coordinates was compared to the RMSE of the FDA model at the same six points. All statistical 

analyses were conducted using R Statistical Software. 

Overall, the RMSEs for all the discrete measures for the discrete linear regression model 

and FDA model are found in Table 3-2. On average, the RMSE for the three angle measures was 

1.92° and for the three time measures the average was 0.0332 seconds. In every estimate of the 

six discrete measures, the discrete linear regression model performed better than the FDA model. 

 

Table 3-2: RMSE of discrete linear regression model and FDA model for all six discrete points. 

 Maximum 
Angle 
During 
Swing 
Phase 
[degrees] 
 

Time to 
Maximum 
Angle 
During 
Swing 
Phase 
[seconds] 
 

Local 
Maximum 
Angle 
During 
Stance 
Phase 
[degrees] 
 

Time to 
Local 
Maximum 
Angle 
During 
Stance 
Phase 
[seconds] 
 

Minimum 
Midstance 
Angle 
[degrees] 
 

Time to 
Midstance 
Angle 
[seconds] 
 
 

 

Discrete 
Linear 
Regression 
Model RMSE 

1.7505 0.0129 1.7337 0.0300 2.2726 0.0284 

FDA RMSE 2.693 0.0199 2.756 0.0412 2.886 0.0384 
 

3.4.4 Machine learning models 

A machine learning model was used to predict speed and categorical incline (3% 

downhill, level and 3% uphill) based on the same extracted response variables described in the 
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discrete linear regression model. A random forest machine learning approach was used to create 

the model based on 10-fold cross validation. For all models the bag size was 100, the number of 

iterations was 100, the minimum number of instances per leaf was one, an unlimited max depth 

of tree, and the desired batch size for batch prediction was 100. Two models were created for 

both speed and incline. The first used all 7 response variables from the discrete linear regression 

model. The second used a greedy stepwise process to pick the best response variables to be used 

in the random forest, without relying upon response variables that did not contribute significantly 

to model accuracy. The confusion matrix is reported below for the incline and the RMSE is 

reported for speed. All models and greedy stepwise processes were run using WEKA [61]. 

The confusion matrix for the full model (all 7 response variables) is found in Table 3-3. 

Overall, it correctly predicted the incline 90% of the time. For the second model (reduced 

parameter model), the greedy stepwise optimization process picked two predictors: voltage at the 

first max peak and minimum voltage preceding the first max peak. With this simplified 2-

parameter model, it correctly classified the instances 82% of the time and its confusion matrix is 

also found in Table 3-3. For predicting speed, the full model had an RMSE of 0.23 MPH and its 

correlation coefficient was 0.952. For the reduced parameter model the greedy stepwise process 

identified three predictor variables: minimum voltage preceding the first max peak, the time to 

the same minimum, and the duration from that minimum to the stride’s end time. This 3-

parameter speed model’s RMSE was 0.27 MPH and its correlation coefficient was 0.9337. It was 

noted that simplified models performed comparably well at predicting incline and speed when 

compared to the full models with only a few (2-3) predictors. 
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Table 3-3: Confusion matrix for machine learning treadmill incline prediction. 

Model Slope 
Classified 

as 3 % 
Downhill 

Classified 
as Level 

Classified 
as 3 % 
Uphill 

Sensitivity 

All 
Discrete 

Predictors 
Included 

3% Downhill 229 16 18 87.1% 

Level 12 422 32 90.6% 

3% Uphill 14 29 422 90.8% 

Precision 89.8% 90.4% 89.4% 90.1% 

Simplified 
Greedy 

Stepwise 
Model 

3% Downhill 200 26 37 76.0% 

Level 26 420 53 84.2% 

3% Uphill 28 47 390 83.9% 

Precision 85.5% 85.2% 81.3% 82.3% 

 

 Discussion 

In previous work, Nakamoto et al., demonstrated the capability of measuring knee angles 

using a capacitive sensor under very controlled conditions (knee angles were virtually identical 

across all cycles) [25]. Our work demonstrates a step-forward in methodology and challenge, 

addressing knee angles that varied across trials due to changes in subject’s speed and inclination. 

The angles measured varied from subject to subject and from trial to trial. This is similar to the 

work of Mengüç et. al. who used a liquid metal high deflection strain gauge embedded in an 

elastomer and measured three healthy males at multiple speeds including running speeds [29]. 

This work does not include running speeds or other joints as Mengüç et. al., but does include an 

older subject population (picked because of the possible applications in total knee replacements, 
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knee osteoarthritis, and Alzheimer’s), more subjects (nine vs. three), and includes incline as a 

variable. This work also explores how to overcome a non-monotonic response, common in high 

deflection strain gauges, using advanced modeling techniques. Overall, the results demonstrate 

the ability of the wearable HDSG sensor system to estimate both discrete and continuous 

flexion/extension angles in the knee during walking gait, as well as estimate speed and incline.  

The FDA model excelled at predicting continuous knee angles for the average stance of 

each subject overall and at each speed and incline (Figures 3-7 and 3-8). Though each subject 

had varying distributions of gait across all speeds, the model still performed well at estimating 

the average knee angle throughout the gait cycle. It also performed reasonably well at predicting 

knee angle within each individual stance, with the largest magnitude error occurring close to the 

transition between stance and swing phase. This could be due to the unloading of the leg which 

would cause an abrupt change in skin strain and in turn, the sensor estimated knee angle. 

