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ABSTRACT

Design Optimization and Motion Planning For Pneumatically-Actuated Manipulators

Daniel Mark Bodily
Department of Mechanical Engineering, BYU

Master of Science

Soft robotic systems are becoming increasingly popular as they are generally safer, lighter,
and easier to manufacture than their more rigid, traditional counterparts. These advantages allow
an increased sense of freedom in both the design and operation of these platforms. In this work, we
seek methods of leveraging this freedom to both design and plan motions for two different serial-
chain, pneumatically actuated manipulators developed by Pneubotics, a small startup company
based in San Francisco. In doing so, we focus primarily on two related endeavors: (1) the optimal
kinematic design of these and other similar robots (i.e., choosing link lengths, base positioning,
etc.), and (2) the planning of smooth paths in joint space that enable these robots to perform useful
tasks.

Our method of design optimization employs a genetic algorithm in combination with max-
imin multi-objective optimization techniques to efficiently generate a diverse set of Pareto optimal
designs. This set represents the optimal region of the design space and highlights inherent tradeoffs
that designers must make when choosing a particular set of design parameters for manufacture. In
our work, we have chosen to optimize inflatable robots to be both dexterous, and to be able to
support loads near the ground with limited deflection. We have also applied our framework to
optimize a plastic manipulator to perform painting motions.

In our approach to motion planning we simultaneously optimize the base position and joint
motions of a robot in order to enable its end effector to follow a smooth desired trajectory. While
this method of path planning generalizes to any kind of robot, we envision it to be especially
applicable to soft robots and other mobile robots that can be quickly and easily repositioned to
perform tasks in varying environments. Our method of path planning works by moving a set
of virtual robot arms (each representing a single configuration in a sequence) branching from a
common base, to a number of assigned target poses associated with a task. Additional goals and
hard constraints (including joint limits) are naturally incorporated. The optimization problem at
the core of this method is a quadratic program, allowing constrained high-dimensional problems
to be solved in very little time. We demonstrate our method by planning and performing painting
motion on two different systems. We also demonstrate in simulation how our planner could be used
to perform several common tasks including those involving, pick-and-place, wiping and wrapping
motions.

Keywords: Mobile Robots, Soft Robots, Design Optimization, Motion and Path Planning, Kine-
matics
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NOMENCLATURE

General
θ All controllable degrees of freedom (DOF) (base DoFs included in planning section)
∆θ A small change in joint parameters
θi Controllable degrees of freedom (DOF) of the ith configuration
θi j The jth joint angle corresponding to the ith configuration
θ̄ The full set of joint angles, including non-controllable degrees of freedom ψ and v
M The homogenous transform between the world and robot base frames (also denoted as gwb0

)
Rab The 3x3 rotation matrix marking the orientation of frame b with respect to frame a
pab A 3x1 vector marking the position of frame b with respect to and in terms of frame a
gab The 4x4 homogenous transform locating frame b with respect to reference frame a
Li=1,2,...,n A set of n link lengths
J The Jacobian matrix mapping changes in joint variables to associated twists of a frame
Js The Jacobian of the arm’s tool frame as expressed with respect to the world frame
JB The Jacobian of the tool frame as expressed with respect to the current tool frame
JH Similar to JB, however the body frame orientation is rotated to be that of the world
Adgab The adjoint operator that transforms twists from frame B to equivalent twists in frame A
WA A 6x1 wrench vector containing both linear and angular components expressed in frame A
f The 3x1 vector of linear force components of a wrench
τ The 3x1 vector of angular components of a wrench; τ is also used to denote joint torques
ξ A 6x1 twist vector representing positional and angular velocities of a homogenous transform
ν A 3x1 velocity vector expressing linear velocity with respect to a reference frame
ω A 3x1 angular velocity vector expressed as the axis about which a frame is rotating

Simple Rotational and Continuous Curvature Joint Modeling
w A vector [u,v,0] about which a continuous curvature joint bends
u The component of w representing pure bending about the controlled degree of freedom
v The component of w that corresponds to bending about the off-axis of a joint
ũ, ṽ Normalized u and v components, u/φ and v/φ

φ The l2-norm of w. It corresponds to the total amount of bending about the vector w
sφ ,cφ , σ The sin(φ), cos(φ) and cos(φ)−1 respectively
ρ The vector perpendicular to w that locates w in and with respect to the joint base frame
h The spine (or arc) length for each continuous curvature joint
ψ A rotational DOF included to account for torsional deflection in the inflatable robot platform
J j

s A Jacobian mapping u̇, v̇ to twists of the jth joint’s top frame with respect to its bottom

Stiffness Modeling
Kq A single joint stiffness model relating deformations in joint parameters to applied torques
KG A stiffness matrix composed of joint stiffness matrices stacked diagonally
KH An end effector stiffness matrix relating deformations to applied loads in the hybrid frame
W L The max sustainable load of a design, keeping within deformation or joint torque limits
V A deformation twist representing positional and angular movement
uL A 6x1 unit vector in the direction of the external loading wrench variable W L

α The magnitude of the maximum sustainable W L

  x



αF The magnitude of wrench W L sustainable assuming active DOFs are infinitely stiff
αlimit The magnitude of wrench W L sustainable while staying within all joint torque constraints

Path Planning
Tt Target corresponding to time t where t ranges from 0 (beginning of path) to 1 (end of path)
χ A set of targets (homogenous transforms) that describe an end effector path in SE(3)
θmin/max Vectors representing the lower and upper limits of θ (joint constraints)
|∆θmax)| The maximum step size of any single θi j allowed in the QP problem each iteration
JBi The body Jacobian for the ith configuration
Jl

Bi
The body Jacobian for a frame placed in the center of link l on configuration i

JM
Bi

The body Jacobian accounting for degrees of freedom added to the base of the robot
JG

B A body Jacobian for a robot with many configurations branching from a single base
V̄ A set of concatenated deformation twists
Ṽ A set of concatenated, desired twists taken between end effectors and desired path targets
P A 6x6 weighting matrix added on quadratic terms (subscripts denote weighting on subterms)
L A 6x6 weighting matrix added on linear terms (subscripts denote weighting on subterms)
κ A scalar applied to the objective prioritizing path smoothness
γ A scalar applied to the objective prioritizing path manipulability
β A scalar applied to a term in the QP problem encouraging joints to be far from joint stops
G A set of convex geometric objects representing collision barriers (points, lines, planes)
c A scalar applied to the objective prioritizing collision free paths
d The distance a link is from touching a collision element
ε The distance at which a term is added to drive the violating link away from a nearby collision
ep The sum of weighted errors of configurations from their path targets
Ω The improvement tolerance between iterations under which secondary weights are scaled by λ

λ If ep is not improving, λ ∈ [0,1] is used to scale secondary objectives automatically
αstep A step size found by performing a line search in the optimal direction identified by the QP
Φ Tolerance of error on ep under which the algorithm terminates
ζ Parameterized path distance tolerance under which refinement is deemed unnecessary

Subscripts, superscripts, and other indicators
ˆ[ ] The hat operator as defined in Eq. 2.4 in [2] for 3x1 vectors, and Eq. 2.31 in [2] for 6x1 twists
[ ]∨ The inverse hat operator
|| ||2,P A weighted 2-norm. For example ‖x‖2,P =

√
xT Px where P is a weighting matrix

xi



CHAPTER 1. INTRODUCTION

Soft robots are becoming increasingly popular as they provide the necessary compliance

for systems operating around humans and in sensitive environments [3–6]. These robots have the

strong advantage of being able to safely collide and interact with their environment with less risk

of causing damage or injury. Whereas rigid robots are traditionally confined to cages for safety

reasons, these systems have the potential of working alongside humans in performing everyday

tasks like cleaning, cooking, or painting. They can also be easily and cheaply transported from one

task region to another because of their low overall weight.

While potential applications are diverse in nature, these soft robotic platforms come with

a host of new technical challenges in regards to their optimal design and control. As this field

of research is so new, those addressing these challenges are forced to, in many cases, fallback on

intuition gained from working with traditional, rigid hardware or on trial and error methods. In this

work we have sought to build on traditional robotic theory and develop design and path planning

methodologies specifically tailored for soft robotic platforms. In doing so we focus our efforts on

addressing two related problems of importance; namely, that of optimizing the design of a soft

robot based on a set of user-defined metrics, and that of planning motion to enable soft robots to

complete useful tasks. Both these problems are introduced in the following sections.

1.1 Problem Description: Kinematic Design Optimization

The first problem we seek to address is that of deciding how soft robots should be de-

signed. Unencumbered by many of the traditional components associated with rigid hardware

(motors, gear trains, heavy linkages, etc.), the structure of soft robots can often be easily modified

to target specific application objectives. As an example, consider the structure of the inflatable arm

developed by Pneubotics in Fig. 1.1. This manipulator is characterized by a sequence of inflated

1



Figure 1.1: This fully inflatable manipulator developed by Pneubotics was designed using opti-
mization techniques presented in this work.

links and pneumatically actuated joints that, when filled with pressurized air, give the manipulator

a suitable structure and ability to control.

Without constraints imposed by traditional hardware, the structure of this robot can be

radically altered in order to meet application-specific requirements. Link lengths can be quickly

changed to give the robot a completely new kinematic structure. Additionally, because of its light

weight (about 30 lbs total), its mounting position and orientation can be easily adjusted, thus grant-

ing it a high degree of mobility. This ability to be so easily redesigned and rapidly re-positioned

grants a remarkable amount of freedom to those designing these kinds of platforms.

This increased amount of freedom in design is characteristic of emerging soft robot de-

signs. Rus and Tolley introduce a host of similar systems [7]. These systems are composed of

many different light-weight materials (e.g., polymers, rubbers, fabrics, etc.) and are controlled

by various actuator mechanisms (e.g., hydraulics, pneumatics, electrically activated soft actuators,

etc.). Marchese et al. present a compliant continuum manipulator entirely composed of silicone

rubber and actuated by fluidic elastomer channels [8]. Voisembert et al. introduce an inflatable

robot actuated by pneumatics [9]. These systems are similar in that they are lightweight and pro-

vide many degrees of freedom in design that may be leveraged for optimization.
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With this increased freedom in design, a framework for optimally choosing application-

dependent parameters (e.g., joint types, link lengths, base configuration, etc.) for these kinds of

systems is desirable. In this work we present an optimization methodology suited to do this. This

method relies on a genetic algorithm in which optimal designs are continually propagated from

one generation to the next. In each generation, each design is scored by simulating it through

many randomly-generated configurations and computing metrics of interest at each configuration.

These metrics are then combined in a multi-objective fitness function that assigns a single score to

each design based on both its optimality (as measured by chosen design metrics) and its unique-

ness within its gene pool. Child designs are then generated from well performing designs and the

process repeats. The final result is a set of diverse designs lying along a Pareto front spanning the

optimal region of the design space. This result is particularly useful in that it highlights funda-

mental trade-offs inherent within the design space of these systems. This feature can aid hardware

designers in making critical decisions regarding robot structure.

In addition to introducing this framework, we also define a set of custom metrics for the

inflatable arm we seek to optimize (see Fig. 1.1). These metrics describe a design’s capacity to

support loads near the ground with acceptable deflection as well as its dexterity within its reach-

able workspace. We also discuss other metrics potentially helpful in design optimization. These

methods and other relevant background information are presented in more detail in Chapter 3.

1.2 Problem Description: Mobile Motion Planning

The second problem we seek to address in this work is that of optimal motion planning for

soft robots and other mobile platforms. Mobile manipulation robots are becoming more common

and require planning algorithms that can effectively and efficiently coordinate both how a robot

is positioned in relation to the task it is asked to perform, as well as how it actually goes about

performing that task. The inherent compliance, light weight, and potential cost of soft robots

makes them viable for many mobile manipulation tasks that were previously too difficult or had

low likelihood of success.

We are primarily interested in the problem of planning motions that track paths in the

operational workspace of a manipulator. Specifically, we desire a sequence of joint configurations

θi ∈Rn as well as a base pose M ∈ SE(3) that will allow a manipulator’s end effector to successfully
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and optimally navigate a chosen path χ(t) ∈ SE(3). One of the specific applications we target in

this work is planning motion for painting tasks and similar surfacing operations.

