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ABSTRACT

Force and Motion Based Methods for Planar Human-Robot
Co-Manipulation of Extended Objects

Erich Allen Mielke
Department of Mechanical Engineering, BYU

Master of Science

As robots become more common operating in close proximity to people, new opportu-
nities arise for physical human-robot interaction, such as co-manipulation of extended objects.
Co-manipulation involves physical interaction between two partners where an object held by both
is manipulated in tandem. There is a dearth of viable high degree-of-freedom co-manipulation
controllers, especially for extended objects, as well as a lack of information about how human-
human teams perform in high degree-of-freedom tasks. One method for creating co-manipulation
controllers is to pattern them off of human data. This thesis uses this technique by exploring a pre-
viously completed experimental study. The study involved human-human dyads in leader-follower
format performing co-manipulation tasks with an extended object in 6 degrees of freedom. Two
important tasks performed in this experiment were lateral translation and planar rotation tasks.
This thesis focuses on these two tasks because they represent planar motion. Most previous con-
trol methods are for 1 or 2 degrees-of-freedom.

The study provided information about how human-human dyads perform planar tasks.
Most notably, planar tasks generally adhere to minimum-jerk trajectories, and do not minimize
interaction forces between users. The study also helped solve the translation versus rotation prob-
lem. From the experimental data, torque patterns were discovered at the beginning of the trial that
defined intent to translate or rotate. From these patterns, a new method of planar co-manipulation
control was developed, called Extended Variable Impedance Control. This is a novel 3 degree-of-
freedom method that is applicable to a variety of planar co-manipulation scenarios.

Additionally, the data was fed through a Recursive Neural Network. The network takes in
a series of motion data and predicts the next step in the series. The predicted data was used as
an intent estimate in another novel 3 degree of freedom method called Neural Network Prediction
Control. This method is capable of generalizing to 6 degrees of freedom, but is limited in this
thesis for comparison with the other method.

An experiment, involving 16 participants, was developed to test the capabilities of both
controllers for planar tasks. A dual manipulator robot with an omnidirectional base was used in the
experiment. The results from the study show that both the Neural Network Prediction Control and
Extended Variable Impedance Control controllers performed comparably to blindfolded human-
human dyads. A survey given to participants informed us they preferred to use the Extended
Variable Impedance Control. These two unique controllers are the major results of this work.

Keywords: physical human-robot interaction, co-manipulation, human-intent estimation
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CHAPTER 1. INTRODUCTION

1.1 Problem Description

As robots become more common operating in close proximity to people, new opportunities

arise for physical human-robot interaction (pHRI). One such application of pHRI is collaborative

manipulation (or co-manipulation) of rigid extended objects (see Fig. 1.1). For the remainder of

this thesis, co-manipulation is defined as the physical interaction between two or more partners

in manipulating a jointly-held object. Extended objects are defined in this thesis as objects with

significant length, width, and height, such that they are not easily moved by a single person. Also,

all extended objects are assumed rigid unless specified otherwise. This area of robotics, pHRI,

takes advantage of the strengths of both members of the human-robot team: strength and execution

from the robot and intelligence and experience from the human. Co-manipulation can include

anywhere from simple 1 degree-of-freedom (DOF) tasks up to complex 6 DOF tasks. Dyadic

co-manipulation–which is co-manipulation between a pair of users–can involve either a leader-

follower or a shared-leader setup.

A leader-follower setup involves one user making decisions for the dyad and initiating

movement, whereas a shared-leader setup involves both users taking initiative in decisions and

movement. For this thesis, the leader-follower setup is used, with the human leading in the human-

robot dyad. Because humans have more expertise in the tasks they wish to perform–given state-of-

the-art technology–beginning with a leader-follower setup is an intuitive starting point for a control

basis. A future goal for this project is to have both shared-leader and leader-follower modes. The

goal of human-human and human-robot teams, in any format, is to enhance the capabilities of the

team in order to complete some task. The key problem with the human-robot dyad is how to ensure

that this goal is met, and this goal can be split into two sub-goals: determining human intent and

determining a control method for high DOF co-manipulation of extended objects. Human intent

is defined in this thesis as the consensus velocity of the object manipulated by a dyad. Velocity

1



Figure 1.1: Person and a robot co-manipulating an extended object.

was chosen as it allows intent to be captured for tasks where target position is unknown to the

robot. Additionally, current co-manipulation methods incorporate velocity as intent [3, 4]. Deter-

mining intent in co-manipulation tasks can be difficult, even in low DOF tasks, where uncertainty

and ambiguity can exist when tasks include manipulating an extended object that may need to be

translated, rotated, or both. When an extended object is included in co-manipulation tasks, forces

applied in a lateral direction could indicate either intent to translate laterally, or intent to rotate the

object in the plane. Similar problems with ambiguity exist in higher DOF tasks also. In order to

be effective, a robot performing co-manipulation of extended objects must be able to distinguish

between rotation and translation intent in multiple DOF.

Determining a control method for co-manipulation is also a difficult problem. As men-

tioned previously, the goal of the dyad is to enhance the capabilities of the team [5]. The control

method, therefore, should be designed such that the team’s capabilities are indeed enhanced. Con-

trol methods that are too complex to use, too narrow in scope, or unable to adapt to disturbances

and trajectory changes, do not enhance the capabilities of the dyad, and the human partner might

be better off trying to complete the task alone.
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One method of solving these two problems is to learn from human behaviors [6]. Including

humans in control loops with robots can be dangerous, ineffective, or both, because humans are

complex and unpredictable. However, if humans exhibit trends in their behavior, or, in other words,

their behavior is captured by certain repeatable patterns or actions, their inclusion in human-robot

dyads is much more reasonable and safe [7]. For these reasons, this thesis explores basing human-

intent estimation and co-manipulation control models on human behavior.

1.2 Problem Motivation

Extended objects are objects that are heavy or unwieldy, and necessitate two or more people

to carry them. A robot capable of replacing a human in these teams would help in situations like

search and rescue where current high-payload robots are too heavy and dangerous to relocate and

operate. Robots that can safely interact with a human could help lift and remove rubble from

disaster areas or take a victim on a stretcher to safety. These robots would allow fewer people

to complete the same amount of work, or allow more teams to operate and reach more people in

need of help. Other applications include using robots to help load and unload moving vans, using

robots to help move objects around warehouses, and any other co-manipulation applications where

human-human teams are currently needed (see Fig. 1.2).

While past work on co-manipulation shows that collaboration is possible in some tasks, it

is not clear that the algorithms and intent-estimators developed will work in less-defined scenarios.

In order for a robot to work effectively with humans in co-manipulation, the robot needs to be able

(a) Workers sort through rubble at disaster site [8]. (b) Wounded man is carried on a stretcher [9].

Figure 1.2: Motivational scenarios for co-manipulation of extended objects by dyads.
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to respond in complex situations involving object movement in 6 dimensions, 3 translation and 3

rotation. In fact, the current state-of-the-art controllers do not meet this criteria, and are often built

for specific 1 or 2 DOF motions, involving planar arm movements only. Real-life situations will

require high DOF movements involving whole-body motion and bi-manual manipulation by the

participants, rather than planar arm movements only.

Controllers that can be used in co-manipulation by a human-robot dyad, in 6 DOF, and

based on intent provided by the human will cause scenarios like those shown in Fig. 1.2 to become

much safer and more efficient for the people who work in that environment. This is especially true

as more robots enter the human workspace. In the past few years, the field of soft robotics has

evolved as the demand has increased for robots that can work not only intelligently and intuitively,

but also safely with humans. It is not too hard to envision a soft robot, such as the one shown in Fig.

1.3, working with a human to perform all manner of daily tasks with little risk of human injury.

As robots become more technologically advanced, algorithms for co-manipulation will become a

necessity, rather than a novelty.

Figure 1.3: A pneumatically actuated robot with fabric-based limb and body structure.
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1.3 Specific Contributions

The contributions of this thesis are:

1. Observations and analysis of metrics from 6 DOF human-human physical co-manipulation

study

2. Development of Intent Estimators

(a) Force and Torque Pattern Recognition

(b) Recursive Neural Network Prediction

3. Closed Loop Controllers

(a) Extended Variable Impedance Control

(b) Neural Network Prediction Control

4. Human-robot physical co-manipulation experiment to compare developed controllers to each

other and to human-human dyads

5. Observations and analysis of human-robot physical co-manipulation study

Additionally, work was done in tandem with another graduate student on the human-human

physical co-manipulation study. Table 1.1 shows a delineation of work done previously and novel

work done specifically for this thesis.

Table 1.1: Human-human physical co-manipulation study contributions.

Previously Done [2] Thesis Contribution

Development of Study Analysis of Data

Collection of Data Metric Development

Initial Neural Network Formulation Formulation of Force-Pattern Intent Estimation

Analysis of Neural Network Prediction Lateral/Rotational Velocity Patterns

5



1.4 Thesis Overview

Chapter 2 explores previous literature and methods to solving this problem. This includes

reviewing previous human-human co-manipulation studies, force-based co-manipulation methods,

motion-based co-manipulation methods, performance metrics for co-manipulation, and various

human-intent estimation strategies.

Chapter 3 describes the analysis of a 6 DOF human-human physical co-manipulation study

on co-manipulation of an extended object. This includes a summary of the study, an investigation

of various metrics, and characterization of lateral translation and planar rotation tasks. From this

study, an intent estimator and a new control method of planar co-manipulation for extended objects

was developed, and is formulated in Chapter 4. This control method is known as Extended Variable

Impedance Control.

Another intent estimation method and controller are described in Chapter 5. This control

method is called Neural Network Prediction Control. This chapter also includes the architecture of

the neural network. The predictions from the neural network are applicable to 6 DOF, but are only

implemented in planar motion in this thesis. In Chapter 6, both the Extended Variable Impedance

Control and Neural Network Prediction Control are implemented on hardware and compared based

on metrics discussed in Chapter 3. Conclusions and discussions on possible future research in this

area are located in Chapter 7.
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CHAPTER 2. RELATED WORKS

Researchers have been studying pHRI co-manipulation for many years. The efforts of

researchers can be grouped into a few different categories: studies about co-manipulation or human

behaviors, force-based and motion-based co-manipulation methods, determining performance of

human-robot dyads through metrics, and human intent estimation. This thesis deals with all these

categories, so they will all be explored more in depth.

2.1 Co-Manipulation Studies

There are many studies that explore the characteristics of human movement. We are

especially interested in the studies that look at co-manipulation between human-human dyads

or human-robot dyads, because a co-manipulation controller based on human-human interaction

(HHI) is likely to be more effective and intuitive than one that is not based on HHI.

There are studies that explore human-arm reaching movement characteristics, that give

insight into how humans move. One of the most widely used studies was performed by Flash

and Hogan [10], which illustrates the tendency of upper-arm reaching movements to resemble

minimum-jerk trajectories. The equation for determining the trajectory is given by Eq. 2.1.

x(t) = x0 +(x f − x0)

{
6

(
t
t f

)5

−15

(
t
t f
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+10

(
t
t f

)3}
(2.1)

Another fundamental study of human characteristics was performed by Rahman et al. [11].

In this study, they performed a 1 DOF translation co-manipulation experiment between two human

users. One of their objectives in this experiment was to measure the impedance of the users while

performing this task. The human arm can be considered a mass-spring-damper system, and thus

is defined by inertia, stiffness, and damping parameters. They showed that in these tasks, one user

often performed most of the work, and showed that the stiffness and damping parameters changed
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over the course of the task, which is known as variable impedance. They also showed that for 1

DOF translation tasks, the achieved trajectory corresponded well with the minimum-jerk trajectory.

There were also a number of studies investigating how humans cooperate through forces

and haptic channels. Reed et al. [12] performed an experiment testing their hypothesis that humans

can cooperate by specializing their forces. The test involved a 1 DOF crank with handles on each

side, and the task was to rotate the crank to a specified position. They found that human-human

dyads were able to perform simple tasks significantly faster than they did when working alone.

Ganesh et al.’s study [5] also showed that a physical connection between two individuals improves

the dyad’s performance. In a different study by Wel et al. [13], this result was confirmed, as subjects

performing a 1 DOF task benefited from the added haptic channel communication. However, when

Reed et al. included a robot, this advantage disappeared. Additionally, when a partition was placed

between the user and the robot, they performed better, indicating there may be a lack of trust, either

conscious or subconscious, in humans when working with robots.