Additional testing is needed to confirm this hypothesis. Errors for the FDA model were 

comparable to those found by Nakamoto et. al. (mean=4.4° standard deviation=3.6°) [25]; 

though the methodology of the present work utilized a more challenging nonlinear sensor and 

test conditions included walking gait and not just timed flexing of the knee. Mengüç et. al. 

reported higher errors for knee angle estimation compared to the present work with respect to all 

speeds. Their linear model does not include the average stance, which this work includes, and 

could benefit from more complex modeling techniques [29]. The error does not reach as low as  

0.7° which was reported by some authors using IMUs [24]. These models assume that the knee is 

a pure hinge, which is an incomplete model, and the models that do not make this assumption 

have comparable error to the present work [24]. This study is limited however, that neither 

transition gait, nor running gait were measured, nor were extreme incline or decline. For the 



32 

present work, individual strides were manually identified for analysis based on motion capture 

angle data but could feasibly be done using computer algorithms and the sensor data. Currently, 

the sensor system requires initial calibration with a motion capture system for each individual 

subject in order to be used outside of the laboratory.  

The results also demonstrate the ability of the wearable sensor system to accurately 

approximate discrete flexion/extension knee angles. For many of the time discrete 

characteristics, RMSE values approached the limits of the 100 Hz sampling frequency (0.01 s). 

While the FDA model has the advantage of a continuous estimate of knee angle data, which is a 

necessary pre-requisite to compute power and joint moment when coupled with force; the 

discrete model is more accurate at identifying the peaks and troughs of knee flexion and can be 

useful in applications such as a diagnostic tool for knee osteoarthritis [60], success of total knee 

replacements [13], and gait cadence in Alzheimer’s patients [6]. 

The machine learning model demonstrated the ability of the sensor system to 

approximate the speed and incline of a subject during walking gait which could be used in 

caloric expenditure models. The initial machine-learning model included six discrete parameters 

based upon the voltage characteristics noted for each stride. However, this model was 

subsequently simplified using a greedy stepwise selection process that was able to identify a 

limited parameter model with comparable accuracy to using all of the discrete parameters. The 

accuracy of estimation of speed by the HDSG is comparable to IMUs (.224 MPH) [62], (.111 

MPH) [63] and not as good as GPS (.050MPH) [64]. Yet, HDSGs are not limited to an open sky 

like GPS and detect additional data such as joint angles. A continuous parameter comparison to 

IMU slope estimation was not comparable because only one grade (both 3% incline and 3% 

decline) was tested in this experiment. However, Sabatini et. al. did report a RMSE of 1.52% 
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RMSE of grade estimation for IMU slope estimation [63]. Hall et. al. gave evidence that caloric 

expenditure models should include speed to be more precise [57]. Lester et. al. discussed that 

slope of surface is also important for caloric expenditure [58]. He includes that estimations of 

incline made by GPS are sometimes inadequate due to sudden jumps in altitude when subjects 

approach buildings. HDSGs also have the potential to help predict speed and incline that could 

be used in caloric expenditure models. 

 It should be noted that though this work and others use motion capture-computed joint 

angles as the “gold standard” for comparison, these angles have non-insignificant errors 

associated with soft tissue artifact and additional error associated with assuming the knee is a 

revolute or spherical joint. Reinschmidt et. al., quantified motion capture knee flexion/extension 

RMSE to be 2.1° when compared to intra-cortical bone pins [30]. Andersen et. al. also used 

intra-cortical bone pins to show that mean error estimates in flexion/extension angles increased 

0.6°±0.6° by using a spherical joint model and 1.0°±1.2° for a revolute joint model [31]. Motion 

capture's aggregated error from soft tissue artifact and model inaccuracies shown by these 

authors is comparable to this work’s error in the FDA and discrete linear models, and it is 

virtually impossible to identify which of them is closer to the “true joint angle” without using 

more invasive technique (i.e., bone pins, fluoroscopy). With the current accepted motion capture 

set up, evidence suggests accuracy of knee joint angles cannot exceed 2°-3° RMSE when 

measured by IR motion capture.  

The HDSG sensor system had sufficient accuracy in the FDA, discrete linear regression, 

and machine learning models for the four main research audiences of motion capture: 

biomechanists, exercise scientists, physicians, and athletes. Biomechanists currently use motion 

capture to measure continuous human knee kinematics which has an accuracy of 2°-3° RMSE 
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for flexion/extension knee angles. The FDA model had an overall accuracy of 3.4° RMSE which 

is comparable to the motion capture angle error. Physicians and exercise scientists in general use 

discrete points on the knee flexion/extension curve measured by motion capture. For example, 

peak knee extension angle early after knee replacement surgery could predict abnormal gait 

patterns twelve months after the surgery [65]. Specifically, the difference between the two 

groups is 5.7°. The discrete linear regression model had a RMSE of 2.7° which is within the 

error of motion capture and lower than the difference between the two groups and therefore 

acceptable to exercise scientists and physicians. Finally, athletes and exercise scientists currently 

use IMUs for many measurements including speed and incline. As discussed previously, HDSG 

are comparable to these devices in terms of error when predicting speed and more information is 

needed in order to compare errors for predicting incline. This HDSG measurement system was 

shown to have acceptable accuracies to the main groups that use human kinematic data. 
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4 CONCLUSION AND FUTURE WORK 

This thesis describes the application of nanocomposite high deflection strain gauges 

(HDSG) to measure knee kinematics using the non-monotonic portion of the strain resistance 

curve. Knee flexion/extension angles and sensor voltage were measured simultaneously using a 

motion capture system and microcontroller while nine subjects walked at three different speeds 

at three different inclines. Four different models were used to identify distinct aspects of knee 

kinematics during gait. The results gave evidence that a nanocomposite HDSG has the ability to 

estimate knee kinematics, speed, and incline in walking gait.  