Motion planning with a predetermined end-effector trajectory may be performed by be-

ginning at a starting configuration and using inverse kinematics methods [10, 11] to move along

the desired trajectory. However this method is prone to getting stuck in local minima or requiring

significant (sometimes unacceptable) re-configurations of the arm in order to complete the desired

path. Figure 1.2 illustrates this problem with a simple example in which it is desired that an end

effector of a two-link robot paints a wall. In this example, the manipulator fails to perform the task

when a poor starting configuration is chosen and inverse kinematics is performed.

Figure 1.2: Left: Inverse Kinematics. Right: Holistic Optimization-Based Manipulator and Be-
havior Planning.

In this work we introduce a novel method for path planning that solves this problem. It

works by branching a set of virtual arms stemming from a common base (each representing a

single configuration in time) to targets along the desired path. The branching motion is determined

by repeatedly solving a quadratic programming problem constructed of terms describing different

motion objectives. By strategically scaling terms within this function, optimal motion along a

chosen path may be achieved. In this work we focused on optimizing motion to be smooth, avoid

collisions, and remain in the manipulable workspace of the robot.
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1.3 Problem Motivation

The Robotics and Dynamics lab at Brigham Young University (BYU) has partnered with

Pneubotics, a startup company in San Francisco, to develop and control a serial open-chain, pneu-

matically actuated, inflatable manipulator to test for space applications on NASA’s lunar rover K-

REX. Several tasks have been targeted for this manipulator to perform including holding a small

jackhammer steady for sample collection, moving objects on the ground of arbitrary weight and

shape, and lifting and moving objects in collaboration with humans.

The primary goal of our collaboration with Pneubotics is to aid in developing and control-

ling the first robotic arm that relies on pneumatics for both actuation and structure. The compliance

and low-mass of this arm allows for efficient mobile manipulation in environments that are other-

wise difficult to operate in. Our specific target application in this work is to design a pneumatic

arm for mobile manipulation around the K-Rex rover shown in Fig 1.3. The problems and methods

presented in this work are largely a result of this collaboration.

Figure 1.3: The K-Rex Mars rover during an engineering field test in October 2012 [1].

1.4 Specific Contributions

The specific contributions made by the author were:

• Developed models relating deflections of inflatable joints to associated loading conditions
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• Formulated optimization metrics describing a soft robot’s dexterity and capacity to support loads

• Developed and optimized a design evaluation routine used to score each candidate design

• Designed an evolutionary algorithm used to generate Pareto Fronts of optimal soft robot designs

• Designed a path planning algorithm that optimizes both an arm’s base positioning and subsequent

joint angle motion to a set of user-defined objectives

• Developed simulation software to test and visualize both optimization and path planning routines

• Prepared detailed documentation and published two papers in the 2017 IEEE International Confer-

ence on Robotics and Automation (see [12, 13]).

1.5 Thesis Overview

In Chapter 2 we further introduce inflatable robots and describe our methods of modeling

their kinematics using constant curvature joint models and screw theory. Chapter 2 does not review

the technical backgrounds or relevant literature of kinematic optimization or motion planning. As

previous work done on these topics is fairly distinct in nature, this background is provided in

Chapter 3 and 4 respectively.

We discuss our approach to kinematic design optimization in Chapter 3. After reviewing

relevant literature, we describe our method in detail, discussing discretization strategies, metrics,

evaluation techniques, and options available within the genetic algorithm. We also present two

demonstrative examples of applying our algorithm to optimize two distinct robotic systems.

Path and motion planning for mobile and general high-degree-of-freedom robots is pre-

sented in Chapter 4. As before a technical background is provided reviewing related work, after

which we discuss our method of path planning using quadratic programming techniques. The

structure of the quadratic programming problem at the core of our algorithm is discussed in detail,

and secondary objective terms describing path smoothness, collision avoidance, and manipulabil-

ity are derived. Strategies for scaling objectives within the algorithm are also discussed. Several

applications are shown to demonstrate the capabilities of the framework including painting, ma-

nipulation in cluttered environments and grasping motion.
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CHAPTER 2. BACKGROUND

This section is meant to provide a brief overview of supporting theory used as part of

this work. Background work in the areas of path planning and optimization are provided at the

beginning of Chapter 3, and Chapter 4 respectively.

2.1 Soft Robotic Platforms

Traditional robotic manipulators employ rigid links for accurate position and force control.

While these rigid links provide the manipulator with robust structure and precision, they often in-

troduce problems associated with their weight. They perform poorly, for example, in unstructured

environments, where unexpected collisions can cause damage to sensitive equipment and, in some

cases, human injury. Their weight also often precludes their use in mobile applications (e.g., space

exploration or search and rescue).

In attempts to solve these and other related problems, many have begun using soft materials

in the passive structures and joints of robotic manipulators [3], [4]. These soft manipulators lever-

age compliant materials that are orders of magnitude lighter, cheaper, and more compact than their

traditional counterparts (including actively compliant robots that are sometimes referred to as soft

robots as in [14]). Their low mass enables them to manipulate safely around or in collaboration

with humans in performing tasks and allows them to be used in a host of applications where robotic

technologies have previously been restricted. As an example, King Louie, the first inflatable robot

used by BYU’s Robotics and Dynamics Lab as a testbed for research in soft robotics, is approxi-

mately 10x lighter than the similar sized robot used by NASA’s Robonaut 2 (approximately 33 lbs

vs 330 lbs [15]). Moreover it can be quickly deflated and stored in a compact 3’x2’x1’ storage box

for efficient transport.

In this work we investigate design and control methods for an arm similar to that of one

of King Louie’s arms (see Fig. 1.1). This robotic arm, like that of King Louie’s, is completely
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(a) King Louie (b) Joint Bladders

Figure 2.1: King Louie is a research robot developed by Pneubotics and used in BYU’s Robotics
and Dynamics Lab. It is completely inflatable, relying on pressurized air for both structure and
control.

inflatable and is comprised of passive and active bladders as shown in Fig. 2.1b. Each pneumatic

joint is controlled to a desired angle or torque by adjusting the air pressures of two antagonistic

bladders within that joint. Neighboring joints are each offset by 90◦ to grant the manipulator a

greater range of motion (e.g., a neighboring joint of that depicted in Fig. 2.1b would bend in and

out of the page). By simultaneously adjusting the bladder pressures for each joint, the arm can be

accurately controlled to perform coordinated motion and carry out meaningful tasks (see [6, 16]

for specifics on the control strategies).

While this inflatable platform offers significant advantages over its counterparts, many

challenges related to its optimal design and control are still unresolved. One challenge we seek

to address in this work is that of accurately modeling structural deflections induced by loading

conditions on this inflatable system. In early testing of a prototype arm it was found that external

forces primarily caused deflections at the inflatable manipulator’s joints, and that its links remained

approximately rigid. We have accordingly added uncontrollable degrees of freedom at the joints in

our models to account for these deflections.

A second platform we investigate in both the optimization and path planning chapters is

shown in Fig. 2.2a. This manipulator is characterized by plastic links connected by novel pneu-
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(a) Full manipulator (b) Bellows design of a single joint

Figure 2.2: This blow-molded joint robot developed by Pneubotics is lightweight and safer to work
around the traditional robots.

matic joints. Each joint is comprised of four blow-molded bellows that, when filled with pressur-

ized air, allow it to bend continuously along its length as depicted in Fig. 2.2b. Similar to the

inflatable platforms previously introduced, this pneumatically actuated arm is lightweight making

it easier to transport and safer to work around than traditional rigid robots. Additionally, its plastic

links grant the manipulator a more rigid structure (in comparison to the fabric-based arm in Fig.

1.1) that lends itself to simpler control and estimation schemes.

2.2 Kinematic Modeling

Both the optimization and path planning routines introduced in Chapters 3 and 4 require

kinematic models of a manipulator in order to predict and evaluate its behavior. In this work we

model both inflatable and blow-molded joints in the same manner. Our kinematic modeling follows

from Murray et al. [2] with joint models taken from Allen et al. [17]. Assignment of homogeneous
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transforms and forward kinematics, joint models and the computation of the manipulator’s Jaco-

bian is reviewed here.

2.2.1 Robot Structure Definition and Forward Kinematics

A kinematic model is constructed by assigning coordinate frames of interest at distinct

locations along the robot as shown in Fig. 2.3. The position and orientation of one frame with

respect to another may be conveniently expressed using homogeneous transforms. These are 4x4

matrices, each comprised of a 3x3 rotation matrix R ∈ SO(3) describing changes in orientation

and a 3x1 vector p ∈ R3 describing changes in position relative to another frame’s location. In this

work, we denote the transform locating frame b with respect to and in terms of frame a as,

gab(Rab, pab) =

Rab pab

0 1

 (2.1)

Figure 2.3: Important frames of reference labeled on our robot with red, green and blue axes
representing the x, y and z axes of each frame respectively. Red axes point out of the page.
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Homogeneous transforms may be multiplied together to move between multiple frames. For ex-

ample, knowing the transform gwbi locating the bottom of the ith joint (see Fig. 2.3) in relation

to the world frame (as expressed in the world frame), we can find a frame fixed to the top of that

joint, gwti , in the world frame by computing,

gwti = gwbigbti (2.2)

where gbti is a homogeneous transform locating the top frame with respect to the bottom of that

joint (as expressed in the bottom frame).

Following a sequence of similar multiplications, we can locate the position and orientation

of the robot’s end effector with respect to a fixed world frame. To do this, every link and joint

pair is assigned three frames of interest; one placed at the bottom of the joint, one placed at the

top of the joint, and one placed at the link’s end as shown. Transforms between these coordinate

frames are denoted as gbti and gtei respectively. For inflatable joints we introduce a simple rotary

joint before each curvature joint to model torsional deflection (deflection about the +z axis of each

joint bottom frame). As inflatable joints are stacked orthogonally, we also add a nominal 90◦ offset

at each of these same transitions. Both the offset and torsional bending are modeled together as

gei−1bi .
1 Assigning a transformation from the world frame to the base of the robot, gwe0 , we can

then perform forward kinematics from the world frame to the end of the nth link as,

gwen = gwe0

i=n

∏
i=1

gei−1bigbtigtei (2.3)

In Eq. 2.3, gwe0 and gtei are assumed to be fixed given a mounting position M ∈ SE(3)

and a set of link lengths Li=1,2,...,n. This assumes link bodies to be rigid and the mounting position

to be unchanging. This assumption is appropriate as initial testing on prototype arms has shown

load-induced deflections to be primarily present at joints rather than at links. These deflections are

thus modeled within the joint transformations gbti and within the offset transformations between

joint-link pairs gei−1bi . We discuss these transformations in the following sections.

1This transformation is left as the identity matrix for blow-molded joints as these joints do not exhibit similar
deflection patterns.

11



Figure 2.4: Parameterization of a joint with constant curvature

2.2.2 Continuous Curvature Joint Models

For this thesis, we model both inflatable and blow-molded joint types as continuous cur-

vature joints as outlined by Allen et al. [17]. In this model a joint spine of fixed length h curls

in a circular arc around a vector w = [u,v,0] lying in the plane tangent to the bottom of the joint

as shown in Fig. 2.4. Encapsulated within this vector are two orthogonal joint state variables, u

and v, that are used to model the degrees of freedom of the joint. For a blow-molded joint, we

assume both these variables are controllable and that the joint can bend any direction desired by

commanding appropriate pressures in its billows. For inflated joints however, the state v is not

controllable and is included only to represent uncontrolled bending occurring about the joint’s off

axis due to loading conditions. In Fig. 2.1b this would represent bending motion in and out of the

page.