One of the only studies done with a human-human dyad carrying an extended object was

done by Bussy et al. [14]. In this experiment, they had dyads move a beam in 1 DOF, forward and

backward. They explored three scenarios within this experiment, one with no role assignment, one

with subject 1 as leader, and one with subject 2 as leader. What they found was that by looking at

normalized velocities over the whole task, the trajectory can be decomposed into constant velocity

phases, as well as constant acceleration phases. They used these observations to create a state

machine, where state transitions are triggered by the object velocity. The states indicated whether

to stay at a certain velocity or to accelerate to a different velocity.

Along with the works mentioned, there are other studies that show that not only does a

haptic channel improve performance of a human-human dyad under normal conditions, but that a

haptic channel can be used as the only source of information exchange between partners. Sawers

et al. [15] performed an experiment where participants performed a series of dance steps with a

partner. Each individual held on to an apparatus with each hand. This apparatus collected force

data throughout the experiment. One individual was selected as leader, the other as follower, and

both were then blindfolded and were only permitted to communicate via the haptic channel, i.e.

through the apparatus. These dyads were able to complete the prescribed dance patterns while

only pushing and pulling on the apparatus. Another study, done by Mojtahedi et al. [16], also
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showed that interaction forces may communicate movement goals between human-human dyads

in cooperative physical interactions. While Sawers et al.’s study used a leader-follower setup,

other researchers have explored dominance and role-switching between partners [17–20]. These

are listed here, but are not explored further, as this thesis explores only the leader-follower setup.

2.2 Control Methods for Co-Manipulation

2.2.1 Force-Based Co-Manipulation Methods

Many different control methods have been used in the last 20 years for human-robot co-

manipulation. Much of the work in this area has been very successful, and is used in this thesis as a

basis of knowledge for intent estimation and robot control. However, it is not clear how many of the

control methods apply to large-scale, extended objects, or to movements requiring more than 1 or

2 DOF. One of the first controllers for cooperative manipulation of an object by robots and humans

was an impedance controller developed by Ikeura et al. [21, 22]. They also developed strategies

for situations that required using direction of force and change in magnitude of force. This type

of control technique is known as variable-impedance control [23, 24]. The defining characteristic

of this method is measuring Cartesian-coordinate forces at the end effector to determine motion

intent in certain Cartesian directions. A desired velocity for the end effector of a robot is calculated

using Eq. 2.2, based on the measured force inputs. Tsumugiwa et al. [4] showed that varying

the impedance with the αḞṗ term in Eq. 2.2 allows for increased performance of human-robot

interaction in calligraphy. They had the human operator write the Japanese Kanji character ”Dou”

and found that allowing the impedance to vary allowed for a more stable interaction.

F = mp̈+ cṗ−αḞṗ (2.2)

This model is very successful in predicting Cartesian movements, as was shown in other

studies as well, [3,25], but it does not generalize to include rotational movements. It also is heavily

dependent on human force input, meaning the robot does not proactively contribute to moving the

object being manipulated, and the human partner must exert more force than would be required

in a human-human dyad. Since a co-manipulation controller based on HHI should be intuitive
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and effective, any technique used should be easy–mentally and physically–for the human user to

employ and should be versatile in application.

The initial work in variable impedance control (VIC), however, provided a basis for using

haptic information in future pHRI controllers. One such controller was implemented by Ranatuga

et al. [26] The objective of their work was to create an intuitive and robust controller that did not

depend on a trajectory objective, much like VIC. They designed an inner-loop controller to behave

like an impedance controller, with an outer-loop controller that incorporated the human dynamics

and task performance requirements. With this, they were able to perform 1 DOF point-to-point

motion tasks. This was important as it showed a way to provide accurate, intuitive trajectory

control without previous knowledge of the trajectory, which is necessary for situations such as

search and rescue. However, the work assumed direct contact between human and robot, i.e. no

extended object co-manipulation, and was limited in DOF. In fact, there is an inherent problem

with VIC, and other methods, such as Leica et al.’s method for moving extended objects [27],

that limits how many DOF are viable. This is known as the translation versus rotation (TvR)

problem. The TvR problem is described in Fig. 2.1. In a simple planar task, the leader has the

option of moving the extended object by either translating forward/backward, translating laterally,

or rotating the board. The problem arises when the leader wishes to move laterally, and so applies

a force in that direction, as Eq. 2.2 would mandate. However, the follower, who lies some distance

away from the applied force, perceives the force as a torque, and begins to rotate the board. There

is information missing in VIC to deal with the TvR problem.

Two approaches to solve this problem were made by Karayiannidis et al. and Nguyen

[28, 29]. Karayiannidis et al. used the direction and magnitude of the applied force to an extended

object to create a state machine which switches between translation and rotation modes. The state

machine, however, fails to transition between states correctly when moving at different speeds

than described in their experiment. In other words, their method works for slow rotations and fast

translations. If the leader wants to perform a fast rotation or a slow translation, the algorithm is

not able to correctly predict this. Nguyen improved upon this by using Hidden Markov Models.

His method showed that it is possible to predict human behavior in co-manipulation tasks. His

algorithm allowed for different speeds of rotation and translation, but ultimately performed worse

than Karayiannidis et al.’s method. Notably, the performance metric for Nguyen’s experiment was
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Figure 2.1: Illustration of the TvR Problem; the leader applies a lateral force, desiring to translate
in that direction, while the follower may interpret this as intent to rotate, due to the distance at
which the force is applied.

the mode accuracy, or whether or not the robot was translating or rotating correctly. They did

not compare to any of the metrics established by other researchers. Due to the nature of Hidden

Markov Models, it is also unclear what human behavior was captured that provided the information

that solved the TvR problem.

One of the only attempts at bi-manual, planar co-manipulation we saw was developed by

Bussy et al. [30]. Their method relies on force inputs to a trajectory-based control law, where the

trajectories are then decomposed into a finite state machine to determine the desired velocities.

We attempted to replicate this method, but were unsuccessful, as it appeared some necessary in-

formation was omitted from the paper. This research was successful in at least anterior translation

coupled with planar rotation, and theoretically generalizes to include lateral translation. However,

the paper makes no mention of attempts to move in lateral translation, and a video of the controller

shows only anterior translation with planar rotation. Indeed, it is not clear how this paper deals

with the TvR problem.

Other work has been done by Peternel et al. [31] fusing force feedback with EMG sensors

and optical markers attached to the human’s arm. The myoelectric activity recorded by the EMG

sensors is included in the control law to provide more information about the stiffness the human

was applying in a 1 DOF sawing task. Using EMG in this way was successful in enhancing
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the adaptability of the controller, and although we did not consider using EMG sensor data for this

thesis, it should be considered in future work. Additionally, Peternel et al., in a different work [32],

showed how robots can adapt to human fatigue in pHRI. They showed that robots are capable of

adapting parameters to maintain appropriate force levels in co-manipulation, although this work

did not explore an extended object. While human fatigue is not a concern in this thesis, it should

be considered in any future work involving prolonged pHRI.

2.2.2 Motion-Based Co-Manipulation Methods

In addition to force-based methods, many insights into human-robot interaction have been

gained from studying motion-based intent. One of the common methods of motion-based co-

manipulation is using a minimum-jerk basis. Corteville et al. [33], did so for a 1 DOF point-to-

point experiment. Also, Maeda et al. showed a way to use minimum-jerk trajectories to predict

human intent for proactive robot behavior. Their controller estimates the final time and position

that the human is attempting to reach based on the past few steps and uses position control to

follow that trajectory along with impedance control to adapt to errors [34]. This strategy reduced

the amount of effort a human partner needs to exert in co-manipulation tasks, which is one of the

problems with variable impedance control.

However, there are certain restrictions on using minimum-jerk as a controller basis. The

trajectory start and end points must be known beforehand, minimum-jerk based methods are not

robust to disturbances, and they do not take into consideration the haptic channels, which have

been shown to increase performance. Additionally, Thobbi et al. [35] showed that there are some

human movements that are not minimum-jerk movements. They approached solving the TvR

problem using a Q-learning algorithm, and creating a reactive controller to observe human actions

and predict the future position of the human. Rather than assume the human (when leading) was

always following a minimum-jerk trajectory, the learned model allowed the robot to account for a

larger variation in trajectory. However, they do not consider higher DOF, nor do they incorporate

haptic inputs. Miossec and Kheddar [36] also explored non-minimum jerk-based trajectories. They

continued the work done by Bussy et al. [14], where dyad motions are longer and include walking

and not just arm movement. Their experiment indicated that the interaction forces are too difficult

to use as a basis for control, and instead use velocity thresholds to change state in a finite state
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machine. Their state machine controller, with constant velocity and constant acceleration phases,

was able to perform a transportation task of an extended object [30]. However, because their

experiment only looked at 1 DOF, it is not clear how their method would extend to higher DOF.

Ge et al. [37] showed that machine learning can be a useful tool in HRI. Their research used

supervised learning to predict the motion of the human limb in order to learn a desired trajectory

for pHRI without an extended object. They found their method performed better than using an

impedance controller. While their work, along with that shown by Thobbi et al. [35], shows that

human performance can be learned and applied to pHRI controllers, they did not account for co-

manipulation of an extended object. Additionally, they indicated that the interaction force between

a human-robot dyad should be minimized, which may not be an ideal objective for some co-

manipulation tasks. Another use of machine learning was demonstrated by Berger et al. [38]. They

used machine learning to take in accelerometer and pressure sensor information to learn a statistical

model to guide the robot’s behavior. This study was unique in that they did not use force sensors

at the wrist, or at any interaction point between the human and the robot, but instead calculated

the center of mass of the robot, as well as used pressure sensors on the feet of the robot. The

implementation of this control method involved humans applying forces either forward/backward

or laterally to a shared object, to indicate the desired direction of movement. However, they did

not explore the TvR problem, and it is not clear how well this method performs in comparison to

human-human dyads.

A different approach, using shared-leader control, was taken by Medina et al., who demon-

strated an anticipatory model that took into account expected human trajectory as well as human

force variability [39]. These sources of uncertainty were then incorporated into a cost function

along with an impedance model of the robot. They showed that incorporating uncertainty led to

a higher perceived helpfulness in the robot partner of a human-robot dyad. Their model did not

use minimum-jerk assumptions, and was still able to be effective in a trajectory-based situation.

However, the cost function used in this research incorporated a term for human force minimiza-

tion, which may not necessarily be a goal in co-manipulation. It also was implemented in 2 DOF

with a single-arm virtual haptic interface, so it is unclear whether it would extend to bi-manual

co-manipulation with an extended object in higher DOF. Because this is a shared-leader approach,
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it was not considered for comparison in this thesis, but should be considered for comparison in

future work involving shared-leader methods.

2.3 Performance Metrics

An issue in co-manipulation studies and methods is determining what constitutes a suc-

cessful dyad. For example, in Sawers et al.’s study, two dyads may complete the dance steps, but

successful completion probably is not the only important result from the study. One dyad might

take longer than the other, or a dyad might also have more variability in motion than another dyad.

Therefore, there needs to be performance metrics that allow for comparison between dyads.

Haptic information has been shown to be a viable communication method, and some re-

searchers have suggested this information is used by dyads to minimize certain criteria. Groten [7]

described a number of these, including minimizing interaction forces and root-mean-square error,

and maximizing time on target. Interaction forces are described using Fig. 2.2. These forces are

the forces that are applied to the object that are absorbed by the users, and do not directly contribute

to the motion of the object. In other words, interaction forces are the forces applied by one person

that are countered by their partner, and therefore cause no acceleration of the object. Root-mean-

square error is a measure of how close the object is staying to a desired reference trajectory. Time

on target involves determining how much time a robot spends in correct behavior during a task. A

reference trajectory that is commonly used, such as in Corteville et al. [33] and other previously

mentioned studies, is the minimum-jerk trajectory. However, there are also tasks that do not fit well

with the minimum-jerk trajectories [35, 36]. Therefore, some alternative trajectories may need to

be used if using a root-mean-square error on trajectory.

Ivaldi et al. [6] also described a few other metrics, such as minimizing jerk, torque change,

geodesic trajectories, energy, and effort. These are all fairly well explained by their titles, and

the objective of minimizing these metrics is to achieve human-like behavior. More metrics not

mentioned by Ivaldi et al., but commonly used in other works are minimizing task completion

time [3, 36] and position error in trajectory following tasks such as tracing a path through a maze

[23, 35]. In reviewing the literature, it is not clear which of these metrics is most important. For

example, completion time can capture how quickly a dyad is able to complete a task, but this may

not be the most important measure of the dyad. Perhaps their task involves moving as close to the
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Figure 2.2: Two users co-manipulate an object. The applied forces can be interpreted as a total
force, Ft (measured by a force sensor), an external force, Fe, or the difference between these two
Fi, where Fi is the interaction force between the users.

desired trajectory as possible, and moving faster causes more errors. This is also not an exhaustive

list of metrics, and this thesis will explore some other possible metrics, in addition to using this list

as a basis for characterizing performance of co-manipulation methods. Determining what behavior

dyads display is essential not only for comparing one dyad to another, but also for comparing one

co-manipulation controller to another.