There are many advantages of using a HDSG sensor system to measure kinematics when 

compared to a traditional motion capture system. HDSG sensors excel at being a low-profile, 

non-intrusive in sensor mounting, and at times a low-cost sensor. The defining characteristic of 

HDSG sensors, when compared to motion capture kinematic analysis, is their ability to measure 

kinematics outside of a calibrated volume in a low-profile way. They are not unique in that space 

(for example, IMUs have some of the same advantages).  However, competing body-mounted 

technologies (such as IMU’s) are often more applicable to measuring rigid body kinematics such 

limb motion, since they do not and cannot account for the non-ideal nature of actual joints.  

Since HDSG sensors span the joint, they intrinsically include these non-ideal characteristics in 

their data collection.  
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The characteristics of HDSG sensors could allow for more parties to participate in 

kinematic analysis. As more researchers enter the kinematic analysis arena because of this lower 

bar to entry, more important findings about a wider range of testing conditions and populations 

can be studied. As HDSG sensors become a reliable and repeatable system, many observational 

studies such as the kinematics of everyday life, kinematics of high impact sports such as 

American football, and kinematics of long-distance sports such as cross-country skiing could be 

analyzed. These measurements are mostly impossible using a traditional motion capture system.  

One challenge of using HDSG includes creating a universal calibration system for 

customizing the sensor’s response to the subject’s anatomy and sensor placement. The evidence 

in this work suggests that a universal intrasubject model is unlikely to be the preferred approach 

to processing HDSG sensor data. Challenges include individual differences in skin tissue around 

each joint and variation of sensor placement from trial to trial. Soft tissue artifacts are most likely 

varied on different joint anatomies and could affect the accuracy and effectiveness of a lower 

body gait analysis. Skin tissue on the knee for example, does not conform to muscle and bone 

tissue as tightly as the skin tissue around the ankle. Mengüç gives evidence towards this theory 

when he reported less angle RMSE on the ankle than the knee [29]. Further testing would be 

needed to prove this hypothesis. A similar methodology presented in the present work could be 

utilized for sensor placement on ankle, knees, and hips to validate a HDSG sensor in all degrees 

of freedom.  

Thus, future work should include development of a simple, quick, and standardized 

calibration procedure that can be applied independent of a motion capture system. For example, 

calibration could include walking on a normal treadmill at several designated speeds and 
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inclines, bending the joint to specific angles, or using a phone video camera to extract kinematic 

data while the sensor is being used.  

In order to have complete kinematics of the lower body, further work should be pursued 

in the effects of sensor placement on the ankle, hips, and other degrees of freedom on all joints 

including the knee. The main benefit of having all lower body joints with all degrees of freedom 

angles is the possibility of obtaining complete kinematic and kinetic data that can be used in 

biomechanical analysis, clinical diagnostics and therapy, and in sport performance applications.  

This could be especially powerful when joint kinematics information is coupled with force 

sensing technology like the wearable foam insoles described by Rosquist [66] that can capture 

ground reaction forces.  

The optimization of nanocomposite HDSG fillers according to the application would also 

further kinematic analysis. The incredible ability of nanocomposite HDSG to change properties 

such as critical strain, elongation at break, and sensitivity based on filler ratio has not yet been 

fully explored; especially as it relates to applications in measuring human kinematics. Since 

every joint has different strains, range of motions, and tissue artifacts, a method for optimizing 

the gauge to each joint could effectively reduce error in measuring kinematics. This advancement 

would help optimize the overall mobile gait analysis system.  

Additionally, full characterization of mechanical and electrical drift due to cyclic fatigue, 

strain-rate dependence, temperature, and humidity to be included in future models would help 

the sensor system to be more reliable and repeatable. Remington did some initial analysis on the 

properties of cyclic fatigue in HDSG sensors [53] but did not separate or quantify possible 

electrical drift due to permanent mechanical degradation (breaking of nanofillers), recoverable 

drift due to viscoelastic properties of silicone, recoverable drift due to sliding of nanofillers in the 
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matrix, and recoverable drift due to internal heating of the HDSG sensor. The sensors may also 

mechanically degrade due to breaking or sliding of nanofillers. It may also be possible that the 

log-normal response changes due to a strain-rate dependence. Viscoelastic polymers inherently 

are strain-rate dependent which may affect the electrical properties such as the strain resistance 

curve and most likely affect physical properties such as time to elastic strain recovery. All of this 

additional information can feed into a model to better account for electrical and mechanical drift.  

In the future, three different types of models can be utilized to overcome the difficulties 

already mentioned of using HDSG in kinematic analysis: physics-based model, statistical model, 

and machine learning. In a physics-based model, all the phenomena that changes the sensor 

voltage described in the previous paragraph would have to be quantified as well as all their 

interactions between the phenomena (i.e. temperature, humidity, strain-rate dependence, etc.). 

This would be a challenging undertaking and would likely include a very large design of 

experiments approach. The model would have physical meaning, but calibration would be very 

challenging to implement. Though the model would help to better understand how the sensor 

works, it may not be a very practical model. A statistical based model would also require testing 

the sensor in many conditions (many activities e.g. running, jumping, etc., varying temperatures 

and humidity) and could work for the application where it was quantified. A statistical model 

could be useful if a specific activity under specific conditions needed to be quantified but the 

model could not accurately extend outside of a calibrated activity. Unlike the physics-based 

model the statistical model will most likely have very little physical meaning. Finally, a machine 

learning model would also have to be “trained” under many conditions but over time would 

“learn” the interactions between these conditions. Theoretically with a large enough data set, the 

model could also fully estimate angles in all conditions.   This approach is likely to be the most 
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robust. The largest challenge for each of these three modeling approaches will be getting enough 

data to make the models expand to more activities and conditions.  