Resulting motion can be described as the manipulator bending φ =
√

u2 + v2 radians about

the normalized unit vector uw = w/||w||. The vector ρ locates this normalized vector from the joint

base center and is found by noting that ||ρ||= h/φ where ρ is perpendicular to w. Using a simple

cross product gives the relation,

ρ = ||ρ||uρ = ||ρ||(
[
0 0 −1

]
×uw) =

h
φ 2


v

−u

0

 . (2.4)

12



With uw, ρ , and φ all defined in u and v coordinates, we can compute the transformation

from the base of the ith joint to the top of that same joint gbti(ui,vi). By substitution of these

variables into Eq. 2.40 in [2] which defines a transformation for screw-like motion we get, 2

gbti(ui,vi) =

eûwφ (I− eûwφ )ρ

0 1

 (2.5)

where the hat operator on a 3x1 vector is defined as,

â3x1 =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.6)

Expanding the matrix exponentials and simplifying3 we reach a closed form solution. De-

noting the normalized u and v vectors as ũ = u/φ and ṽ = v/φ respectively, cos(φ)−1 as σ , and

expressing sin(φ) and cos(φ) terms as sφ and cφ , we get,

gbti =


σ ṽ2 +1 −σ ũṽ ṽsφ −σhṽ/φ

−σ ũṽ σ ũ2 +1 −ũsφ σhũ/φ

−ṽsφ ũsφ cφ hsφ/φ

0 0 0 1

 (2.7)

This joint transformation contains division by zero in several terms when both u and v tend

to zero. However, in each case, these terms come in the form of sinφ/φ or (cosφ − 1)/φ 2 which

can be evaluated in the limit by expressing them as analytic, converging, infinite series. Another

means of deriving this same transformation is by exponentiating an appropriate twist associated

with this motion. We discuss this process in the next section.

2ρ is denoted as q in Eq. 2.40 in [2] and the variable h in Eq. 2.40 represents pitch which, in this case, is zero.
3 The following identity known as Rodrigues’ formula is useful in simplifying this expression.

eâθ = I + âsinθ + â2(1− cosθ)
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2.2.3 Joint Transformation Derivation (Eq. 2.7) Using Twists

Any rigid body motion can be thought of as motion consisting of a rotation about a fixed

axis in space, and then subsequent translation parallel to that axis. This motion is referred to

as screw motion. The infinitesimal version of a screw is known as a twist and is a convenient

representation of a rigid body’s linear and angular velocities. It is expressed as a 6x1 vector as,

ξ =

ν

ω

 (2.8)

Twist vectors allow us to track the instantaneous relative motion of a frame of interest with

respect to another reference frame. Twists will be important in our derivation of the manipulator

Jacobian as will be shown later.

It can be shown that the relative motion of a moving frame as seen from the viewpoint of a

fixed reference frame can be found by exponentiating an appropriate twist. Specifically, if we let

gab(0) be the initial configuration of a rigid body B relative to and expressed in frame A, then after

a constant twist of ξ applied over a range of Θ radians (assuming ||ω||= 1), its resulting position

can be expressed as,

gab(Θ) = eξ̂Θgab(0) (2.9)

where the hat operator performed on a 6x1 vector maps a it to a 4x4 matrix and is defined in Eq.

2.31 in [2] as,

â6x1 =

â2 a1

0 0

 (2.10)

where a1 and a2 represent the first three and second three components of a respectively.

The case of pure rotation about an axis is of special interest in this work (see Fig. 2.4). In

this case, given a vector ρ from the frame of interest to the axis of rotation, the unit normalized

axis uω and the amount of rotation φ about this axis, the transformation is given in Eq. 2.9 with

ξ =

−uω ×ρ

uω

 Θ= φ (2.11)

Exponentiating this twist using the matrix exponential (Eq. 2.9) gives Eq. 2.7 as previously noted.
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2.2.4 Modeling Torsional Deflection (Inflatable Manipulators Only)

For inflatable manipulators, the offset between joint-link pairs is nominally set at 90◦ about

the Z-axis of the previous link end frame as previously mentioned. To account for uncontrolled

torsional deflection occurring at each curvature joint, we include an additional rotational degree of

freedom at each joint’s base with a deflection of ψi radians from the nominal offset. We model these

additional rotary joints as separate from the curvature joint model, thus granting three degrees of

freedom for each joint-link pair. Transformations associated with these joints are a simple rotation

about z. With the 90◦ offset included, the joint-link pair interface transformation becomes,

gei−1bi(ψi) =


cos(ψi +π/2) −sin(ψi +π/2) 0 0

sin(ψi +π/2) cos(ψi +π/2) 0 0

0 0 1 0

0 0 0 1

 (2.12)

With known link lengths Li=1,2,...,n and a fixed joint arc length h, a sequence of joint parameters,

θ̄ = [ψ1,u1,v1,ψ2,u2,v2, . . . ,ψn,un,vn] (2.13)

can now be used to perform the forward kinematic routine given in Eq. 2.3. For inflatable manip-

ulators, only the joint variables ui within this set are controllable whereas for blow-molded arms,

both ui and vi are controllable (ψi is not included for blow-molded arms). In this work we denote

the controllable subset as θ . Other degrees of freedom are included only when modeling deflection

from loading.

2.2.5 Computing the Manipulator Jacobian Matrix

We now shift our focus to modeling a manipulator’s velocity. This is primarily done by

computing the Jacobian matrix which represents a linear mapping between differential movements

in a manipulator’s joint states and corresponding twists of a frame fixed to the robot. For an in

depth study of the Jacobian and related screw theory, the reader is advised to study Chapters 2 and

3 in [2]. This section only briefly outlines equations and supporting theory used in this work.
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Computing the Jacobian For a Continuous Curvature Joint

We derive the Spatial Jacobian Js
j as defined by Murray et al [2] for a single continuous

curvature joint. This Jacobian maps differential movements in joint parameters into twists ξS of

the top frame of that joint with respect to (and in terms of) its bottom frame as,

ξS = J j
S[u̇ v̇]T (2.14)

and is computed as,

J j
S =

[(
∂g
∂u

g−1
)∨ (

∂g
∂v

g−1
)∨]

(2.15)

where g denotes the joint transformation (e.g., gbti in Eq. 2.7). The vee operator (∨) transforms a

4x4 matrix into a 6x1 twist vector and is defined as the inverse hat operator given in Eq. 2.10 (also

defined in Eq. 2.30 in [2]). For the continuous curvature joint model this expression is solved in

closed form as, 4

J j
S =



0 σh/φ 2

−σh/φ 2 0

hũ(φ − sφ )/φ 2 hṽ(φ − sφ )/φ 2

ũ4 + ũ2ṽ2 + ṽ2sφ/φ ũṽ(φ − sφ )/φ

ũṽ(φ − sφ )/φ ṽ4 + ũ2ṽ2 + ṽ2sφ/φ

σ ṽ/φ −σ ũ/φ


(2.16)

This represents the Jacobian for a single continuous curvature joint. Each column of this Jacobian

gives a twist vector ξ generated from differential movement in the joint’s associated state u and v.

These twists are expressed with respect to the joint’s base frame, a fact that will be important to

remember in the next section.

Putting It All Together

Having found the continuous-curvature joint transformation gbti in Eq. 2.7 by exponentiat-

ing the appropriate twist in Eq. 2.11, and then having derived the Jacobian of this transformation

in Eq. 2.16 by plugging this result into Eq. 2.15, we are now ready to derive the manipulator’s

4This representation breaks down when φ approaches zero. For an appropriate approximation of both g and J j
S near

this point, the reader is referred to Allen et al. [17].
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Spatial Jacobian, JS. This Jacobian linearly relates differential movements in all joint parameters

θ̄ , to differential movements of a frame attached to the manipulator’s end effector,

ξS = JS
˙̄
θ (2.17)

The resulting twist ξS is expressed with respect to (and in terms of) a common world frame (often

the base of the robot).

To derive this Jacobian, we must express the contributions of twists generated by each joint

in a single, common reference frame. To change the reference frame and location from which a

twist is expressed, we use the 6x6 adjoint transformation introduced in Eq. 2.58 of [2],

Adgab =

Rab p̂abRab

0 Rab

 (2.18)

where p̂ is taken as a 3x3 skew-symmetric matrix (see Eq. 2.6) taken from the position vector

locating the old frame of reference (frame b) relative to and in terms of the new frame (frame a).

This adjoint is directly computable from the components of the homogeneous transform relating

the new and old reference frames (see Eq. 2.1).

By horizontally concatenating twists generated by each joint parameter in a single matrix,

and then transforming each twist to be expressed in reference to a common point in a common

world frame using appropriate adjoint transformations, we arrive at the Spatial Jacobian,

JS =
[
ξ ′1 ξ ′2 . . . ξ ′n

]
(2.19)

ξ
′
j = Adgwb j

ξ j (2.20)

The transformation from the world to the base of each joint gwb j can be found by performing

forward kinematics up to that joint (see Eq. 2.3). For constant curvature joints, untransformed joint

twists ξ j are given in Eq. 2.16. Rotary joints have the simple jacobian, ξR = [0,0,0,0,0,1]T and

must also be transformed using the appropriate adjoint operation.
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To obtain the manipulator’s Body Jacobian, we can transform all twists in JS to be expressed

instead at the end effector frame of the current configuration,

JB = Adg−1
wen

JS (2.21)

This Jacobian relates joint velocities to corresponding twists of the body-fixed end effector frame

with respect to and in terms of the end effector’s current end effector frame gwen(θ̄). We will use

the Body Jacobian extensively in this work when formulating the quadratic programming problem

for path planning.5

In addition to the Body Jacobian, we will also use Link Body Jacobians Jl
B describing

the movement of frames placed at the center of mass of each link. These come into play in the

quadratic programming problem when implementing collision avoidance and grasping. They can

be found by transforming twists in the Spatial frame to these respective frames in a similar manner

as done in Eq. 2.21. In doing this, twists corresponding to distal joints relative to the link of interest

must be set to zero as they do not generate additional motion in this frame.

Finally, a natural frame of interest is one attached to the end effector of the robot that

maintains a constant orientation equal to that of the world. This hybrid Jacobian JH can be found

by rotating the twists in JB into the world frame’s orientation,

JH =

Rwen 0

0 Rwen

JB (2.22)

The Spatial, Body, and Hybrid Jacobian frames are labeled in Fig. 2.5.

5In this work, when a Jacobian (JB, JH , or JS) is used with θ (the controllable subset of θ̄ ), columns of the Jacobian
corresponding to uncontrollable degrees of freedom are dropped.
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Figure 2.5: The Jacobian frames are labeled here. Twists mapped from the Spatial Jacobian, JS, are
those of the tool frame as expressed relative to and in terms of the Spatial frame (or world frame).
The Body Jacobian, JB maps joint movement to twists of the tool frame relative to and in terms
of the current Body frame (or tool frame). Similarly, the Link Body Jacobians Jl

B map to twists of
frames attached to the link bodies relative to and in terms of their current respective frames. The
Hybrid frame is one attached to the end effector with constant orientation equal to that of the world
frame. The Hybrid Jacobian JH maps joint movement to twists of this frame as expressed in its
current frame.

2.2.6 Wrenches

In this work we will make use of wrenches to describe loads applied to a soft manipulator.

Wrenches denote generalized forces comprised of both linear and angular components as,

W =

 f

τ

 (2.23)

Similar to twists, wrenches depend on the frame in which they are expressed. Wrenches can be

naturally combined in a single reference frame using Eq. 2.65 in [2],

Wb = AdT
gab

Wa (2.24)
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This equation transforms wrenches expressed in frame A to equivalent wrenches as applied in

frame B. In performing this calculation, we assume frame A is rigid with respect to frame B. We

will make use of these generalized force vectors extensively when we discuss stiffness modeling

in Chapter 3.
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CHAPTER 3. DESIGN OPTIMIZATION

In this section we discuss our method for optimizing the kinematic design of soft manipu-

lators. We first discuss previous methods of robot design optimization, after which we present our

design methodology. We demonstrate our methods on two separate types of soft robotic platforms

and discuss our results.