2.4 Human Intent Estimation

As we explored the previous works, we noticed that one of the main hurdles researchers

still need to clear is to determine human intent. Many papers have suggested that haptic channels

are an appropriate method of communication for human intent [12, 40–42]. This makes sense,

as we have seen that human teams can move objects by interacting only through forces applied

to the objects, rather than by communicating verbally or otherwise [15, 16]. Many studies have

been done to conclude that robots can be controlled by human force input in this manner, but

these studies often involve the human acting directly on the robot, and not through any extended

object [4, 22, 33, 43].

Some research involved shared virtual-environment loads [44, 45], and others involved

upper-arm movements of individuals and dyads [12, 13]. These experiments clarify many aspects

of pHRI, including verifying that haptic information aids in co-manipulation tasks, noting some

interaction patterns, and combining planning and learning to complete goal-oriented tasks. Ex-
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ploring virtual environments and upper-arm movements, however, neglects any effect caused by

the users walking, which could cause unforeseen disturbances and vibrations. Using only upper

arm-movements also limits the applicability of these control methods.

We also saw that human intent can be captured by the motion of the manipulated object,

[14,35], or by the motion of the subject [37]. These methods often produce good results, but ignore

the benefits gained by providing haptic feedback to the robot partner. Another method of intent

estimation that has been used is programming by demonstration, as in Rozo et al. [46]. Here,

intent is compressed into a section of possible motions the human-robot dyad could take. The

disadvantage here is that it is not robust to disturbances, or trajectories that have not been modelled

previously. Our definition of intent is appropriate for co-manipulation of extended objects because

it allows us to capture intent for motion that does not have definite start of end points (as observed

by the robot), or motion that involves unforeseen obstacles.

2.5 Summary

The works cited here describe most of the current research being performed in pHRI co-

manipulation. As has been shown, there are very few studies that look at co-manipulation of

extended objects, and even fewer that look at high DOF co-manipulation. Control methods are

varied between force-based and motion-based, but almost all are limited in applicability due to

low DOF, or other limitations. We also have not seen a working co-manipulation controller for

a human-robot dyad, with at least 3 DOF that can be used in undefined situations or respond to

disturbances, in any of the related literature.
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CHAPTER 3. ANALYSIS OF 6 DOF HUMAN USER STUDY

3.1 Summary of Exploratory Study

As described in more detail in [1] and [2], we had 21 human-human dyads perform a

series of co-manipulation tasks carrying a 10.3 kilogram table. Figure 3.1 shows one task being

performed and video of the most complex task can be seen at https://youtu.be/DAbLRDN20yE.

There were 6 different tasks that were each performed 6 times, 3 times blindfolded and 3 times

non-blindfolded. The purpose of this study was to understand how people collaborate moving

an object with no constrained degrees of freedom, and to expand on the knowledge gained from

Chapter 2. We also expected to identify new principles from human-human data that could be used

for control development. The tasks chosen were based on this idea, and represent several different

types of common motion. This thesis focuses mainly on two tasks, which are lateral translation

and planar rotation, i.e. 3 DOF planar motion.

Figure 3.1: A human-human dyad, leader on left with follower blindfolded, performs a co-
manipulation trial while holding an extended object.
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During the experiment, each partner was assigned a role as leader or follower. The leader

was then given instructions on where to move the table. In half of the tasks, the follower was

blindfolded and talking was prohibited. This can be thought of as a baseline for any robot controller

that only uses haptic information for control. In the other half of the trials, talking was permitted

and there was no blindfold. The performance in these trials could be considered the long-term

objective for performance and something against which we can benchmark our future human-

robot controllers. We recorded the motion of the table during all the tasks, as well as the forces

and torques being applied to the table. As discussed in Chapter 2, intent, defined in Chapter 1

as the consensus velocity of the manipulated object, can be captured by force and motion. Fig.

3.2 shows the equipment used for the experiment. The wooden table, measuring 59x122x2 cm,

contained all the sensory equipment, including: two ATI Mini45 force/torque sensors fastened to

the blue 3D-printed handles, two ATI NET F/T Net Boxes (which passed data over Ethernet to

the computer at a rate of 100 Hz), power cables, an ethernet switch, a tablet mount with a tablet,

and infrared markers for use with Cortex Motion Capture software with a Motion Analysis Kestrel

Digital Realtime System. This motion capture system captured data at a rate of 200 Hz.

Figure 3.2: Setup for table and during trials.

Subjects were randomly assigned leader and follower positions, which they stayed in for

the duration of the experiment. Task order was randomized, using randomized partial counterbal-

ancing, as was whether or not the follower used their blindfold. Instructions were sent to the leader
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via the tablet, so the follower was never made aware of which task they were about to perform.

Each participant also wore sleeves with infrared markers to capture their arm movement through-

out the task, and a Microsoft Kinect 2 was used to record video and point-cloud data for each

trial.

After each dyad completed their trials, they were given a survey and asked to rate the per-

formance of their partner on a variety of criteria, such as whether the partner moved at appropriate

speeds, moved in the correct direction, whether they trusted their partner, etc. These questions

help qualitatively measure performance that we might otherwise miss, and helps provide a base-

line for developed robot control methods. Additionally, people may trust and prefer people more

than robots, and this data helps determine if there is a preference gap that cannot be captured by

objective performance measures. Well designed human-robot co-manipulation controllers should

approach both quantitative and qualitative performance of human-human dyads.

Although the experiment involved 6 different tasks, and our future goals include incorpo-

rating controllers for 6 DOF translational and rotational movements, this chapter focuses on char-

acterizing a subset of the tasks. We focus mainly on the blind versions of both the pure translation

task, as well the pure rotation task. The emphasis was placed on these tasks for a few reasons. First,

as discussed in Chapter 2, most research done in this area of pHRI for co-manipulation involved

either lateral movement with no extended object, or only anterior direction movements (see Fig.

3.3 for directions reference).

When co-manipulating an extended object, the intent of the leader is complicated by the

TvR problem. Therefore, characterizing how humans are able to recognize a desired lateral move-

ment with an extended object and distinguish it from a desired rotational movement is key for

successful co-manipulation of extended objects. Second, other tasks include components of trans-

lation and rotation. Therefore knowing the defining characteristics of lateral translation and planar

rotation helps to recognize these motions in more complex tasks. We also examine only the tasks

where users were blindfolded to simplify the analysis, since these tasks involved only haptic com-

munication. The sighted tasks will be used as upper bounds on possible performance, or as a basis

for controllers with more input–such as robotic vision–in future work. Last, because there are few

co-manipulation methods for low DOF control, developing a planar 3 DOF approach provides a

strong foundation to develop higher DOF methods.
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Figure 3.3: Anatomical direction reference with corresponding table axes: x is anterior, y is lateral,
and z is superior.

3.2 Metric Investigation

The two-fold objective of the experimental study was to form a foundation for a robot con-

troller that could potentially replace a human in the human-human dyad, and also to determine

the performance of human-human dyads in co-manipulation tasks in 6 DOF. In order to be a suit-

able human replacement in a dyad, a robot controller needs to approach human performance in

co-manipulation tasks. Therefore, we needed to identify and define which metrics characterize

human-human performance the best.

As discussed previously in Chapter 2, there are difficulties in determining performance

metrics from our experiment. First, there are a variety of metrics to choose from, and not all of

them are relevant to all types of tasks. Metrics that maybe be a good fit for translation task may

not necessarily be a good fit for the complex 3D task. Second, the dyads were given no specific

directions other than for the leader to complete the on-screen tasks, and the follower to follow

the leader. Therefore, we cannot say a specific dyad was trying to complete the task quickly, or

precisely, rather, we can only say that the dyads performed the task in whatever way they preferred.

Third, behavior metrics, like time on target from Groten [7], are hard to determine for complex

tasks. For a 1 DOF translation task, it might be relatively easy, we can determine when it is

translating by looking at times that motion is restricted to a single DOF. However, for a task like
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the pick and place task, which is described in [1] as Task 1, there are many different methods to

reach the destination, and it is difficult to determine what the correct behavior is. This chapter

explores possible metrics and determines which are most suitable for creation and evaluation of

pHRI co-manipulation controllers.

3.2.1 Variable Relationships

Because our experiment involved 6 DOF, it is often difficult to decouple how a certain

force or action affects the environment over time. Instead of looking at the states strictly as time-

dependent series, we also wanted to explore how the states are related to each other. This can be

done by using phase portraits. Phase portraits are often used to explore things like limit cycles in

dynamical systems. We used them to look at non-linearities and explore the relationship between

states in a more intuitive manner.

There are a total of 18 variables considered in this dynamical system: 12 motion states

(position, velocity, orientation, and angular velocity in x, y, and z) and 6 inputs (force and torque in

x, y, and z). This means there are 171 unique variable relationships that could be drawn to compare

these variables. Because we had to visually inspect all of these relationships, it was beneficial to

eliminate some of the possible combinations.

Some of the variable relationships can be classified as phase portraits, since they are in the

state space of the system. A few of these are less interesting to us, for instance comparing px,

py, and pz might reveal some interesting paths that the board takes, but don’t provide much other

information. Therefore, we did not include those states in our analysis. Since we are focusing

on the planar co-manipulation tasks in this chapter, it makes sense to consider only the velocity

states that are in the plane, which allows us to narrow the focus to vx, vy, and ωz states. We did not

include comparing the states to themselves, and also omitted vx compared to vy for readability of

the plot.

Other interesting combinations, although not phase portraits, are the input/output relation-

ships, which may give information about how the board is reacting to the inputs. Due to the nature

of the planar co-manipulation tasks this thesis analyzes, we chose to focus on looking at only the

effects of inputs Fx, Fy, and τz on the velocity states, reducing the number of variable relationships

to 11.
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We looked at the rotation and translation task phase portraits for these 11 combinations. A

representative set can be seen in Fig. 3.4, which was generated for the rotation task. An interesting

plot here is the comparison of ωz and τz. For this particular plot, it appears there is a linear

relationship during the middle of the task, where a decrease in torque corresponds to an increase in

angular velocity. Similarly, in the comparison of vy and τz, a decrease in torque leads to a decrease

in velocity.

Figure 3.4: Variable relationships for a single trial of rotational task using vx, vy, ωz, Fx, Fy, and τz
as variables for comparison, with color shift indicating time dimension–task start is green and task
end is yellow.
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Figure 3.5: Variable relationships for a different trial of rotational task than Fig. 3.4.

These patterns, however, do not hold for all dyads, and sometimes do not even hold for

other trials by the same dyad. A different trial, performed by the same dyad as Fig. 3.4, is shown

in Fig. 3.5. Here, we can see that those linear events are replaced by circular ones. In fact, there

did not appear to be a cohesive pattern that we could draw from these phase portraits. The phase

portraits indicate that each dyad, and possibly each individual trial, can be performed in a different

manner. Therefore, it is necessary to find metrics that are applicable across all dyads. There are
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more efficient ways to explore and extract salient information from other variable relationships,

and to determine other useful trends in the phase space, but this is outside the scope of this thesis.

3.2.2 Interaction Forces

Interaction forces are the forces that do not directly relate to motion, i.e. the forces applied

by each participant that do not accelerate the object. Noohi et al. [41] suggested that interaction

forces could be used as a source of communication. Other researchers have suggested (see Chapter

2) that the interaction forces should be minimized, as they represent wasted energy, which can

sometimes be an objective in human movement. We sought to explore this metric further as it

seemed to be a promising metric.

In our study, the force/torque sensors could not discern between external forces – forces

that accelerate the object – and interaction forces, but rather measured the total force applied,

so we calculated the interaction force after the experiment ended. An illustration showing how

these forces are defined is shown in Fig. 3.6. Both users apply forces to the table, and the sensor

measures the total force Ft . Fe, the external force, can be calculated using our knowledge of the

table’s motion and Newton’s Laws, and then we can calculate the interaction force, Fi. Eq. 3.1

shows the combined forces that contribute to the total force, or the force measured by the sensors,

and how we calculated the external force. No other external forces were modelled, such as air

friction or damping, as we assumed they were negligible. The motion capture data described the

pose of the table over time, and was differentiated twice to acquire the acceleration data. With a

known mass of the table and acceleration, the external force was estimated (Eq. 3.1), and removed

from the total force to give us the interaction force for the task.