In conclusion, this work provides evidence that nanocomposite HDSG provide a suitable 

solution to measuring knee kinematics. As further studies are pursued, this technology can be 

integrated with force sensing foam to create a mobile gait analysis system. This system would 

increase the reach of gait analysis studies by making it less cost prohibitive and expand the type 

of activities measured. In essence, it would become a new tool for gait measurement that would 

open new fields of research.  
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APENDICES 

 

This section includes all of the appendices for this work. Appendix A includes the 

instructions for manufacturing high deflection strain gauges (HDSG). Appendix B describes the 

process of reusing a HDSG and attaching it to a new piece of athletic tape. Appendix C describes 

the process of attaching a HDSG to the knee. Appendix D enumerates the mechanical 

preconditioning the HDSG experiences before placing it on the athletic tape. Appendix E goes 

into detail about the electrical circuit and setup. Appendix F is a compendium of all the code 

used in this work. It includes the models used in Visual 3-D and data processing, the 

preprocessing of motion capture angles and sensor voltage in Matlab, and the optimization 

routine for fitting a log-normal curve to sensor voltage data.  
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APPENDIX A. MANUFACTURE OF NANOCOMPOSITE HDSG 

1. Calculate the amount of Nickel Nanostrands (NINS), Nickel Coated Carbon 

Fiber(NCCF), silicone part A, silicone part B, and thinner to be placed in in the HDSG 

based upon the volume fraction of conductive particles desired.  

2. Push the NINS and NCCF through the wire meshes in separate containers. It can be 

appropriate to use NINS that have been pushed through the wire mesh on a previous date 

but the NCCF need to be pushed through the mesh that day.  

3. Measure the appropriate amount of strained NCCF into the metal tin and make sure to 

avoid clumping.  

4. Measure the appropriate amount of strained Nins into a second metal tin.  

5. Shake well bottle containing thinner. Pour the appropriate amount of thinner directly into 

a plastic cup that fits into the centrifugal mixer container. You can use a paper towel to 

soak up any accidental excess. Do not use paper cups because the silicone gets absorbed 

into them.  

6. Shake well the container containing the A side of the Silicone. Measure out the 

appropriate amount of A into the plastic mixing cup containing the thinner. Mix well by 

hand with glass rod. 

7. Pour the NCCF into the cup containing side A and thinner. Mix well by hand with a glass 

rod. (it mixes a lot better if the NCCF is done first) 

8. Put into centrifugal mixer for 10 seconds at 2000 rpm throughout the gauge making 

process.  
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9. Pour a little less than half of the NINS into the cup containing side A, thinner, and the 

NCCF. Mix well by hand with a glass rod.  

10. Put into mixing machine for 10 seconds.  

11. Measure the appropriate amount of side B into plastic cup containing ingredients 

12. Mix well by hand and place into centrifugal mixer for 10 seconds.  

13. Pour the rest of the Nins into the cup containing side A, side B, thinner, and the NCCF. 

Mix well by hand with a glass rod.  

14. Place into centrifugal mixer for 10 seconds. 

15. Repeat step 14 two more times. The mixture should have the consistency of toothpaste 

for high filler concentrations. 60 second is the max the nanoparticles can handle in the 

mixing machine before they start breaking down.  

16. Spread the uncured gauge evenly onto the female portion of the mold using metal spatula 

making sure that it is pressed down into the edges and corners. The gauge material should 

be level throughout.  

Vacuum  

1. Place female portion of mold into vacuum  

2. Put on lid to vacuum 

3. Make sure the release valve on the pump and the cap is screwed into place 

4. Turn on vacuum pump  

5. When pressure gauge on top left is at 20psi turn knob so that it is vertical 

6. Turn off pump 

7. Wait 5 min 

8. Turn the release valve horizontal and screw off cap to release air  
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9. When pressure gauge shows zero pressure open lid.  

10. Smooth out gauge with metal spatula  

11. Place male portion of mold onto female portion.  

12. Press side to side and back to front to squeeze out any air bubbles.  

13. Tighten down c-clamps one on each side of the mold to squeeze out any excess 

Curing 

1. Let it cure at room temperature for twenty-four hours 

2. Alternatively, cure at room temperature for four hours 

3. Turn on oven and set temperature at 80° Celsius 

4. Put mold in oven and let it sit in oven for two hours at 80° C 

5. Change temperature to 100° C and let sit for one hour 

6. Turn off oven and using pliers take out mold and place on cardboard 

7. When cool open mold using screwdriver 

8. Using the knife cut along all edges Use flathead screwdriver gently lift gauge from 

bottom of mold 
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APPENDIX B. ATTACHING HDSG ONTO NEW PIECE OF ATHLETIC TAPE 

 
1. After a HDSG attached to athletic tape has been used slowly remove the HDSG with the 

associated electrical components from the athletic tape. 

2. Cut with scissors or a knife any excess clear silicone from sides of the strain gauge.  

3. Cut new piece of athletic tape to correct size.  

4. Put super glue on metal contacts of the electrical assembly and fasten to the athletic tape 

and let dry.  

5. Using silicone glue reattach the rest of the HDSG to the athletic tape making sure that all 

parts of the HDSG attach to the athletic tape without putting any glue on the bottom of 

the HDSG.  
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APPENDIX C. ATTACHING STRAIN GAUGE TO KNEE 

1. After subject has signed the necessary paperwork, have subject sit on flat stool and lay 
right leg on another flat stool of the same height.  