3.1 Previous Research In Robot Design Optimization

Optimization methods applied in the field of robotics have often lagged behind the current

state of the art of the broader optimization community and in practice only very simple problems

are solved. As a result the optimization potential of many current systems is not fully exploited

and designs are suboptimal [18]. In an effort to bridge the gap between design and optimization,

the IEEE Robotics and Automation Society (RAS) Technical Committee (TC) on Model-Based

Optimization for Robotics was founded in October of 2012. One of the committee’s primary

research objectives is to ”optimize the design of robots for given tasks (parameter optimization and

structural optimization).” We share this same objective in this work and focus on the application of

appropriate optimization methods to the compliant platforms previously introduced.

3.1.1 Design Optimization Methods

Many different methods of design optimization for a broad range of robotic applications

have been explored. Oral and Idler utilize sequential quadratic programming (SQP) to minimize

the weight of a robot’s links for a particular high speed movement [19]. Paredis and Khosla op-

timize the kinematic assembly of joint modules using simulated annealing (SA) techniques [20].

Rao and Waghmare use teaching-learning-based optimization (TLBO) to find optimal geometrical

dimensions of a robot gripper [21]. Ramezan et al. employ particle swarm optimization (PSO) to

reduce singularities within the workspace of a parallel manipulator [22].
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Of these methods, genetic algorithms (GA) and similar stochastic techniques have been

found to be particularly useful [23–26]. They are especially good for optimizing highly nonlinear

problems as they are less prone to getting stuck in local minima and do not require expensive gra-

dients. However establishing an appropriate fitness function to combine desired design objectives

can be difficult, especially when these objectives are competing.

Several researchers have extended genetic algorithms to incorporate a multi-objective opti-

mization framework, seeking to explore a Pareto front of optimal designs rather than zeroing in on

one particular design [27, 28]. Finding the Pareto front is often difficult however, especially when

applied to systems requiring expensive objective function calls as is the case in this work. One

method is to solve an assortment of optimization problems, each weighting objectives differently

in a single fitness function (see ParEGO optimization [29]). This method is slow however as many

different GA problems must be solved. Additionally, scaling weighting vectors appropriately to

provide a diverse, Pareto optimal set can be challenging.

Other methods such as the one presented in this work seek to operate directly in the multi-

variate objective function space by making use of the maximin objective function [30]. Coello et

al. use a weighted form of this function in order to optimize counterweight balancing for robot

arms [28]. This methodology is especially powerful because it requires only a single GA problem

to be solved in order to approximate the Pareto Front.

To our knowledge, none of these optimization methods have been applied to optimize the

design of inflatable robots. Part of the difficulty in performing any such optimization is establishing

accurate design metrics to adequately characterize the behavior of these difficult to model systems.

Our goal in this work is to establish appropriate metrics and utilize the aforementioned maximin

framework to optimize the design of a fully inflatable, pneumatically-actuated manipulator. We

also optimize the design of an arm comprised of blow-molded joints using this same framework as

will be shown.

3.1.2 Metrics for Design Evaluation

A critical step in optimizing the design parameters of a robotic manipulator is to identify

metrics that adequately reflect desired behavior. In other relevant work, metrics commonly employ

the Analytical Jacobian JA which relates joint velocities and torques to end-effector velocities and
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forces respectively [31], [32], [33], [34]. Common metrics used that employ the Jacobian include

the inverse of the condition number of JA (κ = σmin/σmax), the smallest singular value of JA (σmin),

and the volume of manipulability ellipses relating joint and end-effector velocities (proportional to

det(JT
A JA)) [35, 36]. These metrics are commonly used to assess the dexterity of a robot within a

workspace of interest.

The Jacobian can also be used to characterize other behaviors of interest, including how the

joint torques of a manipulator scale in relation to the forces they generate at its end effector [35].

In a similar fashion a velocity transmission ratio can be defined relating joint and corresponding

end effector velocities at a single pose.

These metrics provide a valuable starting point for optimization routines but have limita-

tions that may severely restrict their use. This is especially the case with soft, deformable robots,

where rigid body kinematic assumptions may be rendered invalid. Many recent advancements in

soft robotic technologies fall in this latter category including electroactive polymers [37], pneu-

matics [6], and shape-memory alloys [38]. We present a new metric in this work that characterizes

the load bearing capacity of manipulators with flexible joints.

3.1.3 Methods of Collecting Metrics Within a Manipulator’s Workspace

The design metrics we have discussed are configuration dependent and thus need to be

evaluated over a workspace of interest in order to provide a global sense of fitness for a particular

robot design. This can be done analytically if a closed form expression describing manipulator

kinematics can be obtained [34, 39]. However for high dimensional systems such a model may

be unobtainable. Kumar et al. [40] propose a sampling based approach using inverse kinematics

to evaluate the dexterity of a manipulator at distinct points within its workspace. Their inverse

kinematic formulation relies on specific design geometry however and is not readily generalizable

to other platforms. We focus instead in this paper on sampling techniques that are readily extend-

able to any platform, including those with many degrees of freedom. We present three sampling

strategies in particular: random forward kinematic (FK) sampling, sampling using local inverse

kinematics (IK), and hybrid FK-IK algorithms. We will discuss the benefits and drawbacks of

each.
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Figure 3.1: K-REX is a planetary rover developed by NASA for exploration in areas of rough
terrain.

3.2 Methods

The motivating problem for this work is the design of a 6DOF, inflatable manipulator (sim-

ilar to that shown in Fig. 1.1) that is to be mounted on the side of NASA’s prototype planetary

rover K-REX at NASA Ames. A picture of a preliminary design for this inflatable arm mounted to

K-REX is shown in Fig. 3.1 which was designed using a single objective function for optimizing

the dexterous workspace.

For this platform, we specifically seek a set of optimal structural parameters including a

sequence of six optimal link lengths L1−6, a vertical mounting height bh from the ground, and a

horizontal mounting angle bθ that will allow this arm to be dexterous while also being able to ma-

nipulate heavy objects (e.g., rocks) near the ground. As these two objectives are likely competing,

we wish to explore the region of optimality in the design space in which one of these objectives

cannot be improved without sacrificing the other. This is commonly referred to as the Pareto front.
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3.2.1 Genetic Algorithm

In this work we use maximin optimization techniques within the framework of a genetic

algorithm to find the Pareto front. To do this we first generate an initial set of designs by uniformly

sampling design parameters within constraints. To satisfy practical limitations and hardware con-

straints, designs not meeting the following design constraints are immediately discarded:

• Armspan: Armspan must be below La ≤ 1.5m. Each joint is modeled with constant curva-

ture and with joint length 6cm. Thus, ∑
6
i=1 Li ≤ 1.14

• Max Link Length: Single link length, Li ≤ .5m

• Valves: Consecutive links must accommodate valves used for control, Li +Li+1 ≥ .18m

• Mount Height: Mounting height from ground must be in range, .3m≤ hm ≤ 1.5m

• Mount Angle: The mount is allowed a fixed vertical tilt angle, −60◦ ≤ bθ ≤ 60◦ (towards

or away from the ground)

Generated designs are randomly paired and child designs are generated by performing

crossover. In our application this is done by randomly assigning each child’s ith link length to

be either that of one of its corresponding parents, or the average length of the parents’ ith link.

Base mounting parameters are handled similarly. Crossover that produces a child design violating

constraints is re-performed until a valid design is obtained.

We allow the possibility of mutation when generating a child design in order to avoid local

minima and encourage global diversity within each generation. This is done by randomly swapping

two links in the child design and then assigning a new mounting position by uniform sampling as

before. Mutation is re-performed if a resulting design violates constraints. After crossover (and in

some cases mutation), children and parents are evaluated using methods that will be later discussed.

The best scoring design from each parent-child grouping is then passed to the next generation. To

aid in local refinement of the genetic algorithm, a perturbed copy of the winner is also passed to

the next generation. This copy is generated by slightly adjusting a child’s link lengths and base

mounting parameters (while staying within constraints). The steps of the genetic algorithm are

summarized in Fig. 3.2.
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Figure 3.2: Designs are perpetuated through the genetic algorithm in a sequence of steps that
include random pairing, crossover including mutation, tournament evaluation, and design pertur-
bation.

3.2.2 Design Evaluation Methods

During the genetic algorithm every design (parents and children) undergoes an evalua-

tion routine in which it is scored on multiple user-defined metrics. To find these scores, metrics

are calculated throughout the workspace at many different simulated configurations for each de-

sign. Once the end effector has been simulated through many different configurations, these pose-

specific scores are summed across the entire reachable workspace of each manipulator providing a

measure of optimality for each metric of interest. We discuss this process more fully next.

Discretizing The Workspace of a Manipulator

To track how well a manipulator performs at various regions of its reachable workspace,

we must first discretize that space appropriately. To do this, we first note that the homogeneous

transform that marks an end effector’s pose with respect to a world frame gwen(θ̄) can be broken
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down into three positional components x, y, and z and three orientation components qx, qy, and qz

(as expressed in axis-angle coordinates [2]),

gWE = f (x,y,z,qx,qy,qz) (3.1)

This six dimensional representation of an end effector pose provides a natural basis from which

we may discretize the robot’s dexterous workspace. We accordingly discretize a six dimensional

space into a rectangular grid of size M3×N3, where M3 is a 3D tensor representing discretization

of translation in Cartesian space, and N3 is a 3D tensor representing an angular discretization

present at each discrete Cartesian location. Each time a new configuration is generated, the twist

components of its end effector pose are computed and rounded to the nearest point in this grid.

Subsequent computed metrics are then computed and stored at this discretization point.

One weakness we have encountered in pursuing this method of discretization arises in

trying to impose a rectangular grid on the space of orientations SO(3). This space is a sphere that

wraps around itself and does not naturally lend itself to rectangular segmentation. This is because

every axis-angle orientation vector is only unique in magnitude up to a factor of 2πn, where n is

any integer. To remove this ambiguity within our discretization process, vectors with magnitude

greater than π are first expressed instead as their equivalent vectors within a ball of radius π before

they are discretized. This can be seen in Fig. 3.3a which depicts the cut plane qz = 0 of SO(3).

Here an orientation vector B is expressed as an equivalent orientation within the sphere of radius

π before it is discretized. In contrast, the orientation vector A is inside the ball and can instead be

directly binned.

The true region of reachable orientations at a single cartesian location can now be repre-

sented as some region contained within the SO(3) ball. As we find more orientations reachable at

this location in the workspace, we sample more orientations within this subregion, marking nearby

discretized orientations as being found. With a coarse rectangular discretization, the relative lo-

cation of this subregion with respect to the discretization (directly related to the reference frame

from which orientations are expressed) affects how many discretized orientations will be found.

We have found this effect to be especially pronounced when the orientable subregion intersects the

boundary of SO(3). This is shown in Fig. 3.3b.
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(a) SO(3) Ambiguity Resolution (b) Effects of Discretization and Reference Frame

Figure 3.3: Left: If the magnitude of an orientation vector lies outside a ball of radius π , it is first
converted into an equivalent rotation within the ball by subtracting 2π from its magnitude. Right:
The number of orientations found at a particular point in the workspace of a robot depends on how
the true region of reachable orientations lines up with the discretization imposed on SO(3). In this
image the blue, green, and red subregions represent the space of orientations that could be found
at a single point in the workspace of a robot, as measured from different reference frames. This
shows that the reference frame from which rotations are reported directly impacts the number of
discretized samples found.

We have found this latter effect to introduce undesirable asymmetries in the reported dex-

terous workspace of a robot. In Fig. 3.4a we show an example of this by visualizing a heat map of

the percentage of discretized orientation vectors (as measured from a frame at the origin) report-

edly found at the cut plane x = 0 of the workspace of a robot. This robot is mounted horizontally

and is perfectly symmetrical about the plane z = 1.5m, leading us to expect a symmetric heat map

of pose orientations about this plane.

However we find that at points where the end effector can point downwards and wrap

around itself (qx ≥ π and the true region of orientations intersects the SO(3) surface), an artificially

high number of orientations are reported. To remedy this problem, we chose to discretize end

effector position with respect to the world frame as before, but orientation with respect to the

mount of the base, gb0en . Doing so reduces the number of orientation vectors falling near the

boundary of SO(3) significantly and eliminates asymmetries from our optimization.
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Figure 3.4: Imposing a rectangular grid over the space of orientations introduces asymmetries
into the optimization (left). To correct for this, rotations are instead tracked with respect to the
manipulator’s base frame gb0en (right).