Ft = Fi +Fe

Fe = ma
(3.1)

For the anterior, x, and lateral, y, directions, the only external force being applied is the

force applied from the participants, whereas in the vertical z direction, gravity was also applied.

For all calculations and analysis in this paper, the forces were low-pass filtered with 20 Hz cutoff
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Figure 3.6: Fig. 2.2 reproduced here for reader’s convenience.

frequency to represent human response ranges. The muscle response of humans can reach up to

100 Hz for brief, forceful efforts, but often lies within the 10-30 Hz range [47].

Minimizing interaction forces has been used in other works as a basis for control, including

variable-impedance control [3, 23]. Our study, however, showed that human-human dyads do not

necessarily minimize interaction forces. For both lateral and rotational movements, we calculated

the average interaction force in the anterior direction and the average interaction torque about

the superior direction. Histograms showing the distribution of average force and torque over the

duration of trial, for all translation and rotation trials, are shown in Figs. 3.7a and 3.7b. These plots

show a histogram of average interaction force and torque at the center of the table. As can be seen,

the interaction force was almost always non-zero for both lateral and rotational movements in the

anterior direction (see Fig. 3.3 for clarity on directions). Additionally, we considered the ratio

of average interaction to external forces, Fi,avg/Fe,avg, which–when averaged over all the trials–

gave a magnitude of 20, indicating the forces used for acceleration of the object were 20 times

smaller than those not used for acceleration. It is not clear why the average interaction force was

so substantial, but our hypotheses include:

1. These forces were used for object and human stability

2. These forces were used to better communicate intent

We will conduct future studies to explore the hypothesis on stability, but the hypothesis

on communicating intent is discussed to some extent in Chapters 3.3 and 4. This result is sig-

nificant because it implies that lateral collaborative movements may rely on interaction forces
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(a) Force along lateral axis. (b) Torque about superior axis.

Figure 3.7: Histograms showing average force or torque (at center of table) for rotation and trans-
lation tasks.

along the anterior direction, which is not seen in many state-of-the-art pHRI controllers. Addition-

ally, minimizing interaction forces may not yield results easily understood by human partners in

co-manipulation tasks, since it is now evident that humans are not necessarily minimizing these

forces. We also notice from Fig. 3.7b that the average torque about the superior axis is generally

greater in magnitude for translation tasks than it is for rotation tasks, which is an indicator of how

human-human dyads solve the TvR problem. This is also discussed further in Chapters 3.3 and 4.

3.2.3 Minimum-Jerk Exploration

The minimum-jerk (MJ) movement is well-documented as a basis for human arm move-

ments, especially in point-to-point movements, and is used in some cases as a useful metric for

human performance. We did not expect to see MJ trajectories in these trials, since one participant

was blindfolded and unaware of the task specifications, and the dyads used whole-body motion

rather than arm-only motion. Another interesting finding from our study was that both the lateral

movement tasks and the planar rotation tasks resembled a MJ movement in lateral position and

angular position respectively. This was especially true for the dyads that completed the task more

quickly. Figs. 3.8a and 3.8b show a positive correlation between deviation from MJ trajectories

and time to complete the task. Deviation from MJ trajectories, or MJ Error, is simply the sum of

the residuals between the actual trajectory and ideal MJ trajectory. The slower dyads often had a
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(a) Lateral task. (b) Rotation task.

Figure 3.8: Comparison of completion time to deviation from MJ trajectory with trend line.

larger error between their position and the ideal MJ position, whereas the quicker dyads generally

had a smaller error with respect to a MJ trajectory. This could be due to the follower becoming

confused, and taking more time to determine the intent of the leader. Therefore, completion time

or deviation from a MJ trajectory could be an indication of how much confusion was present in the

dyad.

Overall, though, the lateral position and angular position stayed close to the MJ trajectory,

and adhering to a similar trajectory over all trials corroborates the results of similar 1-dimensional

studies [14]. Figs. 3.9a and 3.9b show the position of the tasks over a normalized time, since each

trial took a different amount of time. The gray dotted lines show each individual task, the black

dotted line is the average position of all the tasks, and the blue line is the ideal MJ trajectory given

an average start and stop position. As we can see, even though the follower did not know the end

position, they managed to remain fairly close to the MJ trajectory both for translation and rotation

tasks.

Despite the evidence presented for planar co-manipulation tasks, it is not clear that MJ

trajectories encompass general co-manipulation for 6D tasks. Dyads may have confusion about

intent, may encounter obstacles, or may move for indefinite amounts of time. These situations

can lead to non-MJ trajectories, as we have seen in our study (see Chapter 3.3), and we agree

with previous research, that a MJ basis for control may be too restrictive [35]. However, we also
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(a) Lateral task trajectories. (b) Rotation task trajectories.

Figure 3.9: Individual trial trajectories, ideal MJ trajectory, and average trial trajectory, all scaled
to normalized time.

conclude that MJ trajectories can be useful for describing task metrics (discussed more in Chapter

3.2.4), as was proposed in other work [6].

3.2.4 Metric Selection

From the analysis of dyads in Chapter 3.2 we narrowed down the list of useful metrics to

incorporate the behaviors and trends we found among the dyads. Some of these metrics may be

of general use, but they were selected for their application to planar scenarios. We believe these

trends could be used to indicate default or nominal human performance. We also desired to ex-

amine metrics that have been shown in other works to be reasonable metrics for describing human

behavior in co-manipulation tasks. We explored these metrics as averages over all dyads, and our

reasoning for this is to quantify what people do on average. Each dyad performed slightly differ-

ently, and analyzing average human behavior will help to make a controller generalize to multiple

users. Although useful in making a robot intuitive, those nominal human-human metrics may ac-

tually contradict other effective performance metrics for improving things like energy expended or

completion time.

With this information in mind, we analyzed our data for metrics to both classify the nominal

performance of the dyads and provide a basis for control methods. The metrics considered were:
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• Deviation from MJ trajectory of table

• Task completion time

• Average velocity of table

• Average angular velocity of table

• Torque change

We evaluated more than just these metrics, but chose a representative set for our analy-

sis here. Some metrics were chosen for their intuitive relationships, such as completion time and

average velocity, and others were chosen for correlation values. The chosen set was compared

using the Pearson correlation coefficient, and the results are summarized in Table 3.1 for the trans-

lation task and in Table 3.2 for the rotation task. The metrics used in these tables are MJ error,

defined in Chapter 3.2.3, completion time, average lateral velocity, average angular velocity, and

torque change. Average velocity and average angular velocity were included as we anticipated

high correlations between these values and completion time, and also wanted to see whether there

was any unforeseen relationships between these metrics and others. For instance, we expected

there might be a high correlation between average angular velocity and minimum-jerk error for

the translation task. Velocity metrics, however, are somewhat limited, as they do not incorporate

the time-dependent nature of velocity, and may therefore occlude some information since we are

taking their average value. Torque change was defined in [6], and is calculated using Eq. 3.2. In

this equation, τ̇t is the time derivative of torque at time t and τ̇t+1 is the time derivative of torque at

time t +1. This measure, which is a bit of a misnomer, determines how much the time-derivative

of torque changes over the course of the task, with higher values indicating more fluctuation in

torque.

∆τ̇ =
T−1

∑
t=0

τ̇t
2 + τ̇

2
t+1 (3.2)

We expected there to be some correlation between most of these measurements since most

of the metrics were proposed in previous research [6, 7, 35, 36]. Surprisingly, some intuitively

related metrics offered very little correlation. The most relevant expected metrics–for the lateral
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Table 3.1: Correlation between metrics for translation task.

MJ Error tc vy,avg ωz,avg ∆τ̇z

MJ Error - 0.63 -0.42 0.05 -0.02

tc 0.63 - -0.66 -0.40 0.02

vy,avg -0.42 -0.66 - 0.30 -0.07

ωz,avg 0.05 -0.40 0.30 - 0.04

∆τ̇z -0.02 0.02 -0.07 0.04 -

Table 3.2: Correlation between metrics for rotation task.

MJ Error tc vy,avg ωz,avg ∆τ̇z

MJ Error - 0.83 -0.50 -0.56 0.71

tc 0.83 - -0.51 -0.78 0.52

vy,avg -0.50 -0.51 - 0.81 -0.36

ωz,avg -0.56 -0.78 0.81 - -0.42

∆τ̇z 0.71 0.52 -0.36 -0.42 -

translation task–were average/max angular velocity and deviation from the MJ trajectory. We ex-

pected dyads performing these tasks to minimize the average angular velocity about the z axis, and

stay relatively close to the MJ trajectory, but the correlation coefficient between these two metrics

was 0.05. In fact, there was a much stronger correlation between deviation from MJ trajectory

and completion time and average lateral velocity – being 0.63 and -0.42 respectively. Intuitively,

minimizing angular velocity would be an ideal metric for this task, since a perfect lateral transla-

tion would involve no angular velocity at all. This supports our hypothesis that some metrics may

be ideal from an effective point of view, but may not be nominal behavior for human users in a

dyad, and we need to consider these non-intuitive relationships between metrics if we want pHRI

controllers to be intuitive to humans.

Another noteworthy observation is the lack of correlation between total torque change and

the other metrics. We would expect that torque change would indicate some measure of perfor-
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mance, but it appears to be more related, at least in the translation case, to some other aspect of the

movement. The lack of correlation may be related to our findings from Chapter 3.2.2, where there

were interaction forces in the anterior direction for lateral movements, and may indicate that the

non-correlated metrics may affect stability, communication, or something related to preference.

For rotational tasks, the same metric set was applied as can be seen in Table 3.2. However,

we were again surprised by the results. We expected task completion time and MJ error to be

related, since we had seen that previously. What we did not expect was torque change to be so

heavily correlated to the other metrics, where it was not in the translation case. This finding was

significant to us, and indicated that there is some fundamental difference between τz in these two

tasks. We explore this phenomenon further in Chapter 3.3.

The surprising correlations between metrics show we do not fully understand how human-

human dyads operate. A reasonable conclusion, however, is that humans may sacrifice perfor-

mance on certain metrics, such as minimizing interaction forces, in order to improve the perfor-

mance in another metric, or to affect the nominal performance of the dyad. While our metric

observations provide some insight to this topic, our work on metrics is still an open question that

is necessary to explore in order to better characterize and design performance of human-robot co-

manipulation controllers. However, the remainder of this thesis mainly uses the metrics described

in this chapter as a basis for performance of both human-human and human-robot dyads.

3.3 Lateral and Rotation Movement Characteristics

While looking into performance metrics, we recognized some patterns in how the dyads

behaved in lateral translation tasks. Studying the videos of the lateral motion task, we saw that the

follower often guessed the leader’s intent incorrectly, and began to rotate when the leader started

their movement. When this happened, the leader would flex their arm on one side of the table,

causing a torque on the table about the z-axis, and the follower would then commence moving

in the correct manner. With this video evidence, as well as the torque change information from

Tables 3.1 and 3.2, we looked for in-task patterns of applied torques which could indicate the

leader’s intent to start either a translation or rotation task.

In order to see in-task relationships, we decided to take each task and look at the time-series

torque for the beginning of the tasks. As we looked at the torque data, we noticed two groups ap-
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(a) z-axis torque patterns. (b) x-axis torque patterns.

Figure 3.10: First 4 seconds of trials showing torque trends for rotation and translation tasks for
both directions of motion: dashed lines are individual trials, and bold lines indicate trial averages.

pearing. These two groups represented the torque values for the direction of the rotation task, since

the dyads were assigned to randomly rotate either clockwise or counterclockwise for each rotation

task performed. We then tried looking at the same z-torque time-series data for the translation

tasks, and noticed that two more groups appeared, indicating that there was some pattern showing

the difference between translation and rotation tasks, as well as a difference depending on which

direction the table was travelling. We then took an average of z-torque for each of the 4 distinct

groups: translation left, translation right, rotation clockwise (left), and rotation counterclockwise

(right). We noticed there appeared 4 groupings of average z-torque for the entire time series. These

findings are summarized in Fig. 3.10a, where bold lines are averages of task type.