2. Apply pre-spray adhesive according to manufacturer’s instructions on the anterior parts 
of the right knee including three inches proximally and distally.  

3. Remove backing of the athletic tape with the strain gauge attached and place the sensor 
centered on the axis of rotation of the knee. Be sure to press the tape to the contours of 
the knee 

4. Clip in the sensor into the electrical circuit being sure that the gauge is connected to 
ground and that if an outside alternating current supply is used both the middle of the 
voltage divider and the ground are both measured.  

  



51 

APPENDIX D. HDSG PRECONDITIONING  

Mechanical HDSG Preconditioning 

1. Using a sharp exacto knife and a ruler, cut strain gauges into 6mm strips 

2. Clamp the HDSG into the serrated grips for the mini-instron. 

3. Measure length between grips and calculate 50% strain and stretch once using the manual 
settings on the instron.  

4. Let gauge relax to recover its length 

5. Repeat steps 3-4 until the differences between the length before and after stretching is 
within 1 mm. 

6. Cut the portion of the sensor that was clamped by the serrated grips 
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APPENDIX E.  ELECTRICAL CIRCUIT SET-UP 

1. Fig 4-1 contains the schematic for the electrical circuit for sensing the gauge. 𝑉𝑉𝑖𝑖𝑖𝑖 is an 
alternating current 3.2 V, all positive square wave. If the AC signal comes from the 
microcontroller sensing the 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡1 then 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡2 does not need to be measured. 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡2 is 
measured and subtracted from 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡1 in other cases to establish a common ground.  

 

 
Figure 4-0-1 Electrical circuit of HDSG in voltage divider 

 

2. The value of 𝑅𝑅1 should be as close as possible to the value of the HDSG. It useful to have 
𝑅𝑅1 be a potentiometer to account for signal drift that occurs with increasing cycles in the 
sensor.  

3. To connect the HDSG to wire use bare female disconnects. Be sure to solder wire onto 
disconnects before inserting sensor.  

4. Use needle-nose pliers to pry open the crimped portion and insert sensor.  

5. Place thick paper between the sensor and the metal flaps to protect the sensor from being 
cut.  

6. Use pliers to crimp metal flaps onto the sensor 
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APPENDIX F CODE 

Extracting angles from Vicon data using Visual 3D: 

 

Create_Hybrid_Model 

/CALIBRATION_FILE= 

! /SUFFIX= 

! /RANGE=ALL_FRAMES 

/SET_PROMPT=Open standing file 

; 

 

Apply_Model_Template 

/CALIBRATION_FILE= 

/MODEL_TEMPLATE=C:\Users\Adin\Documents\fall 2016\BB C3Ds 

/SET_PROMPT=Open model file 

! /VIEW_BUILDMODEL_RESULTS=2 

; 

 

Set_Subject_Height 

! /CALIBRATION_FILE= 

! /HEIGHT= 

! /UNITS=m 

; 

 

Set_Subject_Mass 

! /CALIBRATION_FILE= 

! /WEIGHT= 

! /UNITS=Kg 

; 
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!chosing movement files 

File_Open 

! /FILE_NAME= 

! /SUFFIX= 

/SET_PROMPT=Movement files 

! /FILTER= 

; 

 

Assign_Model_File 

! /CALIBRATION_FILE= 

/MOTION_FILE_NAMES=ALL_FILES 

! /REMOVE_EXISTING_ASSIGNMENTS=FALSE 

; 

 

!assigns tag to apply to certain files in the select active file function, can be applied more broadly 

Assign_Tags_To_Files 

/MOTION_FILE_NAMES=*run 

! /QUERY= 

/TAGS=run 

; 

 

!assigns tag to apply to certain files in the select active file function, can be applied more broadly 

Assign_Tags_To_Files 

/MOTION_FILE_NAMES=*walk 

! /QUERY= 

/TAGS=walk 

; 

 

Select_Active_File 

/FILE_NAME=ALL_FILES 
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! /QUERY= 

; 

 

!GAP FILLER 

Interpolate 

/SIGNAL_TYPES=TARGET 

! /SIGNAL_FOLDER=ORIGINAL 

! /SIGNAL_NAMES= 

! /RESULT_FOLDER=PROCESSED 

! /RESULT_SUFFIX= 

! /MAXIMUM_GAP=10 

! /NUM_FIT=3 

! /POLYNOMIAL_ORDER=3 

; 

 

Lowpass_Filter 

/SIGNAL_TYPES=TARGET 

/SIGNAL_FOLDER=PROCESSED 

! /SIGNAL_NAMES= 

! /RESULT_FOLDER=PROCESSED 

! /RESULT_SUFFIX= 

! /FILTER_CLASS=BUTTERWORTH 

! /FREQUENCY_CUTOFF=6.0 

! /NUM_REFLECTED=6 

! /NUM_EXTRAPOLATED=0 

! /TOTAL_BUFFER_SIZE=6 

! /NUM_BIDIRECTIONAL_PASSES=1 

; 

 

Compute_Model_Based_Data 

/RESULT_NAME=ang 



56 

/FUNCTION=JOINT_ANGLE 

/SEGMENT=RShank 

/REFERENCE_SEGMENT=RThigh 

/RESOLUTION_COORDINATE_SYSTEM= 

! /USE_CARDAN_SEQUENCE=FALSE 

! /NORMALIZATION=FALSE 

! /NORMALIZATION_METHOD= 

! /NORMALIZATION_METRIC= 

! /NEGATEX=FALSE 

! /NEGATEY=FALSE 

! /NEGATEZ=FALSE 

! /AXIS1=X 

! /AXIS2=Y 

! /AXIS3=Z 

! /TREADMILL_DATA=FALSE 

! /TREADMILL_DIRECTION=UNIT_VECTOR(0,1,0) 

! /TREADMILL_SPEED=0.0 

; 

 

Export_Data_To_Matfile 

/SIGNAL_TYPES=LINK_MODEL_BASED 

/SIGNAL_FOLDER=ORIGINAL 

/SIGNAL_NAMES=ang 

/FILE_NAME=c:\users\adin\documents\research\strain vs. motion capture\healthy\subject 
5\ang.mat 

/MATLAB_NAMES=ang 

! /PARAMETER_NAMES= 

! /PARAMETER_GROUPS= 

! /OUTPUT_PARAMETER_NAMES= 

/USE_NAN_FOR_DATANOTFOUND=TRUE 

; 
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Model file for Visual 3D 

! 