Workspace Sampling Techniques

Having defined our method of storing metrics within the reachable workspace of the ma-

nipulator, we next investigate methods of efficiently sampling the manipulator’s controllable con-

figuration space θ . As many designs must be evaluated within the evolutionary algorithm, we wish

this process to be as fast as possible while providing a diverse set of manipulator configurations. In

our work we have investigated three strategies: random forward kinematic (FK) sampling, inverse

kinematics (IK), and hybrid FK-IK methods.

To perform random FK sampling, joint parameters are randomly sampled within their con-

straints and forward kinematics is performed using Eq. 2.3 (see Fig. 3.5). Because the forward

kinematics routine is a simple series of matrix multiplications (see Eq. 2.3) this process can be

done very quickly. The major drawback in doing this however, is that sampling becomes redun-

dant as the algorithm progresses, thus leading to fewer new poses actually being found later in the

algorithm.

We also tried using direct inverse kinematics (IK) to search the discretization space. In par-

ticular, three different methods of inverse kinematics were attempted: IK using a simple damped

pseudo-inverse (DPI), IK using selectively damped least squares (SDLS) [41] and IK using quadratic

programming (QP) [11]. Because each of these methods relied on expensive computations (e.g.,
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Figure 3.5: A single design mounted horizontally (+Y) is simulated and plotted at 500 random
joint angle configurations. A typical design evaluation in our genetic algorithm would be simulated
through two to four million random configurations and would be completed in 15-20 seconds.

updating the Jacobian matrix, performing singular value decomposition, and/or solving a QP prob-

lem), they were much slower in searching the manipulator’s configuration space than fast FK

sampling.

The fastest of these IK methods (in terms of identifying new poses) was by far IK using a

damped pseudo inverse. In this case, a manipulator is initialized at a previously identified config-

uration and then driven to nearby, unidentified poses in the discretization by iteratively computing

a step in the configuration space as,

∆θ = JT
B (JBJT

B + kI)−1Vgent (3.2)

Here, JB represents the manipulator body Jacobian, Vgent represents a desired deformation twist

taken from the homogeneous transform between the end effector frame and a target pose, and k is

taken to be a small damping constant (k ≈ .01). As the Jacobian represents a linear mapping that

holds only locally within the configuration space of a manipulator, only small steps in the direction

of computed ∆θ are taken, before a new Jacobian is computed and the process is iterated. This
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is repeated until the orientation and position of the end effector align nicely with the target pose

within a tolerance or a maximum number of allowable steps have been taken without convergence.1

While this method of IK is simple and fast, it still pales in comparison to the speed at which

random fast FK sampling reveals new discretization poses. This is manifest in Fig. 3.6 in which

random FK is performed on a 6DOF design for +80 seconds with discretization parameters M = 50

and N = 7. At every 100,000 random samples, each method (both random FK sampling and IK

using a damped pseudo-inverse) is timed to see how long it takes to find a new pose within the dis-

cretization. Timing is averaged over 50 new discretization points found from each method. In this

case IK is implemented to move from previously identified configurations to unfound, neighboring

poses within the discretization with similar orientation.

Figure 3.6: Randomly sampling joint angles and performing forward kinematics was found to be
the fastest method of sampling a manipulator’s workspace.

In Fig. 3.6 we see that simple FK sampling (blue) finds new samples about 10 times

faster than the damped pseudo-inverse IK (green) throughout the entire characterization of the

workspace. Code profiling tools revealed that the repeated computation of the Jacobian in the IK

1Error between the target frame and end effector frame is computed using a weighted norm of the differences in
twist components of the two frames as expressed with respect to a world frame.

31



algorithm accounted for most of the time differential. In attempts to remedy this, a simple method

of IK was implemented in which the Jacobian was not updated between IK steps (red) and only a

few steps were allowed before the IK algorithm would terminate. This method somewhat improved

the rate at which the IK method identified new samples, but still proved to be significantly inferior

to random FK sampling.

The trends observed in Fig. 3.6 were confirmed over many different sets of evaluation

parameters (e.g., max number of steps allowed to IK, step lengths, discretization sizes, etc.). Sev-

eral hybrid FK-IK algorithms were also attempted. These hybrid methods begin by using FK, but

resort to inverse kinematics when sampling becomes sufficiently redundant. Over longer periods

of time these algorithms occasionally provided superior results over direct FK sampling but were

difficult to tune. Additionally we observed that trends in design performance initially reported by

simple FK sampling did not change with longer evaluations and/or extra IK sampling. We thus

concluded that random sampling for relatively short periods of time was the most efficient means

of comparing important trends for the purpose of design optimization.

Design Metrics

We now turn our attention to identifying appropriate metrics that can be computed at every

new found pose, and then subsequently combined across the entire discretization at the end of

the sampling routine to provide global measures of design optimality. For the inflatable robot we

expect to test while mounted to the lunar rover K-REX at NASA Ames, we have identified two

primary optimization objectives:

• That the manipulator be dexterous at all parts of its workspace

• That the manipulator be capable of lifting heavy loads near the ground with its end effector

A traditional metric used for dexterity is the volume of the six-dimensional ellipse which

maps small joint velocities of a manipulator to twists at its end effector. This is noted by Yoshikawa

et al. [36] as directly proportional to,

E =
√

det(JBJT
B ) (3.3)
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This metric however requires the computation of the Jacobian at every new configuration found

within the workspace of the robot. This operation is relatively expensive compared to a simple

forward kinematics sampling, and should be avoided if possible. Instead, we favored using a brute

force approach in which the number of unique poses γsum found within the discretization is taken

directly as a metric for optimization.

In addition to being dexterous, we also preferred our robot to be capable of lifting heavy

loads near the ground without undergoing excessive deflection. We observed in initial testing

that our prototype arm experienced significant deflection when subjected to external loads. This

deflection was primarily due to uncontrolled bending occurring at the manipulator’s joints. To

identify robots capable of lifting heavy loads, we needed to characterize this effect. To do this we

assumed a rigid link model with flexible joints and build a linear model of joint stiffness as,
∆τX

∆τY

∆τZ

=


K11 K12 K13

K21 K22 K23

K31 K32 K33



∆θX

∆θY

∆θZ

 (3.4)

This equation relates differential movements of the joint as expressed in twists coordinates Vgbti
to

external torques applied at the joint base (A coordinate frame is provided in Fig. 3.7 for reference).2

To find this joint stiffness model, we measured many different applied loads and tracked

corresponding deformation twists of the joint transform gbt .3 Wrenches measured at the end ef-

fector were then expressed as equivalent wrenches directly about the joint base frame using Eq.

2.24. Resulting linear force components of transformed wrenches were dropped as they were not

considered as deflection inducing.

With ND samples, we can construct a 3xND matrix of horizontally stacked torques vectors

τD and a 3xND matrix of corresponding twists deformation vectors ∆θD. We then perform a linear

regression using a psuedo-inverse to find the 3x3 joint stiffness transformation Kqi as,

Kqi = τ∆θ
T
D (∆θD∆θ

T
D )
−1 (3.5)

2This model assumes only small deflections at each joint.
3For stiffness testing purposes, the joint arc length parameter h was assumed to be zero. The joint transformation

gbt then simplifies to a double pin joint model with an added rotational degree of freedom at its base. Measured
deflection parameters ∆θX , ∆θY , ∆θZ are then assumed to be approximations for joint deflection parameters ∆u, ∆v,
∆ψ respectively.
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Figure 3.7: Left: An ATI force-torque sensor was attached to the end of a single inflatable joint
and deflections were measured using a motion capture system. Right: A coordinate frame for a
single joint is shown. Actuation generates joint torque about the x-axis.

In experimentation we found the joint stiffness model Kqi to be approximately diagonal

with significant deviations induced by varying bladder pressures and joint angle. As the joint

hardware is still under development, we assumed it less important to do a full classification of this

model and instead resorted to using a simplified joint stiffness model of diagonal structure. In

future work we recommend extending stiffness models to be functions of both joint position and

pressure as the joint hardware design becomes more developed.

For our purposes, we use the same diagonal joint model Kqi for each joint and assume it to

be independent of bladder pressures and configuration. Joint stiffness models are combined with

the manipulator Jacobian to give a 6x6 equivalent end effector stiffness matrix,4

KH = (JHK−1
G JT

H)
−1 (3.6)

4To compute the end effector stiffness matrix as expressed in the body or spatial frames, use the body or spatial
Jacobians respectively.

34



where

KG =


Kq1 0 . . . 0

0 Kq2 . . . 0
...

... . . . ...

0 0 . . . Kqn

 (3.7)

The stiffness matrix given in Eq. 3.6 provides a linear mapping between external wrenches

WH applied at the manipulator’s hybrid frame and resulting deformation twists V of that frame.

WH = KHV (3.8)

We use this expression to obtain the max downward force that a particular configuration

can support at its end effector without deflecting outside of a defined deformation tolerance Vmax.

By expressing the contributions of gravity and external loading forces to deformation at the end

effector separately we have, ∥∥∥V L +V G
∥∥∥≤Vmax (3.9)

Using Eq. 3.8 to express resulting end effector deflection in terms of a corresponding applied

wrench W L
H , and summing known gravity wrenches in the end effector’s hybrid frame as W G

H using

appropriate adjoint transformations (see Eq. 2.24), we can restate this equation as,5

∥∥∥K−1
H W L

H +K−1
H W G

H

∥∥∥≤Vmax (3.10)

W L
H = αLuL

Given a known loading direction unit vector uL for W L
H , Eq. 3.10 gives a quadratic ex-

pression in the loading force magnitude αL, the roots of which represent the range of forces that

maintain acceptable deflections. The maximum load supportable under the deflection limit is then

taken to be the maximum root αF of this expression with uL = [0,0,−1,0,0,0]. As an example,

Figure 3.8 shows a nominal configuration (black), a deflected configuration due to the manipula-

5For simplicity, orientation components are ignored and a standard two norm is used representing a spherical
deflection limit in Cartesian space.
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tor’s weight alone (blue), and a deflected configuration due to the manipulator’s weight as well as

a critical force αF applied downwards at the end effector (red).

Figure 3.8: At each configuration a critical tolerance Vmax = .15m (shown in green) is chosen from
the nominal end-effector position (shown in black). A critical load αF is then computed that causes
deflection (shown in red) out to this tolerance. The deflection of the arm from its weight alone is
shown in blue for reference (control is used to prevent deflection in actuated degrees of freedom).

Our actuators allow us control about the x-axis (see Fig. 3.7 for reference) of each joint

within a torque range of τ− and τ+. As long as loading conditions generate joint torques within

this controllable range, we assume we can completely compensate for deflections in this degree of

freedom with active control.6 To factor in the capacity of control to compensate in this way, we

can assume infinite stiffness in actuated degrees of freedom. This can be done by eliminating rows

and columns of JH and KG associated with actuated degrees of freedom in Eq. 3.6.

Making this assumption we can solve for the max loading force αF as before, and then

cap it by the minimum load αlimit that would generate at least one unsustainable torque at a joint.

Doing this ensures that our max sustainable load α always stays within a range compatible with

our controllable degrees of freedom. Joint torques τ are related to loads applied at the end effector
6We neglect additional torque introduced by the dynamics of the system and assume the robot moves slowly.
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as,

τ=JT
HW L

H + JT
HW G

H (3.11)

τ=JT
HuLαL + τ

G

To remain in an acceptable region of control, αL must be set so every joint torque τi remains

within its respective, controllable range. Solving for the max allowable force αlimiti that can be

applied within each of these ranges, and taking the minimum of the result gives,

αlimit = min
i
(max(

τi−− τiG

JT
Hi

uL
,
τi+− τiG

JT
Hi

uL
)) (3.12)

where JHi represents the column of the manipulator Jacobian corresponding to the ith actuated

degree of freedom and τiG represents the torque applied torque from gravity. If a joint cannot

support torque induced by gravity (let alone any additional loading), we set the entire expression

equal to zero.