As can be seen, translation tasks tend to increase in z-torque more quickly, whereas the

rotation tasks hover around the same value for over 1 second before diverging. It is evident from

this plot that there is a clear difference in torque patterns between the translation and rotation

trials, and also the direction of travel. The intent can be classified as either translation left, or

translation right, depending on the z-torque value achieved. However, there is not a difference

between z-torque patterns for the first second of left and right rotations. Both directions have an

approximately constant torque value for this time segment. This is an important time segment,

since it is during this interval that decisions about whether to rotate or translate are made by the

follower, and there needs to be some indication given by the leader to signal which direction to go.
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For this reason, we also looked into what other signals might be given by the leader to

indicate which direction to travel, and to clarify whether to rotate or translate. In watching video

of the trial, we also noticed some dyads tended to rotate the board about the anterior (x) axis

while performing the tasks. So we did a similar analysis with x-torque values to what we did

with the z-torque values. The results can be seen in Fig. 3.10b. Here, the difference is not quite

as pronounced, but generally, rotating left and rotating right can be separated due to the x-torque

value at the beginning of the trial. It also provides additional insight for determining translation

task direction, as these are quite distinct in this analysis.

With the analysis on torque triggers providing background for a control method for ex-

tended object co-manipulation, we determined what the velocity profile should look like for these

tasks. For the translation tasks, we assumed it would follow the bell-shaped velocity profile from a

MJ trajectory, however, we wanted to see how the velocity profile looked when translating over a

large distance. Bussy et al. [14] showed that humans often accelerate an object to a steady velocity

while translating an object. We wanted to verify this, and also determine what velocity most dyads

chose as the steady state velocity. To do this, we looked at our 3D Complex Task data. This task

involved a large translation portion, followed by changes in direction and rotation of the board to

avoid obstacles. Fig. 3.11 shows the first portion of a typical complex task, which is a translation

for over 2 meters. We notice from this data that the results seen in Bussy et al. can be verified, and

also that the steady velocity achieved is around -0.35 m/s. Since we want our robot controller to

work in an undefined situation, we would expect it to be able to perform a translation task indef-

initely, if needed. This observation helps inform us that a dyad’s desired velocity is some steady

state value.

3.4 Human-Human Performance Summary

The information gathered from this study provides us with some more understanding of

human-human co-manipulation. First, we know that each dyad potentially performs the task dif-

ferently than another dyad. In some cases, the dyad performs the task differently each time it

performs the same task. Second, we have verified some aspects of human movement for full body

motion, such as following a minimum-jerk trajectory. We also saw that dyads adhering to this

trajectory corresponded with how quickly a dyad completed the task. Third, the assumption that
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Figure 3.11: Plot showing lateral velocity profile for beginning of Task 5, a 3D Complex Task
avoiding obstacles: this portion of the task is a lateral translation for over 2 meters.

all human-human interaction has the goal of minimizing forces was shown to not necessarily be

true, as we saw that dyads applied forces in directions orthogonal to motion. Fourth, we explored

the correlation between certain performance metrics, and found that performance on some metrics

may differ depending on task type, and also performance on certain metrics may be sacrificed in fa-

vor of other behavior. Last, new information about torque profiles of translation and rotation tasks

provided a unique perspective on how force can be used to solve the problem of co-manipulation

of extend objects. Using the tendencies of humans in applied torque patterns from the leader, we

can distinguish between task type and task direction intent for the follower to use.

We still are unclear on many aspects of the metrics we have found. We know that for

rotation and translation tasks, these metrics are useful in comparing performance to humans, but

it is not clear whether these metrics will be applicable to more complex tasks. We also have not

exhaustively explored all state relationships, nor all possible metrics, and it is possible there are

metrics that can more completely describe human-human dyad performance.
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CHAPTER 4. PLANAR EXTENSION OF VARIABLE IMPEDANCE CONTROL

4.1 Motivation and Formulation

In order to verify that the torque patterns we saw in Section 3.3 would be applicable in

an extended object co-manipulation scenario, and also to show that current variable impedance

co-manipulation techniques are not adequate for extended objects, we built an extension for a vari-

able impedance controller. Variable impedance control (VIC) is a possible solution to undefined

or indefinite scenarios, since it is not based on a trajectory, but rather on force inputs which de-

termine robot velocity. What we noticed in practice, though, is that VIC has issues when dealing

with bi-manual control and extended object control. We implemented a VIC based on Duchaine

and Gosselin’s work, [3]. This work was chosen as it most closely represented state-of-the-art in

human-robot co-manipulation, and also is capable of adapting trajectory and responding to distur-

bances. The controller from this work was implemented on our robot platform, which is a Baxter

Research Robot mounted onto an AMP-I Mobile Base (see Fig. 4.1). There are force/torque sen-

sors on Baxter’s wrists, and the base is equipped with Mecanum wheels making it omnidirectional.

VIC involves the control loop seen in Fig. 4.2. The human communicates their intent to

the robot through force sensors, and the VIC model determines a desired velocity based on the

applied force, and how the force is changing in relation to the robot’s velocity. The general model

is shown in Eq. 4.1, and is split into direction specific equations in the figure. Here, F and Ḟ

are applied force and time derivative of force, respectively, ṗ and p̈ are velocity and acceleration

of the robot, and m, c, and α serve as virtual mass, damping and weighting parameters, which

are tuned to define the impedance. The model can be discretized and implemented as a discrete

system, solving for the desired velocity at each time step. The state transition matrix and state

control matrix are shown in Eqs. 4.2 and 4.3. It is notable that these matrices are dependent on Ḟ ,

and are therefore changing at each time step. Additionally, c, m and α can be defined separately

for each DOF, although in our implementation, we used one variable for all DOF. The discretized
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Figure 4.1: Baxter Research Robot from Rethink Robotics mounted onto an AMP-I Mobile Base
from HStartTech, with ATI Mini-45 force/torque sensors on each wrist.

state space equation is formulated, and can be seen in Eq. 4.4. To determine matrices G and H,

assuming matrix A is non-singular, equations 4.5 and 4.6 are used. The discretized state space

equation, Eq. 4.4, can then be used to determine the desired velocity state based on the current

state and inputs.

F = mp̈+ cṗ−αḞ ṗ (4.1)

Figure 4.2: Control loop for BMVIC.
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A =


c−αḞ

m 0 0

0 c−αḞ
m 0

0 0 c−αḞ
m

 (4.2)

B =


1
m 0 0

0 1
m 0

0 0 1
m

 (4.3)

x((k+1)T ) = G(T )x(kT )+H(T )u(kT ) (4.4)

G(T ) = eAT (4.5)

H(T ) = (eAT − I)A−1B (4.6)

Given the output from the algorithm, we send those velocities–vx, vy, etc.–as commanded

velocities to the base. We treated the arms as low-impedance devices, as we set the PD gains on

a joint torque controller to be low (see Section 4.2). This model was made for single arm ma-

nipulation, so we implemented a VIC for each arm independently in order to achieve bi-manual

manipulation. However, this is not an ideal method for bi-manual control. Pushing one arm for-

ward and one arm backward could apply zero net force, causing the robot to remain stationary,

rather than rotate, as we hoped. To deal with this, we added a torque model to Duchaine and

Gosselin’s VIC model, as seen in Eq. 4.7. Here, τ and τ̇ are applied torque and time derivative

of torque, respectively, with θ̇ and θ̈ as angular velocity and acceleration, while I, b, and β serve

as virtual inertia, damping and weighting parameters. All forces and torques referenced here are

with respect to the center of the table. This equation is solved similarly to Eq. 4.1, but the A and B

matrices are defined as seen in Eqs. 4.8 and 4.9.
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τ = Iθ̈ +bθ̇ −β τ̇θ̇ (4.7)

A =


b−β τ̇

I 0 0

0 b−β τ̇

I 0

0 0 b−β τ̇

I

 (4.8)

B =


1
I 0 0

0 1
I 0

0 0 1
I

 (4.9)

The bi-manual torque-based model theoretically allows VIC to be extended to planar mo-

tion, where pushing one arm forward and one arm backward will provide a net torque, indicating

a desired angular velocity (in the plane only), in addition to any desired cartesian velocities cal-

culated by the original model. In summary, at each time step, Eqs. 4.1 and 4.7 are solved to

determine desired velocity and angular velocity to send to the velocity controller. We will refer to

the bi-manual torque-based model as bi-manual VIC or BMVIC.

We also extended VIC in a new way, using our results from Section 3.3. We used Eq. 4.1

as a base controller for anterior/posterior translation, and added torque-based triggers for lateral

translation and planar rotation. The logic of this extended variable impedance control (EVIC)

is shown in Algorithm 1. Torque threshold values were determined by using Figs. 3.10a and

3.10b as a starting reference, then refined to appropriate levels by trial and error. We centered

the thresholds around zero for ease of implementation. If none of the torque threshold conditions

are met, the algorithm commands no lateral translation or rotation about the superior axis. As

mentioned previously, if the torque threshold conditions are met, the robot accelerates until it

reaches a specified steady state velocity. The robot acceleration was limited to the capabilities of

our robot platform. A control loop showing how this algorithm is implemented is shown in Fig.

4.3. The main difference between EVIC and BMVIC is that EVIC uses Algorithm 1 to determine

the desired lateral and angular velocities, whereas BMVIC relies on Eqs. 4.1 and 4.7 to calculate

the desired lateral and angular velocities.
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Figure 4.3: Control loop for EVIC.

Algorithm 1 Extended Variable Impedance Control
Require: τz,τx

if τz ≤−τz,threshold and τx ≥ τx,threshold then
Left Translation

else if |τz| ≤ τz,threshold and τx ≥ τx,threshold then
Right Rotation

else if |τz| ≤ τz,threshold and τx ≤−τx,threshold then
Left Rotation

else if τz ≥ τz,threshold and τx ≤−τx,threshold then
Right Translation

else
Stop

4.2 Extended Object Co-manipulation Implementation

We implemented both BMVIC, as well as the EVIC on our robot platform, shown in Fig.

4.1. A video showing EVIC running can be seen at https://youtu.be/5vicqv788dI. Our pur-

pose in implementing these controllers was to determine feasibility of the controllers, and also to

get initial data quantifying performance against the blindfolded human-human dyads. We ran both

controllers testing the capability of planar co-manipulation of an extended object on the following

criteria: lateral translation and planar rotation, or rotation about the superior axis. The Baxter arms

were also running an impedance controller to maintain their position, while giving them a more

human-like (low impedance) behavior. Humans have been shown to exhibit low impedance be-
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havior for certain tasks [47]. The impedance control law, given in Eq. 4.10, used Kp and Kd gains

of [40, 120, 40, 16, 8, 10, 12] and [7, 8, 4, 7, 1.5, 1.5, 1] respectively. The desired angles, qcmd ,

used were [0, -0.84, -1.27, 2.26, -0.34, -1.22, -2.25] radians and [0, -0.84, 1.27, 2.26, 0.34, -1.22,

2.25] radians for left and right arms respectively. We ran the controller at a rate of 500 Hz, manip-

ulating the same table from our human-human dyad experiment (see Fig. 3.2.) For determining

performance of the controllers, we compared the completion time and MJ error for both lateral and

rotational tasks. We also had a qualitative metric: whether BMVIC, EVIC, or neither controller

was preferred.

τcmd = Kp(qcmd−q)−Kd q̇ (4.10)

We invited 4 participants to test EVIC. The participants, all with some experience with

robots and familiarity with the research, were trained to a competency level, then performed Tasks

3 (lateral translation) and 4 (planar rotation) from our previous experiment, (see Figs. 4.4 and 4.5

for task instructions). The tasks were performed 6 times each. We also collected the same data–

force, motion, and point cloud–as in our human-human experiment. We then had the participants

test BMVIC, using the same process as with EVIC. Unfortunately, when the first participant was

being trained on BMVIC, the robot became unstable and sheared an internal component in the arm.

We replaced the component that broke, and ran testing with the next subject. While the second

subject was performing a rotation task, the same internal component on the other arm sheared.

We recognize this does not allow for a detailed comparison of performance between BMVIC and

EVIC, however we can make two important points. The first is that forces induced on the robot

arms by the BMVIC method were unsafe and detrimental to the robot. Since EVIC is based on

human-human data, we can reasonably conclude that BMVIC requires forces outside of normal

human comfort or intuition. The second point is that the two participants who were able to run

both control methods indicated the preferred (pre-robot failure) control method was EVIC.