! Model File Generated by Visual3D ModelBuilder 

! 

! 

! Method For Computing Model Pose 

! 

! 

! Model Pose Pipeline 

! 

! 

! Model Metric Values 

! 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=Mass 

/METRIC_VALUE=1 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=Height 

/METRIC_VALUE=1 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=Gravity 

/METRIC_VALUE=9.81 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=Segment_to_COFP_Distance 
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/METRIC_VALUE=0.2 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=Joint_Radius_Ratio 

/METRIC_VALUE=1.1 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=RThigh_Distal_Radius 

/METRIC_VALUE=.1 

; 

Set_Model_Metric 

! /CALIBRATION_FILE= 

/METRIC_NAME=RShank_Distal_Radius 

/METRIC_VALUE=.1 

; 

! 

! Segment Info 

! 

! Segment RThigh 

! 

HYBRID_SEGMENT 

! /CALIBRATION_FILE= 

/TYPE=Visual_3D 

/NAME=RThigh 

/REFERENCE_OBJECT=Lateral Proximal+Proximal Joint+Distal Joint+Additional 
Object+Additional Plane+Distal Radius+Proximal Radius 

/REFERENCE_OBJECT_NAMES=TSide+TLR+TDown+++RThigh_Distal_Radius+RThigh_P
roximal_Radius 

/REFERENCE_OBJECT_TYPES=LANDMARK+TARGET+LANDMARK+++METRIC+ME
TRIC 
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/USE_CAL_TARGETS_FOR_TRACKING=FALSE 

/TRACKING_TYPES=TARGET+TARGET+TARGET 

/TRACKING_NAMES=TLR+TUL+TUR 

! /USE_OPTIMAL_TRACKING=TRUE 

! /DO_NOT_USE_LOCAL_TRANSFORMATION=FALSE 

/KINEMATIC_ONLY=TRUE 

! /STATIC_SEGMENT=FALSE 

/GRAPHICS_ROT_X=0 

/GRAPHICS_ROT_Y=0 

/GRAPHICS_ROT_Z=0 

/GRAPHICS_SCALE_X=1 

/GRAPHICS_SCALE_Y=1 

/GRAPHICS_SCALE_Z=1 

/GRAPHICS_TRANSLATE_X=0 

/GRAPHICS_TRANSLATE_Y=0 

/GRAPHICS_TRANSLATE_Z=0 

! /GRAPHICS_UNIT_SCALE=1.000000 

! /GRAPHICS_SCALE_TO_SEG_LENGTH=TRUE 

! /MASS= 

/GEOMETRY=CONE 

/PROX_TO_CG_AXIAL=0.5*RThigh_SEG_LENGTH 

/PROX_TO_CG_ML=0*RThigh_SEG_LENGTH 

/PROX_TO_CG_AP=0*RThigh_SEG_LENGTH 

/IXX=-3333.33 

/IYY=-3333.33 

/IZZ=-5000 

! /AP_DIRECTION= 

! /AXIAL_DIRECTION= 

/OBJFILE=rthigh.v3g 

! /COLFILE= 

! /DEPTH= 
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; 

 

! 

! Segment RShank 

! 

HYBRID_SEGMENT 

! /CALIBRATION_FILE= 

/TYPE=Visual_3D 

/NAME=RShank 

/REFERENCE_OBJECT=Proximal Joint+Lateral Proximal+Distal Joint+Additional 
Object+Additional Plane+Distal Radius+Proximal Radius 

/REFERENCE_OBJECT_NAMES=SLR+SSide+SDown+++RShank_Distal_Radius+RShank_P
roximal_Radius 

/REFERENCE_OBJECT_TYPES=TARGET+LANDMARK+LANDMARK+++METRIC+ME
TRIC 

/USE_CAL_TARGETS_FOR_TRACKING=FALSE 

/TRACKING_TYPES=TARGET+TARGET+TARGET 

/TRACKING_NAMES=SLL+SLR+SUL 

! /USE_OPTIMAL_TRACKING=TRUE 

! /DO_NOT_USE_LOCAL_TRANSFORMATION=FALSE 

/KINEMATIC_ONLY=TRUE 

! /STATIC_SEGMENT=FALSE 

/GRAPHICS_ROT_X=0 

/GRAPHICS_ROT_Y=0 

/GRAPHICS_ROT_Z=0 

/GRAPHICS_SCALE_X=1 

/GRAPHICS_SCALE_Y=1 

/GRAPHICS_SCALE_Z=1 

/GRAPHICS_TRANSLATE_X=0 

/GRAPHICS_TRANSLATE_Y=0 

/GRAPHICS_TRANSLATE_Z=0 

! /GRAPHICS_UNIT_SCALE=1.000000 
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! /GRAPHICS_SCALE_TO_SEG_LENGTH=TRUE 

! /MASS= 

! /GEOMETRY= 

/PROX_TO_CG_AXIAL=0.5*RShank_SEG_LENGTH 

/PROX_TO_CG_ML=0*RShank_SEG_LENGTH 

/PROX_TO_CG_AP=0*RShank_SEG_LENGTH 

! /IXX= 

! /IYY= 

! /IZZ= 

! /AP_DIRECTION= 

! /AXIAL_DIRECTION= 

! /OBJFILE= 

! /COLFILE= 

! /DEPTH= 

; 

 

! 