The supportable force at the end effector that maintains acceptable deflection while staying

within actuator torque limits is then,

α = min(αF ,αlimit) (3.13)

This metric is computed for every configuration we find within 20 cm of the ground during

the forward kinematic sampling routine. If multiple configurations converged on the same end

effector grid pose, the maximum applicable load is taken.

Termination and Metrics Scoring

The forward kinematic sampling routine is terminated when a high percentage (+99%) of

configuration samples taken generate poses previously found within the discretization. At this

point we assume the manipulator has been sufficiently simulated through its workspace. The total

number of end-effector poses found within the discretization is then counted, and the sustainable

loading force α is summed across the discretization to provide separate measures of dexterity and

load sustainability respectively.
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In summing the loading force variable α , it was found that occasionally singular or near-

singular configurations would generate very high sustainable forces that became dominating within

the optimization. To overcome this affect we cap the maximum force α contributed by any single

discretization point by a constant αmax. In this sense we care about finding the design that can

support loads over large regions of its workspace.

Maximin Optimization

Each design’s scores are now evaluated against others in the multi-objective maximin fit-

ness function presented in [30]. Metric scores between designs in a generation are scaled to be

between zero and one before evaluating the maximin function (e.g., the most dexterous design in

a generation will receive a score of one for that metric).

f itnessi = 1−max
j 6=i

(min
k

( fki− fk j))

f itnessi = maximin fitness score of ith design

fki = kth objective score at ith design

fk j = kth objective score at jth design

(3.14)

This function evaluates how optimal a particular design is in maximizing its scores in rela-

tion to other designs in that generation. Its formulation encourages both diversity and optimality as

it selects designs to be propagated. By continually evolving designs and choosing those that score

well in this way, we achieve a final set of optimal designs that allows us to explore the inherent

trade-offs in the design space.

3.3 Results

3.3.1 Optimizing an Inflatable Robot

One hundred designs were randomly generated and evaluated for dexterity and stiffness

performance near the ground. High performing designs were propagated through the genetic al-

gorithm as discussed in Sec. 3.2.1 and this cycle repeated for 50 generations. Design evaluations
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Figure 3.9: A Pareto front that characterizes fundamental trade-offs inherent in the design space of
an inflatable manipulator.

were performed in parallel on eight cores of a 3.4 GHz Intel Core i7-4770 processor and the en-

tire optimization took approximately five hours to complete. Significant speedups can be obtained

using more processing cores (up to the number of designs evaluated each generation).

Processing time was highly dependent on desired discretization resolution. In this exam-

ple we discretized a 27m3 space to the side of K-REX in a grid of 31x31x31 points representing

possible end effector positions in 10 cm increments. Orientations were binned within a 5x5x5 grid

at each positional grid point. Each design evaluation sampled between two to four million config-

urations (depending on design dexterity) and took about 15-20 seconds to run. For comparison,

a lower resolution optimization running with 21x21x21 positional points and 3x3x3 orientation

points was completed under an hour. This lower resolution optimization gave similar results to

that of the higher resolution.

The resulting Pareto front shown in Fig. 3.9 visualizes how the optimization evolves de-

signs from a set of randomly generated designs (red) to a set of Pareto optimal designs (dark

green). The final generation of designs characterize the optimal region of the design space and
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highlight fundamental trade-offs the designer must make. A table listing the parameters of a subset

of optimal designs in the estimated Pareto front is shown in Table 3.1.

Table 3.1: Optimization Results

Des. L1 L2 L3 L4 L5 L6 La bθ bZ

A .23 .27 .13 .18 .19 .04 1.40 -60 1.19
B .25 .27 .11 .19 .21 .06 1.45 -60 1.24
C .20 .33 .15 .22 .19 .03 1.47 -60 1.26
D .13 .34 .21 .24 .20 .00 1.48 -60 1.27
E .07 .35 .25 .27 .19 .00 1.49 -60 1.24
F .00 .30 .31 .34 .19 .00 1.50 -60 1.18
G .00 .29 .27 .38 .19 .00 1.49 -54 1.27
H .01 .26 .31 .36 .19 .00 1.49 -35 1.22
I .00 .27 .28 .39 .19 .01 1.50 4 1.32

a Length measurements are given in meters, and the base angle is given in degrees.
b Zero link lengths denote collocated joints (90◦ offset included). In the case of the last

link being zero, the last joint is directly attached to end effector tooling.

The tabulated results help us understand several key issues regarding the design space of

these inflatable manipulators. We see that in general, stiffer arms (see design A for example)

have parameters that reduce gravity torque loads near their base. They afford longer link lengths

near the base to accommodate heavy valve hardware. Further, they have slightly shorter total arm

spans than other, more dexterous arms to save on weight. By reducing gravity torque loads on

critical joints near the base, these joints are then allowed to support heavier loads applied at the

end effector. The result is a stiffer, though slightly less-dexterous arm.

On the other hand, dexterous arms like design I are significantly longer than stiffer arms.

They have shorter link lengths at the beginning and end of the robot, offering shoulder and wrist-

like structures to the robot that improve the dexterous workspace of the arm. Further, they are

mounted slightly higher from the ground and point more horizontally, granting them a larger,

ground-free workspace in which they can touch many points within the discretization. A 3D

visualization of the reachable workspace as measured by the dexterity metric given in this pa-

per is provided in low resolution (as seen and used by the optimization) at https://youtu.be/

bsk7NbaCb5E and at a higher resolution for visualization and validation after the optimization is

complete at https://youtu.be/pqXF-ymJidk.
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3.3.2 Optimizing a Manipulator with Blow-Molded Joints

This same optimization routine was used in order to optimize the design of a blow-molded

arm similar to that shown in Fig. 2.2. In this case, three blow molded joints (2DOF each) are

connected by two rigid links. These links have fixed bends in them that our optimization can

determine of up to 45◦. Appropriate joint angle and arm length constraints are applied to describe

the natural limitations of the system. Link lengths and fixed bend angles are included as design

variables within the optimization. Additionally, as before, the mounting height bZ and a tilt angle

bθ are also included as design variables in the optimization.

Figure 3.10: A blow-molded jointed manipulator is optimized in order to paint a wall. Left: A
Python visualization shows the workspace of interest and an optimized design (with joints re-
moved). Right: A screen shot of a similar robot performing painting motion.

The objective in this case was to optimize robot geometry in order to allow the robot to

paint a wall. We accordingly used only the dexterity metric previously discussed and counted only

poses with position lying within a 2x.5x1 meter box and with orientation within 60◦ of being per-

pendicular to the wall (+y axis in Fig. 3.10). This score is taken as the only metric of interest and

used directly to compare designs within the optimization routine. Crossover and mutation strate-

gies are analogous to those discussed earlier. An identified optimal design (joints not depicted) is

shown relative to the workspace of interest in Fig. 3.10. This design could find almost all of the

41



Figure 3.11: A sequence of yz-cut planes (left to right: X = -.75m, X = -.5m, X = -.25m, X = 0m)
showing the percent of pose orientations counted towards the dexterity metric in those regions.
The red box represents the workspace of interest at each cut plane. The dexterous workspace is
symmetric about X = 0m.

orientations perpendicular to the wall within the desired region. This is shown in visualizations of

cut planes of its dexterous workspace in Fig. 3.11.

3.4 Discussion

The genetic algorithm presented in this work provides a robust, scalable framework that

can be used to optimize a host of robotic technologies. It is especially applicable to systems that

can be quickly manufactured and that feature many degrees of freedom in their design space, such

as the inflatable arm presented. The metrics provided herein are offered as examples for those

designing similar, soft-robot systems. Other systems will require appropriate metrics reflecting

desirable traits relevant to their application.
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CHAPTER 4. PATH PLANNING

In this section we discuss our method for performing motion planning. As in the last

chapter we will begin this chapter with a discussion on previous approaches used to solve this

problem. We then discuss our method of planning and present motivating examples.

4.1 Previous Work

Sampling-based motion planners such as RRT or PRM [42–48] are probabilistically com-

plete and very effective for many problems. However, they require starting and ending robot

states, are not well suited to following continuous end-effector trajectories, typically require a path

smoothing step, and do not scale well to high degree-of-freedom systems.

Local inverse kinematic methods [10, 11] are effective methods for generating configura-

tions of a robot given an end-effector goal, and these algorithms could be combined with the above

path search or trajectory optimization algorithms to yield start and end configurations with a path

linking them. Similarly Berenson, Kuffner and Choset [49] use evolutionary algorithms to find

start and end configurations which are then connected with an RRT-based planner. However, fail-

ing to consider the path between objects when choosing start or end configurations can make the

problem more difficult than necessary or impossible.

Trajectory optimization algorithms such as CHOMP [50], STOMP [51] or TrajOpt [52] are

able to generate a trajectory for an initial guess (which may be infeasible or in collision), and scale

well to high-dimensional problems. Each utilizes a distinct optimization method to minimize an

objective function comprised of path smoothness and collision avoidance terms. Our formulation

most closely follows TrajOpt in which the original cost function is iteratively approximated and

a path update is identified using a quadratic programming solver. Our method differs however,

in that we address the problem of planning directly in the task space of the manipulator with a

predetermined end effector target path specified. Additionally we introduce functionality in our
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formulation that enables a fixed base position of the robot to be optimized simultaneously with

path motion.

Several works [53–55] consider planning problems such as opening a door with a mobile

robot. However, the approach is feasible because they plan in the low-dimensional space of the

robot’s base position and orientation, allowing them to discretize the space. This does not scale

well to the higher degree-of-freedom systems that we wish to consider.

This work is a direct extension of the authors in [11], extending it from a single end ef-

fector goal to an arbitrary number of goals. It utilizes a hierarchical weighting scheme to handle

competing objectives, similar to that given in [56], but applied over an entire trajectory. This work

is also related to general work on redundancy resolution. However, most other past work on re-

dundancy resolution is focused on velocity, acceleration, or torque formulations without moving

the end-effector or while achieving a secondary constraint or task instead of reaching a pre-defined

trajectory with smooth motion (see chapter 11 in [57] for a summary of these approaches).

4.2 Methods

In this section we provide a detailed list of inputs that the planner requires. We also dis-

cuss the details of how the algorithm uses kinematics to optimally move arms towards their final

targets. Finally, we discuss objective weighting strategies, termination criterion and our process of

recursive path refinement for continuous and smooth motion.

4.2.1 Inputs

Our planner requires the following inputs:

• Arm Kinematic Model: The planner requires a defined kinematic model with availability

of body Jacobian matrices JBi which linearly map differential movements in joint space to

corresponding twists at the ith end effector (in the ith end effector’s frame of reference).

Similarly, body Jacobian matrices Jl
Bi

at the center of mass of each link l are required. An

efficient means of computing forward kinematics is also assumed, that is, given a config-

uration θi, we can find a homogeneous transform at any frame of interest attached to the
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manipulator. While we used the kinematic model introduced in Ch. 2, our path planning

framework is general enough to encompass any kinematic model with these simple features.

• Target Path Parameterization: A function χ(t) representing a parameterized target path

must be available to the path planner. This function maps a parameter t, ranging from 0 to

1 to a desired end effector pose Tt ∈ SE(3) on the desired path. A continuous equation for

computing these targets is important to the path refinement routine.

• Constraints: The inverse kinematics routine allows for constraints that represent the fun-

damental limits of the manipulator including joint stops (θmin., θmax.). Custom constraints

including maximum allowable parameter deviations abs(∆θmax) at any single iteration in the

optimization are also included. Finally, a set of geometries G representing potential colli-

sions the manipulator could make with the world must be known to the path planner. These

collision geometries are included as optional inputs.