While this was an unfortunate circumstance, we were able to obtain results for EVIC with

all 4 participants, as can be seen in Table 4.1. This table explores some of the metrics formulated in

Chapter 3.2.4. EVIC performs reasonably well, and is within 30% completion time of humans for

both the translation and rotation tasks. However, we recognized that there is some learning curve
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(a) Task 3 (translation task) starting position. (b) Task 3 (translation task) ending position.

Figure 4.4: Top view of task 3 (lateral translation task) beginning and ending positions, as given to
the leader via tablet. Red, orange, green, and blue lines correspond to tape lines on the floor of the
arena, and help the leader navigate the task.

(a) Task 4 (rotation task) starting position. (b) Task 4 (rotation task) ending position.

Figure 4.5: Top view of task 4 (rotation task) beginning and ending positions, as given to the leader
via tablet. Red, orange, green, and blue lines serve same purpose as in Fig. 4.4.

for the participants, so we also looked at only the last 2 trials (out of 6) for each participant. Look-

ing at the last 2 trials, we can see a significant increase in user performance. The completion time

for translation trials went down to 15% difference between EVIC and human-human blind-folded

trials, whereas the rotation trials surpassed human-human dyad performance. In both translation

and rotation cases, EVIC also managed to outperform the human-human dyads in MJ error.

While we recognize this is a small population sample, we see these initial results as signifi-

cant since this control method is able to perform near human-human levels with a minimal amount

of user training. In the future, we plan on running more participants through the tasks with EVIC

to see how these results differ with a larger sample size. Another result from this pilot study is

evidence that EVIC can perform both anterior and lateral translation, and can smoothly navigate a

41



Table 4.1: Comparison of EVIC and blindfolded human-human dyads.

Human-Human EVIC EVIC Last 2

Task Time (s) – Tran. 7.05 9.09 8.12

MJ Error (m) – Tran. 215.29 65.61 43.02

Task Time (s)– Rot. 7.58 9.32 7.38

MJ Error (rad) – Rot. 368.85 135.62 126.15

rotation task, which is a significant step forward in pHRI co-manipulation. Another notable out-

come from the pilot study is that our naive use of arm and base coordination did not invalidate

the control model. This means the EVIC approach is still viable, and should improve with more

explicit arm and base coordination, as well as with improvements to the robot platform, such as a

legged base, or a base with quicker acceleration.
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CHAPTER 5. NEURAL NETWORK PREDICTION CONTROL

5.1 Motivation

While EVIC, described in Algorithm 1, was a useful method for planar co-manipulation,

it took a considerable amount of time searching for patterns by hand to find the necessary infor-

mation. This is especially true if we want to find patterns for higher DOF tasks, where even more

forces and torques may be coupled to produce specific movements. We decided to, rather than sift

through the data by hand, use machine learning to look through the HHI data to predict human

intent.

Fig. 5.1 describes a control loop for pHRI. Because our data considered the interaction

between a human leader and a human follower, the input x could be considered what the leader

did–applied forces or moved the object–to indicate their intent to the follower. The follower then

deciphered the intent, xd , and moved as they believed appropriate, xr. The leader then reacted to

this motion. Essentially, the leader put in a stream of data that indicated intent to move the object in

a certain manner, which the follower then deciphered and acted on the intent. An estimator created

through machine learning should follow this basic input data to velocity command outline.

There are a variety of neural network structures that could be considered for this purpose.

Previous research done by Yan and Li [48] used RNNs to model the inverse dynamics of a 2 joint

robot. Also, Wu and Song [49] showed that a feedforward disturbance term could be modelled by

an RNN for a legged robot. These works indicated that robot controllers can be described with

RNNs. Other work, done by Martens et al. [50], showed how Recurrent Neural Networks (RNNs)

are used in predicting data, specifically text. A sequence of characters can be fed into the RNN as

an input, and the RNN will predict the next character in the sequence. In considering what form

our neural network should take, the RNN model proved to be the most applicable to our work.

From our exploratory study, we had sequences of forces applied to and motion of a table that could

be used as inputs to an RNN. We determined that we could feed the force and motion data, as a
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Figure 5.1: Basic control loop structure of intent estimation in co-manipulation. The human moves
the co-manipulated object, and the motion of the object, x, is fed into an intent estimator, which
determines a desired motion of the robot, xd . The robot’s motion, xr then influences the object
motion, as well as the human’s.

substitute for characters in other RNNs, and receive a motion prediction as an output, similar to

how RNNs are used for predicting text. This prediction encapsulates the human intent, encoded in

the desired velocity of the object in the object frame, and provides a goal for the robot to achieve.

5.2 Architecture

Because humans do not instantaneously react to stimuli, it is likely that the table movement

is dependent on multiple past states and inputs. Since there was precedent for using RNNs as por-

tions of control loops, and as predictions of future states, we decided on using the RNN structure.

To implement this, we used a number of previous time steps of motion data (velocity and angular

velocity) of the table as inputs. For this thesis, the measured and desired velocities for the neural

network are all taken in the object’s reference frame. While we had both force and motion data at

our disposal from the experiment, only motion data was included in our neural network. Our rea-

soning for not including force data is that including it caused our neural network solution to have

poor convergence. We know that forces play an important part in any dynamical system, therefore
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Figure 5.2: Basic neural network structure; time-series motion data inputs (left) enter the network,
are sent through a fully connected layer, a ReLU layer, through an LSTM Cell RNN, and another
fully connected layer, then finally predicted velocities are given as outputs (right).

we believe that including a model where forces can be used should be a priority in future work.

Additional changes that could improve our model include: changing the RNN structure, optimizing

number of time steps to consider, or using a different structure of neural network. However, this

thesis does not consider these options, but leave them for future work, as we obtained an accurate

prediction using our current network with motion data inputs. The basic structure of the neural

network is shown in Fig. 5.2. Initial development of the network architecture was done in [2], but

some changes were implemented to help improve the structure and predictions. Specifically, the

RNN structure with LSTM cells was implemented in this thesis, as well as combining translation

and rotation predictions into a single architecture, and removing acceleration as an input.

Our final network consists of 3 LSTM layers each with 120 hidden states. The process of

choosing a neural network structure and other parameters was not exhaustive and it is possible that

better structure and parameters could be obtained. However, the process for choosing neural net

parameters and training took over 10 hours. With more experience and more efficient computation,

we may have been able to find better structures, but this is also left to future work. Methods

other than neural networks may exist, but our purpose in this thesis is to show that human intent
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estimation is possible based on the data collected from our user study, and neural networks allowed

us to achieve this goal.

Additionally, it was shown by Chipalkatty et al. that more complex predictions of future

movement can actually decrease performance if they do not agree with what the human is try-

ing to do. This is because humans cannot be completely modeled due to their unpredictability.

Chipalkatty et al. found that it was more important that the human understand what the robot

will do next, meaning that our controller should be intuitive for a human partner in a human-robot

dyad [51]. In addition to being intuitive, the prediction should also be accurate and repeatable. The

inputs to the neural network, as seen in Fig. 5.2, are 45 past steps of velocity and angular velocity

of the table in the x, y, and z directions, {xt−44,xt−43...,xt−1,xt}. Since motion data was collected

at 200 Hz, each time step represents 0.005 s, and 45 time steps is 0.225 s. The outputs are the

predicted velocity and angular velocity of the table in the x, y, and z directions for 1 time step into

the future, x̂t+1, where x̂ indicates a predicted value.

Our neural net formulation also uses what Engel et al. describe as iterated prediction [52].

The neural network itself only predicts 1 time step into the future. Then, the prediction, x̂t+1, is

appended to the input to give {xt−44,xt−43...,xt−1,xt , x̂t+1}. The first step of the input is dropped

to obtain a new input of past motions for the neural net, {xt−43,xt−42...,xt , x̂t+1}. The new data is

input into the neural net which outputs a prediction 1 step forward, but 2 total steps into the future,

x̂t+2. This is then appended to the input. The process is repeated 10 times to obtain a prediction of

10 steps, {x̂t+1, x̂t+2..., x̂t+9, x̂t+10}. This process is represented by Fig. 5.3. Because the outputs

of each prediction step become the inputs for the next, the inputs and outputs must be the same

variables.

5.3 Neural Network Creation

5.3.1 Training

We pre-processed the data for the neural net to improve the results. The velocity data was

scaled to have 0 mean and standard deviation of 1 over the entire set of data. This was then inverted

on the output to show the results in their proper units. This same scaling can be used on new data

as long as the mean and standard deviation are similar to the training data. This is the case in
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Figure 5.3: Illustration of iterated prediction, where previous time steps are used to obtain one
future prediction of states, which is then appended to previous time steps. The first time step is
removed, and the network is run again in order to achieve multiple future predictions. Included
from [2] with permission.

our experiment, as velocity values fall into the average adult human range. The entire set of data

consists of 2.5 million time steps for each variable. Data was split into to training and validation

sets. 75% of the data was assigned to the training set and the other 25% to the validation set.

Training was performed by creating batches of data that randomly pulled in 32 sets of 45

steps of data from the entire training set. Sets of 45 steps were also created from the validation

set. The neural net was trained on new training batches for a number of iterations, until the cost

function was below a threshold we chose. We used the mean squared error (MSE) for the cost

function, as shown in Eq. 5.1.

MSE =
32

∑
n=1

(x̂n,t+1− xn,t+1)
2 (5.1)

Once this threshold was reached, each training batch took in the original data, created

a prediction, appended the prediction to the end of the time-series, and removed the first step,

following the pattern shown in Fig. 5.3. This process was repeated until the desired number of
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future predictions was reached. By training the neural network on data that includes predictions,

the stability of the prediction is improved.

Another benefit of iterated prediction is the inclusion of predicted velocities each training

step reduces the amount of overfitting, since new data is essentially being introduced each iteration.

By training this neural network, we have created an intent estimator to be used in a human-robot

dyad performing co-manipulation of an extended object. The object’s motion data can be fed as

an input at each time step, and the trained neural network will output a predicted velocity for the

object. The robot must then use this estimation to calculate its own trajectory to make the object

follow the desired behavior.

5.3.2 Validation

After training, the validation set was used to evaluate the prediction. This was done in a

similar process to [2], where the validation set was run through the trained neural network. The

predicted velocity and angular velocity values were compared to those from the HHI data as shown

Fig. 5.4. A magnified look a the last 3 seconds of predictions can also be seen in Fig. 5.5. These

figures show a single translation task with vx, vy, and wz as states. Thin lines in the plot are actual

velocities and bold lines are predictions. Note that the predictions are shown at 10 second intervals

to increase readability of the plot. As can be seen, the predicted velocities are fairly close to the

actual velocities from the task. While the prediction deteriorates as we move farther along the

iterated prediction, this is acceptable, as only one of the first few predictions will be used for

control, and then a new prediction will be generated. This validation, along with the preliminary

results with a slightly different neural net architecture from [2], confirm that the neural network is

accurately predicting human intent in the form of desired velocity. Acceleration data can also be

included, but we found it is not necessary for accurate predictions.
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Figure 5.4: Validation of neural network for a lateral translation task, thin lines are actual velocities
and bold lines are predictions for future time steps.

Figure 5.5: Last 3 seconds of validation plot (Fig. 5.4).
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5.4 Neural Network Prediction Control

As discussed previously, and displayed visually in Fig. 5.1, predicting human intent is only

one portion of the puzzle. We also need to tell the robot what to do with the prediction with a

motion controller. The neural network outputs a predicted velocity and angular velocity of the

center of mass of the table. Along with the prediction of the velocity of the center of mass, we can

know the velocity of other known points on the table, such as the velocity of the leader’s edge and

the follower’s edge, using kinematic relationships. For our motion controller, however, we simply

used the predicted velocity of the center of mass, again in the object’s reference frame. The robot

controller then needs to account for the distance from its center of mass to the table’s, which can

be done using the transport theorem, shown in Eq. 5.2. Here, ~vr is the robot’s calculated velocity

in its reference frame, with ~p as the distance from the table frame to the robot frame, and ~ω as

the table’s angular velocity in the table frame. Also, ~vrel is the table’s velocity in its frame. For

reference, Fig. 5.6 shows the reference frames of the table and robot, as well as how p and ω are

related to these frames. Notice that the table frame and robot frame are rotated 180 degrees from

each other. If we assume that the robot frame does not rotate independently from the table frame,

we can then rotate the velocities into the table frame.