! Digitizing Wand Configuration 

! 

HYBRID_DIGITIZING_WAND 

! /CALIBRATION_FILE= 

/WAND_ORIENTATION_MARKER1= 

/WAND_ORIENTATION_MARKER2= 

! /WAND_ORIENTATION_MARKER3= 

! /OFFSET_X=0 

! /OFFSET_Y=0 

/OFFSET_Z=-0.127 

! /OFFSET_X2=0 

! /OFFSET_Y2=0 

! /OFFSET_Z2=0 

! /WAND_HAS_SPRING=TRUE 
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! /WAND_TRIGGER_MARKER1= 

! /WAND_TRIGGER_MARKER2= 

! /WAND_TRACKING_MARKERS= 

; 

! 

! Landmarks 

Add_Landmark 

/LANDMARK_NAME=TDown 

! /CALIBRATION_FILE= 

! /USER_GENERATED=TRUE 

! /USE_PERCENTAGE=FALSE 

/CALIBRATION_ONLY=TRUE 

! /USE_TARGETS=FALSE 

/SEGMENT_NAME=LAB 

/TARGET_TYPES=TARGET 

/TARGET_NAMES=TLR 

! /MCS_ML=0.0 

! /MCS_AP=0.0 

/MCS_AXIAL=-0.1 

! /LANDMARK_LOCATION= 

! /REFERENCE_LOCATION_TYPE= 

! /REFERENCE_LOCATION_NAME= 

! /USE_REFERENCE_LOCATION=FALSE 

; 

Add_Landmark 

/LANDMARK_NAME=TSide 

! /CALIBRATION_FILE= 

! /USER_GENERATED=TRUE 

! /USE_PERCENTAGE=FALSE 

/CALIBRATION_ONLY=TRUE 

! /USE_TARGETS=FALSE 
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/SEGMENT_NAME=LAB 

/TARGET_TYPES=TARGET 

/TARGET_NAMES=TLR 

! /MCS_ML=0.0 

/MCS_AP=-0.1 

! /MCS_AXIAL=0.0 

! /LANDMARK_LOCATION= 

! /REFERENCE_LOCATION_TYPE= 

! /REFERENCE_LOCATION_NAME= 

! /USE_REFERENCE_LOCATION=FALSE 

; 

Add_Landmark 

/LANDMARK_NAME=SDown 

! /CALIBRATION_FILE= 

! /USER_GENERATED=TRUE 

! /USE_PERCENTAGE=FALSE 

/CALIBRATION_ONLY=TRUE 

! /USE_TARGETS=FALSE 

/SEGMENT_NAME=LAB 

/TARGET_TYPES=TARGET 

/TARGET_NAMES=SLR 

! /MCS_ML=0.0 

! /MCS_AP=0.0 

/MCS_AXIAL=-.1 

! /LANDMARK_LOCATION= 

! /REFERENCE_LOCATION_TYPE= 

! /REFERENCE_LOCATION_NAME= 

! /USE_REFERENCE_LOCATION=FALSE 

; 

Add_Landmark 

/LANDMARK_NAME=SSide 



64 

! /CALIBRATION_FILE= 

! /USER_GENERATED=TRUE 

! /USE_PERCENTAGE=FALSE 

! /CALIBRATION_ONLY=FALSE 

! /USE_TARGETS=FALSE 

/SEGMENT_NAME=LAB 

/TARGET_TYPES=TARGET 

/TARGET_NAMES=SLR 

! /MCS_ML=0.0 

/MCS_AP=-.1 

! /MCS_AXIAL=0.0 

! /LANDMARK_LOCATION= 

! /REFERENCE_LOCATION_TYPE= 

! /REFERENCE_LOCATION_NAME= 

! /USE_REFERENCE_LOCATION=FALSE 

; 

! 

! Muscles 

! 

 

Convert Strain Gauge Files into Usable Format for Matlab 

clear all 

 

files=dir('*.csv');     %find all file names I want 

 

for i=1:length(files) 

    name=files(i).name;     %names of all the files 

     varname=regexp(name,'._(\d\w*).csv','tokens'); %extract the end part of the file as a variable 
name 

    varname=char(varname{1} );    %turn into a string 

    varname=strcat('g',varname); 



65 

    eval([varname '=csvread(name,1,5);']) 

    eval([varname '=' varname '(:,2)-' varname '(:,1);']) 

end 

  

clear files 

clear i 

clear name 

clear varname 

clear x 

 

save strain 

 

Save Vicon Files into useable format for Matlab 

load ang.mat 

 

for i=1:length(FILE_NAME) 

    name=FILE_NAME{i,1};     %names of all the files 

    varname=regexp(name,'Vicon\\(\d\w*).c3d','tokens'); %extract the end part of the file as a 
variable name 

    varname=char(varname{1});    %turn into a string 

    varname=strcat('v',varname); 

    eval([varname '='  'ang{i,1};']) 

    eval([varname '='  '-' varname '(:,1);']) 

end 

 

clear ANALOG_VIDEO_FRAME_RATIO 

clear ang  

clear FILE_NAME 

clear FRAME_RATE 

clear i 

clear name 
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clear varname 

 

save ang 

 