4.2.2 Quadratic Programming Problem Formulation

The inverse kinematics problem for a single manipulator is outlined in [11] where a local

search direction in joint space is identified by solving a quadratic programming (QP) problem that

stems from the optimization problem of the form,1

argmin
∆θ

∥∥V B
WE −Ṽ B

WE
∥∥2

2,Pχ
+‖∆θ‖2

2,Pθ

noting that V B
WE ≈ JB(θ)∆θ

(4.1)

where V B
WE is a deformation twist in the body frame associated with a small change in joint vari-

ables ∆θ , and Ṽ B
WE represents a desired deformation twist computed using the matrix logarithm [2].

The matrix norm Pχ is used to weight units of position and orientation (‖x‖2,P =
√

xT Px) according

to the user’s objectives. The second term ‖∆θ‖2
2,Pθ

is included as a damping term for algorithm

stability purposes.

1The 6x1 deformation twist vector V represents screw motion along a constant twist ξ .
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The result of solving a QP of this form is an optimal, local search direction in joint space

that drives the manipulator towards its assigned target pose. By iteratively solving, stepping and

then updating the QP problem, an arm is pushed to a desired pose.

Our approach to path planning follows this formulation, and extends the problem to include

k copies of the same manipulator, each representing the manipulator’s configuration θi at a specific

instance in time. We also introduce a shared base M with degrees of freedom θM. This base rep-

resents a stationary mount or parking position from which the manipulator will carry out motion.

We define JM
Bi
∀ i = 0,1,2, . . . ,k as the body Jacobian matrices mapping movement at the base (as

part of the progression of the optimization only) to corresponding twists at the ith configuration’s

end effector. Each end effector is assigned a separate target along the parameterized path given

as χ( i
k) from which a desired deformation twist Ṽ Bi

WE is computed using the matrix logarithm as

before. The optimization formulation then becomes,

argmin
∆θ

∥∥V̄ −Ṽ
∥∥2

2,PχG
+‖∆θ‖2

2,PθG

noting that V̄ ≈ JG
B (θ)∆θ

(4.2)

where,

JG
B =


JB0 0 . . . 0 JM

B0

0 JB1 . . . 0 JM
B1

...
... . . . ...

...

0 0 . . . JBk JM
Bk

 (4.3)

∆θ =



∆θ0

∆θ1
...

∆θk

∆θM


V̄ =


V B0

WE

V B1
WE
...

V Bk
WE

Ṽ =


Ṽ B0

WE

Ṽ B1
WE
...

Ṽ Bk
WE

 . (4.4)

46



PχG is defined as,

PχG =


Pχ0 0 . . . 0

0 Pχ1 . . . 0
...

... . . . ...

0 0 . . . Pχk

 (4.5)

and can be strategically adjusted to achieve objectives required by the application. If orientation

is not important during a particular task, for example, weights in PχG corresponding to orientation

are set to zero. If the particular route a manipulator takes between two end-effector targets is

unimportant, Pχ1 = Pχ2 = Pχk−1 = 0.

Equation 4.2 provides a framework whereby path planning can be carried out using inverse

kinematics. By rearranging this expression into a more compact form and adding linear constraints

representing joint stops we can achieve, 2

argmin
∆θ

∆θ
T P∆θ +LT∆θ

subject to A∆θ ≤ b
(4.6)

where,

P =Pχ +PθG (4.7)

Pχ =JG
B

T
PχGJG

B (4.8)

L =Lχ =−2JG
B

T
PχGṼ (4.9)

4.2.3 Line Search

The result of solving (4.6) is a search direction in θ that optimally pushes the manipulators

towards their respective targets. We step in this direction a length of αstep which we determine

by performing a line search in θ , comparing forward simulated poses with their respective targets.

The αstep corresponding to the set of simulated configurations closest to their respective targets

2For details on how this expression can be obtained, see section 3.1 in [11]. Together, A and b represent constraints
as convex polytopes. Here, we iteratively redefine b to clamp ∆θi j to keep movement within its joint stops, as well as
within a maximum allowable deviation abs(∆θi j)≤ ∆θmax.
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is accepted as the optimal step size and the manipulators’ configurations are updated accordingly.

This process is repeated as the configurations branch towards their desired poses along the path.

4.2.4 Secondary Objectives

Smoothness

In its current form, Eq. 4.6 does not penalize adjacent configurations for being far from

each other in joint space, a condition necessary for globally smooth motion. This can be achieved

by adding the penalty term,

κ

k−1

∑
i=0

n

∑
j=0

∥∥(θi j−θ(i+1) j)
∥∥2

2 (4.10)

to the minimization in Eq. 4.6 where θi j refers to the jth joint on the ith virtual manipulator. By

approximating a joint parameter at iteration p as θi jp ≈ θi jp−1. +∆θi j, expanding the norm and

eliminating terms that do not affect the minimization problem, we can include this term in Eq. 4.6

in a convenient form as,

∆θ
T Pκ(κ)∆θ +LT

κ (θp−1)∆θ (4.11)

where,

∆θ
T Pκ(κ)∆θ = κ

k−1

∑
i=0

n

∑
j=0

(∆θi j−∆θ(i+1) j)
2

LT
κ (θp−1)∆θ = κ

k−1

∑
i=0

n

∑
j=0

2(θi jp−1−θ(i+1) jp−1)∆θi j

+2(θ(i+1) jp−1−θi jp−1)∆θ(i+1) j

Manipulability

Traveling in a manipulator’s dexterous workspace is also desirable as a secondary objective

in order to avoid singular configurations. Yoshikawa presented a measure of manipulability in [36]
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that is proportional to the volume of the manipulability ellipsoid given as,

E =
√

det(JBJT
B ) (4.12)

We penalize joint motions that decrease this term by including a linear term weighted by scalar γ ,

LT
γ ∆θ =−γ

k

k

∑
i=0

n

∑
j=0

d(
√

det(JBiJBiT ))

dθi j
∆θi j (4.13)

The derivative in this term is taken numerically. We also include a second, less-important term

weighted by β . This term encourages joints to remain near their center value (and thus away from

joint stops),

β

k

∑
i=0

n

∑
j=0

∥∥(θi j−θi j.ctr.)
∥∥2

2 (4.14)

As before, by ignoring terms independent of ∆θ , using the previously introduced approximation

of θi j and expanding, this term can be included in Eq. 4.6 as,

∆θ
T Pβ (β )∆θ +LT

β
(θp−1)∆θ (4.15)

where,

∆θ
T Pβ (β )∆θ = β

k

∑
i=0

n

∑
j=0

∆θi j
2

LT
β
(θp−1)∆θ = β

k

∑
i=0

n

∑
j=0

2(θi jp−1−θi jctr.)∆θi j

Collision Avoidance

An extra term can be added to virtually push configurations away from potential collisions

in G. This implementation only considered simple geometries (points, lines, and planes) but any

collision detection package which gives collision distances and normals could be incorporated (for

example Bullet Physics [58], which uses the Gilbert-Johnson-Keerthi [59], algorithm).
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For each link l that comes within a distance ε of a constraint, a secondary target is defined

for that link normal to the constraint that pushes the link away from the constraint. A desired

deformation twist Ṽ Bi
WLl

is then taken between the link frame and this target, and incorporated into

the objective function as,

c
m

∑
l=0

(
ε−d

ε
)

2∥∥∥V Bi
WLl
−Ṽ Bi

WLl

∥∥∥
2,Pχc

(4.16)

where d is the distance between the link and the constraint and c is a scalar weight. Entries in Pχc

weighting the orientation components of the desired deformation twist are set to zero as they are

unimportant in this case. The link twist V Bi
WLl

can be expressed as a product of the respective link’s

body Jacobian expressed at its center of mass, and joint velocities up to the respective link as,

V Bi
WLl

= Jl
Bi
∆θi (4.17)

Columns in Jl
Bi

corresponding to joints distal to link l are set to zero. As with Eq. 4.2, we can

express these collision terms in a quadratic form, scaled by a weight c. With m links near collisions

we have,

m

∑
l=0

∆θ
T Pcl(c)∆θ +L(c)T

cl
∆θ (4.18)

where Pcl and LT
cl

are analogous to the expressions given in Eqs. 4.8 and 4.9.

With objectives now defined in a coherent form, we can express the optimal path planning

QP formulation as given in Eq. 4.6 with,

P =Pχ +Pκ +Pβ +Pθ +
m

∑
l=0

Pcl (4.19)

L =Lχ +Lκ +Lβ +Lγ +Lθ +
m

∑
l=0

Lcl (4.20)

4.2.5 Weighting strategies

The weighting of terms κ , β , and γ are critical to algorithm performance and must gradually

decay from their initial values to near zero (letting Pχ dominate in Eq. 4.6) if exactly following

a defined end-effector target path is desired. To do this we measure the sum of errors computed
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between the arm configurations and their respective targets at each time step p given as,

ep = Ṽ T PχGṼ (4.21)

We choose to scale weights by a factor 0≤ λ ≤ 1 when the improvement rate ep−1−ep falls below

a user-specified value Ω. At this point, proportionally more weight is shifted to the configuration

target objectives in the optimization routine, and the arms subsequently reach closer towards the

desired path.3

The collision weight c is held constant throughout the algorithm, consistently pushing the

configurations away from defined boundaries. To allow the algorithm to reach near these constraint

boundaries, we slowly reduce the critical tolerance ε that triggers these terms to a fixed εmin during

the course of the path planning algorithm.

4.2.6 Termination Criterion

The algorithm terminates when improvement in the objective function falls below a critical

tolerance Φ and when secondary weights all fall below critical thresholds. We have observed in

cases where the manipulator is not able to reach every target pose on the path, that it is generally

a good idea to keep secondary weights slightly positive near the end of the algorithm to maintain

desirable path properties including smoothness.

4.2.7 Refinement Strategies

Running this path planning algorithm results in a set of k configurations that reach out to

the chosen path. The QP problem has computational complexity of order O(k2). However, the

planning problem is quite sparse, and by specifying this sparsity in the QP solver we have seen

experimental run times that are only slightly superlinear, approximately O(k1.1).

When a finely discretized path is desired, we recommend running this planner recursively

between identified configurations. This can be done by first solving with moderate k (e.g., k=10 or

3This strategy of weight scaling is only applicable when it is essential that end-effector poses end up at their
respective targets. In cases where end effectors are allowed to deviate from the path (including trajectory optimization),
we can choose a different weighting strategy (including Pχi ) to meet other performance objectives.
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Figure 4.1: These algorithms summarize the path planning procedure.
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20) and then running a sequence of subproblems, each in which a new branch of arms is defined

between previously identified configurations. In doing so we fix the boundary configurations of

subproblems to be the poses between which we are refining. Refinement continues recursively

until the parameterized distance between every adjacent target tθi+1−tθi
along the path falls below

a tolerance ζ . This method of planning and refining are summarized in three algorithms presented

in Fig. 4.1.

4.3 Results

Our planner has been tested on several different case studies and has successfully provided

smooth paths in joint space that meet performance objectives. In situations where the manipula-

tor is unable to navigate the path due to kinematic constraints, our planner provides motion close

to the desired path. Given kinematic redundancy within the problem however, our planner per-

formed very well for a large set of input parameters and was tuned with minimal effort despite

being a multi-objective problem. We present here several examples that demonstrate the planner’s

performance.

4.3.1 4-DOF Planar Robot

Figure 4.2: Optimal inverse kinematic branching motion is shown in which it is desired that a
manipulator navigate continuously along a wall while avoiding a circular collision boundary. Iter-
ations 0, 20, 60, 150 and 240 are shown.

We have used the planner on an example similar to that shown in Fig. 1.2. The 2D ma-

nipulator has four links connected with revolute joints, and the goal is for the end effector to track
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a linear position (with no orientation goal) while avoiding a circular collision obstacle (shown in

red). Hard constraints are included to model joint stops. Figure 4.2 shows how the planner begins

by branching a set of 10 virtual arms towards assigned targets on the path while considering both

the spherical collision boundary, as well as a planar constraint representing the wall. Once the

algorithm converges on a final set of configurations, the path is refined in order to plan overall

smoother global motion as is shown in Fig. 4.3a. Figure 4.3b shows how the refinement routine

smoothly connects configurations in joint space which is important for implementation on a real

robot.