Figure 5.6: Frames of table and robot where p is the distance from the table to robot frame.
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~vr =~vrel +(~ω×~p) (5.2)

We now have the tools to complete the control loop shown in Fig. 5.1. The intent estimator

is replaced with the neural network model. The motion controller is replaced with Eq. 5.2, and is

subsequently fed into the low level control of the robot, which sends voltages down to the wheels

to match the desired velocity. The achieved velocity, xa, is then what the human interacts with,

completing the loop. Also, xa is estimated using numerical differentiation and a 2nd order low-

pass filter of the pose information coming from the motion capture. This loop is shown in Fig: 5.7.

We call this control method Neural Network Prediction Control (NNPC). A notable feature of this

method is that the commanded velocity, xr, is a continuous variable on [−vmax,vmax], where vmax is

determined empirically for each DOF. This means the human user has control of the speed of the

interaction, so if the response xa is not suitable to the human, they can adjust their inputs to move

faster or slower.

Figure 5.7: Neural Network Prediction Control loop.
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CHAPTER 6. PHRI CO-MANIPULATION EXPERIMENTAL STUDY

6.1 Experiment Description

As mentioned previously in Chapter 4 and [53], EVIC works only for 3 DOF planar

control–anterior and lateral translation and rotation in the plane–so we developed an experiment

to compare a planar implementation of NNPC and EVIC. NNPC theoretically can be applied to

control 6 DOF, but we have left this for future work. This experiment was designed to be as close

as possible to the lateral translation and planar rotation tasks from our 6 DOF HHI experiment [1].

The same robot platform setup was used for NNPC as was used for EVIC in Chapter 4.2.

6.1.1 Tasks

Because both controllers are planar co-manipulation methods, we used only planar tasks

from the previous HHI experiment in [1]. As can be seen in Fig. 6.1, each participant performed

two tasks: translation and rotation. In this diagram, the human is represented by the bottom person.

The translation task consisted of the subject moving from one orange arrow to the next, with tape

lines extending on the ground to help the user align the board correctly. Rotation tasks were similar,

except with the participant moving from one green x to the next. Tasks could be run starting at

either arrow or x, and the direction was randomized throughout the trial. Additionally, Fig. 6.2

shows a participant running a translation trial in the arena.

6.1.2 Equipment

The position of the board was tracked via Cortex Motion Capture software with a Motion

Analysis Kestrel Digital Realtime System. A total of 8 Kestrel cameras were used to track 8 in-

frared markers placed on the board. Using a static global frame established by the motion capture

system, the position and orientation of the board could be tracked over time, and we transformed
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(a) Translation task diagram. (b) Rotation task diagram.

Figure 6.1: Task motion for the translation and rotation tasks, start and stop points for leader
delineated by arrows for translation and Xs for rotation.

Figure 6.2: An image of a participant co-manipulating the table during a translation task.

the data into the robot’s frame for use in the neural network. The motion capture data was collected

at a rate of 200 Hz. In order to run NNPC, we need a method of telling the controller the object

velocity. We used a 2nd order low-pass filter and numerical differentiation on position and orien-

tation data to get the object velocity. Additionally, participants wore sleeves with infrared markers
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to track the position of their arms during the trial. This data was not used during analysis, but was

collected to match similar data collected during the experiment in [1].

The object the teams moved was a 59x122x2 cm wooden board – meant to simulate an

object (like a table) that is difficult for one person to maneuver, which weighs 10.3 kg. Attached

to the robot end of the board were a pair of ABS 3D-printed handles, to which two ATI Mini45

force/torque sensors were fastened. The sensors transmitted data via ATI NET F/T Net Boxes,

which passed data over Ethernet to the computer at a rate of 100 Hz. The sensor is attached to

ABS 3D-printed wrist adapters on the other side, which fasten to Baxter’s wrists.

The test arena was a volume measuring 490x510x250 cm. The arena was also equipped

with a video capturing device, with which Fig. 6.2 was captured. The device we used was a

Microsoft Kinect 2, which allowed us to capture 3D point cloud data, as well as color video of

each trial. Although we did not use the point cloud data for analysis in this thesis, the data may be

useful in future work.

6.1.3 Subjects and Procedure

Subjects for this study were male and female students from Brigham Young University in

Provo, UT. There were a total of 16 students–4 female and 12 male–ranging from 18-23 years

of age, with an average age of 20. Students were from a variety of majors, with STEM majors

making up a majority. Participants were asked to rate their familiarity with robots on a scale from

1-5, with 5 being the most familiar, and the average rating was 2. IRB approval was obtained for

this experimental study.

Participants entered the Robotics and Dynamics Lab and filled out the appropriate waivers.

They were then briefed on the purpose of the research and given an introduction to what data would

be collected, and what would be expected of them. Sleeves were then placed on the participants

arms in order to track their arm motion during the trial. Subjects were then given basic operating

instructions for both EVIC and NNPC controllers. This instruction included how to translate in

the anterior and lateral directions, and how to rotate the board for each controller. A controller

was randomly selected, and each participant practiced with that controller until they were able to

complete a competency task, they moved on to the other controller, and repeated the competency

training. The competency task consisted of aligning the board with the tape lines on the ground,
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starting from a translated and rotated position. The practice assured us that each participant would

have at least enough familiarity to complete the translation and rotation tasks.

Once competency training was completed, a controller was selected at random to be the

first controller for data collection. The randomization of controllers was counterbalanced. Partic-

ipants knew the controllers only as A (NNPC) and B (EVIC). They were not given any specific

details about the formulation of the controllers, other than the basic operating instructions in the

competency task. The subjects then ran a series of translation and rotation tasks with the selected

controller. Tasks were randomized (counterbalanced) in order between translation and rotation.

Once a type of task, either rotation or translation, was selected, the participant ran that task type

one direction, and then ran the same task type, but in the other direction. The direction order was

not randomized, and the first direction is indicated in Fig. 6.1. Due to the nature of the controller,

the robot was not able to lift the table from the ground, so the table was laid on a rest stand between

trials. A single trial consisted of the subject lifting the table off of the rest, then a researcher would

remove the rest from below the table. Once the rest was completely out of the way, the subject then

performed the specified task. Participants indicated they were finished by verbally communicating

completion. Once they indicated they had completed the task, a researcher would replace the rest

underneath the table, and the participant would lower the table back onto the rest. Each task was

repeated 6 times, 3 one direction and 3 the other direction, for each controller. Once trials were

completed for one controller, the participants were given a survey, and asked to rate the controller

on certain qualitative characteristics. Once completed, they moved on to the other controller.

A video showing a representation of tasks can be seen at https://youtu.be/4b-wxn9_

gFQ. This video was taken after the participant had completed all trials, so we could use a higher

definition camera to record video, and what is seen is a good representation of the skill level of the

human-robot dyad post-experiment.

6.2 Results and Discussion

6.2.1 Metrics

There are a number of metrics that can be used to quantify performance of the controllers.

A good summary of these metrics is found in [6], as well as our previous discussion in Chapter 3.
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Among these metrics are a few that are especially applicable to the tasks and control methods we

have developed. These are: minimum jerk, completion time, and minimum torque change. While

none of these metrics alone can completely store all the information of each controller, together

they give us a fairly good indication of how each controller was performing in relation to HHI data

from [1].

Minimum jerk error (MJE), or deviation from a minimum-jerk trajectory, is a measure of

how close the actual trajectory was to a minimum-jerk trajectory in meters, and is calculated using

Eq. 6.1. This measure accounts for human tendency to match these trajectories. Completion time

is simply the time from the start of the task to the end of the task. The start of the task is calculated

by determining when the object has first moved beyond 5% of the distance between the starting and

ending y or θz positions, for translation and rotation respectively. The end of the task is calculated

by determining when the object settles into 95% of the distance between starting and ending y or

θz positions. A buffer of 0.5 s is added to the total time to account for the missed motion. This

measure accounts for how quickly a dyad performed the task. Although quick task completion

is not always a direct objective of dyads, this measure can help compare the capabilities of two

dyads. Minimum-torque measure (MTM) is a measure of how much the time-derivative of torque

changes over the course of the task. In instances where the follower predicted incorrectly, there

was an unforeseen obstacle, or some other disturbance, MTM can account for human tendency to

reduce the amount of force or torque required to move. It is calculated using Eq. 6.2.

MJE =
T

∑
t=0

xm j,t− xa,t (6.1)

MT M =
T−1

∑
t=0

τ̇
2
t + τ̇

2
t+1 (6.2)

6.2.2 Quantitative Results

While each task type was performed 6 times for each controller, we only consider the

data from the last 2 trials performed for each task type. Our reasoning behind this is that each

participant learned throughout the experiment, so we want to take the best representation of the

control method. This is acceptable to us, because if a human-robot team were to be deployed in
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Table 6.1: Metrics of EVIC and NNPC for rotation and translation tasks, also compared with
blindfolded HHI and sighted HHI data from [1].

Metric and Task Type Blind HHI EVIC NNPC Sighted HHI

Completion Time (s)–Rotation 7.08 8.25 8.26 6.58

Completion Time (s)–Translation 7.18 7.91 7.75 4.93

MJE (rads)–Rotation 392.71 96.44 87.38 344.70

MJE (m)–Translation 149.91 50.24 48.51 98.92

MTM (N2·m2/s2)–Rotation 488454.38 65602.60 12770.75 341253.43

MTM (N2·m2/s2)–Translation 387937.56 48191.90 15220.89 151758.83

real life, the human would undoubtedly be trained on working with the robot. If we consider the

practice time and time taken to perform the first 4 trials of each type, the total training time for our

participants was approximately 30 minutes.

The results from the experiment based on the metrics in the previous section can be seen in

Table 6.1. This table compares EVIC and NNPC to each other, as well as to the lower (blind HHI)

and upper (sighted HHI) bounds of human performance. As can be seen, NNPC performed best in

most of the metrics. It was able to get closer to blind HHI performance in completion time, and

outperformed EVIC, as well as both blind and sighted HHI performance in both MJE and MTM,

where lower numbers indicate more efficient performance in that task. EVIC, while not quite as

good, still outperformed blind and sighted HHI in most of the metrics, except for completion time.

It is notable that the blind HHI performance captured here is for a human-human leader-follower

dyad, where the follower was blindfolded, and communication was limited to haptic communica-

tion only, whereas sighted HHI allowed for communication in any form desired by the dyad.

We also determined the statistical significance of these quantitative results. The mean val-

ues of the metrics for both the EVIC and NNPC controllers were compared with each other, and

also with the blind and sighted human-human dyads, based on the 3 metrics used in this section.

We ran an unpaired t-test to determine p values, and also determined Cohen’s d to calculate an

effect size. From the p values, we were able to see which groups were statistically likely to have

the same mean, and therefore see whether there was a statistical difference between the groups,

based on a standard p < 0.05 criteria. With the effect size, we were able to determine the strength
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Table 6.2: Statistical significance of quantitative metrics.

p Cohen’s d Effect Size

Comparison Groups Comp. Time MJE MTM Comp. Time MJE MTM

EVIC vs NNPC Trans. 0.73 0.89 0.017 Small Medium Large

EVIC vs NNPC Rot. 0.98 0.70 0.14 Very Small Small Medium

EVIC vs Blind Trans. 0.07 0.00 0.00 Medium Huge Huge

EVIC vs Blind Rot. 0.06 0.00 0.00 Medium Very Large Very Large

NNPC vs Blind Trans. 0.16 0.00 0.00 Medium Huge Huge

NNPC vs Blind Rot. 0.05 0.00 0.00 Medium Very Large Very Large

EVIC vs Sighted Trans. 0.00 0.00 0.00 Huge Large Very Large

EVIC vs Sighted Rot. 0.01 0.00 0.00 Large Large Large

NNPC vs Sighted Trans. 0.00 0.00 0.00 Huge Large Huge

NNPC vs Sighted Rot. 0.01 0.00 0.00 Large Large Very Large

of each comparison. Effect sizes were calculated, and then categorized into very small, small,

medium, large, very large, or huge categories, based on Sawilowsky’s work [54]. These statistics

are summarized in Table 6.2.

There are a few results which are important to recognize from this analysis. First, EVIC

and NNPC are not statistically different in terms of completion time or MJE, but do seem to differ

in MTM, which additionally has a fairly large effect size. Second, both EVIC and NNPC are not

statistically different from the blind human-human dyads in terms of completion time. Last, EVIC

and NNPC are statistically different from both blind and sighted human-human dyads in terms of

minimum-jerk error and MTM, and these comparisons are all categorized as large or higher. A

more in-depth discussion of these results is found in Chapter 6.2.4, but as a short summary, the

statistics show that these controllers have approached a level comparable to blind human-human

dyads with respect to the completion time metric, but are still quite distinguishable in terms of

MJE and MTM metrics.