Main matlab code for lining up data 

%Subject 8 data 

clear all 

close all 

  

% sdata 

load strain 

load ang 

  

%2MPH down  

[S2mphD,V2mphD,t2mphD]=datfix(g2down,v2mphdownhill); 

M2mphD=[S2mphD,V2mphD,t2mphD]; 

xlswrite('2MPH down',M2mphD) 

  

%2mph uphill 

[S2mphU,V2mphU,t2mphU]=datfix(g2up,v2mphuphill); 

M2mphU=[S2mphU,V2mphU,t2mphU]; 

xlswrite('2MPH uphill',M2mphU) 

  

  

%2mph level 

[S2mphL,V2mphL,t2mphL]=datfix(g2level,v2mphlevel); 

M2mphL=[S2mphL,V2mphL,t2mphL]; 

xlswrite('2MPH level',M2mphL) 

  

%3MPH down  

[S3mphD,V3mphD,t3mphD]=datfix(g3down,v3mphdownhill); 
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M3mphD=[S3mphD,V3mphD,t3mphD]; 

xlswrite('3MPH down',M3mphD) 

  

%3mph uphill 

[S3mphU,V3mphU,t3mphU]=datfix(g3up,v3mphuphill); 

M3mphU=[S3mphU,V3mphU,t3mphU]; 

xlswrite('3MPH uphill',M3mphU) 

  

%3mph level 

[S3mphL,V3mphL,t3mphL]=datfix(g3level,v3mphlevel); 

M3mphL=[S3mphL,V3mphL,t3mphL]; 

xlswrite('3MPH level',M3mphL) 

  

%4mph uphill 

[S4mphU,V4mphU,t4mphU]=datfix(g4up,v4mphuphill); 

M4mphU=[S4mphU,V4mphU,t4mphU]; 

xlswrite('4MPH uphill',M4mphU) 

  

%4mph level 

[S4mphL,V4mphL,t4mphL]=datfix(g4level,v4mphlevel); 

M4mphL=[S4mphL,V4mphL,t4mphL]; 

xlswrite('4MPH level',M4mphL) 

  

%4mph down 

[S4mphD,V4mphD,t4mphD]=datfix(g4down,v4mphdownhill); 

M4mphD=[S4mphD,V4mphD,t4mphD]; 

xlswrite('4MPH down',M4mphD) 

 

Matlab function within “main.m” to line up data sets 

function [sfin,vfin,t]=datfix(svec,vvec) 

 



68 

%frequencies of the AC signal and microcontroller 

AC=100; 

micro=1031; 

vicon=100; 

 

%filter variables 

cut=2;  %cut off frequency 

Wn=cut*2*.8*pi/AC;  %normalized sampling frequency 

[b,a]=butter(4,Wn); %low pass filter coefficients 

 

%Strain vector 

svec=rmser(AC,micro,svec);      %Change from AC to DC and also does a 100 hz low pass filter 

svec=filtfilt(b,a,svec);        %low pass filter 

 

%vicon 

vvec=resample(vvec,AC,vicon);   %make the vectors the same sampling frequencies 

 

%plot and check starting point 

figure 

yyaxis right 

plot(vvec) 

yyaxis left 

plot(svec) 

legend('SG','Vicon') 

 

%lining up the vectors 

bi=input('Is the strain data ahead of vicon? [1/0]'); 

diff=input('What is difference between starting points?'); 

 

%lining up start points 

if bi==0 && diff==0 
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    svec=svec(1:end); 

    vvec=vvec(1:end); 

elseif bi==1 && diff>0 

    svec=svec(diff:end); 

else 

    vvec=vvec(diff:end); 

end 

 

%making them the same size 

if length(svec)>length(vvec) 

    sfin=svec(1:length(vvec)); 

    vfin=vvec; 

else 

    vfin=vvec(1:length(svec)); 

    sfin=svec; 

end 

t=0:1/AC:(length(vfin)-1)/AC; 

t=t'; 

 

figure 

yyaxis right 

plot(t,vfin) 

ylabel('Angle [deg]') 

yyaxis left 

plot(t,sfin) 

ylabel('Voltage [V]') 

title('Strain Gauge vs Vicon') 

end 

Function within “main.m” to turn the AC sensor signal into a DC signal 

function rmsed=rmser(ACfreq,SAMPLEfreq,vector) 
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vector=resample(vector,1000,SAMPLEfreq); 

 

sec=floor(1000/ACfreq); 

 

rmsed=zeros(floor(length(vector)/sec),1); 

 

for i=1:floor(length(vector)/sec) 

 

    rmsed(i)=rms(vector(i*sec-(sec-1):sec*i)); 

 

end 

Matlab code for lognormal fitting 

clear all 

 

 

load alldivsubs_woNaN 

 

ang8=ang8+15; 

 

fo=fitoptions('Method','NonlinearLeastSquares','Display','iter','Robust','Bisquare','Lower',... 

    [1e-10 1e-10 1e-10],'Upper',[1e100 1e100 1e100],'StartPoint',[.95 90 .35]); 

 

%  opts.MaxFunEvals=1000; 

% opts.DiffMaxChange=.1; 

     

g=fittype('d.*(1./(a.*((ang)./c).*sqrt(2.*pi)).*exp(-((log((ang)./c)).^2)./(2.*a.^2)))',... 

    'independent','ang', 'dependent','volt','coefficients',{'a' 'c' 'd'},'options',fo); 

 

 

[myfit,G]=fit(ang8',volt8,g) 

plot(myfit,ang8,volt8) 
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