(a) Refined Path (ζ = .05) (b) Smooth, Continuous Paths in Joint Space

Figure 4.3: Configurations found along the final path. The 1 meter vertical path was planned for a
four 20cm-link robot.

Figure 4.4 shows the final, scaled costs contributed by the different objective terms in the

quadratic objective function as a function of the number of steps taken in the QP algorithm. This

figure shows how secondary objectives are continuously scaled down so as to prioritize the objec-

tive pushing arms to their respective targets.

Our implementation was done in Python, with SWIG bindings that link to a custom package

in C++ handling robot kinematics. Running on a single 3.4 GHz Intel Core i7-6700, and using the

Python QP solver CVXOPT [60], we’ve solved the four-link planar problem in under 3 seconds.

We expect significant speedups with more efficient implementations.
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Figure 4.4: Secondary objective weights are continuously scaled down during the algorithm’s
progression in order to prioritize the cost associated with arms being far from their targets.

4.3.2 8-DOF Manipulator Painting

We now show a practical example in which the 8-DOF manipulator shown in Fig. 2.2

performs a painting task. In this example, it is desired that the manipulator’s end effector remains

normal to the surface (twisting motion around the end effector’s z-axis is acceptable) as it paints.

We use a kinematic model that matches the behavior of the pneumatically actuated robot developed

by Pneubotics. This model has two degrees of freedom at every joint (the orange sections) that

allow the manipulator to bend in a circular arc in any desired direction. Hard constraints are

implemented in the QP to reflect the manipulator’s joint limits. Defining our path function χ(t)

to be a square wave that sweeps across a 1m2 surface, the algorithm assigns targets and spreads

arms to reach those targets as is shown in Fig. 4.5. The shared base is allowed to move freely

during branching motion to accommodate motion objectives. Once a rough set of configurations

has been structured around the desired path, we refine it to obtain the smooth joint motions shown

in Fig. 4.6a and 4.6b. In this case, our implementation of this algorithm took under six seconds to

perform the highest level of planning (k=20) and a little less than a second to perform refinement.

We emphasize again that a more optimized implementation should be able to perform planning

much quicker.
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Figure 4.5: Branching to reach a square-wave path function χ that imitates painting motion over a
flat surface. Iterations 0, 10, 40, 120, 250, and 450 are shown.

(a) Refined Path (ζ = .02) (b) Continuous Paths in Joint Space

Figure 4.6: Configurations found along the final path. The path was planned for a pneumatically
actuated robot built by Pneubotics.

Similar motions as those shown in this example were executed on real hardware at the

Pneubotics facility in San Francisco as shown in Fig. 4.7. In this case, the planner enabled a 6DOF

pneumatically actuated, soft robot to sand a 1m2 flat surface in a little under a minute. A video of

the robot carrying out this task can be found at https://youtu.be/wrmfIZMHVkY.
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Figure 4.7: A 6DOF pneumatically actuated, soft robot sands a surface using our QP planner. See
https://youtu.be/wrmfIZMHVkY for video.

4.3.3 Baxter Robot Performing Painting Motions

We implemented the planner for Baxter, a collaborative robot made by RethinkRobotics

(see Fig. 4.9). Baxter’s arms each have seven degrees of freedom: four revolute joints and three

pin joints. Painting motions were planned in which Baxter was assigned to paint a 60cm x 40cm

(a) Motion Carried out on Simulation (b) Motion Carried out on Hardware

Figure 4.8: Painting motions performed in simulation and on hardware can be found at https:
//youtu.be/LoUyA76mmpQ and https://youtu.be/onwH3KWfV0E respectively.
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surface in 15 seconds. Motion was carried out with a fixed end effector orientation. Videos of mo-

tion in simulation and as applied on hardware can be found at https://youtu.be/LoUyA76mmpQ

and https://youtu.be/onwH3KWfV0E respectively.

4.3.4 6-DOF Arm Mounted on A Planetary Rover: Pick And Place Motion

We include videos of more complicated 3D paths generated by our planner. In this case,

a six degree of freedom robot with a kinematic joint model similar to the one described in [6] is

mounted to a model of a planetary rover from NASA Ames (K-REX). The ground is included as

an obstacle as are spherical obstacles which represents the chassis of the rover. The goal trajectory

takes the end effector from a location on the ground on the side of the rover to a location under and

in front of the rover with a specific orientation with respect to the ground. This may represent a soil

sample retrieval and storage task. A frontal view of the different iteration steps of the optimization

is at https://youtu.be/i815T2GUGo4 while a frontal and side view of the planned path are at

https://youtu.be/HHf0B43luIs and https://youtu.be/KPhWVgrnhBk. A snapshot of this

motion is shown in Fig. 4.9a.

4.3.5 6-DOF Arm Mounted on A Planetary Rover: Wiping Motion

This same arm mounted to K-REX is also shown using its link to perform wiping motions

on a flat surface at https://youtu.be/whDpZFsFwXI and https://youtu.be/A0xbdewknNs.

This motion could represent wiping off a solar panel in dusty terrain. In this case, extra terms were

added to the QP that encouraged the last links of the arm to remain flat against the panel during

motion. These terms were constructed by assigning appropriate targets to link bodies instead of

end effectors, and weighting orientation about the plane of interest appropriately. A snapshot of

this motion is given in Fig. 4.9b.

4.3.6 10-DOF Arm: Wrapping Motions

This form of planning has the potential of being useful for very high dimensional systems

including those with tentacle and finger like mechanisms. This is especially the case as the QP

problem scales quite nicely to higher dimensions as discussed earlier. We show an example of
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(a) Pick and Place Motion (b) Wiping Motion With Link (c) Wrapping Motion

Figure 4.9: The planner has enabled robots to wipe surfaces and wrap around objects.

planning motion to allow a 10-dimensional robot (with continuous-curvature joints as discussed)

to grasp a sphere at https://youtu.be/a2LpDKGXRZg. A snapshot of this motion is shown in

Fig. 4.9c.

4.3.7 Sample-Based Path Planning Approach

For comparison with our planner we implemented a second form of path planning that used

fast forward kinematic sampling (see Chapter 3) in combination with inverse kinematic techniques

to find many configurations along the path. A simple graph search algorithm (Dijkstra’s algorithm)

Figure 4.10: Forward kinematics is used to identify many configurations near the path. These
configurations are then driven to the path using QP inverse kinematics as discussed. A graph search
algorithm is then employed to link similar configurations together into a sequence representing
motion.
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was then used to connect similar configurations along the path into an optimal sequence represent-

ing desired motion. This approach provided smooth motion but generally took much longer to

solve (30-60s for simple paths) and could not easily include secondary objectives as desired. Ad-

ditionally it could not optimize the base mounting position from which motion was to be carried

out. For these reasons we abandoned this form of planner in favor of the presented QP method.

4.4 Discussion

We have presented a robust, scalable framework of path planning for high-dimensional

manipulators using quadratic programming. We have demonstrated its utility in simultaneously

planning for the optimal location of the mobile base, as well as joint motions needed to traverse a

desired end-effector path. Further we have shown how secondary objectives can be incorporated

and appropriately tuned in this planning routine using additional terms in the quadratic objective

function. Finally, we have presented a few practical examples that motivate the use of this algo-

rithm for common manipulation tasks.

We anticipate that this method will provide a platform by which optimal motion planning

can be efficiently and effectively carried out for a variety of useful tasks that require end-effector

trajectories including surfacing operations (e.g., painting, washing, sanding), manufacturing pro-

cesses (e.g., drilling holes, assembling parts), and practical every-day tasks (e.g., opening a door,

turning a wheel, vacuuming). With an appropriate weighting strategy, this framework can be gener-

alized to plan motion for operations without required end-effector trajectories as well (e.g., moving

objects from one place to another). In either case it provides task-optimized base positions which

makes it especially suited to mobile-manipulators which can choose base locations relative to the

task at hand.
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CHAPTER 5. CONCLUSION

The theory and methods introduced in this work are offered as a platform on which others

can build. We expect that the methods will be especially useful for those designing mobile robots

with many degrees of freedom and with inherent compliance similar to the soft robot platforms we

have introduced. Naturally our methods have limitations and logical extensions. We list several

here.

5.1 Limitations and Possible Extensions

5.1.1 Optimization

To improve the accuracy of our optimization methodology, more advanced modeling strate-

gies that may be used. As we have noted, we have assumed rigid links with induced deflections

occurring only at the joints. While this assumption has yielded a convenient approximation, mod-

eling link deflections to more adequately describe the behavior of our platform would improve

accuracy. A more accurate joint stiffness model would also help in this regard. This could be

developed using a nonlinear stiffness model or by factoring in the effect of joint configuration and

bladder pressure within the currently formulated linear fit.

We also recommend that future work reexamine the problem of discretizing SO(3) space.

Finding a discretization strategy that eliminates the dependence of the number of orientations found

at a given point and the reference frame from which orientations are measured at that point is an

important step in this regard. Other representations of orientations (i.e., quaternions, Euler angles,

etc.) may be more suited to discretizing than the axis-angle representation we have used.

Another logical and important extension of our optimization method is to develop and

incorporate more metrics within the optimization routine that accurately describe other desirable

qualities of soft robotic manipulators. The proposed optimization structure readily allows for the
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definition of additional metrics and can produce high dimensional Pareto fronts for use in the early

design stages of these robots. Potentially useful optimization metrics may describe a manipulator’s

capacity to generate high end effector velocities for “reckless” behavior that is more suitable to soft

robots (e.g., using a hammer to hit a nail) or perform pre-determined tasks at specific regions in the

workspace of the manipulator. They may also describe how design parameters affect the dynamics

and control of these systems as these relationships become better understood.

In addition to new metrics, additional design variables may also be added to our optimiza-

tion. Link and joint sizes may be included as design variables and the positioning of valves on link

bodies could be optimized. In some cases, introducing fixed bend angles on certain links has been

shown to increase design dexterity in specific areas of the workspace for specific tasks. Choosing

appropriate design variables and design metrics is a critical design task that is largely platform-

dependent. In this sense, our application is offered as an example to those seeking to apply similar

optimization strategies.

5.1.2 Path Planning

Despite considering the entire path the manipulator takes, the planning method we have

introduced is still a local optimization method and will struggle with more complex paths. For

such cases, this algorithm could be used to find a common base position as well as collision-free

start and end configurations that would then be passed into a sampling-based path planner [42–45].

Our algorithm could then be initialized with the resulting path of this sampling-based planner and

be used to shorten and smooth this path.

In formulating our planner we have assumed rigid body kinematics. Thus our planner does

not allow for links or joints to bend or deflect in uncontrolled ways. Using a model that more

accurately describes the kinematics of soft robots is an important extension of this work. This

could be done using the stiffness modeling techniques introduced in the optimization section.

Finally, though meant primarily as a means to optimize base position and redundant motion,

our algorithm can also perform planning without a specified end effector path by simply fixing

the start and end configurations and setting weights of intermediate end-effector targets to zero.

Comparing this capability against other standard trajectory optimization algorithms ( [50–52, 61])

is an important and logical extension of this work that we wish to pursue in future studies.

62



5.2 Observations and Closing Remarks

We have observed a fundamental relationship between the processes of design optimization

and path planning presented in this work. This relationship arises from the fact that the kinematics

of a robot significantly affects how well it is able to track trajectories with desired end-effector

positions and orientations. We observed in this regard that optimized robot designs produced

smoother paths with less error than unoptimized designs. This provides valuable validation of our

optimization routine and of the dexterity metric presented. We are confident this same system of

optimization can be applied to other platforms with similar results.

The quadratic programming planner presented continues to be (as of the publication of

this work) the state-of-the-art motion planner for robots designed by Pneubotics. It has enabled

their robots to perform surfacing operations including spraying, sanding, and painting and shows

promise for many other behaviors as demonstrated in this work. It has been shown to be robust, fast

and accurate in providing path configurations along a desired end effector trajectory and provides

a natural way to allow the user to tune paths based on desired objectives. We are confident that this

method will generalize to other systems and provide a useful, intuitive solution to path planning

problems.
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