Another noteworthy observation is that both EVIC and NNPC, while capable, have diffi-

culties with fine-motor adjustments. Throughout the trials, participants occasionally overshot or

undershot their desired position, and had to make fine motor adjustments to achieve the desired

position. An example of undershooting is shown in Fig. 6.3. The dyad is able to complete 90% of
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Figure 6.3: Undershooting behavior of a human robot dyad for a translation task, where bold,
vertical lines indicate start/stop points, and dashed vertical line indicates 90% completion point–
movement after this point is considered a fine motor adjustment.

the task, represented by the dashed vertical line, in just under 6 seconds, but spends approximately

3 seconds trying to complete the remaining 10%, which amounts to about 10 cm of movement,

with more fine adjustments.

On average, the remaining time at 90% completion was 2.40s for EVIC and 2.55s for

NNPC. We also compared the achieved trajectories with an ideal minimum-jerk trajectory. The

time to 90% task completion on a minimum-jerk trajectory was, on average, 2.20s for EVIC and

2.12s for NNPC. From this data, it would appear that EVIC is slightly better at fine-motor adjust-

ments than NNPC, since EVIC had a smaller discrepancy between achieved and minimum-jerk

90% completion time.
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To determine if a few under-performing dyads skewed the average, we also took the median

90% completion time. For achieved and minimum-jerk trajectories, respectively, with EVIC, this

gave values of 1.98s and 2.11s. Similarly for NNPC, it gave values of 1.97s and 2.02s. From

these results, we conclude that this data is positive skewed, and only a small number of dyads had

trouble with fine-motor adjustments, causing the higher mean values. Therefore, we can conclude

the lack of fine motor skills in the controllers did not significantly hamper their ability to complete

the tasks, but should be addressed in future work to help improve the performance of those dyads

who struggled with undershooting or overshooting.

6.2.3 Qualitative Results

In addition to the metric performance, we also wanted to know what each person thought

of the controllers subjectively. As mentioned in Chapter 6.1.3, we gave each participant a survey

after they had performed all the tasks with one controller, and then the same survey after they

finished the other controller. The questions we asked dealt with how they thought their partner, a

robot in this case, performed. They were asked to rate the categories from 1–Strongly Disagree–to

5–Strongly Agree. The questions were:

• My partner was helpful

• My partner moved quick enough

• My partner moved too slow

• There was confusion between me and my partner

• I trusted my partner to perform the task correctly

• I felt safe completing the task

• I trusted my partner to move at correct speeds

• I trusted my partner to move in the correct direction

• My partner did not push or pull too hard
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• My partner moved predictably

• My partner helped me to do task better than I could alone

• My partner shared the task equally

The average for each controller rating is given in the first 2 columns of Table 6.3. The

controller that performed better in each category is in bold. For some categories, like Too Slow,

a lower number is desired, whereas for others, like Safe, a higher number is desired. The same

survey, except for the Correct Direction question, was given after the HHI study, and the results

are shown in the third column of Table 6.3. We have included only the responses of the human

designated as the leader from the human-human dyads.

Similar to our analysis of the quantitative results, we determined the statistical significance

of the survey results, in order to determine if there was a statistical difference between the responses

about the EVIC and NNPC controllers. For each question, we ran an unpaired t-test to calculate

a p value and determined Cohen’s d to find the effect size. These statistics are found in Table

6.4. What we found is that only the Good Force Amount question obtained a p value of less than

0.05, indicating it was the lone statistically significant answer. However, this question, as well as a

number of others, had a medium effect size.

6.2.4 Discussion

The first thing we noticed from Table 6.3 is that people still clearly prefer working with a

human partner over a robot partner. One reason for this may be that humans do not trust robots

entirely, as is evidenced by the 5th, 7th, and 8th questions in the survey, which all ask about trust

in the partner. Perhaps the same pHRI experiment, done instead with a blindfold and earmuffs on

the human would have returned more favorable ratings for the robot controllers. This is something

that needs to be explored further, as our experiments do not definitely prove that humans do not

trust robots.

As was mentioned above, NNPC was the more capable controller in terms of the perfor-

mance metrics. It also was preferred in the survey questions that dealt with these metrics. NNPC

was superior in rating for the Fast Enough, Too Slow, Correct Speed, Correct Direction, and Better
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Table 6.3: Ratings of survey questions, with 5 as strongly agree and 1 as strongly disagree. Bold
numbers indicate preference between EVIC and NNPC for the specified category.

EVIC NNPC HHI

Helpful 3.88 3.88 4.52

Fast Enough 3.38 3.63 4.38

Too Slow 3.31 2.94 2.09

Confusing 3.38 3.5 2.09

Correct Task 3.94 3.75 4.42

Safe 4.5 4.44 4.71

Correct Speed 3.44 3.56 4.47

Correct Direction 3.5 3.56 N/A

Good Force Amount 3.44 2.81 4.47

Predictable 3.63 3.5 4.28

Better than Alone 3.5 3.56 4.38

Equal Share 3.75 3.5 4.23

Table 6.4: Statistical significance of qualitative metrics.

EVIC vs NNPC

Survey Question p Cohen’s d Effect Size

Helpful 0.5 Very Small

Fast Enough 0.19 Medium

Too Slow 0.15 Medium

Confusing 0.34 Small

Correct Task 0.28 Medium

Safe 0.36 Small

Correct Speed 0.37 Small

Correct Direction 0.41 Small

Good Force Amount 0.04 Medium

Predictable 0.35 Small

Better than Alone 0.38 Small

Equal Share 0.15 Medium
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than Alone metrics. The superior rating in these metrics corroborates what we saw quantitatively,

indicating that NNPC was a more efficient controller, at least according to the metrics we have

seen.

However, participants also indicated they preferred using EVIC. They thought it was more

helpful, applied more appropriate levels of force, and saw it as the more predictable controller.

While NNPC outperformed EVIC in the TMT metric, this may not be a good thing. From our

observations here, as well as in our previous experiment [1], haptic communication is a large part of

how humans perform co-manipulation tasks. NNPC users experienced less force overall, based on

the TMT metric, but the survey indicated that EVIC applied more appropriate forces. Additionally,

EVIC and NNPC were only statistically different in terms of the MTM metric and the Good Force

Amount question. From these results, we can conclude that NNPC is not applying appropriate

forces, and is therefore considered more difficult and less intuitive to use by the participants. In

fact, our results here agree with what was said by Chipalkatty et al. [51], who indicated that training

a controller to be the most efficient or best performing controller may cause it to be a less preferable

controller to humans. Because EVIC and NNPC were statistically different from both blind and

sighted human-human dyads in terms of MJE and MTM, we can say that minimizing forces and

torques, and also deviation from a minimum-jerk trajectory, may not be a satisfactory goal of

co-manipulation controllers. So while NNPC is the better performing controller, EVIC might

be a more intuitive and appropriate controller for real-world applications, since it applies more

appropriate forces.

Looking at completion time in Table 6.2, we can see that both EVIC and NNPC were not

statistically distinguishable from the blind human-human dyads. This means that according to this

metric, both controllers perform up to the standard of the blind dyads. While this is an encour-

aging result, We know that there is some missing information in our model. Although similar in

completion time, our controllers performed much different than both types of human-human teams

in the TMT and MJE metrics. Perhaps there is a complex cost function that humans are using to

determine how much weight to put on adhering to minimum-jerk trajectories, minimizing torque

change, and moving in a timely manner. These considerations should be made in future controller

development.

63



We have also seen (see Fig. 6.3) that these controllers are not well suited for fine-motor

adjustments. We believe that because our robot arms were not helping to reach position, but were

simply holding an equilibrium position, the dyad was not able to account for small errors in the

position of the board. An algorithm that is able to coordinate arm and base motion would be more

suited to fix these small errors, and could possibly bring our pHRI controllers for co-manipulation

closer to human-human sighted performance.

64



CHAPTER 7. CONCLUSION

7.1 Summary of Results

This thesis has presented observations and analysis of metrics from a 6 DOF co-manipulation

human-human interaction experiment. From these observations, we saw that, on average, humans

tend to move in minimum-jerk trajectories, even in co-manipulation situations. An exception to the

minimum-jerk trajectory relationships is in prolonged or indefinite trajectories, where a constant

velocity profile is more appropriate. We also saw that interaction forces and torques can be used to

communicate intent from leader to follower. These observations were used to define an extension

to Variable Impedance Control called Extended Variable Impedance Control. This controller is a

planar co-manipulation method, where the dyad is in leader-follower setup, with the robot as the

follower.

Additionally, another controller, known as Neural Network Prediction Control, was de-

fined. This controller takes previous motion of the shared object and predicts future motion, and

commands the robot accordingly. This method is also in leader-follower format. The advantage of

this method is that it is capable of extension into 6 DOF, although was only implemented in planar

3 DOF in this thesis. These two controllers are, to our knowledge, two of the only bi-manual,

planar, extended object co-manipulation controllers. One of the only other control methods we

have seen for similar situations was shown in [30], and we discussed its limitations in Chapter 2.

An experiment of human-robot dyad co-manipulation of extended objects was performed,

using both of the controllers described in this thesis. The dyads performed lateral translation

and planar rotation tasks 6 times for each controller. The direction of motion (left/right and

clockwise/counter-clockwise) was alternated for each task. Participants did not know the spe-

cific details of the controllers, but were trained on each to a level of competency before data was

recorded. The experiment showed a number of results. Both control methods performed at a level

comparable to humans in task completion time. However, they both performed at a higher level
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than humans in both minimum-jerk trajectory error, as well as minimum-torque measurement. A

survey was also given to participants where they qualitatively rated the controllers. While the

Neural Network Prediction Control performed better–according to the metrics used–participants

indicated their preferred method was the Extended Variable Impedance Control, claiming it ap-

plied more appropriate levels of force, was more intuitive, and was more helpful.

7.2 Limitations and Possible Extensions

A big limitation of the Extended Variable Impedance Control is its restriction to planar mo-

tion. Most real-world tasks that we envision for human-robot dyads will require at least two more

DOF–z-axis translation (lifting) and x-axis rotation. It is not clear what force/torque patterns con-

tribute to these two movement types, and how they would be distinguished from the other patterns

described in this thesis. We recommend that future work explore the human-human physical co-

manipulation data tasks involving lifting and rotation about the x-axis. Lifting motion may also be

attainable by using the variable impedance model, although this presents problems with translation

versus rotation about the y-axis.

Another limitation, involving both control methods, is the disconnect between base motion

and arm motion. In watching videos of the human-human dyads, it is clear that coordinated mo-

tion between legs and arms is essential for better performance of the tasks, and is a necessity for

complex motions such as rotating about various axes while translating. Both controllers were ca-

pable of performing slightly above the level of blind-follower human-human dyads, but are below

sighted-follower dyads. In order to bridge this gap, they will need more coordinated control of

arms and base. A logical first step is to incorporate the z-axis translation prediction into the Neural

Network Prediction Control. The impedance controller being run on the arms to mimic human

behavior could be kept for x and y motion, but z-axis translation could be commanded to increase

this controller to 4 DOF motion. An experiment could then be run to determine the performance

of human-robot dyad lifting capabilities.

We also recommend that more work be done in analyzing the human-human physical co-

manipulation data for other possible physical human-robot interaction theories. For example, it

is possible that humans have learned to ignore certain forces or torques when performing certain

motions. The only tasks that have been thoroughly analyzed are the lateral translation and planar
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rotation tasks. In order to have a better picture of how humans perform general physical co-

manipulation tasks, and how best to program a robot partner, it is necessary to explore the other

tasks from our data set described in Chapter 3. While the Neural Network Prediction Control

does this in part, it still does not fully incorporate nor interpret the applied forces and torques.

A possible reason that force data caused divergence, that was not explored in this work, is that

the force data was filtered. The filtering causes a phase shift that may cause some issues when it

is implemented in the neural network. Looking into the phase shift problem, or exploring other

architectures–such as an RNN classifier where the classes are constant velocity or acceleration

values–should be pursued. Additionally, unexplored alternatives to the neural network, such as

autoregressive–moving-average models, could be used to incorporate force into the prediction.

7.3 Closing Remarks

This thesis has provided two unique physical co-manipulation controllers that can be ap-

plied to human-robot dyads. We have observed that these controllers are capable of operating to an

acceptable level with human partners, in 3 DOF. Human intent has also been characterized in terms

of both force patterns and motion patterns. While there are limitations to these controllers, they

are significant steps toward having 6 DOF human-robot physical co-manipulation in unstructured

environments.
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